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Abstract—This paper proposes a quasi-dense approach to 3D surface model acquisition from uncalibrated images. First,
correspondence information and geometry are computed based on new quasi-dense point features that are resampled subpixel points
from a disparity map. The quasi-dense approach gives more robust and accurate geometry estimations than the standard sparse
approach. The robustness is measured as the success rate of full automatic geometry estimation with all involved parameters fixed.
The accuracy is measured by a fast gauge-free uncertainty estimation algorithm. The quasi-dense approach also works for more
largely separated images than the sparse approach, therefore, it requires fewer images for modeling. More importantly, the quasi-
dense approach delivers a high density of reconstructed 3D points on which a surface representation can be reconstructed. This fills
the gap of insufficiency of the sparse approach for surface reconstruction, essential for modeling and visualization applications.
Second, surface reconstruction methods from the given quasi-dense geometry are also developed. The algorithm optimizes new
unified functionals integrating both 3D quasi-dense points and 2D image information, including silhouettes. Combining both 3D data
and 2D images is more robust than the existing methods using only 2D information or only 3D data. An efficient bounded regularization
method is proposed to implement the surface evolution by level-set methods. Its properties are discussed and proven for some cases.
As a whole, a complete automatic and practical system of 3D modeling from raw images captured by hand-held cameras to surface
representation is proposed. Extensive experiments demonstrate the superior performance of the quasi-dense approach with respect to
the standard sparse approach in robustness, accuracy, and applicability.

Index Terms—Three-dimensional reconstruction, surface reconstruction, structure from motion, 3D modeling, matching, uncertainty,

variational calculus, level-set method.
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1 INTRODUCTION

PASSIVE versus active methods: Three-dimensional model
acquisition has always been one of the fundamental

research topics in computer vision. Active 3D scanners are
currently the dominant technology for capturing digital
object models for applications. Their geometric accuracy has
continually improved. But, they remain expensive and,
more importantly, they suffer from a number of technical
limitations. They are invasive and some materials, such as
hair, cannot be scanned. They are also not “scalable” to
objects of different sizes, especially large ones and outdoor
scenes. In comparison, passive image-based modeling from
collections of images captured by handheld cameras offers
several advantages. It needs only low-cost hardware, it can
be applied to objects of any size, and also it preserves the
appearance information from original photographs while
maintaining perfect geometric alignment.

Sparse and dense approaches: There are two approaches
for reconstruction from images. For uncalibrated images, the
standard isbasedon the sparsepointsof interestdeveloped in
the last decade [2], [10], [12], [20], [21], [26], [37], [41]. This
sparse approach is sufficient for computing or tracking
camera positions, but not for representing the scene or the
objects in the scene as it merely reconstructs sparsely

distributed 3D points. For calibrated images (the sparse
approach can be used for calibration purpose to start a dense
method), dense stereo methods, including the traditional
direct stereo matching and more recent volumetric ap-
proaches of simultaneously reconstructing the object and
computing the dense correspondence [9], [24], [25], [46], are
the usual approaches to reconstruction. The main disadvan-
tages of the best dense stereo methods are that they only
reconstruct smoothed layers of disparities, special configura-
tions in handling multiple views (often in one half-space
looking at the other half-space and for images of small
baselines), and they are very expensive in terms of time and
memory [24]. In practice, to handle uncalibrated images, a
combination of these two methods is a natural choice [37],
[41]. For instance, from a sparse geometry, dense stereo
matching algorithms are run for some selected pairs in [40]
and all in [38]. The dense reconstruction is triangulated and
texture-mapped to obtain the final models. The surface
models obtained are often partial and the surface triangula-
tion is simply inherited from a 2D triangulation in one image
plane, which means that the surface topology cannot be
properly handled.

Quasi-dense approach: Motivated by the insufficiency of
the existing sparse and dense approaches, we develop in this
paper a quasi-dense approach to surface reconstruction from
a sequence of uncalibrated images. This gives a more robust
and accurate geometry estimation, a quasi-dense geometry,
using fewer images. It fills the gap of insufficiency of the
sparse approach by delivering a high density of 3D points
from uncalibrated images that make a surface reconstruction
tractable.

In addition to presenting a complete system of
3D modeling from raw images captured from hand-held
cameras, the main contributions of this paper are threefold:
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. The introduction of point features as the resampled
subpixel points from the quasi-dense disparity map
to densify the feature points, thereby overcoming the
sparseness of the points of interest method.

. An automatic quasi-dense geometry computation
from uncalibrated images. Compared with the stan-
dard sparse approach, the quasi-dense approach not
only gives more robust and accurate reconstruction
results,but itworksfor largelyseparatedimages.More
importantly, it produces a high density of points that
can be used for direct surface reconstruction. A fast
gauge-free estimation algorithm is also developed for
an efficient evaluation of the reconstruction accuracy.

. New surface reconstruction algorithms integrating
both 3D data points and 2D image informations.
This is possible because of a unified functional based
on a minimal surface formulation. We believe that
the new functional has far fewer local minima than
those derived from 2D data alone and that this will
result in more stable and more efficient algorithms.
For the efficient evolution of surfaces, we also
propose a bounded regularization method based
on level-set methods. Its stability is also proved.

Paper organization: Section 2 introduces the quasi-dense
subpixel point features and correspondences and describes
their computation. Section 3 describes the whole procedure
of the estimation of the quasi-dense geometry by stressing
two-view analysis and fast gauge-free uncertainty estima-
tion. Section 4 presents the surface reconstruction by
integrating the quasi-dense 3D information and 2D image
information. Section 5 gives more implementation details
and experimental results and Section 6 concludes the paper.
Sections 3 and 4 are extensions of our previous conference
papers [28], [29].

2 QUASI-DENSE CORRESPONDENCES

In this section, we introduce and define the concept of
quasi-dense point correspondences as our “point” features.
We also describe the computation procedures.

2.1 Quasi-Dense Pixel Correspondences by Match
Propagation

We start with the standard sparse matching algorithm
between two images to detect the points of interest [18], [30]
in each image. Points of interest are, naturally, reliable point
features sparsely distributed in each image space. They are
also tractable for widely separated images having larger
disparities. A ZNCC (Zero-MeanNormalized Cross Correla-
tion) method, followed by cross validation, is used to match
these points of interest in two images. This gives a list of
sparse point correspondences that contains inevitable errors.

The standard sparse approach uses a robust statistical
method to remove correspondence outliers by fitting the
underlying fundamental matrix [54], [63] to the list of sparse
point correspondences between the two images. Instead, we
“densify” the correspondences by match propagation. We
first sort this list of point correspondences using the
correlation score. These sorted point correspondences are
called seedpoints.At each step of the propagation,we choose
the best corresponding pixels scored by ZNCC from the
current list of seed points. Then, in the immediate spatial
neighborhood of the seed points, we look for new potential

matches and add the bests to the current list of seed points
according to a combination of local constraints, such as
correlation, gradient disparity, and confidence. Thematching
uniqueness and the ending of the process are guaranteed by
choosing only newmatches that have not yet been selected. A
more detailed description of match propagation and its
properties can be found in [27]. In [3], [49], [56], [61], the
matches of seed points are used as ground control points to
densify the disparity map for stereo matching algorithms.

It is important to note that ours is a very efficient
algorithm, both in time and space, and at each time, only
the best match is selected. This drastically limits the
possibility of bad matches. For instance, the seed selection
step seems very similar to many existing methods [54], [63]
for matching points of interest using correlation, but the
crucial difference is that we need only take the most reliable
ones rather than trying to match a maximum number of
them. In extreme cases, only one good seed match is
sufficient to provoke an avalanche of correspondences in
the textured images. This makes our algorithm much less
vulnerable to bad seeds. The same is true for propagation.
The risk of bad propagation is considerably diminished by
the best-first strategy over all matched boundary points.

This best-first match propagation approach produces
denser, but not completely dense, pixel correspondences
thatwe call quasi-dense pixel correspondences. One example
for a real pair of images is illustrated in Fig. 1c and Fig. 3a.

2.2 Quasi-Dense (Subpixel) Point Correspondences
by Homographic Resampling

Quasi-dense pixel correspondences are not directly used as
our “point” features in subsequent computations. Instead,
we resample these pixel correspondences into what we call
quasi-dense point correspondences.

On one hand, the resampling is motivated by the fact
that the quasi-dense pixel correspondences give an irregu-
lar distribution of clusters of pixels, which is not suitable for
geometry computation. Many clustered pixels do not create
strong geometric constraints while making the estimation
cost high. Resampling produces not only a reduced set and
more uniform distribution of matched points in the images,
but it also creates matching points with subpixel accuracy.
On the other hand, the resampling is equally motivated by
the necessity of postmatch regularization to improve match
reliability by integrating local geometric constraints since
the quasi-dense pixel correspondences may still be cor-
rupted by wrong correspondences.

We assume that the scene or object surface is at least
locally smooth. Therefore, instead of directly using global
geometric constraints encoded by a fundamental matrix, we
first use local smoothness constraints encoded by local
planar homography: The quasi-dense pixel correspondences
are regularized by locally fitting local homographies to them.

The first image plane is initially divided into a regular
square grid of 8� 8pixels. This size is a trade-off between the
sampling resolution and regularization stability. For each
square patch, all pixel correspondences inside it from the
quasi-dense pixel correspondences are used to tentatively fit
a plane transformation. The most general linear plane
transformation is a homography represented by a homo-
geneous 3� 3 nonsingular matrix. Four matched pixels, no
three of them collinear, are sufficient to estimate a plane
homography. In practice, an affine transformation encoded
by six degrees of freedom using three matched pixels rather
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than a homography is preferred, as the local perspective
distortion is oftenmild between images. Because of unavoid-
able matching errors and the points not lying on the
dominant local plane (e.g., at the occluding contours), the
putative transformation for a patch cannot be estimated
using standard least squares estimators. The Random
Sample Consensus (RANSAC) [11] is used for a robust
estimation of the transformation, H. Finally, for each
confirmed patch correspondence, a pair of corresponding
points, ui $ Hiui with subpixel accuracy, is created by
selecting a representative center point of the patch in the first
image, ui, and its homography-induced corresponding
point, Hiui, in the second image. The corresponding points
created this way are called the “quasi-dense correspon-
dences.” In practice, we also add to the quasi-dense point
correspondences all corresponding points of interest within
the patch and validated by the homography of the patch.
Usually, these points of interest have longer tracks along the
sequence than other points obtained by propagation. This
definition of quasi-dense correspondences is illustrated in
Fig. 2 andanexample fromareal imagepair is given inFig. 4c.

These resampled corresponding points are not only more

suitable for geometric computation thanks to their more

uniformdistribution in images, but theyalsoaremore reliable

as the robust local homography fitting significantly singled

out match errors contained in the original quasi-dense pixel

correspondences, as illustrated in Fig. 3.
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Fig. 1. The goal to reach is (a) the reconstructed surface geometry (Gouraud shaded and textured mapped). Also, key steps of the quasi-dense
approach are given. (b) The initial sparse correspondence points of interest for a pair of images. Correspondence outliers (still unknown at this stage)
are marked in black. (c) The quasi-dense disparity map by two propagations and the estimated epipolar geometry. (d) The resampled quasi-dense
correspondence points. (e) The refined quasi-dense correspondences in a triplet of images. Inliers (respectively, outliers removed by the three-view
geometry) are marked in white (respectively, gray). (f)-(h) The Euclidean quasi-dense geometry: foreground object, background, and the camera
poses; each camera is displayed with a small black pyramid. (f) A top view of the whole geometry. (g) A close-up view of the face in point cloud.
(h) Each 3D quasi-dense point is displayed with a small patch of texture.

Fig. 2. For each corresponding patch, the resampled points include the

center point of the patch and all points of interest within the patch and

their homography-induced correspondences in the second image.



3 ESTIMATION OF A QUASI-DENSE GEOMETRY

The geometric estimation of a sequence of uncalibrated
images, including both camera positions and the
3D reconstruction of scene points, is now standard for
sparse points of interest [10], [20]. Mostly, we will apply
some of the standard algorithms to our new “point” features,
the quasi-dense point correspondences. But we also propose
two new algorithms. The first is the core two-view quasi-
dense correspondence and geometry method that turns out
to be much more robust and accurate than the sparse
methods. The second is a fast gauge-free uncertainty
estimation, necessary for our development. A description
of the whole optimization procedure, including three-view
projective, N-view projective, and Euclidean geometry
parameterization and estimation, is briefly given in Appen-
dix A.2 (available on the Computer Society’s Digital Library
at http://www.computer.org/publications/dlib) for the
completeness of the system.

3.1 Robust Two-View Quasi-Dense
Correspondence and Geometry

The two-view geometry of a rigid scene is entirely encoded
by the fundamental matrix. The standard strategy is to
recover geometry using sparse matching [54], [63] within a
random sampling framework. We propose two procedures
for fundamental matrix estimation in our quasi-dense
approach: The first is the constrained propagation that grows
only those satisfying the current epipolar constraint. The
second is the unconstrained propagation. The unconstrained
propagation is motivated by the fact that the estimation
might be local, biased toward the areas with a high density
of matches (for example, either merely the background or
the foreground or a dominant plane) if the initial

distribution of the matched points is not uniform across

images. This bias due to the irregular distribution of the

points in image space is well-known and discussed in [20].

The final strategy that combines these procedures and

overcomes the disadvantage of each is given as follows:

1. Detect feature “points of interest” in each image;
establish the initial correspondences between the
images by computing normalized correlation; sort
the validated correspondences by correlation score
and use them to initialize a list of seed matches for
match propagation.

2. Unconstrained propagation from all the seed points
using a best-first strategy without the epipolar
constraint to obtain quasi-dense pixel correspon-
dences represented as a disparity map.

3. Resample the quasi-dense disparity map by local
homographies to obtain the quasi-dense (subpixel)
point correspondences; estimate the fundamental
matrix using a standard robust algorithm on the
resampled points, i.e., the quasi-dense correspon-
dences.

4. Constrained propagation from the same initial list of
seeds using a best-first strategy with the epipolar
constraint by the computed fundamental matrix.

5. Again, resample the obtained quasi-dense disparity
map to get the final quasi-dense point correspon-
dences; reestimate the fundamental matrix with the
final quasi-dense correspondences.

The result of thisprocedure is a list of quasi-dense subpixel

correspondences satisfying the epipolar constraint. These

subpixelmatches are usuallymore reliable, denser, andmore

evenly distributed over the whole image space than the
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Fig. 3. The quasi-dense disparity map (a) after the first unconstrained propagation, (b) after the second constrained propagation, and (c) after robust
local homography fitting that removes many wrong pixel correspondences for the second constrained propagation.

Fig. 4. (a) Initial sparse correspondences by cross-correlation for a pair of imageswith large disparities. Only 31matches in white out of 111 are correct.
(b) Failure of the standard sparse method. Many correspondence points in black are obviously incorrect. (c) Successful quasi-dense estimation.



standard sparse points of interest. Fig. 1 shows the major
steps of the computation for a typical pair of images. The
computational time for a pair of images is more costly than a
standard sparse method, but it is limited about 10-15s for
512� 512 images on a P4 2.4Ghz. Fig. 3 illustrates the
incremental robustification of correspondences in different
steps. We have also tested the strategy of combining a sparse
geometry anda constrainedpropagation andhave found that
the domain of the final propagation tends to be reduced and
results in the undesirable local estimates discussed earlier.

Another advantage of this strategy is that it works for
more largely separated image pairs than those acceptable by
the standard sparse approach for the simple reason that the
number of matched interest points dramatically decreases
with an increasing geometric distortion between views.
However, we do not compare our approach with specific
sparse methods such as affine invariant regions [32], [59]
and points [53], [44] matching methods. Fig. 4 shows
comparative results between the sparse and the quasi-dense
methods for a widely-separated pair for which the standard
sparse method fails in computing a wrong fundamental
matrix. Also, in our experiments, we may use as few as
about 20 images to make a full turn of the object, which
might be impossible for the standard sparse approach.

3.2 Fast Gauge-Free Uncertainty Estimation

To assess the accuracy of the final 3D reconstruction
obtained using the global bundle adjustment described in
Appendix A (available on the Computer Society’s Digital
Library at http://www.computer.org/publications/dlib),
the covariance matrix should be estimated both for camera
positions and for each reconstructed point. As the under-
lying Hessian matrix is of extremely large size and singular
in the gauge-free situation, we develop a fast gauge-free
covariance estimation inspired by recent work [20], [58].

The covariance matrix could be estimated as the inverse
of Hessian, H�1 ¼ ðJTJÞ�1, up to a common noise level, �2,
which can also be estimated if H is not singular, i.e., if there
is no gauge freedom. For numerical efficiency, the current
bundle optimization has been carried out with an over-
parametrized free gauge. We need to solve two major
problems: the first is that the final H after optimization is
now singular due to free gauge; and the second is that H is
excessively large in size. The singularity of H could have
been easily handled by a direct SVD based pseudoinverse if
it were not excessively large in size.

Normal covariance matrix. When H is nonsingular and
has a specific sparse structure as in our case, it can be block-
diagonalized into H ¼ TATT . Then, the pseudoinverse of
H can be efficiently computed as

Hþ ¼ H�1 ¼ ðTATT Þþ ¼ ðT�T ÞAþT�1;

exactly as in the basic reduction technique used in
photogrammetry [4], [10], [20], [34], [35], [58].

Now, the final resulting H after minimization is singular
due to the free gauge. Though it is still formally possible to
compute H� as T�TAþT�1, it is no more the pseudoinverse
Hþ of H. We need to clarify its underlying statistical
meaning. The choice of coordinate fixing rules is a gauge
fixing [58]. Each choice of gauge, locally characterized by its
tangent space, determines an oblique covariance matrix.
The interpretation of H� computed above is therefore an
oblique covariance matrix at the particular solution point

we have chosen by a first-order perturbation analysis
around the maximum likelihood solution [34]. It has been
shown that all these oblique covariance matrices at a given
solution point from different gauges are geometrically
equivalent in the sense that they all have the same “normal”
component in the orthogonal space to the gauge orbit. This
normal component is called the normal covariance [34]. We
choose this uncertainty description as it is convenient and
does not require the specification of gauge constraints. It
also gives a lower bound on all covariances defined at that
point on the gauge orbit.

Fast computation. To compute this more significant
normal covariance, we need to project any oblique covar-
iance onto the orthogonal space to the gauge orbit tangent
space, i.e.,Cov ¼ PH�PT , whereP is the projector to ImðHÞ
in the direction of KerðHÞ. The major difficulty is handling
the very large size of H to make the projection computable.

If N is an orthonormal basis of KerðHÞ, then P ¼
I�NNT . Since dimðKerðHÞÞ ¼ 7, N is a thin matrix of
dimensionsOðpþ cÞ � 7, where p is the number of points and
c is the number of cameras. Using the approximated Hessian

H ¼ C M
M> S

� �
;

where C (respectively, S) is an inversible block-diagonal
and subhessian of camera (respectively, structure) para-
meters, we have

H ¼ TATT ¼ I Y
0 I

� �
Z 0
0 S

� �
I 0

Y> I

� �
;

where Y ¼ MS�1;Z ¼ C�MS�1M>. Thus,

KerðHÞ ¼ I
�Y>

� �
KerðZÞ

and N is efficiently computed by a SVD of the matrix Z of
small dimensions OðcÞ �OðcÞ.

Using the notation K ¼ H�N, the computation of normal
covariance Cov is given by

Cov ¼ PH�P> ¼ H� �KN> �NK> þNðN>KÞN>:

The matrices N and K are very thin. Their width is only
7; the matrix N>K is 7� 7. The calculation complexity of all
diagonal blocks of Cov for camera and point covariances is
Oðcþ pÞ, provided that K and the corresponding diagonal
blocks of H� are computed.

The diagonal blocks of H� are computed in time Oðpc2 þ
c3Þ and in memory Oðiþ c2Þ with i the number of 2D points
[4], [20]. For K, let Nc;Ns be vectors such that N> ¼
N>

c N>
s

� �
and the height of Nc (respectively, Ns) is the

same as that of C (respectively, S). It is easy to verify that

K ¼ 0
S�1Ns

� �
þ I

�Y>

� �
ZþðNc �YNsÞ:

This calculation is feasible because of the small size of Zþ

(OðcÞ �OðcÞ) and the diagonal structure of S. Time and
space complexities are only Oðiþ c2Þ.

Fig. 5 illustrates one example of the computed uncer-
tainty ellipsoids. We finish this fast gauge-free covariance
computation by making the following observations:

. The gauge theory has been reintroduced into
computer vision in [58], which gives a very general
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exposition on issues related to the gauge-free
covariance matrices. Hartley and Zisserman pointed
out in [20] that a condition is necessary to have
H� ¼ Hþ. Unfortunately, this condition is not
satisfied. Morris [34] justified the computation of
H� by defining a “geometrically” equivalent class of
covariance matrices. However, they carried out only
a small-scale bundle problem.

. This fast computation of uncertainty can also be
extended to the computation of any gauged oblique
covariance matrix with any oblique projection hav-
ing a small kernel dimension as the projector still
verifies P ¼ I�BC> and B and C are very thin
matrices like N.

. Wealsoprove some invariant properties of thenormal
covariance matrix. The point and camera center
ellipsoids are invariant with respect to rigid transfor-
mation (respectively, scaling factor) if the scaling
factor (respectively, rigid transformation) is fixed.

4 SURFACE RECONSTRUCTION

In addition to increased robustness and accuracy, the most
significant aspect of the quasi-dense approach is that it
reconstructs a high density of 3D points on which we can
build a surface representation of the objects. Surface-based
representations as natural extensions of the point-based
geometry are indispensable for most current modeling and
visualization applications. This section describes the surface
reconstruction algorithms from the quasi-dense 3D points.

Many surface reconstruction algorithms have been
proposed for different data. For only 2D images and camera
geometry, the recent volumetric methods [9], [24], [25], [46],
are the most general image-based approaches, but they are
not robust enough. For densely scanned 3D point data,
Szeliski and Weiss [51] used a particle-based model of
deformable surfaces; Hoppe et al. [22] presented a signed
distance for implicit surfaces; Curless and Levoy [7]
described a volumetric method; and Tang and Medioni
[52] introduced a tensor voting method. Most recently,
Zhao et al. [64] developed a level-set method based on a
variational method of minimizing a weighted minimal
surface. Similar work to [64] has also been reported by
Whitaker [60] using a MAP framework. Depth data
obtained from stereo systems is more challenging than that
from scanned 3D data as the stereo data are usually much

sparser and less regular. Fua [14] used a system of particles
to fit the stereo data. Narayanan et al. [36] and Fua [13]
proposed a deformable mesh representation to match the
multiple dense stereo data. These methods that perform
reconstruction by deforming an initial model or tracking the
discretized particles to fit the data points are both
topologically and numerically limited compared to modern
dynamic implicit surface approaches.

The insufficient 3D reconstruction from images and the
difficulties of obtaining surface data from only images have
motivated us to develop a new approach that integrate both
quasi-dense 3D points and all available 2D image informa-
tion, including image correlation, photo-consistency, and
silhouette information if it is available. We propose a
variational approach with new functionals integrating
3D points and 2D image information. An efficient bounded
regularization method to implement the surface evolution
by level-set is also developed.

4.1 Problem Statement and General Approach

Given a set of calibrated 2D images and a set of quasi-dense
3D points derived from the given images, the goal is to
reconstruct a surface representationof theobjects in the scene.

The problem is different from surface reconstruction
from a set of calibrated images as addressed in [9], [25],
[46], in which only 2D images are used without any
3D information. It is also different from surface reconstruc-
tion from scanned 3D data without 2D image information
[7], [22], [51], [52], [64].

The general methodology that we follow is a variational
approach inspired by the work of Faugeras and Keriven
[9], Caselles et al. [5], [6], Zhao et al. [64], and many
others. Intrinsic functionals, as a kind of weighted minimal
surface, are defined to integrate both 3D point data and
2D image data. The object surfaces are represented as a
dynamic implicit surface, uðxÞ ¼ 0 in R3, which evolves in
the direction of the steepest descent provided by the
variation calculation of the functional we minimize. The
intrinsic nature of the functionals (i.e., independent of any
surface parametrization) makes the implementation of the
surface evolution by the level-set method possible, which,
in turn, handles the surface topology changes.

Our contribution is threefold: First, we show that the
accuracy of the reconstructed 3D points is sufficient for the
3D modeling application. Second, we introduce new
intrinsic functionals that take into account both 3D data
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Fig. 5. The 90 percent confidence ellipsoids zoomed by four for reconstructed points and camera centers. Only one out of 50 point ellipsoids are
displayed. (a) A top view of the cameras and the object. (b) A close-up view of the only object on the right.



points and 2D original image information, unlike previous
works that consider either only 2D image information [9] or
only scanned 3D data [64]. By doing this, we compensate
for the lack of reconstructed 3D points with 2D information.
The new functionals are also expected to have a much
smaller number of local minima and better convergence
than a pure 2D approach [9]. Third, we propose a bounded
regularization method that is more efficient than the usual
full regularization methods and give a proof of its stability.

4.2 Defining the Functionals

By analogy to 2D geodesic active contours [6] whose
mathematical properties have been established, the
weighted minimal surface formulation was introduced by
Caselles and Kimmel [5] and Kichenassamy et al. [23] for
3D segmentation from 3D images, i.e., the 3D surfaces they
seek are those minimizing the functional

R R
wds using the

weight w ¼ gðrIÞ where ds is the infinitesimal surface
element and g is a positive and decreasing function of the
3D image gradient rI.

Faugeras and Keriven [9] developed a surface recon-
struction from multiple images by minimizing the func-
tional

R R
wds using a weighting function w that measures

the consistency of the reconstructed objects reprojected onto
2D images. This measure is usually taken as a function of
the correlation functions �ðx;nÞ between pairs of 2D images,
i.e., wðx;nÞ ¼ gð�ðx;nÞÞ. The correlation function is depen-
dent not only on the position x of the object surface, but also
on its orientation n. A potentially general and powerful
reconstruction approach was therefore established. But the
existence and uniqueness of the solution for the proposed
functional have not yet been elucidated.

In the different context of surface reconstruction from
sufficiently dense and regular sets of scanned 3D point data,
Zhao et al. [64] proposed to minimize the functional

R R
wds

using a new weighting function w as the distance function
of any surface point x to the set of 3D data points. Given a
set of data points P and dðx;PÞ, the Euclidean distance of
the point x to P, the weighting function is simply
wðxÞ ¼ dpðx;PÞ. The method gives interesting results with
good 3D data points.

In our surface reconstruction, we have both 3Ddata points
and 2D image data. It is interesting to observe that the
variational formulation mentioned above in different con-
texts is based on the minimal surface. This makes it possible
to define a unifying functional taking into account data of a
different nature. Thus, we first propose to minimize the
functional

R R
wds using a new weighting function for the

minimal surface formulation, consisting of two terms
wðx;nÞ ¼ dpðx;PÞ þ �eðx;n; IÞ, where the first dðx;PÞ is
the 3D data attachment term that allows the surface to be
attracted directly onto the 3D points and the second
eðx;n; IÞ is a consistency measure of the reconstructed
object in the original 2D image space. The consistency
measure might be taken to be any photo-consistency or
correlation function. The minimizing functional is given by

pðxÞ ¼
Z Z

ðdpðx;PÞ þ �eðx;n; IÞÞds:

Silhouette information might also be a useful source of
information for surface construction [50]. It is not sufficient
on its own as it gives only an approximate visual hull, but it

is complementary to other sources of information. If used, it
amends the distance function of the weighting function as

dðx;P [ SÞ ¼ minðdðx;PÞ; �þ dðx;SÞÞ;

where d is the 3D Euclidean distance function, P is the set of
3D points, S is the surface of the intersections of the cones
defined by the silhouettes, i.e., the visual hull, and � is a
small constant favoring 3D points over the visual hull in the
neighborhood of 3D points. An adequate initialization is
also proposed to optimize the functional derived from this
weighting function.

4.3 Solving the Variational Problem

The solutions of the minimizing functional are given by a
set of PDEs: the Euler-Lagrange equation designated rp ¼
0 and obtained from the functional p ¼

R R
wds to be

minimized. The Euler-Lagrange equation is often impos-
sible to solve directly. One common way is to use an
iterative and steepest-descent method by considering a
one-parameter family of smooth surfaces xðtÞ : ðu; v; tÞ7!
ðxðu; v; tÞ; yðu; v; tÞ; zðu; v; tÞÞ as a time-evolving surface x
parametrized by time t. The surface moves in the direction
of the gradient of the functional p with the velocity �rp,
according to the flow xt ¼ @xðu;v;tÞ

@t ¼ �rp. This is the
Lagrangian formulation of the problem that describes
how each point on the dynamic surface moves in order to
decrease the weighted surface. The final surface is then
given by the steady state solution xt ¼ 0. The problem
with this approach is that it does not handle the topology
change [47]. However, it is important to notice that though
the derivation has been based on a parametrization, the
various quantities, including the velocity for the steepest
descent flow, are intrinsic, i.e., independent of any chosen
parametrization that makes the computation possible. This
paves the way for the well-known and powerful level-set
formulation [39], [47] that regards the surface as the zero
level-set of a higher dimensional function. As the flow
velocity �rp is intrinsic (it has been demonstrated for a
general w depending also on the surface normal in [9]),
we may easily embed it into a higher dimensional
smooth hypersurface uðt;xÞ ¼ 0 which evolves according
to ut ¼ �ðrp � nÞjjrujj2 and the normal n ¼ � ru

jjrujj2
.

Topological changes, accuracy, and stability of the evolu-
tion are handled using the proper numerical schemes
developed by Osher and Sethian [39].

4.4 A Bounded Regularization Method

The Bounded Regularization Method. The Euler-Lagrange
expression rp might be complicated if the weighting
function wðx;nÞ also depends on the surface normal [9]. It
seems that the complication by this dependency on the
surface normal is rather unnecessary in practice [16]. We
therefore assume a weighting function independent of the
surface normal. Thus, the expression rp � n consists simply
of two terms like the geodesic active contour case,
rw � nþ wr � n, in which the first is the data attachment
term and the second the regularization term. Using n ¼
� ru

jjrujj2
on the level-set function, the surface evolves

according to

@u

@t
¼ rwruþ wjjrujj2H;
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where H ¼ div ru
jjrujj2

is the sum of the two principal
curvatures (twice the mean curvature). When w is taken to

be the correlation function, it is the simplified version of [9]
presented in [16]. And when w is taken to be the 3D distance
function, it is the first method proposed in [64]. However, the
curvature-based regularization wjjrujj2H over-smooths,
resulting in a loss of geometric detail and slow convergence
as the time step has to be�t ¼ Oð�x2Þ for a stable solution.

In [65], a convection model is also proposed to ignore the
regularization term, wjjrujj2H, to speed up the procedure,
but this is only envisageable for applications where data
quality is sufficient, for instance, for synthetic and high-
quality scanned data [65].

Motivated by the need for regularization of noisy data and
the inefficiency of the curvature-based regularization, we
propose an intermediate bounded regularization method. It
has a “bounded” regularization term,minðw;wmaxÞjjrujj2H,
instead of the “full” regularization term, wjjrujj2H. The
corresponding evolution equation is given as:

@u

@t
¼ rwruþminðw;wmaxÞjjrujj2H:

The following remarks can be made:

. The fully regularized surface evolution is obtained
when wmax � jjwjj1.

. The unregularized surface evolution is obtained
when wmax ¼ 0.

. As 0 � w � wmax in the vicinity of the steady surface
for any w, it is expected that the fully regularized
and the bounded regularized evolutions behave in
the same manner in this region.

Efficiency of the bounded regularization method. The
efficiency of our proposed bounded regularization method
is evaluated by estimating the maximum time step �tmax

for stability computation. We are currently unable to
quantify �tmax of the bounded regularization method for
the general curvature-based regularization, but we are able
to prove it for a simplified isotropic regularization using a
Laplacian operator. Replacing the curvature-based regular-
ization by the isotropic regularization for �tmax calculation
is a heuristic motivated by the fact that the curvature/
anisotropic regularization term, jjrujj2H ¼ jjrujj2div ru

jjrujj2
,

and the Laplacian/isotropic one, 4u, are equal when
jjrujj2 ¼ 1 is enforced periodically, which is the case often
in practice to avoid too flat and too steep variations of u. It is
therefore tempting to simplify the evolution equation to

@u

@t
¼ rwruþminðw;wmaxÞ4u:

Assuming that the stability condition is the same for
curvature-based and Laplacian-based regularizations, the

stability, jjunþ1jj1 � jjunjj1, is achieved if �t � �tmax with

�tmax ¼ �x2

6wmax þ jj�xðjd0xwj þ jd0ywj þ jd0zwjÞjj1
;

where d0x, d0y, and d0z are the centered differences at the
grid point in the three axes. The proof is given in
Appendix B (available on the Computer Society’s Digital
Library at http://www.computer.org/publications/dlib).

We choosewmax to be proportional to�x for our bounded
regularization method, i.e., fixing w0 ¼ wmax

�x , and obtain

�tmax ¼ �x

6w0 þ jjjjrwjj1jj1
:

Under this condition, the complexity of�tmax is given by
�tmax ¼ �ð�xÞ, the same for the bounded regularized and
unregularized evolutions, much better than�tmax ¼ �ð�x2Þ
for the fully regularized evolution.

No previous work to our knowledge provides such a
stability analysis for an evolution equation with both
convection and regularization terms. In practice, the time
step, �t ¼ �tmax, is always used for surface evolution in all
our examples with the bounded and curvature-based
regularization.

5 IMPLEMENTATION AND EXPERIMENTS

Some experimental data are available at our Websites,
http://maxime.lhuillier.free.fr or http://www.cs.ust.hk/
~quan.

5.1 Quasi-Dense Geometry Estimation

5.1.1 Comparative Experiments

Representative real examples of the quasi-dense reconstruc-
tion (QUASI) are given and compared with the standard
sparse methods (SPARSE) to demonstrate the superior
performance of QUASI both in accuracy and robustness.
The results on synthetic sequences are presented in [28] due
to space limitations.

Implementation of the sparse methods. The first
method simply tracks all points of interest detected in each
individual image. The second is a mixture of sparse and
quasi-dense methods: It assesses points of interest from
individual images by geometry that is computed from the
quasi-dense algorithm and reevaluates the whole geometry
only from these matched points of interest. In the following,
SPARSE indicates the best result of these two methods.

Reconstruction accuracy. Reconstruction accuracy is
measured by considering the bundle adjustment as the
maximum likelihood estimates, if we assume that the image
points are normally distributed around their true locations
with an unknown standard deviation �. The confidence
regions for a given probability can therefore be computed
from the covariance matrix of the estimated parameters. The
covariance matrix is defined only up to the choice of the
gauge [33], [35], [58] and the common unknown noise level
�2. The noise level �2 is estimated from the residual error as
�2 ¼ r2=ð2e� dÞ, where r2 is the sum of the e squared
reprojection errors, d is the number of independent para-
meters of the minimization d ¼ 1þ 6cþ 3p� 7 (1 is the
common focal length, c is the number of cameras, p is the
number of reconstructed points, and 7 is the gauge freedom
choice). We use our fast gauge-free uncertainty estimation
method presented in Section 3.2 to compute the normal
covariance matrix Hþ from the oblique covariance matrix
H� in the coordinate system of the camera in the middle of
the sequence and with the scale unit equal to the maximum
distance between camera centers. We choose a 90 percent
confidence ellipsoid for any 3D position vector, either
camera position or 3D point. The maximum of semiaxes of
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the 90 percent confidence ellipsoid is computed as the
uncertainty bound for each 3D position. The camera
uncertainty is characterized by taking the mean of all
uncertainty bounds of camera positions xci as the number of
cameras is moderate. The point uncertainty is characterized
by computing the rank 0 (the smallest uncertainty bound
x0), rank

1
4 (x1

4
), rank 1

2 (median x1
2
Þ, rank 3

4 (x3
4
), and rank 1

(the largest uncertainty bound x1) of the sorted uncertainty
bounds, as the number of points is very high. The
uncertainty of the focal length f is given by the standard
deviation �f . We give detailed experimental results for some
typical real sequences. The Lady 1 sequence (20 images at
768� 512) has a more favorable lateral motion in close-
range. The uncertainties given in Table 2 and Fig. 7 for
QUASI are smaller than for SPARSE and three to six times
smaller for focal length and camera positions. Similar
conclusions hold for all the sequences shown in Fig. 14 for
which SPARSE succeeds. The Lady 2 sequence (43 images at
408� 614) is captured with an irregular but complete tour
around the central person. Table 3 and Fig. 1 show the
results. The Garden-cage sequence (34 images at 640� 512)
was captured by a hand-held still camera (Olympus C2500L)
with an irregular but complete tour using a rather short focal
length to increase the viewing field for the larger back-
ground. The Garden-cage sequence contains a close-up of a
bird cage and a background of a house and tree with a very
profound viewing field. SPARSE methods failed because

some triplets of consecutive images do not have sufficiently
matched points of interest. The QUASI method gives the
uncertainties listed in Table 4 and 90 percent ellipsoids
shown in Fig. 8. As the images were captured with the
smallest focal length available, the camera’s nonlinear
distortion became nonnegligible. After a first round of
Euclidean bundle adjustment, a second adjustment by
adding one radial distortion parameter � for all cameras is
carried out. We find that � ¼ �0:086. This result is similar to
that obtained with a very different method proposed in [8]
for the same camera but different images: � ¼ �0:084. The
corridor sequence from Oxford University (11 images at
512� 512 resolution) has a lateral forward motion along the
scene which does not provide strong geometry, but favors
the SPARSE method as it is a low textured polyhedric scene
in which matched points of interest are abundant and
spread well over the scene. With almost 40 times redun-
dancy in the number of points, camera position and focal
length uncertainties for QUASI are two to four times smaller
than for SPARSE, as shown in Table 1. However, the point
uncertainties are almost of the same order of magnitude for
the majority of points. As the camera direction and path are
almost aligned with the scene points, many points on the far
background of the corridor are almost at infinity. Not
surprisingly, with the actual fixing rules of the coordinate
choice, they have extremely high uncertainty bound along
the camera direction for both methods as illustrated in Fig. 6.

LHUILLIER AND QUAN: A QUASI-DENSE APPROACH TO SURFACE RECONSTRUCTION FROM UNCALIBRATED IMAGES 9

Fig. 6. From left to right: Three of the 10 Corridor images, QUASI and SPARSE reconstructions for Corridor, and their 90 percent confidence
ellipsoids viewed on a horizontal plane. Only one out of 10 ellipsoids for QUASI are displayed.

TABLE 1
Uncertainty Measures for the Corridor Sequence

The mean of the uncertainty bounds of camera centers and the rank-k of the sorted uncertainty bounds of points, calculated from the oblique
(respectively, normal) covariance matrix at top (respectively, middle and bottom). Middle (respectively, bottom): they are physically implausible
(respectively, plausible) for SPARSE and QUASI without (respectively, with) deleting points that are further away than 5 from the middle of the
camera movement (the length of camera movement is scaled to 1).



According to the discussions in Section 3.2, Hþ gives the
normal covariance matrix while H� is an oblique covariance
matrix at a given solution point as was previously used in
[20], [35]. The normal covariance matrix should be the
“smallest” one in the sense of the matrix trace, the lower
bound of all oblique covariance matrices. We want empiri-
cally to demonstrate this by comparing these different
covariance matrices. In all cases, the main uncertainty
changes are those of camera centers which are bigger for the
normal covariance matrix than for the oblique one, while the

trace of the whole normal covariance matrix is slightly

smaller than that of the obliqueoneas expected. This suggests

that the normal covariancematrix describes a better distribu-

tion of uncertainties between cameras and structures.
Reconstruction robustness. To measure the reconstruc-

tion robustness, we consider the success rate of reconstruc-
tion for all tested sequences in this paper as illustrated in
Table 6. The robustness of QUASI with respect to the
sampling rate of the sequence is also experimented. For the
Lady 2 sequence making a complete tour around the object,
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TABLE 2
Uncertainties for Lady 1 from the Oblique (Top) and Normal (Bottom) Covariance Matrix

Fig. 7. From top to bottom and left to right: three of the 20 Lady 1 images, QUASI and SPARSE reconstruction for Lady 1, and their 90 percent

ellipsoids (zoomed by 4) viewed on a horizontal plane.

TABLE 3
Uncertainties for Lady 2 from the Oblique (Top) and Normal (Bottom) Covariance Matrix

TABLE 4
Uncertainties for Garden-Cage from the Oblique (Top) and Normal (Bottom) Covariance Matrix



SPARSE fails for a sequence of 43 images, but succeeds for a
sequence of 86 images with only 1,827 sparse points. QUASI
succeeds until a subsequence of 28 images with 25,339 quasi-
dense points. A typical pair of this subsequence is shown in
Figs. 3 and 4. It is clear that QUASI has superior robustness:
whenever a sequence is successful for SPARSE, it is equally
successful for QUASI, while SPARSE fails for many
sequences (including those not shown in this paper).
Furthermore, even when SPARSE is successful, it is some-
times only the mixed SPARSE that is successful. Recall that
the SPARSE method was defined as the best result of a pure
sparse and amixed sparse-quasi method.We also notice that
our QUASI method requires only about 30 to 35 frames for a
complete tour around an object. This is far fewer than the 50
to 100 frames necessary for SPARSEmethods such as [1], [38],
[41], which are more suitable for video sequences.

5.2 Surface Reconstruction from Quasi-Dense
Geometry

The surface reconstruction method is limited to smooth and
closed objects. The outdoor scenes such as the garden-cage
example are not handled. To model a complete object, we
usuallymake a full turn around the object by capturing about
30 to 35 images to compute the geometry of the sequence.

5.2.1 Surface Initialization from Quasi-Dense 3D Points

The reconstructed 3D points are segmented into the
foreground object and the background. The background
includes obvious outliers like isolated and distant points
from the majority of points. The points of the foreground
object are obtained as the largest connected component of
the graph neighborhood of all points such that the distance
between any two “edge” points of this graph should be
smaller than a multiple of the uncertainty median of the
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Fig. 8. (a) Three of the 34 Garden-cage images. (b) Top view of the 90 percent confidence ellipsoids. The small square shaped connected

component at the center is the reconstructed bird cage while the visible crosses forming a circle are camera positions.

TABLE 5
Computation Times in Minutes for the QUASI Method with a P4 2.4 Ghz

TABLE 6
Automatic Success Rate of Reconstruction between Q(uasi) and S(parse)



points. The surface initialization is then obtained as follows:
The foreground object points are regularly sliced into
sections along the major direction of the point cloud. A
2D-convex hull is computed for each section and these
convex hulls are used to define the successive sections of a
truncated cone as the bounding volume of the object. The
initialization of all examples shown in this paper is
automatically obtained using this method. One example of
the initialization for the Bust sequence is shown on the left of
Fig. 10. We note that the initialization procedures proposed
in [64], [65] cannot be applied here because of the big holes
without 3D points, especially at the object bottom.

Also, all 3D points are rescaled into a 150� 150� 150
voxel space in all examples by applying a similarity
transformation. The resulting voxel size is of the same order
of magnitude as the uncertainty median of the 3D points.

5.2.2 Description of Different Methods

The following surface evolution methods are tested and
compared in Section 5.2.3.

BR3D is the bounded regularization method by taking
the weighting function w to be the 3D distance from the set
P of the reconstructed 3D points: wðxÞ ¼ dðx;PÞ. The
number of iterations is always 100 with w0 ¼ 0:1.

BR2D is the bounded regularization method by taking
the weighting function w to be the image correlation
function �. More details are given in Section 5.2.3.

BR3D+BR2D sequentially applies the BR3D and BR2D
methods. Fifty iterations are used with BR2D.

BR3D2D uses the weighting function w as a combination
of a 3D distance function and a 2D image consistency
measure using a bounded regularization method: wðxÞ ¼
dðx;PÞ þ �eðx; IÞ, where

e ¼ 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
rðxÞ þ �2

gðxÞ þ �2
bðxÞ

q

and �ðxÞ is the standard deviation of the reprojected voxel in
each of three color channels in ½0; 1�. The consistencymeasure
e is similar to the photo-consistency of the space-carving
method. The basic idea is to avoid surface evolution in the
immediate neighborhood of the reconstructed points where
the surface previously obtained by BR3D is assumed to be
correct. It also inflates the surface elsewhere and stops in the
surface portions having inconsistent reprojections, mainly
due to the difference between the object and the background
colors. Thus, we use the following evolution equation

@u

@t
¼ rwruþminðw;wmaxÞjjrujj2ðcþHÞ;

where c is an inflating constant introduced and used in
segmentation works [31], [5]. Note that the term
minðw;wmaxÞjjrujj2c is negligible in areas where w � 0,
i.e., in the close neighborhood of the reconstructed points.
This is a much desired outcome. We choose

. � ¼ 0 in the immediate neighborhood of recon-
structed points dðx;PÞ < 2�x in the unit cube
½0; 1�3 and � ¼ 1 elsewhere;

. c ¼ �5 and w0 ¼ 0:1 with u < 0 inside the current
surface u ¼ 0.

BR3D+2D sequentially applies the BR3D and BR3D2D
methods. Fifty iterations are used with BR3D2D.

BR3DS is a mixed method combining both 3D points and
the silhouette information using a weighting function,
wðxÞ ¼ minðdðx;PÞ; �þ dðx;SÞÞ.We choose � ¼ 2�x to favor
the 3D points, P, over the visual hull, S, in the immediate
neighborhood of the reconstructed points. This method
should be initialized by BR3D. Otherwise, the evolving
surface may never reach the concave parts of the object.

BR3D+S sequentially applies the BR3D and BR3DS
methods. Fifty iterations are used with BR3DS. First, the
surface is only attracted by 3D points including those of the
object concavities. Second, the surface does not move in the
immediate �-neighborhoods of 3D points, but it moves
toward the visual hull in the areas closer to the visual hull
than the 3D points.

Freeze plane. To avoid the convergence of the dynamic
surface to the empty surface, a freeze plane is often
introduced to stop/freeze the surface evolution in one of
the two delimited half spaces. The freeze plane is manually
placed to fill in the biggest gap, often on the bottom or on
the back of the object if the sequence is not complete.
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Fig. 9. Surface geometry obtained by BR3D in (a) and BR3D+2D in (b).

There are many missing 3D points in the low-textured cheeks (cf.

Fig. 14), so BR3D using only 3D information gives poor results while

BR3D+2D gives good results by adding 2D information.

Fig. 10. Surface computed using (a) initialization, (b) BR3D method, (c) BR3D+BR2D with w0 ¼ 0:1, (d) BR3D+BR2D with w0 ¼ 0:5, and

(e) BR3D+BR2D with w0 ¼ 1.



5.2.3 Results, Comparisons, and Discussions

The reconstructed surfaces and experiments summaries are
shown in Fig. 14 on many image sequences taken by a
hand-held still digital camera, except for the Lady 1
sequence, which was taken with a special device. Each
row includes three images of the given sequence, which are
followed by the reconstructed stereo points, and a Gour-
aud-shaded and a textured-mapped view of the surface,
both from the same viewpoint.

BR3D versus BR3D+2D. Combining 2D image informa-
tion using BR3D2D can significantly improve the final
reconstruction results as using only a 3D distance function
may fail when there are no sufficient reconstructed points
on some parts of the surface. This is illustrated in Fig. 9.

Three-dimensional distance versus image correlation.
Using only image correlation as suggested in [9], [16] makes
convergence very difficult for low-textured objects. Here we
take a reasonably textured object, the bust, to test the BR2D
method and compare it with the others. The surface
initialization is shown on the left of Fig. 10 and is obtained
with the method described in Section 5.2.1. Fig. 11 shows
the results by the BR2D method with w ¼ 0:1ð1� �Þ and
� 2 ½�1; 1� for 400 and 1,000 iterations with w0 ¼ 0:1 (left),
w0 ¼ 0:5 (middle), and w0 ¼ 1 (right), using a 9� 9 ZNCC-
window. The lower bound w0 ¼ 0:1 gives a noisy surface

(see the pyramid part). The upper bound w0 ¼ 1 gives a too
smoothed surface (see the flat nose). The intermediate
bound gives a compromise between the two. The original
correlation [9], [16] with full regularization is even smooth-
er than the upper bound w0 ¼ 1 case. Also, the convergence
is extremely slow. It is still not done around the intersection
of the concave part between the cube and the pyramid after
800 iterations. We have also found that the original
correlation method is actually slower than BR2D, since its
time step, �tmax, is 380 smaller. We experimented with the
two-step method, BR3D+BR2D. The results are shown in
Fig. 10. The results are similar to the previous case and not
very satisfactory. However, this method is more efficient:
the 100 steps of BR3D-iterations take only about 5 minutes
on a P4 2.4 GHz (including initialization), compared with
the 20 (respectively, 50) minutes for 400 (respectively, 1,000)
BR2D steps. Fig. 12 shows the difference between the BR3D
and BR3D+BR2D methods, with the best previous bound
w0 ¼ 0:5 and only 50 iterations for BR2D. Still, the nose is
too smooth for BR3D+2D and the chin is also degraded.

Isotropic versus anisotropic smooth. Using Laplacian/
isotropic 4u instead of the curvature/anisotropic smooth
jjrujj2H ¼ jjrujj2div ru

jjrujj2
leads to faster evolution, as the

level-set function update, jjrujj2 ¼ 1, is done twice as
frequently for the anisotropic smoothing than for the
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Fig. 11. Surfaces obtained with the BR2D method after 400 and 1000 iterations with w0 ¼ 0:1 (the first two), w0 ¼ 0:5 (the middle two), and w0 ¼ 1
(the last two).

Fig. 12. Surfaces computed using different smoothing methods. (a) One original image. (b) BR3D+BR2D with w0 ¼ 0:5. (c) Curvature-based
smoothing BR3D. (d) Laplacian-based smoothing BR3D.

Fig. 13. Surfaces computed using (a) BR3D method with only quasi-dense 3D points, (b) BR3D+S method with a combination of the quasi-dense
3D points and the silhouettes, (c) BR3D+2D method with a combination of the quasi-dense 3D points and the image photo-consistency, and
(d) S method with only the silhouettes.
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Fig. 14. Each row illustrates one example of reconstruction by showing the details of the experiment, three frames of the sequence, the
reconstructed quasi-dense 3D points, Gouraud-shaded surface geometry, and the textured-mapped surface geometry. In the details of the
experiment, #C is the number of cameras, #P the number of points; R the image resolution, M the surface reconstruction method, and F the
location of the freeze plane. Running times are about 5 and 3 minutes for BR3D(S) and BR3D2D with a P4 2.4GHz. Some of the data are available
from the authors’ Websites.



isotropic smoothing, which has a smaller discretization
neighborhood. It is also important to observe that no
apparent difference occurs between these two different
smooths in the final surface geometry, as shown in Fig. 12
(same conclusion with w0 ¼ 0:5 and w0 ¼ 1). This suggests
that the benefit of using curvature-based smoothing is
negligible for our context.

With versus without silhouette. Fig. 13 shows results
obtained by BR3D, BR3D+2D, BR3D+S and the pure
silhouette method S for the Man 3 sequence. Using only
3D points by BR3D misses the low-textured cheeks, and
using only the visual hull by S misses many important
concavities on the surface, like in the areas of the ears and
nose. Combining the two gives excellent final results.

Adding silhouette information improves the pure
3D results; both automatic and interactive extraction of
silhouettes from unknown backgrounds have been used for
different cases. Note that silhouette information is only
optional in our approach and that the majority of our results
presented here do not use it.

6 CONCLUSION

This paper describes a quasi-dense approach to practical
surface model acquisition. In addition to presenting a
complete system of 3D modeling from raw images captured
from hand-held cameras, the main contributions of this
paper are threefold: first, the introduction of new point
features as the resampled points from the quasi-dense
disparity map to densify the feature points to overcome the
sparseness of the points of interest; second, an automatic
quasi-dense geometry computation from uncalibrated
images. For efficient evaluation of the reconstruction
accuracy, we developed a fast gauge-free estimation
algorithm. This quasi-dense based approach gives more
robust and more accurate reconstruction results. It also
works for largely separated images and requires fewer
images than the standard sparse approach. It produces a
high density of points that can be used for direct surface
reconstruction. Third, new surface reconstruction algo-
rithms integrating both 3D data points and 2D images.
This is possible because of a unified functional based on a
minimal surface formulation. We believe that the new
functionals have far less fewer minima than those derived
from 2D data alone and that this will result in more stable
and more efficient algorithms. For the efficient evolution of
surfaces, we also propose a bounded regularization method
based on level-set methods. Its stability is also proved.

The methods have been intensively tested on many real
sequences and very convincing results have been shown,
including fully textured face models with hair. This is a
significant practical advance as no other active or passive
system thatweare awareof candeliver full-headmodelswith
such a simple setup. However, the main limitation of our
system is due to the choice of the surface evolution approach,
which assumes a closed and smooth surface. The surface
reconstruction module is not designed for outdoor or
polyhedric objects.
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