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Figure 1: Photographs in a low light environment. (a) Blurred image (with shutter speed of 1 second, and ISO 100) due to camera shake. (b) Noisy image
(with shutter speed of 1/100 second, and ISO 1600) due to insufficient light. (c) Noisy image enhanced by adjusting level and gamma. (d) Our deblurred image.

Abstract Taking satisfactory photos under dim lighting conditions
using a hand-held camera is challenging. If the camera is setto a
long exposure time, the image is blurred due to camera shake.On
the other hand, the image is dark and noisy if it is taken with ashort
exposure time but with a high camera gain. By combining infor-
mation extracted from both blurred and noisy images, however, we
show in this paper how to produce a high quality image that cannot
be obtained by simply denoising the noisy image, or deblurring the
blurred image alone.

Our approach is image deblurring with the help of the noisy im-
age. First, both images are used to estimate an accurate blurkernel,
which otherwise is difficult to obtain from a single blurred image.
Second, and again using both images, a residual deconvolution is
proposed to significantly reduce ringing artifacts inherent to im-
age deconvolution. Third, the remaining ringing artifactsin smooth
image regions are further suppressed by a gain-controlled deconvo-
lution process. We demonstrate the effectiveness of our approach
using a number of indoor and outdoor images taken by off-the-shelf
hand-held cameras in poor lighting environments.

1 Introduction
Capturing satisfactory photos under low light conditions using a
hand-held camera can be a frustrating experience. Often thephotos
taken are blurred or noisy. The brightness of the image can bein-
creased in three ways. First, to reduce the shutter speed. But with a
shutter speed below asafe shutter speed(the reciprocal of the focal
length of the lens, in the unit of seconds), camera shake willresult
in a blurred image. Second, to use a large aperture. A large aperture
will however reduce the depth of field. Moreover, the range ofaper-
tures in a consumer-level camera is very limited. Third, to set a high
ISO. However, the high ISO image is very noisy because the noise
is amplified as the camera’s gain increases. To take a sharp image in
a dim lighting environment, the best settings are: safe shutter speed,

the largest aperture, and the highest ISO. Even with this combina-
tion, the captured image may still be dark and very noisy, as shown
in Figure 1(b). Another solution is using a flash, which unfortu-
nately often introduces artifacts such as specularities and shadows.
Moreover, flash may not be effective for distant objects.

In this paper, we propose a novel approach to produce a high quality
image by combining two degraded images. One is a blurred image
which is taken with a slow shutter speed and a low ISO setting,as
shown in Figure 1(a). With enough light, it has the correct color,
intensity and a high Signal-Noise Ratio (SNR). But it is blurry due
to camera shake. The other is an underexposed and noisy image
with a fast shutter speed and a high ISO setting, as shown in Fig-
ure 1(b). It is sharp but very noisy due to insufficient exposure and
high camera gain. The colors of this image are also partiallylost
due to low contrast.

Recovering a high quality image from a very noisy image is no easy
task as fine image details and textures are concealed in noise. De-
noising [Portilla et al. 2003] cannot completely separate signals
from noise. On the other hand, deblurring from a single blurred
image is a challenging blind deconvolution problem - both blur ker-
nel (or Point Spread Function) estimation and image deconvolution
are highly under-constrained. Moreover, unpleasant artifacts (e.g.,
ringing) from image deconvolution, even when using a perfect ker-
nel, also appear in the reconstructed image.

We formulate this difficult image reconstruction problem asan im-
age deblurring problem, using a pair of blurred and noisy images.
Like most previous image deblurring approaches, we assume that
the image blur can be well described by a single blur kernel caused
by camera shake and the scene is static. Inspired by [Fergus et al.
2006], we convert the blind deconvolution problem into two non-
blind deconvolution problems - non-blind kernel estimation and
non-blind image deconvolution. In kernel estimation, we show that
a very accurate initial kernel can be recovered from the blurred im-
age by exploiting the large scale, sharp image structures inthe noisy
image. Our proposed kernel estimation algorithm is able to handle
larger kernels than those recovered by [Fergus et al. 2006] using a
single blurred image.

To greatly reduce the “ringing” artifacts that commonly result from
the image deconvolution, we propose a residual deconvolution ap-
proach. We also propose a gain-controlled deconvolution tofur-



ther suppress the ringing artifacts in smooth image regions. All
three steps - kernel estimation, residual deconvolution, and gain-
controlled deconvolution - take advantage of both images. The final
reconstructed image is sharper than the blurred image and clearer
than the noisy image, as shown in Figure 1(d).

Using two images for image deblurring or enhancement has been
exploited. In this paper, we show the superiorities of our ap-
proach in image quality compared with previous two-image ap-
proaches [Ben-Ezra and Nayar 2003; Jia et al. 2004; Lim and Sil-
verstein 2006]. Our approach is also practical despite thatwe re-
quire two images. We have found that the motion between two
blurred/noisy images, when taken in a quick succession, is mainly
a translation. This is significant because the kernel estimation is in-
dependent of the translation, which only results in an offset of the
kernel. We will describe how to acquire and align such image pairs
in Section 7.

2 Previous Work
Single image deblurring. Image deblurring can be categorized
into two types: blind deconvolution and non-blind deconvolution.
The former is more difficult since the blur kernel is unknown.A
comprehensive literature review on image deblurring can befound
in [Kundur and Hatzinakos 1996]. As demonstrated in [Ferguset al.
2006], the real kernel caused by camera shake is complex, beyond
a simple parametric form (e.g., single one-direction motion or a
gaussian) assumed in previous approaches [Reeves and Mersereau
1992; Y. Yitzhaky and Kopeika. 1998; Caron et al. 2002; Jalobeanu
et al. 2002]. In [Fergus et al. 2006], natural image statistics to-
gether with a sophisticated variational Bayes inference algorithm
are used to estimate the kernel. The image is then reconstructed
using a standard non-blind deconvolution algorithm. Very nice re-
sults are obtained when the kernel is small (e.g. 30×30 pixels or
fewer) [Fergus et al. 2006]. Kernel estimation for a large blur is,
however, inaccurate and unreliable using a single image.

Even with a known kernel, non-blind deconvolution [Geman and
Reynolds 1992; Zarowin 1994; Neelamani et al. 2004; Bar et al.
2006] is still under-constrained. Reconstruction artifacts, e.g.,
“ringing” effects or color speckles, are inevitable because of high
frequency loss in the blurred image. The errors due to sensor
noise and quantizations of the image/kernel are also amplified in
the deconvolution process. For example, more iterations inthe
Richardson-Lucy (RL) algorithm [H. Richardson 1972] will result
in more “ringing” artifacts. In our approach, we significantly re-
duce the artifacts in a non-blind deconvolution by taking advantage
of the noisy image.

Recently, spatially variant kernel estimation has also been proposed
in [Bardsley et al. 2006]. In [Levin 2006], the image is segmented
into several layers with different kernels. The kernel in each layer
is uni-directional and the layer motion velocity is constant.

Hardware based solutions [Nikon 2005] to reduce image blur in-
clude lens stabilization and sensor stabilization. Both techniques
physically move an element of the lens, or the sensor, to counter-
balance the camera shake. Typically, the captured image canbe as
sharp as if it were taken with a shutter speed 2-3 stops faster.

Single image denoising. Image denoising is a classic problem ex-
tensively studied. The challenge of image denoising is how to com-
promise between removing noise and preserving edge or texture.
Commercial softwares, e.g., “NeatImage” (www.neatimage.com)
and ”Imagenomic” (www.imagenomic.com), use wavelet-based ap-
proaches [Simoncelli and Adelson 1996; Portilla et al. 2003]. Bi-
lateral filtering [Tomasi and Manduchi 1998; Durand and Dorsey
2002] has also been a simple and effective method widely used

in computer graphics. Other approaches include anisotropic dif-
fusion [Perona and Malik 1990], PDE-based methods [Rudin etal.
1992; Tschumperle and Deriche 2005], fields of experts [Rothand
Black 2005], and nonlocal methods [Buades et al. 2005].

Multiple images deblurring and denoising. Deblurring and de-
noising can benefit from multiple images. Images with differ-
ent blurring directions [Bascle et al. 1996; Rav-Acha and Peleg
2000; Rav-Acha and Peleg 2005] can be used for kernel estimation.
In [Liu and Gamal 2001], a CMOS sensor can capture multiple
high-speed frames within a normal exposure time. The pixel with
motion replaced with the pixel in one of the high-speed frames.
Raskar et al. [2006] proposed a “fluttered shutter” camera which
opens and closes the shutter during a normal exposure time with
a pseudo-random sequence. This approach preserves high fre-
quency spatial details in the blurred image and produces impres-
sive results, assuming the blur kernel is known. Denoising can
be performed by a joint/cross bilateral filter using flash/no-flash
images [Petschnigg et al. 2004; Eisemann and Durand 2004], or
by an adaptive spatio-temporal accumulation filter for video se-
quences [Bennett and McMillan 2005].

Hybrid imaging system [Ben-Ezra and Nayar 2003] consists ofa
primary sensor (high spatial resolution) and a secondary sensor
(high temporal resolution). The secondary sensor capturesa num-
ber of low resolution, sharp images for kernel estimation. Our ap-
proach estimates the kernel only from two images, without the need
for special hardware. Another related work [Jia et al. 2004]also
uses a pair of images, where the colors of the blurred image are
transferred into the noisy image without kernel estimation. How-
ever, this approach is limited to the case that the noisy image has a
high SNR and fine details. In this paper, we estimate the kernel and
deconvolute the blurred image with the help of a very noisy image.
The work most related to ours is [Lim and Silverstein 2006] which
also makes use of a short exposure image to help estimate the kernel
and deconvolution. However, our proposed techniques can obtain
much accurate kernel and produce almost artifact-free image by a
de-ringing approach in deconvolution.

3 Problem Formulation

We take a pair of images: a blurred imageB with a slow shutter
speed and low ISO, and a noisy imageN with high shutter speed
and high ISO. The noisy image is usually underexposed and hasa
very low SNR since camera noise is dependent on the image inten-
sity level [Liu et al. 2006]. Moreover, the noise in the high ISO
image is also larger than that in the low ISO image since the noise
is amplified by camera gain. But the noisy image is sharp because
we use a fast shutter speed that is above the safe shutter speed.

We pre-multiply the noisy image by a ratioISOB∆tB
ISON∆tN

to compensate
for the exposure difference between the blurred and noisy images,
where∆t is the exposure time. We perform the multiplication in
irradiance space then go back to image space if the camera response
curve [Debevec and Malik 1997] is known. Otherwise, a gamma
(γ = 2.0) curve is used as an approximation.

3.1 Our approach

Our goal is to reconstruct a high quality imageI using the input
imagesB andN

B = I ⊗K, (1)

whereK is the blur kernel and⊗ is the convolution operator. For
the noisy imageN, we compute a denoised imageND [Portilla et al.
2003] (See Section 7 for details).ND loses some fine details in
the denoising process, but preserves the large scale, sharpimage
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Figure 2: Kernel Estimation. Two blurred images are synthesized froma
true image (also shown in Figure 4(e)). (d) Matlab’s deconvblind routine
results. (e) Fergus’s result at finest 4 levels. (f) Lim’s result. (g) estimated
kernels without hysteresis thresholding. (h) our result atthe finest 4 levels.
(i) true kernels.

structures. We represent the lost detail layer as aresidual image∆I :

I = ND +∆I . (2)

Our first important observation is that the denoised imageND is a
very good initial approximation toI for the purpose of kernel esti-
mation from Equation (1). The residual image∆I is relatively small
with respect toND. The power spectrum of the imageI mainly lies
in the denoised imageND. Moreover, the large scale, sharp image
structures inND make important contributions for the kernel esti-
mation. As will be shown in our experiments on synthetic and real
images, accurate kernels can be obtained usingB andND in non-
blind convolution.

OnceK is estimated, we can again use Equation (1) to non-blindly
deconvoluteI , which unfortunately will have significant artifacts,
e.g, ringing effects. Instead of recoveringI directly, we propose to
first recover the residual image∆I from the blurred imageB. By
combining Equations (1) and (2), the residual image can be recon-
structed from aresidual deconvolution:

∆B = ∆I ⊗K, (3)

where∆B = B−ND ⊗K is aresidual blurred image.

Our second observation is that the ringing artifacts from residual
deconvolution of∆I (Equation (3)) are smaller than those from de-
convolution of I (Equation (1)) because∆B has a much smaller
magnitude thanB after being offset byND ⊗K.

The denoised imageND also provides a crucial gain signal to con-
trol the deconvolution process so that we can suppress ringing arti-
facts, especially in smooth image regions. We propose a de-ringing
approach using again-controlleddeconvolution algorithm to fur-
ther reduce ringing artifacts.

The above three steps - kernel estimation (Section 4), residual de-
convolution (Section 5), and de-ringing (Section 6) - are iterated to
refine the estimated blur kernelK and the deconvoluted imageI .

4 Kernel Estimation
In this section, we show that a simple constrained least-squares op-
timization is able to produce a very good initial kernel.

Iterative kernel estimation. The goal of kernel estimation is to
find the blur kernelK from B= I ⊗K with the initializationI = ND.
In vector-matrix form, it isb = Ak, whereb andk are the vector
forms ofB andK, andA is the matrix form ofI .

The kernelk can be computed in the linear least-squares sense. To
stabilize the solution, we use Tikhonov regularization method with
a positive scalarλ by solving mink ||Ak−b||2 +λ 2||k||2. The de-
fault value ofλ is set at 5. The solution is given by(ATA+λ 2I)k =
ATb in closed-form if there are no other constraints on the kernel k.
But a real blur kernel has to be non-negative and preserve energy,
so the optimal kernel is obtained from the following optimization
system:

min
k

||Ak−b||2+λ 2||k||2, subject toki ≥ 0, and ∑
i

ki = 1. (4)

We adopt the Landweber method [Engl et al. 2000] to iteratively
update as follows.

1. Initializek0 = δ , the delta function.

2. Updatekn+1 = kn +β (ATb− (ATA+λ 2I)kn).

3. Setkn+1
i = 0 if kn+1

i < 0, and normalizekn+1
i = kn+1

i /∑i k
n+1
i .

β is a scalar that controls the convergence. The iteration stops when
the change between two steps is sufficiently small. We typically run
about 20 to 30 iterations by settingβ = 1.0. The algorithm is fast
using FFT, taking about 8 to 12 seconds for a 64×64 kernel and a
800×600 image.

Hysteresis thresholding in scale space. The above iterative al-
gorithm can be implemented in scale space to make the solution to
overcome the local minimal. A straightforward method is to use the
kernel estimated at the current level to initialize the nextfiner level.
However, we have found that such initialization is insufficient to
control noise in the kernel estimation. The noise or errors at coarse
levels may be propagated and amplified to fine levels. To suppress
noise in the estimate of the kernel, we prefer the global shape of the
kernel at a fine level to be similar to the shape at its coarser level.
To achieve this, we propose a hysteresis thresholding [Canny 1986]
in scale space.

At each level, a kernel maskM is defined by thresholding the kernel
values,Mi = 1 if ki > tkmax, wheret is a threshold andkmax is the
maximum of all kernel values. We compute two masksMlow and
Mhigh by setting two thresholdstlow and thigh. Mlow is larger and
containsMhigh. After kernel estimation, we set all elements ofK l

outside the maskMhigh to zero to reduce the noise at levell . Then,
at the next finer levell +1, we set all elements ofK l+1 outside the
up-sampled mask ofMlow to zero to further reduce noise. This hys-
teresis thresholding is performed from coarse to fine. The pyramids
are constructed using a downsampling factor of 1/

√
2 until the ker-

nel size at the coarsest level reaches 9× 9. We typically choose
tlow = 0.03, andthigh = 0.05.
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Figure 3: Blurred and noisy images from the light-blue box in (a) are
zoomed-in in (b). The top image in (c) is a zoomed-in view of the light-
orange box in (a), revealing the true kernel. The middle image in (c) is the
estimated kernel using only image patches in (b). The bottomimage in (c)
is the estimated kernel using the whole image.

Results and discussion. We first compare our estimated kernel
with the true kernel using a synthetic example. Figures 2(a-c) show
two blurred images, a noisy image, and a denoised image. The
blurred images are synthesized with two 41× 41 known kernels.
Figure 2(d) shows kernels estimated by Matlab’s deconvblind rou-
tine (a blind deconvolution) using the denoised imageND as ini-
tialization. Figure 2(e) shows coarse-to-fine kernels (thefinest 4
levels) estimated by Fergus’s algorithm only using the blurred im-
age [Fergus et al. 2006]. The Matlab code is released by Fergus
(http://people.csail.mit.edu/fergus/). We exhaustively tune all op-
tions in Fergus’s algorithm and select different regions inthe image
to produce the best results. Fergus’s algorithm recovers much better
kernels than those using Matlab’s blind deconvolution. Figure 2(f)
is result from [Lim and Silverstein 2006], which is essentially equal
to the least- squares solution ofb = Ak. In comparison, our esti-
mated kernels in Figure 2(h) are very close to the true kernels in
in Figure 2(i) because we solve a non-blind kernel estimation prob-
lem. The fine details and thin structures of the kernels are recov-
ered. Figure 2(g) also shows our kernel estimation without hystere-
sis thresholding, which is very noisy.

Figure 3 shows our result on real images. Light-blue trajectories
caused by highlights in the scene clearly reveal the accurate shape
of the kernel. One such trajectories is shown in Figure 3(c).We also
compare two kernels using selected image patches and the whole
image. The recovered kernels have very similar shape to the light-
blue trajectory, as shown in Figure 3(c). Kernel estimationis in-
sensitive to the selected regions. The kernel size is very large, with
92×92 pixels.

5 Residual Deconvolution
Given the blur kernelK, the true image can be reconstructed from
B = K ⊗ I . Figure 4(a) shows the deconvolution results using a
standard Richardson-Lucy (RL) algorithm after 20 iterations with
the true kernels. The resulting images contain visible “ringing” ar-
tifacts, with dark and light ripples around bright featuresin the im-
age. The ringing artifacts often occur with iterative methods, such
as the RL algorithm. More iterations introduce not only moreim-
age details but also more ringing. Fergus et al. [2006] also observed
this issue from their results.

The ringing effects are due to the well-known Gibbs phenomena in
Fourier analysis at discontinuous points. The discontinuities could
be at image edge points, boundaries or are artificially introduced by
the inadequate spatial sampling of the images or the kernels. The
larger the blur kernel, the stronger the ringing artifacts are.

The Gibbs oscillations have an amplitude independent of thecut-

(e) true image(d)  gain map

(a)  standard RL decovolution

(b)  residual deconvolution

(c) residual deconvolution + de-ringing

Figure 4: Deconvolution using true kernels. All results are generated after
20 iterations. Note that standard RL results contain unpleasant “ringing”
artifacts - dark and light ripples around strong image features.

(a) B (b) ND

(d) ∆B = B−ND ⊗K (e)∆I (f) I = ND +∆I

(c)

Figure 5: Residual deconvolution. (a-b) are the blurred signal and de-
noised signal. The blur kernel is a box filter. (c) is the standard deconvo-
lution result from (a). (d-e) are the blurred residual signal and its decon-
volution result. (f) is the residual deconvolution result.Notice that ringing
artifact in (f) is smaller than that in (c).

off frequencies of the filter, but are always proportional tothe sig-
nal jump at the discontinuous points. The key to our approachis
that we perform the deconvolution on relative image quantities to
reduce the absolute amplitude of the signals. Instead of doing the
deconvolution directly on the imageB, we perform deconvolution
on the residual blurred image∆B = ∆I ⊗K to recover the residual
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Figure 6: Gain-controlled RL. (a-c) blurred signal, denoised signal, and
gain map. The kernel is estimated using B and ND. (d-f) deconvolution
results by standard RL (green), residual RL(blue), and gain-controlled RL
(red), after iteration 1, 10, and 20. The plot at the bottom-right are blown-
up views. Notice that the ringing effects are amplified and propagated in
standard RL and residual RL, but suppressed in gain-controlled RL.

image∆I . The final reconstructed image isI = ND +∆I .

The standard RL algorithm is one of ratio-based iterative ap-
proaches. It enforces the non-negativity of pixel values. When us-
ing RL algorithms, the residual images should be offset by adding
the constant 1,∆I 7→ ∆I + 1 and∆B 7→ ∆B+ 1, as all images are
normalized to range [0,1]. After each iteration, the residual image
is offset back by subtracting the constant 1:

∆In+1 = (K ∗ ∆B+1
(∆In +1)⊗K

) · (∆In +1)−1, (5)

where ’∗’ is the correlation operator. Figure 4(b) shows the de-
convolution results using the residual RL algorithm with the same
number of iterations. Compared with the standard RL results(Fig-
ure 4(a)), the ringing effects are reduced.

Figure 5 shows a 1D example of the residual deconvolution. The
ringing artifacts from∆I are significantly weaker than those inI
because the magnitude of∆B (after subtractingND ⊗K from B) is
much smaller than that ofB.

6 De-ringing with Gain-controlled RL
The residual deconvolution lessened the ringing effects, but cannot
fully eliminate them, as shown in Figure 4(b). Another example
is shown in Figure 7(b). We observe that the ringing effects are
most distracting in smooth regions because human perception can
tolerate small scale ringing in highly textured regions. Wehave
also found that the mid-scale ringing effects are more noticeable
compared with the fine details and large scale sharp structures in
the image. Note that the strong ringing is mainly caused by high
contrast edges and the magnitude of ringings is proportional to the
magnitude of image gradient. Based on these observations, we pro-
pose a de-ringing approach with a gain-controlled RL algorithm as
follows.

Gain-controlled Richardson-Lucy (RL). We modify the residual
RL algorithm by introducing a gain mapIGain:

∆In+1 = IGain ·
{

(K ∗ ∆B+1
(∆In +1)⊗K

) · (∆In +1)−1

}

, (6)

where IGain is a multiplier (≤ 1) to suppress the contrast of the
recovered residual image∆I . Since RL is a ratio-based algo-
rithm, the ringing effects are amplified at each iteration bythe ratio
K ∗ ∆B+1

(∆In+1)⊗K in (6). Multiplying a factor less than one at each it-
eration will suppress the propagation of the ringing effects. Notice

(a) blurred/noisy image (b)I , by residual RL

(c) Ig, by gain-controlled RL (d) detail layerId

(e) final image (f) ringing layer

Figure 7: De-ringing. The gain-controlled RL effectively suppresses the
ringing artifacts and produces de-ringing image Ig in (c). The detail layer
Id in (d) is extracted from the residual RL result in (b) with theguidance of
the Ig using a joint/cross bilateral filter. Our fine image in (e) is obtained by
adding (c) and (d) together.

that multiplying a factor will not decrease the overall magnitude of
the signal but decrease the contrast of the signal because the ratio
K ∗ ∆B+1

(∆In+1)⊗K will increase the magnitude of the signal in each it-
eration. At the last iteration, we do not multiply the gain map IGain.
We denote the image reconstructed by gain-controlled RL asIg.

Since we want to suppress the contrast of ringing in the smooth
regions while avoiding suppression of sharp edges, the gainmap
should be small in smooth regions and large in others. Hence,we
define the gain map using the gradient of the denoised image as:

IGain = (1−α)+α ·∑
l

||∇Nl
D||, (7)

whereα controls the influence of the gain map, and∇Nl
D is the gra-

dient of the denoised image at thel th level of the Gaussian pyramid
with standard deviation 0.5. The parameterα controls the degree of
suppression. In all the results shown in this paper, we set the value
of α to 0.2. Aggregated image gradients at multiple scales have
also been used in HDR compression [Fattal et al. 2002; Li et al.
2005]. Here, the gradients of denoised image provide a gain signal
to adaptively suppress the ringing effects in different regions.

Figure 6 shows a 1D example of gain-controlled RL. As we can
see, the residual RL can reduce the magnitude of ringing com-
pared with the standard RL. In both standard RL and residual RL,
the magnitude of ringing increases and the spatial range of ring-
ing spreads gradually, after each iteration. With the control from
the gain map, the ringing effects are suppressed at each iteration
(e.g.,IGain = 0.8 in flat region). Most importantly, the propagation



of ringing is greatly prevented so that the ringing is significantly
reduced.

Figure 7(c) shows a gain-controlled RL resultIg. It is a clean de-
convolution result with large scale sharp edges, compared with the
residual RL resultI in Figure 7(c). However, some fine details are
inevitably suppressed by gain-controlled RL. Fortunately, we are
able to add fine scale image details for the residual RL resultI us-
ing the following approach.

Adding details. We extract the fine scale detail layerId = I − I
from the residual RL resultI , whereI(x) = F(I(x)) is a filtered
image andF(·) is a low-pass filter. In other words, the details layer
is obtained by a high-pass filtering. We use joint/cross bilateral
filtering [Petschnigg et al. 2004; Eisemann and Durand 2004]as it
preserves large scale edges inIg:

F(I(x); Ig) =
1
Zx

∑
x′∈W(x)

Gd(x−x′)Gr(I(x)− Ig(x′)) · Ix′ ,

whereσd andσr are spatial and signal deviations of Gaussian ker-
nelsGd andGr . W(x) is a neighboring window andZx is a nor-
malization term. The default values ofσd andσr are 1.6 and 0.08.
Figure 7(d) shows the extracted detail layer.

Composing the gain-controlled RL resultIg and the detail layerId
produces our final image, as shown in Figure 7(e). The ringinglayer
(Figure 7(f)) can also be obtained by subtractingIg from the filtered
image I . As we expected, the ringing layer mainly contains the
ripple-like ringing effects. In the final result, the ringing artifacts
are significantly reduced while the recovered image detailsfrom
deconvolution are well preserved. Figures 4 (c-d) show another
example of results after de-ringing and the computed gain map.

To summarize, our iterative image deblurring algorithm consists of
the following steps: estimate the kernelK, compute the residual
deconvolution imageI , compute the gain-controlled deconvolution
imageIg, and construct the final image by adding the detail layer
Id. The iterations stop when the change is sufficiently small.

7 Implementation Details
Image acquisition In practice, we require one image be taken soon
after another, to minimize misalignment between two images. We
have two options to capture such image pairs very quickly. First,
two successive shots with different camera settings are triggered
by a laptop computer connected to the camera. This frees the user
from changing camera settings between two shots. Second, weuse
exposure bracketingbuilt in many DSLR cameras. In this mode,
two successive shots can be taken with different shutter speeds by
pressing the shutter only once. Using these two options, thetime
interval between two shots can be very small, typically only1/5
second which is a small fraction of typical shutter speed (> 1 sec-
ond) of the blurred image. The motion between two such shots is
mainly a small translation if we assume that the blurred image can
be modeled by a single blur kernel, i.e., the dominant motionis
translation. Because the translation only results in an offset of the
kernel, it is unnecessary to align two images.

We can also manually change the camera settings between two
shots. In this case, we have found that the dominant motions be-
tween two shots are translation and in-plane rotation. To correct
in-plane rotation, we simply draw two corresponding lines in the
blurred/noisy images. In the blurred image, the line can be speci-
fied along a straight object boundary or by connecting two corner
features. The noisy image is rotated around its image centersuch
that two lines are virtually parallel. If an advanced exposure brack-
eting allowing more controls is built to future cameras, this manual
alignment will become unnecessary.

Image denoising For the noisy imageN, we apply a wavelet-based
denoising algorithm [Portilla et al. 2003] with Matlab codefrom
http://decsai.ugr.es/∼javier/denoise/. The algorithm is one of the
state-of-art techniques and comparable to several commercial de-
noising softwares. We have also experimented with bilateral fil-
tering but found that it is hard to achieve a good balance between
removing noise and preserving details, even with careful parameter
tuning.

8 Experimental Results

We apply our approach to a variety of blurred/noisy image pairs
in low lighting environments using a compact camera (Canon S60,
5M pixels) and a DSLR camera (Canon 20D, 8M pixels).

Comparison. We compare our approach with denoising [Portilla
et al. 2003], and a standard RL algorithm. Figure 8, from leftto
right, shows a blurred image, noisy image (enhanced), denoised
image, standard RL result (using our estimated kernel), andour
result. The kernel sizes are 31×31, 33×33, and 40×40 for the
three examples.

We manually tune the noise parameter (standard deviation) in the
denoising algorithm to achieve a best visual balance between noise
removal and detail preservation. Compared with denoised results
shown in Figure 8(c), our results in Figure 8(e) contain muchmore
fine details, such as tiny textures on the fabric in the first example,
thin grid structures on the crown in the second example, and clear
text on the camera in the last example. Because the noise image is
scaled up from a very dark, low contrast image, partial colorinfor-
mation is also lost. Our approach recovers correct colors through
image deblurring. Figure 8(d) shows standard RL deconvoution re-
sults which exhibit unpleasant ringing artifacts.

Large noise. Figure 9 shows a blurred/noisy pair containing thin
hairs and a sweater with detailed structures. The images arecap-
tured by the compact camera and the noisy image has very strong
noises. Most fabric textures on the sweater are faithfully recovered
in our result.

The last column in the second row of Figure 9 shows the estimated
initial kernel and the refined kernel by the iterative optimization.
The iteration number is typically 2 or 3 in our experiments. The
refined kernel has a sharper and sparser shape than the initial one.

Large kernel. Figure 10 shows an example with a large blur by the
compact camera. The kernel size is 87×87 at the original resolu-
tion 1200×1600. The image shown here is cropped to 975×1146.
Compared with the state-of-art single image kernel estimation ap-
proach [Fergus et al. 2006] in which the largest kernel is 30 pixels,
our approach using an image pair significantly extends the degree
of blur that can be handled.

Small noise and kernel. In a moderately dim lighting environ-
ment, we may capture input images with small noise and blur, as
shown in Figure 11. This is a typical case assumed in Jia’s ap-
proach [2004] which is a color transfer based algorithm. Thethird
and fourth columns in Figure 11 are color transferred result[Jia
et al. 2004] and histogram equalization result from the blurred im-
age to the denoised image. Note that the colors cannot be accurately
transferred (e.g., Buddha’s golden hat) because both approaches use
global mappings. Our result not only recovers more details (e.g.,
horizontal lines on background) but also has similar colorsto the
blurred image for all details.

Table 1 shows the shutter speeds and ISO settings of examplesin
Figure 8-11. We are able to reduce exposure time (shutter speed×
ISO) by about 10 stops.



(a) blurred image (b) noisy image (c) denoised image (d) RL deconvolution (e) our result

Figure 8: Comparison. The noisy image is enhanced for display. The estimated blur kernel is shown at the bottom-right corner in thelast column. The
second example is taken by the compact camera and the other two by the DSLR camera. Note that our result contains finer details than the denoised image
and less ringing artifacts than the RL deconvolution result. In the last example, ”VEST POCKET KODAK” on the camera can beseen from our result but it is
hard, if not impossible, to be recognized from the blurred image or the noisy image.We encourage the reader to see a close-up view in the electronic version.



Figure 9: Large noise. Top three images: blurred, noisy, and our result. Bottom left four images: zoomed-in views of blurred, noisy, denoised and our result.
Bottom right two images are initial kernel (top) and refined kernel (bottom) using our iterative algorithm. The kernel size is32×32 .

Figure 10: Large kernel. Left: blurred image, noisy image, denoised image, and our result. Top right: two image patches in the light-orange boxes in
blurred/noisy images reveal the kernel shape. Note that thehighlight point in the noisy patch is an ellipse-like shape.Bottom right: estimated87×87 kernel.

Figure 11: Small noise and kernel. This examples is taken by the DSLR camera. The kernel size is21×21. From left to right: blurred image, noisy image,
color transferred denoised image, histogram-equalization denoised image, and our result. Our deblurred result has more details and vivid colors.



blurred image noisy image
art (Fig. 8) 1s, ISO 100 1/200s, ISO 1600

crown (Fig. 8) 1s, ISO 100 1/90s, ISO 1600
camera (Fig. 8) 0.8s, ISO 100 1/320s, ISO 1600
sweater (Fig. 9) 1.3s, ISO 100 1/80s, ISO 400
dragon (Fig. 10) 1.3s, ISO 100 1/80s, ISO 400
budda (Fig. 11) 1s, ISO 100 1/200s, ISO 1600

Table 1: Shutter speeds and ISO settings in Figure 8, 9, 10, and 11.

9 Discussion and Conclusion
We have proposed an image deblurring approach using a pair of
blurred/noisy images. Our approach takes advantage of bothim-
ages to produce a high quality reconstructed image. By formulat-
ing the image deblurring problem using two images, we have de-
veloped an iterative deconvolution algorithm which can estimate a
very good initial kernel and significantly reduce deconvolution ar-
tifacts. No special hardware is required. Our proposed approach
uses off-the-shelf, hand-held cameras.

Limitations remain in our approach, however. Our approach shares
the common limitation of most image deblurring techniques:as-
suming a single, spatial-invariant blur kernel. For spatial-variant
kernel, it is possible to locally estimate kernels for different parts
of the image and blend deconvolution results. Most significantly,
our approach requires two images. We envision that the ability to
capture such pairs will eventually move into the camera firmware,
thereby making two-shots capture easier and faster.

In the future, we plan to extend our approach to other image
deblurring applications, such as deblurring video sequences, or
out-of-focus deblurring. Our techniques can also be applied in a
hybrid image system [Ben-Ezra and Nayar 2003] or combined with
coded exposure photography [Raskar et al. 2006].
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