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Abstract
Several recently proposed techniques based on the principle of data reprojection allow reusing shading informa-
tion generated in one frame to accelerate the calculation of the shading in the following frame. This strategy can
significantly reduce the average rendering cost for many important real-time effects at an acceptable level of ap-
proximation error. This paper analyzes the overhead associated with incorporating temporal data reprojection on
modern GPUs. Based on this analysis, we propose an alternative algorithm to those previously described in the
literature and measure its efficiency for multiple scenes and hardware platforms.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.3.1
[Computer Graphics]: Graphics processors

1. Introduction

The natural spatio-temporal coherence of animated image
sequences has long been exploited to accelerate ray-based
rendering systems. Recently, several methods based on the
principle of data reprojection have been shown to provide
similarly profitable error/performance trade-offs in real-time
systems. For example, the method proposed by Nehab et
al. [NSL∗07] allows reusing shading information from the
previous frame (usually the final pixel color) in the calcula-
tion of the shading in the current frame at some level of ap-
proximation error. They demonstrated impressive speedups
for a number of effects including precomputed radiance
transfer, procedural texture generation, depth-of-field, and
stereoscopic rendering. Data reprojection has also proven
useful in multi-view rendering architectures [HAM06] and
for amortizing the cost of supersampling shadow maps over
multiple frames [SJW07, NSL∗07].

This paper examines the overhead of using data reprojec-
tion to accelerate interactive rendering applications execut-
ing on modern GPUs. Specifically, we consider the demands
that reprojection places on the level of support for dynamic
flow control and multiple render targets for the ATI 2900
and NVIDIA G80 architectures. Based on this analysis, we
propose an alternative algorithm that is more efficient than
existing methods over a wide range of cache loads and for
different hardware platforms.

2. Data Reprojection in Real-Time Pixel Shading

This paper focuses on single-view real-time rendering appli-
cations deployed on modern ATI and NVIDIA GPUs. Fig-
ure 1 illustrates the basic idea of how data generated inside
a fragment shader may be reused across consecutive frames
through reprojection. At each frame, some value generated
at the fragment level is stored in a viewport-sized off-screen
buffer. We will call this buffer the shading cache. This is
equivalent to the real-time reprojection cache described by
Nehab et al. [NSI06, NSL∗07], the history buffer described
by Scherzer et al. [SJW07] and the exact view described by
Hasselgren et al. [HAM06]. In the following frame, each
fragment may access the data associated with its generating
scene point (assuming it was visible in the previous frame)
by correcting for the relative scene motion between frames.
This strategy thus allows reusing data at fixed surface loca-
tions as opposed to fixed locations in the framebuffer.

Accelerating a pixel shader with a shading cache first re-
quires identifying something worth reusing. This decision
ultimately depends on the effect in question and relies on
the ingenuity of a user. Hasselgren et al. [HAM06] recog-
nize that view-independent values may be reused at nearby
camera positions, but at the expense of some reconstruc-
tion error. Nehab et al. [NSL∗07] offer more general guide-
lines, concluding that caching slowly-varying and compu-
tationally intensive calculations inside the shader provides
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Figure 1: Data reprojection at the fragment level. Left:
At each frame, some value generated inside the fragment
shader along with the scene depth are stored in the shading
cache. Right: In the following frame, each fragment com-
putes its position into this cache and uses the difference be-
tween the depth of its reprojected scene point and that stored
in the cache to distinguish hits from misses. In this example,
fragment p enjoys a cache hit whereas the scene location
corresponding to fragment q was previously occluded and is
not present in the cache.

an ideal trade-off between speed improvement and shader fi-
delity. Scherzer et al. [SJW07] demonstrate that shadow map
queries can be effectively reused across consecutive frame.
Nehab et al. [NSL∗07] discuss a similar approach for amor-
tizing the cost of super-sampling a shadow map. In this pa-
per, we put the question of what to cache aside and instead
focus on the factors that determine the resulting performance
gains, but pay particular attention to the consequences of
caching and reusing partial shading data.

2.1. Fetching data from the cache

We will follow the techniques described by Nehab et
al. [NSL∗07] for computing the cache coordinates of a frag-
ment, resolving hits and misses, and reconstructing the cache
payload. Therefore, we will only briefly review these meth-
ods here (refer to Figure 1).

Computing cache coordinates: The homogeneous screen-
space position of each vertex in the previous frame may be
computed as

pn−1 = Rn−1Mn−1Pn,

where Pn is the object-space position of the vertex supplied
by the application and R and M are camera perspective
and modelview matrices, respectively. This calculation takes
place at the vertex level and the homogeneous vector pn−1
is output as a per-vertex attribute and correctly interpolated
across each face [HM91]. The final cache coordinates are ob-
tained through a simple division within the fragment shader.
The system proposed by Scherzer et al. [SJW07] instead per-
forms this entire calculation inside the fragment shader. We
recommend the computation previously described because it
requires less pixel processing for presumably already pixel
bound applications.

Resolving hits and misses: It’s possible that a fragment’s

scene point was occluded in the previous frame and is thus
not present in the shading cache. Differences in scene depth
can be used to detect cache misses [NSL∗07, SJW07]. This
requires storing a single z-value along with the cache pay-
load at every pixel. The depth of the reprojected scene
point computed in the fragment shader (pn−1, z/pn−1,w from
above) is compared to the scene depth at that location in the
previous frame. Whenever their difference is beyond some
epsilon value [AS06], a cache miss is declared and the pay-
load must be recomputed from scratch. Otherwise, a cache
hit occurs and the payload may be reused in the calcula-
tion of the final pixel color. Note that this approach only
allows reusing data for scene points nearest to the camera.
For scenes with semi-transparent surfaces, for example, po-
tential speed-ups are lost, although the accuracy of the shad-
ing is still ensured. Hasselgren et al. [HAM06] also point out
this limitation.

Payload and scene depth reconstruction: Because a one-
to-one correspondence does not exist between the fragments
in the current and previous frames, it is necessary to recon-
struct values at intermediate locations in the cache through
the use of some type of reconstruction filter. Prior sys-
tems [NSL∗07,SJW07] take advantage of efficient hardware
support for bilinear texture filtering to reconstruct the cache
payload and depth. Nehab et al. [NSL∗07] note that a key
benefit of this approach is to give more conservative hit/miss
tests, favoring cache misses near depth boundaries. Hassel-
gren et al. [HAM06] project the endpoints of a filter ker-
nel (e.g., tent or Gaussian) into the shading cache and inte-
grate over this extent. Because most real-time applications
exhibit very little scene motion between consecutive frames,
we have found that more expensive reconstruction methods
are not worth the additional effort compared to simple bilin-
ear reconstruction.

Cache refresh: Although a value may remain available in
the cache over many frames, it will eventually become stale
and should be explicitly refreshed. This can happen due to
changes in the shader inputs or from repeatedly resampling
the cache, which tends to attenuate high-frequency spatial
details in the signal. Nehab et al. [NSL∗07] show that re-
freshing cached entries every ∆n frames (on average) can be
achieved by refreshing 1/∆n percent of every frame. They
conclude that refreshing pixels along a random pattern uni-
formly distributed over the frame-buffer is preferable. The
refresh pattern has important consequences in terms of ren-
dering performance as we discuss in Section 4.

To support randomly distributed refresh patterns, a separate
screen-sized texture h(x,y) with pseudo-random numbers in
the range [0,∆n] and a global clock c are passed to the frag-
ment shader. The global clock is a single unsigned integer
which is incremented at each frame. A pixel is refreshed
whenever the indicator variable b is zero

b = (h(x/k,y/k)+ c) mod ∆n. (1)
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Figure 2: Single pass algorithm for incorporating data re-
projection into a fragment shader similar to that proposed
by Nehab et al. [NSL∗07].

This causes refreshes to occur within k× k contiguous pixel
regions as illustrated in Figure 5.

3. Three Algorithms

Figures 2, 3, and 4 illustrate three alternative algorithms of
a shading cache. Each one allows caching a single interme-
diate floating point 3-tuple in the fragment shader. There-
fore, the shading cache (which includes both the payload
and scene depth) can be maintained in a single four-channel
buffer. As noted by Scherzer et al. [SJW07], it is necessary
to double-buffer the shading cache because current architec-
tures do not support concurrent reads and writes.

3.1. One-Pass Algorithm

The most straightforward approach uses a simple branch to
follow either the recomputation or reprojection code path ac-
cording to the depth test and refresh indicator (Figure 2).
Because GPUs process nearby pixels in parallel, the per-
formance of this approach will depend on the branch effi-
ciency of the underlying hardware and the distribution of
hits and misses across the framebuffer. Whenever a cache
miss occurs inside a block of pixels that are processed to-
gether that also contains at least one cache hit, the amount
of speedup that is lost is proportional to the difference in
processing times for each path and the relative number of
hits and misses within that block (in the worst case, a single

Depth 
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refresh?
no yes

Output pixel color/Z

Fetch cache payload

Fragment Shader (First Pass)
Divide reprojected position by w

Fetch cached depth

Compare cached and reprojected depths

Compute refresh indicator

clip(-1)

Execute original shader

Output cachhe payload/depth

Output pixel color/Z

Compute shading using payload

Output cache payload/depth

Fragment Shader (Second Pass)

Figure 3: Two-pass algorithm of a shading cache similar to
that proposed by Nehab et al. [NSL∗07].

miss is surrounded by hits). Because it is clearly desirable to
cache values which are expensive to recompute from scratch,
this difference can be significant and the fact that disocclu-
sion boundaries and refresh patterns are typically distributed
across the entire framebuffer (Figure 5) significantly limits
possible gains.

3.2. Two-Pass Algorithm

The fact that the previous algorithm relies heavily on effi-
cient dynamic flow control (DFC) was identified and par-
tially addressed by Nehab et al. [NSL∗07] by using the Z-
buffer in conjunction with two rendering passes as a mech-
anism for flow control (Figure 3). Unlike the one-pass algo-
rithm, on a cache miss or forced refresh the shader simply
primes the depth buffer to force execution in the next pass.
In the second pass, the payload and final pixel color are both
computed from scratch and output to their respective targets.
Although this leads to greater data parallelism in the sec-
ond pass, the two execution paths in the first pass may still
have different processing times which can limit speedups for
non-ideal DFC. This is most acute when the cost of com-
pleting the shading using a value restored from the cache is
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Figure 4: Our alternative three-pass algorithm. This ap-
proach does not require the use of multiple render targets
and is more efficient given the level of support for dynamic
flow control in modern hardware.

large. However, this will necessarily be less expensive than
executing the original shader, so this approach tends to be
more efficient than the one-pass approach in practice given
the branch efficiency of modern GPUs. Finally, note that this
approach also requires multiple render targets since the shad-
ing cache and framebuffer must be updated in each pass.

3.3. Three-Pass Algorithm

Figure 4 illustrates our proposed algorithm which requires
three rendering passes. Although this approach is not ideal
for every situation, it provides clear advantages over previ-
ous methods in many important cases. The first pass per-
forms the same depth and refresh tests as before. However,
in the case of a hit, it reconstructs the cache payload and
simply writes this value to the shading cache for the cur-
rent frame (along with scene depth). In the case of a miss or
a forced refresh, it primes the depth buffer to force execu-
tion in the next pass. In a second pass, the cache payload is

k = 1 k = 2 k = 4

Figure 5: Visualization of different refresh quad sizes. Green
pixels correspond to cache hits, red pixels are misses, and
blue pixels are forced refreshes. Note that misses occur at
disocclusions and refreshes occur along a pre-determined
random pattern uniformly distributed over the framebuffer
within k× k blocks of pixels.

computed from scratch for those pixels that were either not
present in the cache or were refreshed. At this point the pay-
load is available in the shading cache at every pixel. A third
and final pass computes the pixel color using these payload
values and updates only the framebuffer.

This approach has two key advantages over prior techniques.
First, the processing times for each execution path in the
branch are independent from the relative costs of evaluating
the shader for a hit or miss; a single texture read is executed
regardless of what is being cached. Second, only a single
render target in each pass is required, which can significantly
improve efficiency for many hardware platforms and scenes.
This approach also has two important drawbacks. First, it
requires an additional rendering pass. However, the relative
cost of processing the geometry a third time compared to
computing the shading is acceptable for pixel bound appli-
cations that would benefit from this type of data reuse in the
first place. Second, potential compiler optimizations are lost
since the calculation of the payload and final shading are de-
coupled even in the case of a cache miss. This can negatively
affect performance when the payload and pixel color exhibit
significant “computation overlap” as illustrated in Figure 7.
However, we have found this situation is rare and that it tends
to occur for values that are not good candidates for caching
in any case. In our experiments, the fact that this three-pass
approach has a better balanced branch and avoids the use
of multiple render targets more than compensates for these
drawbacks.

4. Results

We used a Dell XPS with an NVIDIA GeForce 8800 GTX
and an ATI Radeon 2900 XT to generate the results reported
in this paper. We used the scenes shown in Figure 6 to com-
pare these three algorithms. The Dragon shader combines a
procedural 3D noise function with a Blinn-Phong specular
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Dragon Trashcan

Figure 6: Test scenes used in our experiments. The Dragon
model contains 75K faces and the Trashcan model contains
1K faces.

layer and incorporates multiple texture accesses and expen-
sive trigonometric functions. The Trashcan shader combines
25 samples of an environment map weighted by a Gaussian
kernel. The sample directions are computed from a normal
map plus a simple base geometry.

For each shader, we automatically generated versions
that corresponded to caching each intermediate value for
the three different algorithms previously described. This
was done by first computing the abstract syntax tree
(AST) [ALSU06] representation of each shader program and
replacing every node in this tree by a subtree corresponding
to a cache lookup. We then generated the source code cor-
responding to the modified AST and fed this to a standard
compiler. We manually culled from this set of nodes those
which were unsuitable for caching (e.g., values generated
inside a for loop). The resulting set of shaders enabled us
to evaluate these algorithms across a wide range of cache
payloads.

We conducted a series of experiments aimed at analyzing
the compute overhead of these algorithms when executed on
modern NVIDIA and ATI hardware. Our goal was to ex-
amine the effect of the following parameters on rendering
efficiency: the refresh quad size, the refresh period, and the
relative cost of evaluating the cache payload P relative to the
cost of evaluating the original shader T .

4.1. Relative Cost of Recomputing the Payload

The graphs in Figure 8 plot the average render time as a func-
tion of the intermediate value within the shader chosen for
reprojection (i.e., a node in the AST) for all three algorithms.
These numbers were generated using an animation sequence
that shows the object rotating at a moderate rate in front of
the camera. The nodes are sorted in ascending order based
on the ratio of the cost of evaluating the payload P relative
to the cost of evaluating the complete shader T as measured
for NVIDIA hardware. These results assume a fixed refresh
quad size of 4×4 and a refresh period of 32.

The trends in these graphs are consistent with our previous
discussion: the difference in processing times between the
two branch paths determines the relative efficiency of the

- x

1 7

+ 25

+

Figure 7: Simple example of the computational overlap
problem. This graph represents the expression (5 − (1 +
7)) + (2 · (1 + 7)). Caching the subexpression correspond-
ing to the orange node would cause (1 + 7) to be computed
twice, once when recomputing the payload and again when
computing the root node using this payload.

1-pass and 2-pass algorithms, while the overhead of our 3-
pass algorithm is insensitive to this difference. Specifically,
whenever a hit is much less expensive to process than a miss
(i.e., P/T is large, toward the right of the graph) the 2-pass
algorithm generally outperforms the 1-pass algorithm. The
factor of improvement is a function of the branch efficiency
of the underlying hardware and the pattern of hits and misses
in the framebuffer. Conversely, as the cost of computing the
final shading using the payload increases (i.e., 1− P/T is
large, toward the left of each graph) the performance of the
2-pass algorithm decreases, along with the benefits of using
data reprojection at all.

Another important benefit of our 3-pass algorithm is that
it does not require multiple render targets. For these types
of pixel bound scenes, we found that the overhead of using
MRT exceeds the cost of an extra pass through the geom-
etry for almost every node. Finally, note that the benefit of
3-pass vs. 2-pass decreases as P/T increases which we at-
tribute to two factors. First, the processing time required for
the miss branch in the 2-pass algorithm decreases, limiting
the penalty of inefficient DFC. Second, the relative cost of
the additional rendering pass increases as the scene becomes
less pixel bound. In almost every case, however, the 3-pass
algorithm is the most efficient (right column in Figure 8).

The outliers in these plots that violate these general trends
correspond to particularly poor nodes to cache in which both
hits and misses require a significant amount of processing.
This is due to the computational overlap problem demon-
strated in Figure 7.

4.2. Refresh Quad Size and Refresh Period

The graphs in Figure 9 plot rendering performance as a func-
tion of refresh period ∆n for the Dragon shader modified to
cache node #32. This node corresponds to the sum of two (of
the five) octaves inside the Perlin noise calculation. The fact
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Figure 8: Performance comparisons of the three different algorithms for multiple scenes and hardware platforms. In all cases
a refresh quad size of 4× 4 and a refresh period of ∆n = 32 were used. Left: Average render times (lower values are better).
Right: Rendering performance with respect to the 2-pass algorithm (higher values are better).
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Figure 9: Effect of refresh quad size and refresh period on
performance (note different y-axis scales between top and
bottom rows).

that this value is independent of the light and view direction
and exhibits low-frequency spatial frequencies makes it an
ideal candidate for reprojection. We also measured the ef-
fect of the refresh quad size on rendering performance for
k = 1,2,4 in Equation 1. We found that quad sizes beyond
4×4 behaved similarly to k = 4 and their results were omit-
ted.

As expected, increasing the refresh period leads to a greater
number of cache hits within each frame and causes a steady
drop in rendering times. However, this rate of improvement
decays exponentially which we attribute to the fact that the
probability scene motion will prematurely force a cache miss
increases alongside refresh period. For all three algorithms,
we consistently observed a drop in rendering time when go-
ing from a refresh quad size of 1× 1 to 2× 2. We attribute
this to the fact that modern hardware executes pixel shaders
within 2×2 blocks together in order to approximate deriva-
tives necessary for proper mip-map access so this becomes a
lower bound on the branching granularity with any method;
we were careful to align our refresh patterns with these un-
derlying 2× 2 pixel blocks through a simple trial-and-error
process. We did not observe a significant improvement be-
tween k = 2 and k = 4 except in the case of the 1-pass algo-
rithm on the ATI Radeon 2900. Our intuition is that this re-
sults from differences in the branching efficiency and thread
scheduler between these architectures, although this infor-
mation is not part of the public domain.

5. Conclusion

This paper analyzed the tradeoffs between different tech-
niques for incorporating data reprojection into real-time ap-
plications. Specifically, we analyzed the overhead due to the
level of support for DFC and MRT in modern GPUs. Based
on this analysis, we proposed a new 3-pass algorithm which
we verified is more efficient than existing methods over a
wide range of cache loads and for multiple hardware plat-
forms. Additionally, we analyzed the relationship between
rendering efficiency and three fundamental parameters of a
shading cache: the ratio of the costs of computing the pay-
load and the entire shading, the refresh quad size, and the
refresh period. We expect these results will provide further
insights into how data reprojection can be best used to accel-
erate real-time systems.

References

[ALSU06] AHO A. V., LAM M. S., SETHI R., ULLMAN

J. D.: Compilers: Principles, Techniques, and Tools (2nd
Edition). 2006.

[AS06] AKELEY K., SU J.: Minimum triangle separation
for correct z-buffer occlusion. In Proc. of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware (2006), pp. 27–30.

[HAM06] HASSELGREN J., AKENINE-MOLLER T.: An
efficient multi-view rasterization architecture. In Pro-
ceedings of the Eurographics Symposium on Rendering
(EGSR) (2006).

[HM91] HECKBERT P., MORETON H.: Interpolation for
polygon texture mapping and shading. In State of the
Art in Computer Grpahics: Visualization and Modeling,
Rogers D., Earnshaw R., (Eds.). Springer-Verlag, 1991,
pp. 101–111.

[NSI06] NEHAB D., SANDER P. V., ISIDORO J. R.: The
Real-Time Reprojection Cache. Tech. rep., Princeton Uni-
versity, 2006.

[NSL∗07] NEHAB D., SANDER P. V., LAWRENCE J.,
TATARCHUK N., ISIDORO J. R.: Accelerating real-time
shading with reverse reprojection caching. In Graphics
Hardware (2007).

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.:
Pixel-correct shadow maps with temporal reprojection
and shadow test confidence. In Proceedings of the Eu-
rographics Symposium on Rendering (EGSR) (2007).

c© The Eurographics Association 2008.


