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Figure 1: Illustration of overdraw and vertex cache efficiency. In the front views, darker regions represent high-overdraw. In
the side views, darker regions represent cache misses. (a) Rendering triangles in a front-to-back order maximizes the use of
early Z-culling, but results in poor vertex cache performance. (b) Conversely, mesh locality optimizations produce excellent
cache hit rates but can generate high levels of overdraw. (c¢) Our method combines both ideas into a view-independent ordering
that results in excellent cache performance while minimizing overdraw.

Abstract

We describe an automatic preprocessing algorithm that re-
orders triangles in a mesh so as to enable the graphics hard-
ware to efficiently cull vertex and pixel processing at render-
ing time.

Our method starts by dividing the mesh into planar clus-
ters which are subsequently sorted into a view-independent
order which greatly reduces overdraw. The result is an in-
crease in the opportunities for early Z-culling, reducing pixel
processing time. The clusters are then optimized for mesh
locality. This produces high rates of vertex cache hits, re-
ducing vertex processing time.

We have found that our method brings the overdraw rates
of a wide range of models close to that of front-to-back order,
while preserving state of the art vertex cache performance.
This results in higher frame rates for pixel-bound applica-
tions with no penalty to vertex-bound applications.

1 Introduction and previous work

Modern graphics hardware pipelines organize processing in
two main stages, one that processes vertices and another
that processes pixels. In any given application, each one
of these steps has the potential to become a bottleneck.
Factors that contribute to an application being vertex- or
pixel-bound may include the amount of geometric data be-
ing processed, the depth complexity, and the relative cost of
the programmable components of vertex and pixel process-
ing being used.

Naturally, graphics processors employ a series of tech-
niques to cull both vertex and pixel computations wherever
possible. We describe the two main optimizations of concern
for this work. To reduce vertex overhead, modern graphics
processors cache transformed vertices. When a primitive is
issued that uses a vertex already in the cache, no extra work
is performed for that vertex. Conversely, in the pixel side,
graphics processors discard pixels that would fail the Z-test
before any further processing is performed (early Z-culling).
These optimizations are strongly affected by the order in
which the triangles composing a mesh are issued.

Mesh locality can be optimized to ensure vertices are in-
voked repeatedly while transformed results are still in cache.
This has been extensively investigated elsewhere [Deering
1995; Chow 1997; Hoppe 1999]. The main idea is to orga-
nize the mesh as a series of short, parallel strips that share
as many vertices as possible with neighbors. State of the
art methods typically bring the average number of cache
misses per triangle from 3 in the random case down to 0.6—
0.7 (which is very close to the 0.5 optimum).

On the other hand, drawing primitives in front-to-back
order gives early Z-culling the chance to optimize away all
computation that would otherwise be overwritten. Unfortu-
nately, per-triangle real-time depth sorting on large meshes
can be impractical. Furthermore, depth sorting the entire
scene can ruin any gains produced by mesh locality opti-
mizations (figure la). For these reasons, it is usually per-
formed at the object level, with each object preprocessed for
mesh locality. Depending on the complexity of each individ-
ual model, this approach can be far from optimal. In fact,
it is often the case that mesh locality optimizations gener-
ate poor orders within objects as far as early Z-culling is
concerned (figure 1b).

Another strategy to reduce overdraw is to prime the Z-
buffer by rendering the geometry without outputting to the
color buffer. On a second pass, which uses the real shaders,
there will be no overdraw. Unfortunately, this approach dou-
bles the amount of vertex processing required, which might
be too high a price to pay. It is therefore worthwhile to
investigate whether it is possible to reduce overdraw rates
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Figure 2: View independent order. Although neither of the
above models is convex, rendering the labeled regions in the
order implied by their respective labels ensures that, in the
presence of backface culling (backfaces renderend dark), no
overdraw will happen regardless of viewpoint.

without hurting cache efficiency and without changing the
rendering pipeline. In that case, the resulting method could
be used generally, with no disadvantages.

In this paper, we notice that in the vast majority of meshes
it is possible to sort triangles in a view-independent order
that greatly reduces overdraw, even if triangles are clustered
into considerably large contiguous patches. These clusters
can then be optimized independently to maximize mesh lo-
cality using any algorithm of choice (we use Hoppe [1999]
throughout this work), with virtually no penalty with re-
gard to optimization across the entire mesh.

The result is a pre-processing algorithm that produces a
triangle order that enables the graphics hardware to cull
both vertex and pixel computation within each model, lead-
ing to not only higher frame rates but more consistent frame
rates in real-time applications (figure 1lc).

2 View-independent sorting

As we mentioned in the introduction, the effectiveness of
early Z-culling is maximized when triangles are drawn in a
front-to-back order. Depth sorting, however, is fundamen-
tally view-dependent. Although many techniques have been
developed to speed up view-dependent depth sorting (see, for
example, BSP related techniques [Fuchs et al. 1980; Chen
and Wang 1996]), we are interested in view-independence
since it is transparent to the application and does not inccur
any CPU overhead.

Fortunately, in most applications, triangles facing away
from the camera do not generate any pixels due to back-
face culling. This means that the relative order of any two
triangles is irrelevant if their normals point in opposite direc-
tions. This additional freedom is what allows us to find an
appropriate view-independent order that reduces overdraw.

Consider convex objects, for example. In the presence
of backface culling, no triangle order can produce over-
draw. Surprisingly, although order is important in general,
for many concave objects it is also possible to find view-
independent orders that produce no overdraw. Figure 2
shows two examples of concave objects and corresponding
orderings. In practice, even for the cases where there is no
perfect order, some orders will often be far better than av-
erage, and all we have to do is find one of them.

To simplify the problem, suppose that a given model
can be clustered into non-intersecting, planar, contiguous
patches. Assume further that, for each pair of patches, we
are able to determine if there is any viewpoint for which
one of them can obscure parts of the other. If we can then
produce a patch ordering that respects most or all of the
pairwise orderings, it will result in little or no overdraw, re-
gardless of viewpoint. Because the patches are contiguous,
we can then optimize each one independently for mesh local-

ity, and results will be similar in quality to that of optimizing
the mesh as a whole.

We have thus divided our original problem into four
smaller problems. In section 3, we describe how we clus-
ter the mesh triangles into roughly planar patches. Then,
in section 4, we describe how we generate a partial order
graph representing the relative orderings between all pairs
of clusters. Section 5 concludes the discussion of the algo-
rithm, showing how we produce a cluster ordering from the
graph. A final step that doesn’t require discussion applies
mesh locality optimization to the individual clusters.

3 Clustering into planar patches

As we mentioned before, we want to enforce the planarity
of the patches produced by our clustering algorithm. That
way, we minimize the amount of overdraw within each patch,
which would otherwise be unavoidable regardless of the final
cluster ordering.

Any of several robust algorithms for planar mesh cluster-
ing could be used to solve our problem (e.g., Garland et al.
[2001], Levy et al. [2002]). We chose a method based on
k-means clustering [MacQueen 1967] because it has the ten-
dency of following global mesh features more faithfully when
compared to greedy hierarchical merging methods. More
specifically, we adapted the method of Sander et al. [2003]
to produce clusters suitable for our application.

As in k-means clustering, the method alternates between
two steps, one which assigns faces to clusters based on nor-
mal variation and distance to cluster centroids, and one
which computes a new centroid for each cluster. Both
achieve this objective using a breadth first search, the for-
mer starting from the centroid, and the latter starting from
the cluster boundaries.

In Sander et al. [2003], since the objective is to produce
clusters that are suitable for parameterization, boundary
compactness of the clusters is enforced with an appropriate
term in the metric that is used for determining cluster assign-
ments. We are more concerned with planarity. Therefore,
during the assignment step we use a metric that is solely
based on the cluster’s current average normal n. and the
candidate face normal ny. The edge cost between a face f,

Figure 3: The Feline mesh partitioned into 32 planar
patches. Notice how patches tend to follow the natural
creases of the mesh. This is due to our normal-based clus-
tering metric.
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Figure 4: Viewpoint generation. A series of progressively
denser viewpoint sets can be produced by subdivision of an
icosahedron. From left to right, sets of 12, 42, and 162 view-
points.

candidate for inclusion into a cluster ¢, and its neighboring
face in that cluster is computed as follows:

cost(c,f)=1—1n.-ny+e

where € is a small constant to break ties in favor of proximity
to seed in fully planar mesh sections.

Another difference is that our application does not require
clusters to be topologically equivalent to disks, thus allowing
us to neglect that constraint from the original algorithm.

Figure 3 shows the result of clustering the Feline mesh.
Notice that the cluster boundaries have a tendency to follow
the creases of the mesh.

We also considered optimizing for mesh locality before
clustering. In that case, we included a term to the met-
ric that favored the preservation of strip boundaries. Under
certain conditions, this formed clusters whose shapes yielded
slightly better vertex cache results. However, the increased
curvature worsened the overdraw results. Since vertex cache
performance was almost unchanged, we opted for the simpler
metric, based solely on cluster and face normals. As a result,
we use the number of clusters as the single parameter that
controls the trade off between vertex and pixel processing.

4 Generating the partial order graph

Given the input mesh previously partitioned into clusters,
we proceed to generate the partial order graph. For each
pair of clusters, we must determine whether to add an arc
between them, and if so, the direction and weight it should
have.

Consider clusters a and b. We add an arc from a to b if
drawing a before b generates less pixels than the opposite
order, when rendered under a variety of viewpoints. The
weight of the arc is the net difference in the number of gen-
erated pixels. If both orders generate the same number of
pixels, no arc is added. The rationale is that if a can occlude
large portions of b, then it should be rendered first. If only
a small part of b can be occluded, the order matters less.

This is a slight simplification of the problem, because
drawing a third cluster ¢ might alter the effect on the rela-
tive overdraw between a and b (imagine a and b are inside
a sphere ¢). In practice, this is seldom the case and the
approximation is adequate.

The set of viewpoints can be generated by positioning the
camera on the vertices of an icosahedron, or any of its sub-
divisions, as in figure 4. The model is then scaled to fit
inside the icosahedron and, for each viewpoint, the frustum
can be adjusted to include the entire object. We generate
512x512 images for each viewpoint and use a hardware oc-
clusion query to determine the amount of overdraw.

If rendering with a perspective camera, the field of view
and the distance to the camera affect the amount of overdraw

Figure 5: A model that generates cycles. If the helix is split
into clusters containing each one of its twists (as shown by
the alternating colors), two cycles will arise. Each cycle can
be broken at one arc to generate an ordering that produces
much less overdraw than random ordering.

between each pair of clusters. Ideally, the overdraw compu-
tation should take into account the camera parameters and
viewpoint distribution of the target application. We have
found that using an orthographic camera and 162 viewpoints
evenly distributed around the model is sufficient to achieve a
good approximation of overdraw for generic cases. Nonethe-
less, if the target application differs significantly from the
generic case (e.g., the model will always be viewed from one
side), the partial order graph generation can be specialized
accordingly.

Since the measurements have to be performed for all pairs
of clusters, the algorithm runs in O(n2) time, where n is the
number of clusters. The quadratic complexity is acceptable
because the number of clusters we need in practice is several
orders of magnitude smaller than the number of faces in a
large mesh. Even so, we can improve the efficiency of the
graph construction process with the following optimizations.

If the same occlusion query object is used atomically for
all queries, the system remains idle while it waits for the oc-
clusion query result to arrive from the GPU. Accordingly, we
noticed a 6x factor of improvement by issuing multiple oc-
clusion queries consecutively before gathering their results.
In our experiments, we noticed that using more than 100 si-
multaneous occlusion queries does not significantly improve
performance.

Another key optimization is to compute the intersection
of the bounding boxes of the two clusters in screen space
before rendering. If that intersection is empty, the relative
overdraw between the two orderings is zero. Therefore the
pair can be skipped for that particular viewpoint. This opti-
mization yields an additional 4x improvement when generat-
ing graphs for 32 clusters. Interestingly, this factor increases
along with the number of clusters, since the average cluster
size is smaller.

A similar method can be used to obtain the total number
of pixels generated while rendering a full model, given an
ordering for its clusters. We can then obtain a normalized
measure of overdraw, if we divide this total by the projected
area of the model. The projected area can be obtained by
rendering the mesh a second time, without clearing the Z-
buffer, and counting the number of pixels generated when
the second pass is rendered with the depth comparison func-
tion set to equal. This is one of the tools we use to evaluate
the quality of our results in section 6.

5 Ordering the clusters

If the partial order graph has no cycles, a Topological
Sort [Knuth 1973] solves the ordering problem in O(|V] +
|E|). However, some models, such as the helix in figure 5,
are likely to produce graphs with cycles. In those cases,
we are interested in finding the ordering that violates the



Figure 6: Result of sorting. The Buddha model has been
partitioned into 256 clusters. These led to a partial order
graph which was ordered with the greedy heuristic. Ordered
clusters are colored in sequence from black to white. Notice
how clusters that can be potentially overdrawn are white, in
contrast to black clusters that are less likely to be overdrawn.

minimum number of pairwise orderings, or rather the order-
ing that minimizes the sum of the weights of all violations.
This problem is known as the Minimum Feedback Arc Set
problem [Younger 1963], and it is NP-complete [Karp 1972].

A greedy heuristic which we have found to work well in
practice is described in Skiena [1997]. It has the advantages
of being easy to implement, efficient to execute (it also runs
in O(JV| + |E|)), and of agreeing with the Topological Sort
whenever possible.

The idea is to find nodes with no incoming arcs or with no
outgoing arcs and place them respectively in the beginning
or end of the current ordering. Whenever a node is placed
in the ordering, it is removed from the graph, along with
its incoming and outgoing arcs. This process is repeated
and the graph is progressively simplified. If there are cycles,
eventually all remaining nodes will have both incoming and
outgoing arcs. We then greedily select for removal the node
with the greatest absolute difference in the sum of the costs
of its incoming and outgoing arcs, placing it in the winning
side of the ordering.

Results of this stage are shown for the Buddha model
in figure 6. There, clusters have been colored from black
to white, in the order determined by the heuristic. Notice
that clusters that could be overdrawn tend to be white, in
contrast to black clusters that are less likely to be overdrawn.

6 Results

Recall that our goal was to produce a triangle ordering that
reduces overdraw while maximizing vertex cache reuse. To
show that is indeed the case, we proceed in three steps. First,
we show that clustering before applying mesh locality opti-
mizations does not harm vertex cache performance. Then,
we show that our clustering ordering strategy considerably
reduces overdraw. Finally, we show that the reduction in
overdraw translates into a frame rate improvement during
real-time rendering of pixel-bound scenes.

We start with figure 7, which shows the average number
of cache misses per triangle, for a variety of models. Low-
est values are best, ranging from the theoretical optimum of
0.5 to the worst case of 3 cache misses per triangle. Notice
how our clustering has little or no impact on the mesh local-

ity optimization (compare our results with the global vertex
cache optimization).

Figure 8 shows a comparison of the worst-case overdraw
ratio for any viewpoint. Overdraw ratios measure the num-
ber of pixels generated divided by the projected area of the
model in pixels. Again, lowest values are best, and a value of
one means no overdraw (as in front-to-back order). Notice
how our ordering produces less overdraw when compared to
the global vertex cache optimization and with random tri-
angle ordering.

In figures 7 and 8, the models ordered by our method
use the smallest number of clusters that enables our sorting
strategy to reduce overdraw to acceptable levels. It turns out
that this usually happens long before the number of clusters
starts to harm the vertex cache performance. Figure 9 shows
the relationship between number of clusters with overdraw
for the Dragon and Buddha models with 150k triangles. No-
tice how, after a certain number of clusters, little is gained
in terms of overdraw reduction. In practice, an appropriate
number of clusters can be found by trying the method on
successive powers of two, until the average overdraw stops
improving consistently.

Finally, figure 10 shows the improvement in rendering
time for a real-time, pixel-bound application due to our or-
dering scheme. For that, we used an application that renders
models using a computationally intensive, albeit reasonable,
procedural texture and per pixel lighting. This application
was used to render a model of the Dragon, with resolutions
of 20k and 150k triangles. The values shown are the ra-
tios between measurements for our ordering scheme and the
ordering produced by direct use of Hoppe [1999].

It is clear from the graph that lower overdraw rates cor-
relate with lower render times. The 20k model is entirely
pixel-bound and exhibits a strong correlation. If the appli-
cation is not as pixel-bound, as in the 150k example, this cor-
relation will not be as strong. Nevertheless, improvements
should be expected. Notice that for some viewpoints our
method results in slightly higher rendering times. In those
few cases, the vertex cache optimization result outperforms
our method because the view direction coincides with the
direction in which the triangle strips were generated. This
causes triangles to be rendered in front-to-back order. Even
so, the performance difference for those viewpoints is less
than 10% and these cases are significantly outnumbered by
cases in which our occlusion-aware method produces much
better results. Furthermore, as mentioned earlier, if the tar-
get application has a restricted set of camera positions, our
optimization could take that into account to further reduce
overdraw from these key viewpoints.

As final note, we also observed a considerable reduction
in the variance of the overdraw rates for varying viewpoints,
when we compare our results to those of the global mesh
locality optimization. For example, the variances for the
Dragon and Buddha models are reduced by 50 and 10 times,
respectively. This leads to more consistent frame rates.

7 Conclusions

We presented an automatic preprocessing method that pro-
duces a view-independent ordering of mesh triangles which
has the property of greatly reducing overdraw while pre-
serving mesh locality. This ordering immediately results in
considerably higher and more stable frame rates for pixel-
bound applications, and presents no risk to vertex-bound
applications. Therefore, the method can be used in a wide
range of applications.
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