Image Deblurring with Blurred/Noisy Image Pairs
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Figure 1: Photographs in a low light environment. (a) Blurred imagétivshutter speed of 1 second, and ISO 100) due to camera.stigkiloisy image
(with shutter speed of 1/100 second, and ISO 1600) due téfizisnt light. (c) Noisy image enhanced by adjusting level gamma. (d) Our deblurred image.

Abstract Taking satisfactory photos under dim lighting conditions
using a hand-held camera is challenging. If the camera itoset
long exposure time, the image is blurred due to camera stake.
the other hand, the image is dark and noisy if it is taken wihart
exposure time but with a high camera gain. By combining infor
mation extracted from both blurred and noisy images, howeve
show in this paper how to produce a high quality image thahoan
be obtained by simply denoising the noisy image, or debigrtihe
blurred image alone.

Our approach is image deblurring with the help of the noisy im
age. First, both images are used to estimate an accuratiebhel,
which otherwise is difficult to obtain from a single blurredage.
Second, and again using both images, a residual decorooligti
proposed to significantly reduce ringing artifacts inhérenim-
age deconvolution. Third, the remaining ringing artifaotsmooth
image regions are further suppressed by a gain-controledriyo-
lution process. We demonstrate the effectiveness of outoapp
using a number of indoor and outdoor images taken by offstief
hand-held cameras in poor lighting environments.

1 Introduction

Capturing satisfactory photos under low light conditiorsing a
hand-held camera can be a frustrating experience. Oftgrhibtes
taken are blurred or noisy. The brightness of the image can-be
creased in three ways. First, to reduce the shutter speeadvitBLa
shutter speed belowsafe shutter spegdhe reciprocal of the focal
length of the lens, in the unit of seconds), camera shakeeslilt
in a blurred image. Second, to use a large aperture. A laguap
will however reduce the depth of field. Moreover, the rangeyT-
tures in a consumer-level camera is very limited. Thirdgtoashigh
ISO. However, the high ISO image is very noisy because th&enoi
is amplified as the camera’s gain increases. To take a shageiin

a dim lighting environment, the best settings are: safetshspeed,

the largest aperture, and the highest 1ISO. Even with thishazan
tion, the captured image may still be dark and very noisyhas/a

in Figure 1(b). Another solution is using a flash, which utfer
nately often introduces artifacts such as specularitidsshadows.
Moreover, flash may not be effective for distant objects.

In this paper, we propose a novel approach to produce a haghygu
image by combining two degraded images. One is a blurredéemag
which is taken with a slow shutter speed and a low ISO setting,
shown in Figure 1(a). With enough light, it has the corredbico
intensity and a high Signal-Noise Ratio (SNR). But it is byudue

to camera shake. The other is an underexposed and noisy image
with a fast shutter speed and a high 1SO setting, as showrgin Fi
ure 1(b). It is sharp but very noisy due to insufficient expesand

high camera gain. The colors of this image are also partiadlyy

due to low contrast.

Recovering a high quality image from a very noisy image isagye
task as fine image details and textures are concealed in. ridése
noising [Portilla et al. 2003] cannot completely separagmals
from noise. On the other hand, deblurring from a single leldirr
image is a challenging blind deconvolution problem - botlr kkr-
nel (or Point Spread Function) estimation and image dedotiga
are highly under-constrained. Moreover, unpleasantaatsf(e.g.,
ringing) from image deconvolution, even when using a peffec-
nel, also appear in the reconstructed image.

We formulate this difficult image reconstruction problemaasm-
age deblurring problem, using a pair of blurred and noisygiesa
Like most previous image deblurring approaches, we asshate t
the image blur can be well described by a single blur kernated
by camera shake and the scene is static. Inspired by [Fetglis e
2006], we convert the blind deconvolution problem into twann
blind deconvolution problems - non-blind kernel estimatand
non-blind image deconvolution. In kernel estimation, wevglthat

a very accurate initial kernel can be recovered from therétlim-
age by exploiting the large scale, sharp image structurdxinoisy
image. Our proposed kernel estimation algorithm is ableatudle
larger kernels than those recovered by [Fergus et al. 2006 &
single blurred image.

To greatly reduce the “ringing” artifacts that commonlyui$rom
the image deconvolution, we propose a residual deconeolétp-
proach. We also propose a gain-controlled deconvolutiofurto



ther suppress the ringing artifacts in smooth image regiohié

three steps - kernel estimation, residual deconvolution, gain-
controlled deconvolution - take advantage of both imagée. final

reconstructed image is sharper than the blurred image @adec!
than the noisy image, as shown in Figure 1(d).

Using two images for image deblurring or enhancement has bee
exploited. In this paper, we show the superiorities of ow ap
proach in image quality compared with previous two-image ap
proaches [Ben-Ezra and Nayar 2003; Jia et al. 2004; Lim ahd Si
verstein 2006]. Our approach is also practical despitevieate-
quire two images. We have found that the motion between two
blurred/noisy images, when taken in a quick successionaislign

a translation. This is significant because the kernel esitomés in-
dependent of the translation, which only results in an ¢fé¢he
kernel. We will describe how to acquire and align such imaajesp

in Section 7.

2 Previous Work

Single image deblurring. Image deblurring can be categorized
into two types: blind deconvolution and non-blind decomtian.
The former is more difficult since the blur kernel is unknowA.
comprehensive literature review on image deblurring cafobed

in [Kundur and Hatzinakos 1996]. As demonstrated in [Feejas.
2006], the real kernel caused by camera shake is complernbdey
a simple parametric form (e.g., single one-direction nrotis a
gaussian) assumed in previous approaches [Reeves andrdéerse
1992; Y. Yitzhaky and Kopeika. 1998; Caron et al. 2002; Jedotu

et al. 2002]. In [Fergus et al. 2006], natural image statsto-
gether with a sophisticated variational Bayes inferengerghm
are used to estimate the kernel. The image is then recoteiruc
using a standard non-blind deconvolution algorithm. Védoeme-
sults are obtained when the kernel is small (e.gx3D pixels or
fewer) [Fergus et al. 2006]. Kernel estimation for a larger li$,
however, inaccurate and unreliable using a single image.

Even with a known kernel, non-blind deconvolution [Gemand an
Reynolds 1992; Zarowin 1994; Neelamani et al. 2004; Bar .et al
2006] is still under-constrained. Reconstruction artface.g.,
“ringing” effects or color speckles, are inevitable be@uo$ high

in computer graphics. Other approaches include anisatrdipi
fusion [Perona and Malik 1990], PDE-based methods [Rudai. et
1992; Tschumperle and Deriche 2005], fields of experts [Roth
Black 2005], and nonlocal methods [Buades et al. 2005].

Multiple images deblurring and denoising. Deblurring and de-
noising can benefit from multiple images. Images with differ
ent blurring directions [Bascle et al. 1996; Rav-Acha ante@e
2000; Rav-Acha and Peleg 2005] can be used for kernel esimat

In [Liu and Gamal 2001], a CMOS sensor can capture multiple
high-speed frames within a normal exposure time. The pixel w
motion replaced with the pixel in one of the high-speed frame
Raskar et al. [2006] proposed a “fluttered shutter” camerihvh
opens and closes the shutter during a normal exposure tithe wi
a pseudo-random sequence. This approach preserves high fre
quency spatial details in the blurred image and producesesap
sive results, assuming the blur kernel is known. Denoisiag ¢
be performed by a joint/cross bilateral filter using flaskitash
images [Petschnigg et al. 2004; Eisemann and Durand 2004], o
by an adaptive spatio-temporal accumulation filter for widse-
guences [Bennett and McMillan 2005].

Hybrid imaging system [Ben-Ezra and Nayar 2003] consista of
primary sensor (high spatial resolution) and a secondange
(high temporal resolution). The secondary sensor capturesn-
ber of low resolution, sharp images for kernel estimationr @p-
proach estimates the kernel only from two images, withoeinied
for special hardware. Another related work [Jia et al. 208l4p
uses a pair of images, where the colors of the blurred image ar
transferred into the noisy image without kernel estimatibtow-
ever, this approach is limited to the case that the noisy s a
high SNR and fine details. In this paper, we estimate the kank
deconvolute the blurred image with the help of a very noisggm
The work most related to ours is [Lim and Silverstein 2006]clh
also makes use of a short exposure image to help estimaterte k
and deconvolution. However, our proposed techniques ctairob
much accurate kernel and produce almost artifact-free énfigga
de-ringing approach in deconvolution.

3 Problem Formulation

frequency loss in the blurred image. The errors due to sensorwe take a pair of images: a blurred imaBavith a slow shutter

noise and quantizations of the image/kernel are also aeplifi

the deconvolution process. For example, more iterationthén
Richardson-Lucy (RL) algorithm [H. Richardson 1972] witlsult
in more “ringing” artifacts. In our approach, we significlgnte-

duce the artifacts in a non-blind deconvolution by takingeadage
of the noisy image.

Recently, spatially variant kernel estimation has alsmipeposed
in [Bardsley et al. 2006]. In [Levin 2006], the image is segteel
into several layers with different kernels. The kernel iotetayer
is uni-directional and the layer motion velocity is constan

Hardware based solutions [Nikon 2005] to reduce image Iolur i
clude lens stabilization and sensor stabilization. Botihméues
physically move an element of the lens, or the sensor, toteoun
balance the camera shake. Typically, the captured imagbeas
sharp as if it were taken with a shutter speed 2-3 stops faster

Single image denoising. Image denoising is a classic problem ex-
tensively studied. The challenge of image denoising is fweom-
promise between removing noise and preserving edge orréextu
Commercial softwares, e.g., “Neatlmage” (www.neatimegm)
and "Imagenomic” (www.imagenomic.com), use wavelet-dage
proaches [Simoncelli and Adelson 1996; Portilla et al. 20@3-
lateral filtering [Tomasi and Manduchi 1998; Durand and Bgrs

speed and low ISO, and a noisy imagewith high shutter speed
and high 1SO. The noisy image is usually underexposed and has
very low SNR since camera noise is dependent on the image inte
sity level [Liu et al. 2006]. Moreover, the noise in the highQ
image is also larger than that in the low ISO image since tligeno
is amplified by camera gain. But the noisy image is sharp ksrau
we use a fast shutter speed that is above the safe shutter spee
We pre-multiply the noisy image by a ratfgce to compensate
for the exposure difference between the blurred and noisygés,
whereAt is the exposure time. We perform the multiplication in
irradiance space then go back to image space if the cam@@nss
curve [Debevec and Malik 1997] is known. Otherwise, a gamma
(y=2.0) curve is used as an approximation.

3.1 Our approach

Our goal is to reconstruct a high quality imabeising the input
imagesB andN

B=I1®K, 1)
whereK is the blur kernel and is the convolution operator. For
the noisy image\, we compute a denoised imalyg [Portilla et al.
2003] (See Section 7 for details\p loses some fine details in

2002] has also been a simple and effective method widely usedthe denoising process, but preserves the large scale, shage



(a) blurry images and true kernels

(b) noisy image (c) denoised image
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(h) Our Results

Figure 2: Kernel Estimation. Two blurred images are synthesized fiom
true image (also shown in Figure 4(e)). (d) Matlab’s decdimebroutine
results. (e) Fergus’s result at finest 4 levels. (f) Lim'sutes(g) estimated
kernels without hysteresis thresholding. (h) our resulihatfinest 4 levels.
(i) true kernels.

structures. We represent the lost detail layer eesimlual image\l :
I =Np +Al. 2

Our first important observation is that the denoised imidgas a
very good initial approximation tb for the purpose of kernel esti-
mation from Equation (1). The residual imafyeis relatively small
with respect td\p. The power spectrum of the imagenainly lies

in the denoised imagdp. Moreover, the large scale, sharp image
structures inlNp make important contributions for the kernel esti-
mation. As will be shown in our experiments on synthetic azal r
images, accurate kernels can be obtained uBiagdNp in non-
blind convolution.

OnceK is estimated, we can again use Equation (1) to non-blindly
deconvolutel, which unfortunately will have significant artifacts,
e.g, ringing effects. Instead of recoverihdirectly, we propose to
first recover the residual imagd from the blurred imagd. By
combining Equations (1) and (2), the residual image can tenre
structed from aesidual deconvolutian

AB= Al ®K, )

whereAB = B—Np ® K is aresidual blurred image

Our second observation is that the ringing artifacts frosiceal
deconvolution ofAl (Equation (3)) are smaller than those from de-
convolution ofl (Equation (1)) becaus&B has a much smaller
magnitude tham after being offset byNp ® K.

The denoised imaghp also provides a crucial gain signal to con-
trol the deconvolution process so that we can suppressgrayti-
facts, especially in smooth image regions. We propose indag
approach using gain-controlleddeconvolution algorithm to fur-
ther reduce ringing artifacts.

The above three steps - kernel estimation (Section 4), uakite-
convolution (Section 5), and de-ringing (Section 6) - agedted to
refine the estimated blur kerri€land the deconvoluted imadie

4 Kernel Estimation

In this section, we show that a simple constrained leastsguop-
timization is able to produce a very good initial kernel.

Iterative kernel estimation. The goal of kernel estimation is to
find the blur kerneK from B = @ K with the initializationl = Np.

In vector-matrix form, it isb = Ak, whereb andk are the vector
forms of B andK, andA is the matrix form ofl .

The kernek can be computed in the linear least-squares sense. To

stabilize the solution, we use Tikhonov regularization metwith

a positive scalad by solving mir ||Ak —b||2+ A2||k||2. The de-
fault value ofA is setat 5. The solution is given BT A +A21 )k =
ATh in closed-form if there are no other constraints on the Kekne
But a real blur kernel has to be non-negative and preserugygne
so the optimal kernel is obtained from the following optiation
system:

mkin||Ak—b||2+)\2||k||27 subject toki >0, and Y k =1. (4)
I

We adopt the Landweber method [Engl et al. 2000] to iterbtive
update as follows.

1. Initializek® = &, the delta function.
2. Updatek™! =Kk"+ B(ATb — (ATA+A21)kM).
3. Set™™ =0if K" <0, and normaliz&* =K1/ 5 KL

B is a scalar that controls the convergence. The iteratigrssttien
the change between two steps is sufficiently small. We tylyinan
about 20 to 30 iterations by settify= 1.0. The algorithm is fast
using FFT, taking about 8 to 12 seconds for a<x@¥ kernel and a
800x 600 image.

Hysteresis thresholding in scale space. The above iterative al-
gorithm can be implemented in scale space to make the solidtio
overcome the local minimal. A straightforward method isse the
kernel estimated at the current level to initialize the rieer level.
However, we have found that such initialization is insuéfidi to
control noise in the kernel estimation. The noise or errocoarse
levels may be propagated and amplified to fine levels. To ssgpr
noise in the estimate of the kernel, we prefer the global sloithe
kernel at a fine level to be similar to the shape at its coassl.|
To achieve this, we propose a hysteresis thresholding {CA986]
in scale space.

At each level, a kernel mad¥ is defined by thresholding the kernel
values,M; = 1 if k; > tkmax, Wheret is a threshold anéimax is the
maximum of all kernel values. We compute two masks,, and
Mhigh by setting two thresholdioy andthigh. Migw is larger and
containsMygn. After kernel estimation, we set all elementskdf
outside the maskign to zero to reduce the noise at levelThen,

at the next finer level+ 1, we set all elements &' 1 outside the
up-sampled mask dfl;q,, to zero to further reduce noise. This hys-
teresis thresholding is performed from coarse to fine. Tharmpids
are constructed using a downsampling factor 6§/2 until the ker-
nel size at the coarsest level reaches @ We typically choose
tiow = 0.03, andthigh =0.05.



(a) blurry/noise pair (b) zoom in (c)

Figure 3: Blurred and noisy images from the light-blue box in (a) are
zoomed-in in (b). The top image in (c) is a zoomed-in view eflight-
orange box in (a), revealing the true kernel. The middle ieneg(c) is the
estimated kernel using only image patches in (b). The baitizenye in (c)

is the estimated kernel using the whole image.

Results and discussion. We first compare our estimated kernel
with the true kernel using a synthetic example. Figuresc2@ow
two blurred images, a noisy image, and a denoised image.
blurred images are synthesized with two>#1 known kernels.
Figure 2(d) shows kernels estimated by Matlab’s decondbigu-
tine (a blind deconvolution) using the denoised imageas ini-
tialization. Figure 2(e) shows coarse-to-fine kernels {thest 4
levels) estimated by Fergus’s algorithm only using therigldiim-
age [Fergus et al. 2006]. The Matlab code is released by Bergu
(http://people.csail.mit.edu/fergus/). We exhausyivteine all op-
tions in Fergus’s algorithm and select different regionthamimage

to produce the best results. Fergus’s algorithm recovechrbetter
kernels than those using Matlab’s blind deconvolution.ufeg?(f)

is result from [Lim and Silverstein 2006], which is esselhtiaqual

to the least- squares solution lof= Ak. In comparison, our esti-
mated kernels in Figure 2(h) are very close to the true kerimel

in Figure 2(i) because we solve a non-blind kernel estimgtimb-
lem. The fine details and thin structures of the kernels arewe
ered. Figure 2(g) also shows our kernel estimation withgatdre-

sis thresholding, which is very noisy.

The

Figure 3 shows our result on real images. Light-blue trajges
caused by highlights in the scene clearly reveal the acestape

of the kernel. One such trajectories is shown in Figure 3{& also
compare two kernels using selected image patches and thie who
image. The recovered kernels have very similar shape taghe |
blue trajectory, as shown in Figure 3(c). Kernel estimai®im-
sensitive to the selected regions. The kernel size is vegg Javith
92 x 92 pixels.

5 Residual Deconvolution

Given the blur kernek, the true image can be reconstructed from
B =K®]I. Figure 4(a) shows the deconvolution results using a
standard Richardson-Lucy (RL) algorithm after 20 itenasiovith

the true kernels. The resulting images contain visibledirig” ar-
tifacts, with dark and light ripples around bright featuire¢he im-
age. The ringing artifacts often occur with iterative methiosuch

as the RL algorithm. More iterations introduce not only mione
age details but also more ringing. Fergus et al. [2006] disewed
this issue from their results.

The ringing effects are due to the well-known Gibbs phenarien
Fourier analysis at discontinuous points. The discortiiesicould

be at image edge points, boundaries or are artificially éhtced by
the inadequate spatial sampling of the images or the keriidls

larger the blur kernel, the stronger the ringing artifacts a

The Gibbs oscillations have an amplitude independent ottie

(e) true image

(d) gain map

Figure4: Deconvolution using true kernels. All results are genedatter
20 iterations. Note that standard RL results contain unpéed “ringing”
artifacts - dark and light ripples around strong image feats1

(@B (b) Np (©
T
(d)AB=B—Np ®K (e)Al (H1=Np+Al

Figure 5: Residual deconvolution. (a-b) are the blurred signal and de
noised signal. The blur kernel is a box filter. (c) is the s&mdddeconvo-
lution result from (a). (d-e) are the blurred residual sidgrend its decon-
volution result. (f) is the residual deconvolution resiiotice that ringing
artifact in (f) is smaller than that in (c).

off frequencies of the filter, but are always proportionathe sig-
nal jump at the discontinuous points. The key to our apprasch
that we perform the deconvolution on relative image quiastito
reduce the absolute amplitude of the signals. Instead eigdibie
deconvolution directly on the imag& we perform deconvolution
on the residual blurred imagkB = Al @ K to recover the residual



(€) lgain

(@ iter. 1

(e) iter. 10 (f) iter. 20
Figure 6: Gain-controlled RL. (a-c) blurred signal, denoised sigrehd
gain map. The kernel is estimated using B ansl Nd-f) deconvolution
results by standard RL (green), residual RL(blue), and gaintrolled RL
(red), after iteration 1, 10, and 20. The plot at the bottoigiht are blown-
up views. Notice that the ringing effects are amplified anappgated in
standard RL and residual RL, but suppressed in gain-cdetidRL.

imageAl. The final reconstructed imagelis= Np + Al.

The standard RL algorithm is one of ratio-based iterative ap
proaches. It enforces the non-negativity of pixel valuehewus-
ing RL algorithms, the residual images should be offset jiragl
the constant 1Al — Al + 1 andAB — AB+ 1, as all images are
normalized to range [0,1]. After each iteration, the realdmage

is offset back by subtracting the constant 1:

AB+1
—_— 5
(Aln+1) @K ®)
where %' is the correlation operator. Figure 4(b) shows the de-
convolution results using the residual RL algorithm witk game

number of iterations. Compared with the standard RL regHlIts
ure 4(a)), the ringing effects are reduced.

Alpig = (K x ) (Alp+1) -1,

Figure 5 shows a 1D example of the residual deconvolutiore Th
ringing artifacts fromAl are significantly weaker than those lin
because the magnitude AB (after subtractindNp ® K from B) is
much smaller than that dg.

6 De-ringing with Gain-controlled RL

The residual deconvolution lessened the ringing effectscannot
fully eliminate them, as shown in Figure 4(b). Another exémp
is shown in Figure 7(b). We observe that the ringing effects a
most distracting in smooth regions because human percegio
tolerate small scale ringing in highly textured regions. kéwe
also found that the mid-scale ringing effects are more patite
compared with the fine details and large scale sharp stesior
the image. Note that the strong ringing is mainly caused igh hi
contrast edges and the magnitude of ringings is propottiorthe
magnitude of image gradient. Based on these observati@grov
pose a de-ringing approach with a gain-controlled RL atbarias
follows.

Gain-controlled Richardson-Lucy (RL). We modify the residual
RL algorithm by introducing a gain magajn:

AB+1
Alny1 =lGain- {(K * m

where lgain is @ multiplier £ 1) to suppress the contrast of the
recovered residual imagal. Since RL is a ratio-based algo-
rithm, the ringing effects are amplified at each iteratiorthmyratio
K x % in (6). Multiplying a factor less than one at each it-
eration will suppress the propagation of the ringing efetotice

)~(A|n+1)—1}, (6)

(a) blurred/noisy image

(H) by residual RL

(e) finél image

(f) ringing layer

Figure 7: De-ringing. The gain-controlled RL effectively supprastee
ringing artifacts and produces de-ringing imaggin (c). The detail layer
lq in (d) is extracted from the residual RL result in (b) with tngidance of
the |y using a joint/cross bilateral filter. Our fine image in (e) istained by
adding (c) and (d) together.

that multiplying a factor will not decrease the overall mitigehe of
the signal but decrease the contrast of the signal becaagatib

K x % will increase the magnitude of the signal in each it-

eration. At the last iteration, we do not multiply the gaingi@ain.
We denote the image reconstructed by gain-controlled Ri.as

Since we want to suppress the contrast of ringing in the smoot
regions while avoiding suppression of sharp edges, the main
should be small in smooth regions and large in others. Hemee,
define the gain map using the gradient of the denoised image as

leam:(l—a)+a~ZIIDNBII7 )

wherea controls the influence of the gain map, aﬁlN"D is the gra-
dient of the denoised image at thik level of the Gaussian pyramid
with standard deviation.B. The parameter controls the degree of
suppression. In all the results shown in this paper, we setdlue

of o to 0.2. Aggregated image gradients at multiple scales have
also been used in HDR compression [Fattal et al. 2002; Li.et al
2005]. Here, the gradients of denoised image provide a dggials

to adaptively suppress the ringing effects in differentoesg.

Figure 6 shows a 1D example of gain-controlled RL. As we can
see, the residual RL can reduce the magnitude of ringing com-
pared with the standard RL. In both standard RL and residual R
the magnitude of ringing increases and the spatial rang@ngf r
ing spreads gradually, after each iteration. With the adrftom

the gain map, the ringing effects are suppressed at eacttidter
(e.g.,lgain = 0.8 in flat region). Most importantly, the propagation



of ringing is greatly prevented so that the ringing is siguaifitly
reduced.

Figure 7(c) shows a gain-controlled RL resigt It is a clean de-
convolution result with large scale sharp edges, compaittthe
residual RL result in Figure 7(c). However, some fine details are
inevitably suppressed by gain-controlled RL. Fortunatelg are
able to add fine scale image details for the residual RL résust
ing the following approach.

Adding details. We extract the fine scale detail laygr=1—1
from the residual RL result, whereT(x) = F(I(x)) is a filtered
image and-(-) is a low-pass filter. In other words, the details layer
is obtained by a high-pass filtering. We use joint/crosstéuiéd
filtering [Petschnigg et al. 2004; Eisemann and Durand 2@684{
preserves large scale edgesdgn

F(1(x);1g) Ga(x =X)Gr (1(x) = Ig(x')) - I,

Zx X' €EW(x)

wheregy and oy are spatial and signal deviations of Gaussian ker-
nelsGq andG;. W(x) is a neighboring window andy is a nor-
malization term. The default values aff and o, are 16 and 008.
Figure 7(d) shows the extracted detail layer.

Composing the gain-controlled RL resijtand the detail layely
produces our final image, as shown in Figure 7(e). The rinigiyer
(Figure 7(f)) can also be obtained by subtractigrom the filtered
imagel. As we expected, the ringing layer mainly contains the
ripple-like ringing effects. In the final result, the ringirartifacts
are significantly reduced while the recovered image defeiis
deconvolution are well preserved. Figures 4 (c-d) show harot
example of results after de-ringing and the computed gaim ma

To summarize, our iterative image deblurring algorithmsists of

the following steps: estimate the kerr€] compute the residual
deconvolution imagé, compute the gain-controlled deconvolution
imagelg, and construct the final image by adding the detail layer
l4. The iterations stop when the change is sufficiently small.

7 Implementation Details

Image acquisition In practice, we require one image be taken soon
after another, to minimize misalignment between two imagd#e
have two options to capture such image pairs very quicklystFi
two successive shots with different camera settings aggdred

by a laptop computer connected to the camera. This freesstire u
from changing camera settings between two shots. Secondseve
exposure bracketinguilt in many DSLR cameras. In this mode,
two successive shots can be taken with different shuttexdspby
pressing the shutter only once. Using these two optionstirtine
interval between two shots can be very small, typically ahi$
second which is a small fraction of typical shutter speed. (sec-
ond) of the blurred image. The motion between two such slsots i
mainly a small translation if we assume that the blurred iencan

be modeled by a single blur kernel, i.e., the dominant moigon
translation. Because the translation only results in asetif the
kernel, it is unnecessary to align two images.

Image denoising For the noisy imagél, we apply a wavelet-based
denoising algorithm [Portilla et al. 2003] with Matlab coftem
http://decsai.ugr.esfavier/denoise/. The algorithm is one of the
state-of-art techniques and comparable to several conmheles-
noising softwares. We have also experimented with bilafidra
tering but found that it is hard to achieve a good balance &etw
removing noise and preserving details, even with carefidipater
tuning.

8 Experimental Results

We apply our approach to a variety of blurred/noisy imagespai
in low lighting environments using a compact camera (Caré®, S
5M pixels) and a DSLR camera (Canon 20D, 8M pixels).

Comparison. We compare our approach with denoising [Portilla
et al. 2003], and a standard RL algorithm. Figure 8, from teft
right, shows a blurred image, noisy image (enhanced), dedoi
image, standard RL result (using our estimated kernel), and
result. The kernel sizes are 3131, 33x 33, and 40« 40 for the
three examples.

We manually tune the noise parameter (standard deviatiotie
denoising algorithm to achieve a best visual balance betweise
removal and detail preservation. Compared with denoissdltse
shown in Figure 8(c), our results in Figure 8(e) contain muncine
fine details, such as tiny textures on the fabric in the firaiheple,
thin grid structures on the crown in the second example, ésat ¢
text on the camera in the last example. Because the noiseiimag
scaled up from a very dark, low contrast image, partial civlfor-
mation is also lost. Our approach recovers correct colomuthh
image deblurring. Figure 8(d) shows standard RL deconwout-
sults which exhibit unpleasant ringing artifacts.

Large noise. Figure 9 shows a blurred/noisy pair containing thin
hairs and a sweater with detailed structures. The imagesagre
tured by the compact camera and the noisy image has verygstron
noises. Most fabric textures on the sweater are faithfebovered

in our result.

The last column in the second row of Figure 9 shows the estidhat
initial kernel and the refined kernel by the iterative optation.
The iteration number is typically 2 or 3 in our experimentheT
refined kernel has a sharper and sparser shape than thkdnéia

Largekerndl. Figure 10 shows an example with a large blur by the
compact camera. The kernel size is»887 at the original resolu-
tion 1200x 1600. The image shown here is cropped to 272346.
Compared with the state-of-art single image kernel estonadp-
proach [Fergus et al. 2006] in which the largest kernel isi8Ig,
our approach using an image pair significantly extends tigeede
of blur that can be handled.

Small noise and kernel. In a moderately dim lighting environ-
ment, we may capture input images with small noise and btur, a
shown in Figure 11. This is a typical case assumed in Jia’s ap-
proach [2004] which is a color transfer based algorithm. fhine

We can also manually change the camera settings between twoand fourth columns in Figure 11 are color transferred refSlidt

shots. In this case, we have found that the dominant motiens b
tween two shots are translation and in-plane rotation. Toecb
in-plane rotation, we simply draw two corresponding lineghie
blurred/noisy images. In the blurred image, the line cangezis
fied along a straight object boundary or by connecting twaeor
features. The noisy image is rotated around its image centdr
that two lines are virtually parallel. If an advanced expesorack-
eting allowing more controls is built to future camerass tmanual
alignment will become unnecessary.

et al. 2004] and histogram equalization result from theriliim-
age to the denoised image. Note that the colors cannot beadelyu
transferred (e.g., Buddha's golden hat) because both apipes use
global mappings. Our result not only recovers more detailg. (
horizontal lines on background) but also has similar cotorthe
blurred image for all details.

Table 1 shows the shutter speeds and ISO settings of examples
Figure 8-11. We are able to reduce exposure time (shuttedspe
ISO) by about 10 stops.



(a) blurred image (b) noisy image (c) denoised image (d) Rdodeolution (e) our result

Figure 8: Comparison. The noisy image is enhanced for display. Thead blur kernel is shown at the bottom-right corner in thst column. The

second example is taken by the compact camera and the otbéaytthe DSLR camera. Note that our result contains finer Bethan the denoised image
and less ringing artifacts than the RL deconvolution resulthe last example, "WVEST POCKET KODAK” on the camera carséen from our result but it is
hard, if not impossible, to be recognized from the blurredgmor the noisy imagéie encourage the reader to see a close-up view in the electronic version.



Figure 9: Large noise. Top three images: blurred, noisy, and our te®dttom left four images: zoomed-in views of blurred, naienoised and our result.
Bottom right two images are initial kernel (top) and refinemiriel (bottom) using our iterative algorithm. The kernelesis32x 32.

Figure 10: Large kernel. Left: blurred image, noisy image, denoisedgey and our result. Top right: two image patches in the kigtgnge boxes in
blurred/noisy images reveal the kernel shape. Note thahitjelight point in the noisy patch is an ellipse-like shapettom right: estimate®7 x 87 kernel.

Figure 11: Small noise and kernel. This examples is taken by the DSLRraamhe kernel size B1 x 21. From left to right: blurred image, noisy image,
color transferred denoised image, histogram-equalizatienoised image, and our result. Our deblurred result hagerdetails and vivid colors.



| blurred image|

art (Fig. 8) | 1s,1SO 100
crown (Fig. 8) | 1s,1SO 100
camera (Fig. 8)| 0.8s, ISO 100
sweater (Fig. 9)| 1.3s, ISO 100
dragon (Fig. 10)| 1.3s, ISO 100
budda (Fig. 11)| 1s, SO 100

noisy image
1/200s, ISO 1600
1/90s, ISO 1600
1/320s, 1SO 1600
1/80s, ISO 400
1/80s, ISO 400
1/200s, 1SO 1600

Table1: Shutter speeds and ISO settings in Figure 8, 9, 10, and 11.

9 Discussion and Conclusion

We have proposed an image deblurring approach using a pair of

blurred/noisy images. Our approach takes advantage ofibweth
ages to produce a high quality reconstructed image. By ftaimu
ing the image deblurring problem using two images, we have de
veloped an iterative deconvolution algorithm which carineste a
very good initial kernel and significantly reduce decontiolu ar-
tifacts. No special hardware is required. Our proposed agubr
uses off-the-shelf, hand-held cameras.

Limitations remain in our approach, however. Our approdcires
the common limitation of most image deblurring techniquas:
suming a single, spatial-invariant blur kernel. For spatiiant
kernel, it is possible to locally estimate kernels for diffet parts
of the image and blend deconvolution results. Most signifiga
our approach requires two images. We envision that thetyaldli
capture such pairs will eventually move into the camera fiamay
thereby making two-shots capture easier and faster.

In the future, we plan to extend our approach to other image
deblurring applications, such as deblurring video segegnor
out-of-focus deblurring. Our techniques can also be agpthiea
hybrid image system [Ben-Ezra and Nayar 2003] or combingi wi
coded exposure photography [Raskar et al. 2006].
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