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ABSTRACT
Most data mining algorithms and tools stop at discovered
customer models, producing distribution information on cus-
tomer profiles. Such techniques, when applied to indus-
trial problems such as customer relationship management
(CRM), are useful in pointing out customers who are likely
attritors and customers who are loyal, but they require hu-
man experts to postprocess the mined information manually.
Most of the postprocessing techniques have been limited to
producing visualization tools and interestingness ranking,
but they do not directly suggest actions that would lead to
an increase the objective function such as profit. In this
paper, we present a novel algorithm that suggest actions to
change customers from an undesired status (such as attri-
tors) to a desired one (such as loyal) while maximizing ob-
jective function: the expected net profit. We develop these
algorithms under resource constraints that are abound in
reality. The contribution of the work is in taking the output
from an existing mature technique (decision trees, for ex-
ample), and producing novel, actionable knowledge through
automatic postprocessing.

Keywords
Customer Relationship Management, action mining, profit-
oriented data mining

1. INTRODUCTION
Extensive research in data mining has been done on discov-
ering distributional knowledge about the underlying data.
Models such as the Bayesian models, decision trees, sup-
port vector machines and association rules have been applied

to various industrial applications such as customer relation-
ship management (CRM). Despite such phenomenal success,
most of these techniques stop short of the final objective
of data mining, relying on such postprocessing techniques
as visualization and interestingness ranking. While these
techniques are essential to move the data mining result to
the eventual application, they nevertheless require a great
deal of human manual work by experts. Often, in industrial
practice, one needs to walk an extra mile to extract the real
”nuggets” of knowledge, the actions, in order to maximize
the final objective functions.

In this paper, we present a novel postprocessing technique
to mine actionable knowledge from decision trees. To illus-
trate our techniques, we focus on the application in CRM.
Like most data mining algorithms today, a common problem
in current applications of data mining in intelligent CRM is
that people tend to focus on, and be satisfied with, build-
ing up the models and interpreting them, but not to use
them to get profit explicitly. More specifically, most data
mining algorithms (predictive or supervised learning algo-
rithms) only aim at constructing customer profiles, which
predict the characteristics of customers of certain classes.
For example, what kind of customers (described by their at-
tributes such as age, income, etc.) are likely attritors (who
will go to competitors), and what kind are loyal customers?
This knowledge is useful but it does not directly benefit the
enterprise. To improve customer relationship, the enterprise
must know what actions to take to change customers from
an undesired status (such as attritors) to a desired one (such
as loyal customers). To our best knowledge, no data mining
algorithms have been made widely available to accomplish
this important task in intelligent CRM.

Unlike distributional knowledge, in order to extract action-
able knowledge from the output of other data mining al-
gorithms, one must take into account resource constraints.
Actions, such as direct mailing and sales promotion, cost
money to the enterprise. At the same time, enterprises are
increasingly constrained by cost cutting. There is thus a
strong limitation on the number of customer segments that



the company can take on, or in the number of actions the
company can exploit. To make a decision, one must take
into account the cost as well as the benefit of actions to
the enterprise. However, for each customer, there may be
a large number of possible actions or action sets that can
be applied to the customer. Which of the actions to take
depends not only on the particular customers’ situation, but
also on other customers who might benefit from the same
action.

In this paper, we present novel algorithms for postprocessing
decision trees to maximize the profit-based objective func-
tion. We do this under resource constraints. More specifi-
cally, we take any decision tree as input, and mine the best
k actions to be chosen in order to maximize the expected
net profit of all the customers. We define two versions of
the problem, show that finding the optimal solution for the
problem is NP-complete, and design greedy heuristic algo-
rithm to solve it efficiently. We compare the performance
of the exhaustive search algorithm with a greedy heuristic
algorithm, and show that the greedy algorithm is efficient
while achieving results with quality very close to the optimal
ones.

The rest of the paper is organized in the following order.
We first present our base algorithm for finding unrestricted
actions in Section 2. We then formulate two versions of
the resource-limited action mining problems, and show that
finding the optimal solution for the problems is NP-complete
in Sections 4 and 5. We also show that our greedy algorithms
are efficient while achieving results very close to the optimal
ones obtained by the exhaustive search (which is exponential
in time complexity). Conclusions and future work occupy
Section 6.

2. ACTION MINING IN DECISION TREES
In our previous work [5, 12] we described a new data min-
ing system that utilizes decision trees to discover actionable
solutions for the status change problem in CRM. The algo-
rithm is implemented in a data mining system called “Proac-
tive Solution”, a data mining software for intelligent CRM.
In this section, we review essential components of Proactive
Solution, as our new algorithms are based on them.

2.1 Proactive Solution
The data set that Proactive Solution takes consists of de-
scriptive attributes and a class attribute. For simplicity, we
consider a discrete-value problem, in which the class values
are discrete values. Some of the values under the class at-
tributes are more desirable than others. For example, in the
banking application, the loyal status of a customer “stay” is
more desirable than “not stay”.

The overall process of Proactive Solution can be briefly de-
scribed in the following four steps:

1. Import customer data with data collection, data clean-
ing, data pre-processing, and so on.

2. Build customer profile(s) using an improved decision-
tree learning algorithm [11] from the training data. In
this case, a decision tree is built from the training data

to predict if a customer is in the desired status or not.
One improvement in the decision tree building is to
use the area under the curve (AUC) of the ROC curve
[7, 10] to evaluate probability estimation (instead of
the accuracy). Another improvement is to use Laplace
Correction to avoid extreme probability values (see [5]
for more details).

3. Search for optimal actions for each customer (see Sec-
tion 2.2 for details). This is the key and novel compo-
nent of our data mining system Proactive Solution.

4. Produce reports for domain experts to review the ac-
tions and selectively deploy the actions.

In the next subsection, we will discuss the leaf-node search

algorithm used in step 3 (search for optimal actions) in de-
tail.

2.2 Search for Un-restricted Optimal Actions
The leaf-node search algorithm (see below) searches for
optimal actions to transfer each leaf node to another leaf
node with a higher probability of being in a more desirable
class. After a customer profile is built, the resulting decision
tree can be used to classify, and more importantly, provide
probability of customers in the desired status such as be-
ing loyal or high-spending. When a customer, who can be
either an training example used to build the decision tree
or an unseen testing example, falls into a particular leaf
node with a certain probability of being in the desired sta-
tus, the algorithm tries to “move” the customer into other
leaves with higher probabilities of being in the desired sta-
tus. The probability gain can then be converted into an
expected gross profit.

However, moving a customer from one leaf to another means
some attribute values of the customer must be changed.
This change, in which an attribute A’s value is transformed
from v1 to v2, corresponds to an action. These actions incur
costs. The cost of all changeable attributes are defined in
a cost matrix (see Section 2.3) by a domain expert. The
leaf-node search algorithm searches all leaves in the tree
so that for every leaf node, a best destination leaf node is
found to move the customer to. The collection of moves are
required to maximize the net profit, which equals the gross
profit minus the cost of the corresponding actions.

Based on a domain-specific cost matrix (Section 2.3) for ac-
tions, we define the net profit of an action to be as follows.

PN = PE × Pgain −
X

i

COSTi (1)

where PN denotes the net profit, PE denotes the total profit
of the customer in the desired status, Pgain denotes the prob-
ability gain, and COSTi denotes the cost of each action in-
volved.

The leaf-node search algorithm for searching the best ac-
tions can thus be described as follows:

Algorithm leaf-node search



1. For each customer c, do

2. Let L be the leaf node in which c falls into;

3. Let S be a leaf node for c the maximum net
profit PN ;

4. Output (L, S, PN );
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Figure 1: An example of customer profile

To illustrate, consider an example shown in Figure 1, which
represents an overly simplified, hypothetical decision tree as
the customer profile of loyal customers built from a bank.
The tree has five leaf nodes (A, B, C, D, and E), each with
a probability of customers’ being loyal. The probability of
attritors is simply 1 minus this probability.

Let, a customer, Jack, be given with Service (service level)
being L (low), Sex being M (male), and Rate (mortgage
rate) being L. The customer is classified by the decision tree.
Clearly, Jack falls into the leaf B, which predicts that Jack
will have only 20% chance of being loyal (or Jack will have
80% chance to churn in the future). The algorithm will now
search through all other leaves (A, C, D, E) in the decision
tree to see if Jack can be “replaced” into a best leaf with
the highest net profit.

1. Consider leaf A. It does have a higher probability of
being loyal (90%), but the cost of action would be very
high (Jack should be changed to female), so the net
profit is a negative infinity.

2. Consider leaf C. It has a lower probability of being
loyal, so the net profit must be negative, and we can
safely skip it.

3. Consider leaf D. There is a probability gain of 60%
(80%− 20%) if Jack falls into D. The action needed is
to change Service from L (low) to H (high). Assume
that the cost of such a change is $200 (given by the
bank). If the bank can make a total profit of $1000
from Jack when he is 100% loyal, then this probability
gain (60%) is converted into $600 (1000 × 0.6) of the
expected gross profit. Therefore, the net profit would
be $400 (600− 200).

4. Consider leaf E. The probability gain is 30% (50% −
20%), which transfers to $300 of the expected gross
profit. Assume that the cost of the actions (change
Service from L to H and change Rate from L to H) is
$250, then the net profit of moving Jack from B to E
is $50 (300− 250).

Clearly, the node with the maximal net profit for Jack is D,
with suggested action of changing Service from L to H.

Notice that in the above example, the actions suggested for a
customer-status change imply only correlations rather than
causality between customer features and status. Similar to
other data mining systems, the actions should be reviewed
by domain experts before deployment. This is the Step 4
discussed at the beginning of this Section.

2.3 Cost matrix
In our solution, attribute-value changes will incur costs.
These costs can only be determined by domain knowledge
and domain experts. For each attribute used in the decision
tree, a cost matrix is used to represent such costs. In many
applications, the values of many attributes such as sex, ad-
dress, number of children cannot be changed with any rea-
sonable amount of money. Those attributes are called “hard
attributes”. For hard attributes, users must assign a very
large number to every entry in the cost matrix.

If, on the other hand, some value changes are possible with
reasonable costs, then those attributes such as the Service
level, interest rate, promotion packages are called “soft at-
tributes”. Note that the cost matrix needs not to be sym-
metric. One can assign $200 as the cost of changing service
level from low to high, but infinity (a very large number)
as the cost from high to low, if the bank does not want to
“degrade” service levels of customers as an action.

One might ask why hard attributes should be included in the
tree building process in the first place, since they can prevent
customers from being moved to other leaves. This is because
that many hard attributes are important in accurate prob-
ability estimation of the leaves. When the probability esti-
mation is inaccurate, the reliability of the prediction would
be low, or the error margin of the prediction would be high.

2.4 Limitations of Proactive Solution
A drawback of Proactive Solution is that it does not take re-
sources into account. It assumes that the number of actions
for each customer discovered by is unrestricted, although it
is bounded by the total number of attributes in the tree. If
the tree uses a total of 30 attributes, leaf-node search may
suggest up to all 30 actions for the customers. In many sit-
uations, however, an enterprise has only limited resources in
implementing the actions, as in the case of a marketing cam-
paign. In such situations, an enterprise may wish to imple-
ment at most k actions in a particular marketing campaign.
For example, a bank conducting a direct marketing cam-
paign might choose to alter only five customer attributes,
although the total number of customer attributes might be
in the hundreds. In this situation, it is a critical question
which k actions are the best, and how to find a subsets of
those k actions for each customer, such that the total net
profit for all customers is maximal.

Our subsequent sections answer the bounded resources prob-
lem. We consider two versions of the problem. The first ver-
sion of the computational problem restricts the total number
of attributes. It assumes that the company is interested in
launching the campaign by alternating no more than k at-
tributes for some user defined k. A customer may receive a



subset of these k attribute changes as actions. We call this
problem the bounded attribute problem. A second version of
the computational problem is when a company restricts the
number of action sets to k, and each customer may receive
one of the k action sets. Each action set may contain an (un-
limited) number of actions. This corresponds to an action-
oriented customer segmentation (clustering) of a campaign
in which customers are partitioned into k subgroups, and
each subgroup receives an unique action set from the k ac-
tion sets. We call this second version of the problem the
bounded segmentation problem.

Note that in the bounded segmentation problem, the total
number of actions in the k action sets is usually greater
than k, while in the bounded attribute problem, the total
number of unique action sets (subsets of the k actions) is
also normally greater than k. Thus, these two versions of
the bounded resources problem do not subsume each other.
However, in both versions, we expect the net profit from all
cases in the testing set is maximized.

3. DATASET
We first briefly describe the dataset used in evaluating our
new algorithms for the bounded attribute problem and the
the bounded segmentation problem in this section. The
dataset is from an insurance company in Canada. It consists
of over 25,000 records for customers who have the status of
“stay” or “leave” the insurance company. We will refer to
them as positive and negative respectively. The dataset is
described by over 60 attributes, many of which are not hard
attributes. About 20 attributes are soft attributes with rea-
sonable costs for value changes.

Since the data distribution in the training set is highly un-
balanced, we first perform data sampling with the ratio of
positive and negative examples is about 1 to 1 [6], in order to
prevent the decision tree from predicting all the customers
to be negative. In this setting, we have built a decision tree
(See Step 2 in Section 2.1) with 153 leaf nodes. 87 of them
are considered as negative leaf nodes because their probabil-
ity of being positive is less than 50%, while the other 66 as
positive leaf nodes. Furthermore, we have constructed a cost
matrix for each attribute contained in the dataset according
to their semantics in the real domain.

The testing set consists of about 300 examples. We use the
built decision tree to classify them into corresponding leaf
nodes.

We are interested in designing computational tools to con-
vert a group of customers to more desirable status with
bounded resources. Our new action-oriented algorithms for
the bounded attribute problem and the bounded segmenta-
tion problem take the decision tree and the testing cases as
input. We will discuss these two problems and algorithms
that solve them in the next two sections.

4. BOUNDED ATTRIBUTE SET PROBLEM
Our first variation of the bounded resources problem is by
restricting the total number of actions (attributes) to be k.
For a user defined k value, we are interested in finding which
k attributes (among m soft attributes) are the best to use
for the maximal net profit on testing cases.

4.1 Problem Definition
The bounded-attribute set (BAS) problem is defined as fol-
lows.

Given

1. a decision tree built from training examples

2. a pre-specified constant k (k ≤ m)

3. a set of testing examples

Find k attributes from a set of total m soft attributes such
that when some of these k attributes are chosen as actions
to apply to the testing examples, the total net profit is max-
imized.

To illustrate, consider an example in Figure 2. Assume that
for leaf nodes L1 to L4, the probability values of being in
the desired class are 0.9, 0.2, 0.8, 0.5, respectively. Now
consider the task of transforming all leaf nodes from a lower
probability value node to a higher one, such that the net
benefit of such transformation is maximized. To illustrate
this point, consider a test data set such that there is exactly
one member that falls in each leaf node in this decision tree.

In order to calculate the net profit, we assume all leaf nodes
to have a profit of one. We also assume that the cost of
transferring a customer is equal to the number of attribute
value changes multiplied by 0.1. Thus, to change from L2

to L1, we need to modify the value of the attribute Status,
with a profit gain of (0.9−0.2)×1−0.1 = 0.6. This happens
to be one of the optimal solutions for this test set and de-
cision tree for k = 1. That is, other single attribute change
(Rate or Service) would not bring a net profit larger than
0.6.

L1 L2 L3 L4

Status Rate

Service

L H

A B C D

0.9 0.2 0.8 0.5

Figure 2: An example decision tree

How difficult is it to find an optimal solution for any value of
k? The following theorem shows that the Bounded Attribute
Set (BAS) problem is exponential to solve in the worst case.

Theorem 1. The BAS problem is NP-Complete.

Proof Sketch: A special case of the BAS problem is equiv-
alent to the Maximum SAT problem [9]. This problem is to
consider every attribute as a potential literal, and every leaf
node as a clause. The problem then becomes a conjunctive
normal form.



4.2 Algorithms for BAS
For the problem with small sizes, we can enumerate all at-
tribute sets of size k. This gives rise to an exhaustive search
algorithm.

Algorithm Optimal BAS

1. From m soft attributes, choose k of them

2. Run leaf-node search (see Section 2.2) with those k
attributes having constant cost matrix values; all other
attributes have infinity cost values

3. Repeat Step 2 for all k attributes (repeat mk times),
choose the k attributes that give rise the maximum
net profit.

This algorithm runs in O(mk). If k is a variable, it is expo-
nential in time complexity. This algorithm enumerates all
attributes, and evaluate the total benefit that they bring for
given test examples. For example, in our example in Figure
2, for k = 2 the list of attributes to consider are:

{Service, Rate}, {Service, Status}, {Status, Rate}

When evaluating {Service, Rate}, the cost of Status is set
to infinity. Thus, L2 and L4 should transfer to L3 to maxi-
mize their net profit, and the benefit brought by this set of
attributes is 0.6.

By sacrificing the optimality requirement, we can solve the
problem more efficiently using a greedy algorithm. Let At-
tributeSet be a set of attributes of size less than k. We
denote Cost(ASet, DTree, Test) to be the optimal cost of
transforming all members of test set Test in the decision
tree DTree by setting all attributes other than those in ASet
to infinity. This cost function can be evaluated in time N2

where N is the number of leaf nodes in the decision tree.

Algorithm Greedy-BAS

1. ASet ← ∅,
2. for l = 1 to k

2.1 select Al ∈ AttibuteSet that maximizes Cost(ASet∪
Al, DTree, Test)

2.2 ASet ← ASet ∪Al

2.3 AttributeSet ← AttributeSet−Al

end for

3. return ASet

To illustrate, consider the decision tree in Figure 2. In the
first iteration of the loop in Step 2, suppose that the member
which belongs to L2 will fall into L3 after Service change
is applied. Similarly assume that L4 will fall into L1. The
attribute found will be Service, since it will enable the max-
imal net profit of 1.0 by switching L2 to L3 and L4 to L1.

This greedy algorithm searches locally optimal attributes
one at a time, and add those actions into the attribute set.
Clearly, the algorithm only runs leaf-node search k ∗ m
times, which is much lower when compared with the exhaus-
tive search, which runs leaf-node search mk times. The
greedy algorithm may not be optimal, though, as locally op-
timal single action may not be globally optimal for a set of k
best actions for the maximal profit. However, as many SAT
problems, the probability of “hitting” a globally optimal so-
lution is quite high. This is in particular demonstrated in
the empirical evaluation section.

4.3 Empirical Evaluation
We have implemented both the exhaustive search and the
greedy search on the dataset from the insurance company
(Section 3). The results can be summarized in Table 1. It
is clear that the greedy algorithm is much faster than the
exhaustive algorithm. It is also interesting to observe that
the action set with a larger k is a superset of the action
set with a smaller k. This seems to indicate that the best
attributes found in the action set with a small k are also
optimal in the action set with a large k. This implies that the
locally optimal actions are often also global optimal, which
can be verified from the fact that the total net profit (and
the action set) from exhaustive and greedy algorithms are
the same, at least for small values of k when the exhaustive
algorithm can finish in a feasible amount of time.

This interesting phenomenon (also see Section 5.3) deserves
some further explanation. Many, if not all, of the results
obtained by the greedy algorithm are the same as those by
the optimal algorithm. At first, this may be surprising be-
cause the problem is NP-complete. However, since the opti-
mization problem is in fact a SAT related problem, we may
understand the situation better by drawing from the experi-
ences of research done in constraint satisfaction and satisfia-
bility areas. For example, [8] and [2] have demonstrated that
for the N-Queens problems, even when N is approaching one
million, there are often easy solutions using a min-conflict
(greedy) solution. In the work of [1], a theoretical study
of the hard versus easy satisfiability problems are analyzed,
where the researchers found out that for many problem for-
mulations under certain conditions, even the NP complete
problem can find easy greedy solutions. In this view, the
problems solved by our system fall into a very interesting
“easy” problem region in data mining application domain.

5. BOUNDED SEGMENTATION PROBLEM
Our second version of the bounded resources problem on ac-
tion mining is to merge the leaf nodes from m to k, where
for each group Gi, 1 ≤ i ≤ k, we wish to apply the same set
of actions on it. This corresponds to an action-oriented cus-
tomer segmentation (clustering) of a campaign in which cus-
tomers are partitioned into k subgroups, and each subgroup
receives an unique action set from the k action sets. For
example, we may have an insurance company who is inter-
ested in assigning three account managers to take charge of
the next marketing campaign, one for each customer group
respectively. In this case, k = 3.

As an example, consider our decision tree again in Figure 2.
Suppose that we wish to find one single customer segment
(k = 1). One such group is {L2, L4}, with a selected action



Greedy BAS Optimal BAS
Time (ms) Profit Actions Time (ms) Profit Actions

k = 2 745 5900 {a10, a15} 3003 5900 {a10, a15}
k = 3 1062 8310 {a10, a15, a18} 14922 8310 {a10, a15, a18}
k = 4 4127 14700 {a8, a10, a15, a18} 84286 14700 {a8, a10, a15, a18}

Table 1: Comparison of greedy and optimal (exhaustive) BAS algorithms on the insurance dataset.

set {Service ← H, Rate ← C} which can be applied on it.
Assume L2 and L4 only contain one example. If we consider
transferring this group to leaf node L3, L2 has a profit gain
of (0.8 − 0.6) × 1 − 0.2 = 0.2 and L4 has a profit gain of
(0.8 − 0.3) × 1 − 0.1 = 0.4. Thus the net benefit for this
group is 0.2 + 0.4 = 0.6.

5.1 Problem Definition
Formally, the bounded segmentation problem (BSP) is de-
fined as follows:

Given

1. a decision tree built from training examples with a set
of source leaf nodes Ls = {L1, L2, . . . , Lm}, and a set
of destination leaf nodes Ld = {L1, L2, . . . , Ln}. Each
destination leaf node corresponds to a potential action
set Ai ∈ A, 1 ≤ i ≤ n, which can be applied to move
a source leaf node to it.

2. a pre-specified constant k (k ≤ m) for the number of
customer marketing segments.

3. a set of testing examples.

Find

1. k groups of the source leaf nodes in the decision tree
G1, G2, · · · , Gk, each of which consists of one or more
source leaf nodes.

2. for each group Gi, the corresponding action set Ai,
1 ≤ i ≤ k, can be applied on it such that the expected
net profit for k action sets is maximized.

For any k groups of source leaf nodes Gi, the expected net
profit of applying the corresponding action set Ai, 1 ≤ i ≤ k,
is defined as:

kX
i=1

Profit(Ai(Gi)) (2)

where Profit(Ai(Gi)) indicates the total net profit gain by
applying the action set Ai to all the examples contained in
group Gi.

As an example, consider again our decision tree in Figure
2. Assume each leaf node in the group {L2, L4} contains 2
examples, if we apply the action set {Service ← H, Rate ←
C} to transfer this group to the destination leaf node L3,
the expected net profit is calculated as 2×0.2+2×0.4 = 1.2.

To clarify the formulation of the problem, let us consider
a profit matrix M formed by listing all source leaf nodes
Li and all potential action sets Aj , where M [i, j] = Pij ,
(Pij ≥ 0), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Pij denotes the profit gain
by applying Aj to Li. If Pij 6= 0, that is, applying Aj to
transfer Li to the corresponding destination leaf node can
bring net profit, in this case, we say the source leaf node Li

can be covered by the action set Aj , otherwise.

As an example, part of the profit matrix corresponding to
leaf node L2 is:

A1(to L1) A2 (To L3) A3 (to L4)
L2 0.6 0.4 0.1

where A1 = {Status = A}, A2 = {Serice = H, Rate = C}
and A3 = {Service = H, Rate = D}.

Given this profit matrix M , the problem is to select k action
sets C = {A1, A2, . . . , Ak}, (C ⊆ A) among all of the n ac-
tion sets. Let cover(C) denote the set of leaf nodes covered
by the k action sets C. For each Li ∈ cover(k), there ex-
ists a mapping assign(Li) = As, where s = argj max{Pij},
j = 1, 2, . . . , k, such that the net profit of the mapping is
maximized, that is, the following formula is maximized:

X

Li∈cover(C)

max{Pij}, j = 1, 2, . . . , k. (3)

In other words, for each leaf node covered by k action sets
C, since it may be covered by several action sets at the same
time, what we really want is to select one action set with
maximal profit gain to apply on it. Therefore, the total net
profit is the summation of possibly maximal profit gain for
each covered leaf node.

Theorem 2. The BSP problem is NP-Complete.

Proof Sketch: A special case of the BSP problem is equiv-
alent to the maximum coverage problem with unit costs,
which aims at finding k sets such that the total weight of
elements covered is maximized [4], where the weight of each
element is the same for all the sets.

5.2 Algorithms for BSP
Similar to algorithms for BAS (Section 4.2), our first so-
lution is an exhaustive search algorithm for finding the k
optimal action sets with maximal net profit.



Algorithm Optimal-BSP

1. for each Al ∈ A, 1 ≤ l ≤ n, choose any combination of k
action sets, do

1.1 Group the leaf nodes into k groups

2.1 Evaluate the net benefit of the action sets on the
groups

end for

2. return the k action sets with associated leaf node groups
which have the maximal net benefit.

Since the optimal-BSP needs to examine every combination
of k action sets, the computational complexity is O(nk),
which is exponential in the value of k.

To avoid the exponential worst case complexity, we have also
developed a greedy algorithm (similar to the one in Section
4.2) which can reduce the computational cost but also guar-
antee the quality of the solution at the same time. Consider
the following generalization of the maximum coverage prob-
lem. Given a set with m leaf nodes Ls = {L1, L2, . . . , Lm},
each associated with a different profit Pij (Pij ≥ 0) for each
action set Aj , 1 ≤ j ≤ n. Each Aj can be denoted as a
subset of Ls which only contains the covered leaf nodes Li

for Pij 6= 0, 1 ≤ i ≤ m. The goal is to choose k action
sets so as to maximize the net profit of covered leaf nodes.
We can solve this problem using a greedy algorithm below,
where C is the resulting k action sets.

Algorithm Greedy-BSP

1. C ← ∅
2. for l = 1 to k

2.1 select Al ∈ A that maximizes
X

Li∈cover(C∪Al)

max{Pij}, j = 1, 2, . . . , l

2.2 C ← C ∪Al

end for

3. return C

This algorithm can be shown to perform close to the optimal
result. In particular, we can exploit the complexity analysis
of the approximate maximum coverage algorithm given in
[3]. In order to prove the approximation ratio of the solution
returned by Greedy-BSP to one by Optimal-BSP, We firstly
need to establish the following two lemmas.

Let Profit(Greedy) and Profit(OPT ) be the net profit re-
turned by the Greedy-BSP algorithm and the Optimal-BSP
algorithm respectively, we have

Lemma 1. For l = 1, 2, . . . , k, we have

Profit(∪l
i=1Ai)− Profit(∪l−1

i=1Ai)

≥ (Profit(OPT )− Profit(∪l−1
i=1Ai)

k
(4)

Proof. Let the optimal solution returned by Optimal-
BSP consists of k optimal action sets. Suppose Greedy-BSP
has already selected (l − 1) action sets so far, m of which
are contained in the optimal solution. Now we consider the
situation where Greedy-BSP selects the next Al action set.
Because of the heuristic strategy used in the step 2.1 of the
Greedy-BSP algorithm, Profit(∪l

i=1Ai) − Profit(∪l−1
i=1Ai)

represents the additional profit gain achieved by Al. In addi-
tion, Al should be a set that can achieve maximal additional
profit gain. On the other hand, assume Greedy-BSP selects
those (k−m) optimal action sets in the optimal solution and
yet have not chosen by itself, the profit gain of this batch
procedure is at least Profit(OPT ) − Profit(∪l−1

i=1Ai). Ac-
cording to the pigeonhole principle, there must exist one sin-
gle action set in the remaining (k −m) optimal action sets,

whose profit is at least
Profit(OPT )−Profit(∪l−1

i=1Ai)

k−m
. Since

this action set is also a candidate for selecting the next Al,
we have

Profit(∪l
i=1Ai)− Profit(∪l−1

i=1Ai)

≥ Profit(OPT )− Profit(∪l−1
i=1Ai)

k −m

≥ Profit(OPT )− Profit(∪l−1
i=1Ai)

k

Lemma 2. For l = 1, 2, . . . , k, we have

Profit(∪l
i=1Ai) ≥ [1− (1− 1

k
)l]Profit(OPT ) (5)

Proof Sketch: The proof can be done by induction using
Lemma 1, similar to the proof of Lemma 3.13 in [3].

Based on the above two established lemmas, we have the
following theorem:

Theorem 3. The Greedy-BSP is a (1− 1
e
)-approximation

algorithm.

Profit(Greedy) ≥ [1− (1− 1

k
)k]Profit(OPT )

> (1− 1

e
)Profit(OPT ) (6)

Proof. Theorem 3 follows directly from Lemma 2 by let-
ting l = k. In addition, because limk→∞ 1−(1− 1

k
)k = 1− 1

e

and 1− (1− 1
k
)k is decreasing, it follows that 1− (1− 1

k
)k >

1− 1
e
.

5.3 Empirical Evaluation
To compare the performance of the Greedy-BSP algorithm
and the Optimal-BSP algorithm, we have again carried out
experiments on the dataset from the insurance company. We
apply Greedy-BSP and Optimal-BSP respectively to find
the pre-specified k action sets with maximal net profit.

Figure 3 shows the net profit obtained by the two algorithms
over the number of action sets k. As shown in the figure, the
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Figure 3: Net Profit vs. Number of action sets

net profit increases for both Greedy-BSP and Optimal-BSP
with increasing number of action sets k, similar to the results
of BAS in Section 4.3. This is because if more customers are
transformed to a desired status, it is more possible to obtain
higher profit. In addition, an important property to note is
that, for a specific k, the net profit obtained by Greedy-BSP
is very close to or the same as that by Optimal-BSP, which
can guarantee the quality of solution provided by Greedy-
BSP.

#Action Selected Action Sets
Sets Greedy BSP Optimal BSP

k = 2 {A3, A29} {A1, A29}
k = 3 {A3, A20, A29} {A1, A20, A29}
k = 4 {A1, A3, A20, A29} {A1, A3, A20, A29}
k = 5 {A1, A3, A20, A29, A42} {A1, A3, A20, A29, A42}

Table 2: Selected action sets vs. Number of action
sets

Table 2 compares the k action sets selected by both Greedy-
BSP and Optimal-BSP over the number of action sets k.
Similar conclusions can be drawn on these action sets as the
ones discovered by BAS algorithms (see Section 4.3). There
are totally 66 action sets provided by the decision tree built
in our experiments. As shown in the table, the action sets
selected by Greedy-BSP is very close to that by Optimal-
BSP for the same number of action sets k.

Notice the apparent difference between Table 1 in Section
4.3 and Table 2 here. Table 1 lists actual actions (such as a8)
while Table 4.3 lists action sets (each action set contains a
number of actions; for example, A3 contains four (4) actions
on a8, a15, a22, and a25). Recall that the total number of
actions in the k action sets is usually greater than k, while
the total number of unique action sets (subsets of the k
actions) is also normally greater than k. Thus, these two
versions of the problems do not subsume each other, and the
actions suggested by the two versions are different (though
with a good overlap) on the same testing set.
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Figure 4: Runtime vs. Number of action sets

Figure 4 shows the runtime of the two algorithms over the
number of action sets k. Note that the runtime of y-axis
uses a logscale. As expected, Greedy-BSP is much more
efficient and scalable than Optimal-BSP. Similar results are
observed in the BAS algorithms (Section 4.3). For Greedy-
BSP, The runtime is always around 0.20 seconds irrespective
of the number of action sets k. On the other hand, the
runtime for Optimal-BSP increases exponentially with the
increasing number of action sets k. This is because it needs
to compare much more combinations for larger k in order to
obtain maximal net profit.

We conclude from our experiments that, Greedy-BSP can
find k action sets with maximal net profit, which is very close
to those found by Optimal-BSP, at least for small values of k
for which Optimal-BSP terminates in a reasonable amount
of time. At the same time, Greedy-BSP can scale well with
the increasing number of action sets k, which is more efficient
than Optimal-BSP. We have drawn similar conclusions from
the BAS experiments (Section 4.3).

6. SUMMARY
Intelligent CRM improves customer relationship from the
data about customers. Unfortunately, very little work has
been done in data mining on how to use actions to improve
such relationship of customers. Such actions change cus-
tomers from an undesired status to a desired one. This
paper improve previous work further by mining the best k
actions that maximize the net profit. We first formulate two
versions of the problem, and show that it is NP-complete.
We then describe a greedy algorithm that efficiently discov-
ers the best k actions, and is shown that the total net profit
using those k actions on all customers is very close to the
optimal value obtained by the exhaustive (and exponential)
algorithm. The results discussed in this paper offer effective
solutions to intelligent CRM for Enterprises.

In our future work, we will evaluate the effectiveness of
our algorithms in the real-world deployment of the action-
oriented data mining.
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