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A hierarchical planning system achieves efficiency by planning with the most important conditions first, and con-
sidering details later in the planning process. Few attempts have been made to formalize the structure of the planning
knowledge for hierarchical planning. For a given domain, there is usually more than one way to define its planning
knowledge. Some of the definitions can lead to efficient planning, while others may not. In this paper, we provide
a set of restrictions which defines the relationships between a non-primitive action and its set of subactions. When
satisfied, these restrictions guarantee improved efficiency for hierarchical planning. One important feature of these
restrictions is that they are syntactic and therefore do not depend on the particular structure of any plan. Along with
these restrictions, we also provide algorithms for preprocessing the planning knowledge of a hierarchical planner. When
used during planning, the preprocessed operator hierarchies can enable a planner to significantly reduce its search space.
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Un systeme de planification hiérarchique permet d’obtenir un rendement efficace dans la mesure ou il planifie d’abord
les conditions importantes avant de s’attarder aux détails secondaires dans le processus de planification. Quelques ten-
tatives ont été réalisées en vue de formaliser la structure des connaissances de planification dans la planification hiérar-
chique. Dans un domaine donné, il existe normalement plus d’une fagon de définir les connaissances de planification.
Certaines définitions peuvent permettre une planification efficace et d’autres non. Dans cet article, I’auteur propose
une série de restrictions qui définissent les rapports entre une action non primitive et son ensemble de sous-actions.
Lorsqu’elles sont respectées, ces restrictions permettent d’améliorer I’efficacité dans la planification hiérarchique. L’une
des caractéristiques importantes de ces restrictions est qu’elles sont syntaxiques et ne dépendent donc pas de la structure
particuliere d’un plan. En plus de ces restrictions, I’auteur propose également des algorithmes pour le prétraitement
des connaissances de planification d’un planificateur-hiérarchique. Quand elles sont utilisées durant la planification,
les hiérarchies d’opérateur peuvent permettre au planificateur de réduire considérablement son espace de recherche.

Mots clés . raisonnement automatisé, résolution de problémes, planification hiérarchique, contrdle de recherche,

représentation des connaissances.
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1. Introduction

Hierarchical planning using action reduction is one of the
most widely used planning methods. Given a set of high-
level actions to be carried out, this method will find ways
for reducing each action into subactions according to a pre-
defined set of action reduction schemata. It then resolves
possible conflicts among the subactions in the plan using
the least-commitment strategy. The process is repeated until
all of the actions in the plan are primitive, and all of the
interactions between the actions are removed. The advantage
of this planning method is that a hierarchical planner works
on a small but important set of interactions first, before it
sets out to handle the rest which are considered as mere
details. This technique has been used in a number of plan-
ning systems, including NOAH (Sacerdoti 1977), NONLIN
(Tate 1977), and SIPE (Wilkins 1984, 1988).

The domain knowledge of a hierarchical planner is
organized hierarchically in the form of action reduction
schemata. In addition to a set of primitive actions, a hierar-
chical planner also has a set of non-primitive actions, as well
as a set of action reduction schemata that defines the rela-
tionship between the actions. The efficiency of a hierarchical
planner depends on how the action reduction schemata are
defined; if one is not careful in the definition, one may lose
the efficiency of hierarchical planning. Usually, there are
several ways of defining the action reduction schemata for
a given domain. Some of the definitions will result in
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improved efficiency, while others will not. The purpose of
this paper is to develop restrictions over the definitions of
action reduction schemata, so that whenever these restric-
tions are satisfied, efficiency can be greatly improved.

In particular, if a planner faces conflicts in a plan that
are impossible to resolve by ordering the actions, it generally
has to try to reduce its actions further in order to resolve
the conflicts by interleaving the subactions. This greatly
reduces the efficiency of a planner, since it has to search
an extra portion of its search space, even if there is strong
indication that no solution exists in that space. In this paper,
we show that a class of domains exists for which the action
reduction schemata can be defined in certain ways, so that
unresolvable conflicts in a plan cannot be resolved in any
reduction of the plan. We provide a set of restrictions on
the schemata definition, and show that when they are satis-
fied, dead ends in a planner’s search space can be detected
early in the planning process.

Consider the following example. Suppose one has two
goals to achieve, namely, to paint the ceiling and to paint
the floor. Assume a hierarchical planner has come up with
a plan as shown in Fig. 1. Assume that if one paints the ceil-
ing first, the paint will drip down and make it impossible
to paint the floor next. But if one paints the floor first, one
cannot get in the room to paint the ceiling. That is, the action
““‘apply-paint-to-ceiling’’ deletes a precondition for ‘‘apply-
paint-to-floor,”” and the latter also deletes a precondition
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apply-paint-to-ceiling

get-paint apply-paint-to-floor
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FiG. 1. A plan containing unresolvable conflicts.

for the former. Therefore, the plan in Fig. ! is unlineariz-
able. Suppose that the set of action reduction schemata for
the painting domain has been marked as satisfying the
imposed restrictions, it can backtrack from this plan and
try other ways to fulfill the goals. If no other way exists,
the planner can announce failure. However, if the schemata
do not satisfy the property, then the planner cannot rule out
reducing the actions further as a means of resolving the con-
flicts. One such situation will be shown later in Sect. 3.

The results of this paper provide methods for preprocess-
ing a given set of action reduction schemata ®. Given &,
one can check if every reduction schema in ¢ satisfies the
restrictions before planning starts. If so, then during plan-
ning time the planner can backtrack whenever it has a plan
containing unresolvable conflicts. For some domains, not
all the action reduction schemata satisfy the restrictions.
Thus, we also provide a method for checking whether each
individual schema satisfies the restrictions. The ones that
satisfy the restrictions are marked as such. As we will see
later in the paper, the marked reductions can help improve
planning efficiency in a number of ways. The preprocessing
process is shown in Fig. 2, where & represents the set of given
action reduction schemata and A represents the set of given
action templates.

Equally important for preprocessing, the restrictions also
provide a standard for how the reduction schemata should
be defined. For a given domain, there are usually several
ways of defining the action reduction schemata. If one can
define them in such a way that the action templates and the
reduction schemata satisfy the restrictions, then planning
can be done more efficiently.

2. Defining hierarchical planning systems

.This section provides a formal definition of the type of
h{erarchical planning to be discussed in the paper. In plan-
ning research, the term ‘‘hierarchical planning’’ has been
used to describe several different types of planning methods,
mcluding subgoaling (Fikes and Nilsson 1971), action reduc-
tton (Sacerdoti 1977; Tate 1977), and planning at different
levels of details (Sacerdoti 1974; Wilkins 1988). To clarify
the concept, Wilkins (1986) provides an in-depth discussion
of different varieties of planning hierarchies and classifies
tf}em into either planning levels or abstraction levels. A plan-
ning level corresponds to the ‘‘artifacts of particular plan-
nng systems’” (Wilkins 1986). For example, a new planning
!evel can be created by expanding each node in a plan accord-
g t0 some predefined action reduction schemata. On the
gtf}er hand, abstraction levels are distinguished by the
. granularity, or the fineness of detail, of the discriminations
It makes in the world”’ (Wilkins 1986). For example,
ABSTRIPS (Sacerdoti 1974) is a planner that plans on dif-
ferent levels of abstraction. In this paper, the term ‘‘hier-
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F1G. 2. The preprocessing system configuration.

archy’’ refers to the planning levels that are obtained by
reducing actions in a plan using a predefined set of action
reduction schemata.

There are two parts to hierarchical planning with action
reduction. The first is the representation of actions and their
reductions, and the second is the way problem solving is
done using these representations. Below, we provide a for-
mal definition of a hierarchical planning system, including
action templates and instances, reduction schemata, and
composite reductions of plans.

2.1. Representation

The planning knowledge of a hierarchical planning system
consists of two parts. The first part is a set of action tem-
plates, A. Each action template a € A is represented in terms
of preconditions and effects. Specifically, each action
template a has a set of preconditions, preconditions(a), and
a set of effects, effects(a), where each set consists of literals
in first-order predicate logic. Thus, for example, one can
choose to represent the action template for moving a block
x from the top of another block y to the table in the blocks-
world domain as ]

put-block-on-table(x y)
comment: move x from the top of ¥ to the table.
preconditions: = {Block(x), Block(y), Cleartop(x),
On(x, y)}
effects = {Ontable(x), Cleartop(y), = On(x, »)}

An action template in A can be instantiated by replacing
some of the variables in its preconditions or effects by terms.
The replacement can be represented by a set of ordered pairs,
where the first element of each pair is a variable and the
second element is a term. Each such set is called a substiru-
tion. If a is an element of A and

3 = {<v17 [I>r <V2’ [‘l)r EARE) <V,-,, [n>}

is a substitution, then ag is a with every variable v, that
appears in its preconditions and effects replaced by ¢,.
a = afBis called an instance of a and is also referred to as
an action. In order to make a clear distinction between an
action template and an action, the former is denoted in
boldface, while the latter is not. If @ is an instance of an
action template a, then the latter is called a template of the
former, and template(a) = a. For simplicity, we assume that
each action has a unique template. The results presented
below can be easily extended to cases in which there is more
than one template for each action instance.

The second component of the planning knowledge of a
hierarchical planner is a set of acrion reduction schemata $.
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[ get-ladder(ladder)

ljpply-paint—toceiling(paint,cei(ing) —|

{—get-paint(paint)

<Have(ladder), get-ladder(ladder), apply-paint-to-ceiling(paint, ceiling)>
<Have(paint}), get-paint(paint), apply-paint-io-ceiling{paint, ceiiing)>

Fi5. 3. An example of a schema.

A reduction schema R € & is a function which, when
applied to an action template in A, returns a partially ordered
set of actions ag;. R is not necessarily applicable to every
action template in A, and an action template can have more
than one reduction schema applicable to it. The set of action
reduction schemata applicable to a is denoted by «(a). a is
primitive if «(a) = @, otherwise it is non-primitive.
Intuitively, a primitive action template is one that cannot
be decomposed further into more detailed steps, while a non-
primitive one can.

If R is applicable to a, then R(a) = (A4, E, C), where 4 is
a set of actions, E defines a partial ordering among the
elements of A, and C is a set of conditions along with spec-
ifications of where they must hold. R (a) is called a reduction
of a. Each element of C is called a protection interval
(Charniak and McDermott 1984), which is a triple
(p, ay, a,), where p is a condition, and g, and @, are actions
in 4 such that (1) p &€ effects(a;), (2) p € precondi-
tions(a,), and (3) p is expected to be true after g, and
before a,. a, is called a provider of p for a,.

Let A (R(a)) be the set of actions in R(a). In the following
discussion, a < b means that a is constrained to occur before
b, and a <, b denotes that ¢ is immediately before b. The
actions in A4 (R(a)) have to obey the following restrictions:

1. Ve € effects(a), 3aq; € A(R(a)) such that e €
effetcs(a;) and Vb € A(R(a)), if —e € effects(b) then
b < a;. That is, every effect of an action template is
asserted by at least one of the actions in its reduction.

2. Vp € preconditions(a), 3a; € A(R(a)) suchthat p €
preconditions(g;), and Vb € A(R(a)), if p € effetes(b)
then a; < b. That is, every precondition of an action tem-
plate is also a precondition of at least one of the actions
in its reduction, and further this precondition is not the effect
of some earlier subaction.

3. Va; € A(R(a)), Yp € preconditions(a;), Vb €
A(R(a)) such that g; « b, if - p &€ effects(b) then 3¢ €
A(R(a))suchthat ¢ < g;and b < ¢, and p € effects(c).
In other words, a reduction is a miniature plan free of any
conflicts.

The definition of reduction schemata above is intended
to capture the formal aspects of action or goal expansions
in a number of systems. In particular, a reduction schema R
corresponds to a ‘‘soup code’” in NOAH (Sacerdoti 1977),
an ‘‘opschema’ or an ‘‘actschema’ in NONLIN (Tate
1977), and a ‘‘plot” in SIPE (Wilkins 1984). However,
several simplifications are made in our formalization of
reduction schemata, the first being that ‘‘reduction assump-
tions’’ are not included explicitly in our definitions. A reduc-

tion assumption' (Charniak and McDermott 1984) is a con.
dition on the applicability of a reduction. For example, tq
clear the top of a block x, a planner may choose a particular
reduction that involves two steps: clear the top of block y
that is on top of x, then move y to the table. But this reduc-
tion is needed only if x is not already clear on its top. Ip |
this case, On(y, x) is a reduction assumption, and an inter-
val is set up that protects the assumption if the reduction
is selected. Reduction assumptions are the preconditions of
certain subactions in a reduction R that are not achieved |
by some other subactions in R, and are used by the contro]
component of a planner to restrict the use of certain reduc-
tions. The state space generated by all possible reductions
that include reduction assumptions is a subset of the state
space defined by our formalization. Since the results to be
presented below concern the nonexistence of solutions in a
portion of a state space, it will be easy to verify that all our
subsequent results will hold with the inclusion of reduction
assumptions. Thus, we omit them for simplicity.

The second simplification is that no distinction is made
between a goal and an action in our formalization; all goals
are represented as action templates in A which can be
reduced to a special action no-op, a primitive action which
means that the action can be achieved by doing nothing.
With this definition, a goal can be achieved in two ways.
One is to reduce it to no-op, and impose precedence and
variable binding constraints so that the goal holds. Another
1s to reduce it using a reduction schema that represents a
partially ordered plan, so that when the subactions in the
schema are executed in an order consistent with the partial
order, the goal will be achieved. These two ways for achiev-
ing a goal are equivalent to the traditional view of goals as
situations that can be reached using actions.

Let ¢ = a8 be an instance of a € A. We extend the defini-
tion of action reduction schemata to instances of action
templates, as follows: VR € «fa), R(a) = R(a)3, where
R(a)B is the result of applying the substitution § to all the
actions in A4 (R(a)), and to all the action occurrences in
C(R(a)): If R is applicable to a, then R (a) is called a reduc-
tion of a, and each action in R(a) is called a subaction of
a. Intuitively, a reduction for an instance a of a consists of
a partially ordered set of actions, each of which is an instance
of an action template in A (R(a)). Extended in this way, it
is clear that the following properties hold: Let @ = af. Then,
1. aa) = «(a), and
2. ¢ is primitive if and only if a is.

Figure 3 describes an action reduction schema for painting
a ceiling. A set of protection intervals is also given in the
figure. The preconditions and effects of each action are given
in Table I.

2.2. Planning with action reductions

A plan is defined as a partially ordered set of actions. Let
Pbeaplan, then P = (4, E, C), where A is a set of actions,
E defines a partial ordering among the actions in A4, and
C is a set of protection invervals. Each action in A4 is an
instance of some action template in A.

Let ¢ be an action in a plan P, and R be a reduction
schema applicable to @. Then R(P) is the plan that results

Tt is also called an ‘“‘use-when’’ condition in NONLIN (Tate
1977).
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TABLE 1. Actions in the painting example with their preconditions and effects

Action Preconditions Effects
paint-ceiling( ceiling) g {Painted( ceiling)}
get-ladder(/adder) 4] {Have(ladder))
get-paint(paint) g {Have(paint)}
apply-paint-to-ceiling( paint, ceiling) {Have(/adder), Have(paint), {Painted( ceiling), ...}

Climbable(/adder)}
a a — a a’
b

FIG. 4. A deleted-condition conflict.

a > g '

Y

b = b’

F1G6. 5. Imposing an ordering constraint.

when a is replaced by R(a) in P. Let § = {(p, a, b) be a
protection interval in P. We will now define how to
transpose a protection interval to a reduction of a plan con-
taining the interval.

After Pis reduced using R, § is no longer associated with
R(P), instead R (P) will have one or more protection inter-
vals derived from § which involve subactions a; €
A(R(a)). In particular, let g; be a subaction of a such that

1. p € effects(q;). That is, q; asserts p, and
2.Va; 4 a, —p ¢ effects(a;). That is, p is not denied by
any other subactions after a,.

By the definition of R, one or more such g; always exists.
gl(li)n) (P, @, b) is a protection interval associated with
. Similarly, let b be an action in a plan P, and R’ be a reduc-
tion schema applicable to b. Let R’(P) be the plan that
results when b is replaced by R'(b) in P. Suppose (p,a, b
15 a protection interval in P. Then R'(P) is associated with
Ome or more protection invervals involving the subactions
of b. Let b; be a subaction in 4 (R’(b)), satisfying the fol-
lowing conditions:

Lp i preconditions(b;). That is, p is a precondition of b;,
an

2. Vb; € A(R(b)), if p € effects(b,) then b; < b,. That
1S, No other subactions of b can establish p for b;.

T}}eﬂ (p, a, by is a protection interval associated with

R'(P).

OrlThe above definition for interval and plan reduction in
€ Step can be naturally extended to reduction in more than

One step. Let P be a plan, and R,, R,, ..., R, be reduction
schemata. Then -

b b’

FiG. 6. A different ordering.
O(P) = Ri(Ro ...(R.(P)) ..)

is a composite reduction of P. Furthermore, if A is a set
of protection intervals associated with P, then Q(A) is the
corresponding set of protection intervals associated with
Q(P).

A hierachical planner starts planning for a given set of
goals by finding appropriate actions to achieve them. If
G(X) is a goal, then the-action chosen to achieve this goal
should have G(x) as one of its effects. These actions form
a plan at the highest level. The subsequent problem solving
process can be described in the following steps:

1. Choose a non-primitive action and replace it by one of
its reductions. Let the new plan be P.

2. Find out the set of interactions among the actions in P,
and suggest ways to handle them.

3. If all the actions in P are primitive, then terminate plan-
ning. Else go to step 1.

After step 1 is done, certain new interactions may appear.
Depending on the particular domain of application, interac-
tions can be of different types. The only type of interaction
considered in this paper is deleted-condition conflict between
a pair of actions. This type of interaction occurs when an
action in a plan deletes a precondition or an intended effect
of some other action. More formally, let P be a plan and
{p, a, a') be a protection interval in P. Suppose there is some
action b in P such that —p € effects(b). If b ¥ a and
a’ 4 b, then a deleted-condition conflict occurs in the plan P
(see Fig. 4). This conflict can be characterized according to
whether = p is also an intended effect of b:

1. Both (p, a,a’) and {—p, b, b') are protected intervals
in P, so the conflict is denoted by the pair ({p, a, a’),
(=p, b, b')). In this case, one way to remove the conflict
is to impose a time ordering such that a’ occurs before b
(Fig. 5), or b' occurs before a (Fig. 6).

2. If —pis not needed by any action in P, then it is not
a protected condition, so the conflict can be denoted by the
pair ((p, a, a'), (- p, b)). In this case, one way to remove
the conflict is to order b before @ (Fig. 7) or after a’ (Fig. 8).
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FiG. 7. Another ordering constraint.

Y

Fi1G. 8. Last way of taking care of the conflict.

3. Motivation

A hierarchical planner plans by repeatedly selecting and
reducing the non-primitive actions, and applying critics to
detect and resolve conflicts in a plan. Sometimes the critics
may find conflicts in a plan that are impossible to resolve.
A plan in this situation is said to have unresolvable conflicts.
A number of planners such as NONLIN (Tate 1977) or SIPE
(Wilkins 1984) will backtrack from such a plan to try other
ways to achieve the goals, or announce failure if no alter-
native ways exist. However, this is not always the correct
behavior, because there exist situations in which conflicts
that are unresolvable in a plan may be resolvable in a com-
posite reduction of the plan.

As an example of this, suppose a plan contains two higher-
level actions & and b, with no constraints on their relative
ordering (Fig. 9a). Suppose that their effects and precondi-
tions are

Il
Il

preconditions(a) {x], effects(a) {u, =yl
preconditions(b) = {y}, effects(b) = {w, X}

where the propositions u, w, x, and y are all distinct. Then
the following conflicts will occur: an effect of a deletes a
precondition of b, and an effect of 4 deletes a precondition
of a. This kind of conflict is often called a ‘‘double-cross,”’
meaning that neither possible ordering of ¢ and b will work.
Unless a planning system can resolve this conflict by insert-
ing additional actions between a and b to restore the needed
preconditions, it will normally announce failure. However,
suppose that

1. action g can be reduced to the subactions @, < @,, with
preconditions(a,) = preconditions(a), effects(a,) =
effects(a), and x ¢ preconditions(a,); and

2. b can be reduced to by < b,, with preconditions(bd,) =
preconditions(d) and effects(b,) = effects(b), and y ¢
preconditions(b,).

Then the interaction can be resolved in the reduced plan by
assigning orderings such that @, < b, and b, < a, (Fig. 9b).

preconditions: x a effects : u,—y
Initial \ Goal

Situation Situation
preconditions: y b effects : w,—x
(a)
preconditions: x effects : u,—~y
a »! a
1 2
Initial Goal
Situation Situation
b, b,
preconditions: y effects : w,~x
(b)

FiG. 9. (a) A plan with unresolvable conflicts; (b) resolving
the conflicts by reducing the plan in (a).

In the above example, a conflict that appears unresolv-
able at a higher level is in fact resolvable at a lower level,
Therefore, a planning system should consider reducing a
plan as a way to resolve unresolvable conflicts.

However, it is undesirable to do this for the following two
reasons. First, an unresolvable conflict usually indicates that
it is unlikely that solution will be found, no matter how-the
solution is refined. It would be desirable for a planner to
have the property that whenever a solution exists at a lower
level of hierarchy, the high-level version of that solution is
also correct. Tenenberg (1988) called such a property the
upward-solution property for ABSTRIPS type of hierar-
chical planning, in which a higher-level action can be created
by eliminating conditions of a low-level action, which are
considered as less important. By imposing certain syntactic
restrictions on how the ABSTRIPS abstraction hierarchy is
defined, Tenenberg proved that the upward-solution prop-
erty holds. One purpose of this paper is to ensure that a
similar property holds across planning levels as well. Second,
the necessity for a planner to search through such branches
in its search space makes planning more inefficient. If one
may ensure that a planner can backtrack whenever unresolv-
able conflicts occur, and that this can be done without los-
ing any possible solutions, planning efficiency can be
improved. For certain domains, such a property can be
enforced by imposing a set of syntactic restrictions on how
the action reduction schemata should be defined. For others,
such a property is not satisfied by all of the actions, but the
syntactic restrictions could enable one to preprocess the set
of action reduction schemata so that all the actions that
satisfy the restrictions can be identified a priori.

In the following sections, we will first define unlineariz-
ability of a plan, and design restrictions to be imposed on
reduction schemata so that unresolvable conflicts in a plan
indicate that the conflicts cannot be resolved in any com-
posite reduction of the plan.

4. Plan unlinearizability

A partially ordered plan has many possible /inearizations,
each being a totally ordered sequence of actions in the plan.
If ¢ and b are actions in a plan P and L is a linearization
of P,thena < binLifa < bin P. A plan can also have
different instantiations of its variables. Any instantiated and
linearized plan that is free of conflicts can be viewed as an
instance of the original plan and can be used to achieve the
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5 a w ——| put-block-on-block(A,E,B) p——
c d ———»| put-block-on-block(B,F,C)  jf————
q o —p ——— | put-block-on-block(C,G,A})  }———n

Fi1G. 10. A plan with four actions a, b, ¢, and d, along with
protection intervals in the plan.

given goals. In the following, the word “‘linearization’” of
a plan refers to any ‘‘ground’’ linearization of the plan,
where all the terms in a substitution 8 are constants.

Protection-interval violation is a situation when an action
denying a condition p is in the middle of an interval in which
p is protected. Formally,

Definition 4.1

Let 5 = (p, a, b) be a protection interval in a plan P.
5 is violated in the plan if and only if 3¢ € A4 (P) such that
a< ¢,c3 b, and ~p € effects(c).

In general, a plan may contain several deleted-condition
conflicts. For such a plan, we would like to know whether
or not a linearization exists in which none of the protection
intervals is violated.

Definition 4.2
Let P be a plan and A be a set of protection intervals in

P. Pis said to be A-linearizable if and only if there exists

a [inearization L of P such that V§ € A, § is not violated
in L. If L exists, it is said to be A-consistent.

For example, for the plan in Fig. 10, the set of all protec-
tion intervals is

A={p,ca,lwad),lgec b, (~p b d)

For this plan, the linearization ¢ < a < b < d is
A-consistent.

A linearization of a plan is A-inconsistent if it is not
_f.-consistent. A plan Pis A-uniinearizable if and only if every
linearization of P is A-inconsistent. If A contains a set of
protection intervals in a plan P, and if P A-unlinearizable,
then P is said to contain ‘‘unresolvable conflicts.”” For
€xample, the plan in Fig. 9a contains unresolvable conflicts,

since it is A-unlinearizable for
A= {{x i, a, (y i b)

where / represents the initial situation.

When a plan P is reduced in one or more steps to Q(P),
the set of protection intervals associated with Q(P) is the
reduction of the intervals in P, plus a set of protection inter-
vals associated with the reductions in Q. More formally, let

Q(P) = R(Ry( ... (R(P)) ...)

be 4 composite reduction of P. Also let A be a set of pro-
tecuor_l intervals associated with P, and Q(A) be the corre-
SDOHdlr}g composite reduction of A. Let C(Q) be the set of
PTOt.ECIlOn intervals associated with the reduction schemata

Rf’ ©=1,2, ..., n. Then the augmented composite reduc-
lion of A s

AUo(d) = C(Q) U Q1)

(a)

[grab(A) }—{Tift(A) }_>{ put-on-top(AB) |

[grab(B) —={lif(B) |—|puton-top(BC) | .

grab(C) if(C) || put-on-top(C A) |
(b)
FiG. 11. An example of augmented protection interval.

We would like a set of reduction schemata & to have the
following property: an unlinearizable plan remains unlinear-
izable no matter how it is reduced using the reduction
schemata in &®. This property is called ‘‘downward-
unlinearizable.”” More formally, '

Definition 4.3

A set of action reduction schemata & is downward-
unlinearizable if and only if the following condition holds.
Let P be a plan and A be a set of protection intervals in P.
Also let Q(P) be any composite reduction of P using the
action reduction schemata in ¢, and AUy(A) be the corre-
sponding augmented composite reduction of A. Then if P
is A-unlinearizable then Q(P) is AUg(A)-unlinearizable.

Consider a blocks-world example where there are three
parallel actions: put-block-on-block(A4, B), put-block-on-
block(B, C), and put-block-on-block(C, 4) (see Fig. 11a).
Assume that three robot hands are available, which are
designated as H,, H,, and H;. Let { be the initial situation,
and

A = {{Cleartop(A), /, put-block-on-block(A4, E, B)),

(Cleartop(B), i, put-block-on-block(B, F, C)),
{Cleartop(C), i, put-block-on-block(C, G, 4))}

Let the plan in Fig. 11a be P. Then P is A-unlinearizable.
Now consider the composite reduction Q(P) of P in
Fig. 115, with

0(4a) = {(Cleartop(A), i, grab(A)),
{Cleartop(B), i, grab(B)),
(Cleartop(C), i, grab(C))}

Q(P) is not linearizable with respect to the set of all protec-
tion intervals associated with it. This is because Q(P) is also
associated with

{(Holding( H;, A), grab(A), put-on-top(A4, B)),
(Holding( H,, B), grab(B), put-on-top(B, C)),
(Holding(H;, C), grab(C), put-on-top{C, A )}

Let AUy(4) be the union of Q(4) and the above set of pro-
tection intervals. Since a robot cannot hold a block when
another block is on top of it, it is not hard to see that Q(P)
is AUp(A)-unlinearizable.
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Our method for checking if a given set of reduction
schemata is downward-unlinearizable is to develop a set of
sufficient syntactic restrictions upon action templates in A
and reduction schemata in ®. In the next section, we first
provide a set of restrictions which guarantees the downward-
unlinearizability property for a set of reduction schemata.
Later in this paper we will discuss how to simplify the restric-
tions so that preprocessing can be done efficiently.

5. Imposing syntactic restrictions

In this section, a set of restrictions is provided which
restricts the way an action relates to its set of subactions
in its reduction. These restrictions are intended to enable
one to check and possibly modify a given set of reduction
schemata. Whenever the restrictions are satisfied, backtrack-
ing from a plan with a set of unresolvable conflicts will not
lose any potential solutions at any level of reduction below.

The restriction to be presented concerns conditions under
which an action b cannot be interleaved with the subactions
of a. To formally state the restrictions, we first define a
number of useful concepts. Let g be an action and p a literal.
a deletes p if 3q € effects(a) such that — ¢ is unified with p.

Definition 3.1
b conflicts with R(a) if Va;, a; such that a; <, @, or g;

is unordered with a; in R(a), any of the following condi-

tions is true:

1. 3a, € A(R(a)), a, % a; or a, = q; and a, deletes g

& preconditions(®). That is, some subaction of a deletes
a precondition of b.

.- 3a;, a;, € A(R(a)), where a; < g or a; a;, and
a; i a; or @; = a;, such that for some p, (p, ay,
a;) € C(R(a)) and b deletes p. That is, b deletes a con-
dition protected in the reduction of a.

3.3a, € A(R(a)), a; X @ or a; = q, H = (precondi-
tions(a,;) N preconditions(a)) # @, and for some p € H,
b deletes p. That is, b deletes a precondition of some
subaction of a.

[38)

The above three cases enumerate the conditions when b can-
not be interleaved with the subactions of a. If b conflicts
with R (a), then b cannot be between any pairs of subactions
of @ in a consistent linearization of a plan.

Restriction 5.1
If b deletes p for some p € preconditions(a), or a deletes
g for some ¢ € effects(d), then b conflicts with R(a).

Restriction 5.2
If a deletes p for some p € preconditions(®), or b deletes
q for some ¢ € effects(a), then b conflicts with R(a).

Intuitively, Restriction 5.1 says that if b cannot be
immediately before ¢ in a consistent linearization of a plan
P, then b cannot be interleaved with the subactions of «
either. Restriction 5.2 can be likewise interpreted. If either
of the above restrictions are satisfied for actions a and b
along with a reduction R (a) of a, then we say R (a) satisfies
that restriction with respect to (w.r.t) b.

As an example, let @ be the action put-block-on-block (x,
u, y) in the blocks-world domain, and & be the action
put-block-on-block(y, v, x). Then the reduction of a given
in Fig. 115 satisfies Restriction 5.1 w.r.t. . This is because
the first subaction of a, grab(x), deletes Cleartop(x), which
is a precondition of b. Thus, & conflicts with R(a).

COMPUT. INTELL. VOL. 6, 1950

If one of the above restrictions is satisfied by all the
actions in a plan, then any reduction of an unlinearizable
plan remains unlinearizable after it is reduced. This result
is stated formally in the following theorem:

Theorem 5.1

Let P be a plan containing a non-primitive action a. Sup-
pose for every action b in P, R(a) satisfies Restriction 5.1
(Restriction 5.2) w.r.t. b. Let R(P) be the reduction of P
by reducing a using R(a). Then if P is A-unlinearizable, then
R(P) is AUg(A)-unlinearizable,

The proofs for this and subsequent theorems are given in
Appendix A.

The above result can be extended to plans that are reduced
in any number of reductions, as follows:

Corollary 5.1

Let @ be a set of action reduction schemata. Suppose Va,b
& A, VR € «(a), R(a) satisfies Restriction 5.1 (or Restric-
tion 5.2) w.r.t. b. Then ® is downward-unlinearizable.

The above results can be used in several ways. First, if
a plan is unlinearizable with respect to its set of protected
intervals, then one can check to see, for the available reduc-
tions, if all the reductions satisfy any of the restrictions given
above, If satisfied, one can conclude from Theorem 5.1 that
the reduction of the plan will remain unlinearizable. This
restricts the number of choices left to the planner, thus
reducing the search space. Second, if it is possible to check
the conditions in Corollary 5.1 a priori, then the restrictions
do not need to be checked at planning time. That is, when-
ever a plan is unlinearizable with respect to its set of pro-
tected conditions, no reduction of the plan is linearizable.

However, the conditions for Corollary 5.1 are usually very
costly to check for arbitrary reduction schemata. The reason
is that it requires checking for every possible substitution,
the number of which might be very large. What is needed
is a set of conditions that are easy to check beforehand,
which still ensures the downward-unlinearizability property.
This is the intuition that leads to the next section, in which
we will discuss a restriction that is rather easy to check.

6. The Unique-Main-Subaction Restriction

We now use the results of the previous section and pro-
pose a simplified restriction. This restriction is more restric-
tive than the previous one in that it requires every non-
primitive action have a urigue main subaction that is also
protected by the preconditions of the higher-level action.
However, significant computational cost for preprocessing
the planning knowledge can be reduced. Later on in this sec-
tion, we will examine a number of example domains which
satisfy this restriction.

Consider the following restriction:

Restriction 6.1
Let g be an action and R be a reduction schema applicable
to a. The actions in A(R(a)) satisfy the foilowing condi-
tions: 3a, € A(R(a)) such that
1. effects(a) < effects(ay) and Va; € A(R(a)), if a; # ap,
then effects(a;) N effects(a) = @. That is, a,, asserts all
the effects of @, and no other subactions of a assert any
effect of a.

2. preconditions{(q) < preconditions(a,,), and Va, €

A(R(a)) such that @; # a,, if a,, ¥ a; then effects(a,)
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TABLE 2. An action reduction schema satisfying the Unique-Main-Subaction Restriction

Action

Preconditions

Effects

fetch

achieve(Inroom(robotl, rooml))
achieve(Nextto(robotl, objectl))
pickup

Inroom(objectl, rooml)

Inroom({object!, rooml)

Holding(robot!, objectl)
g Inroom(robotl, rooml)
1%} Nextto{robotl, objectl)
Holding(robotl, objectl)

Inroom(robotl, rooml)
Nextto(robotl, object!)

M preconditions(a) = @. That is, a,, requires all the pre-
conditions of @, and none of these conditions are achieved
by some other subactions of a.

This restriction will be referred to as the Unique-Main-
Subaction Restriction. Intuitively, this restriction requires
that the reduction R(a) of an action « contains a ‘‘main”’
subaction a,, which asserts everything a asserts. In addi-
tion, the preconditions of a are required to ‘‘persist’ till the
beginning of a,,. Notice that this restriction is stronger than
Restriction 5.1 or 5.2 in the previous section.

A number of planning domains can be represented in ways
that satisfy this restriction. For example, consider an action
of fetching an object “‘object!” in a room ‘‘room1’’ (based
on Wilkins (1988)). The action “‘fetch’ can be reduced into
a sequence of three subactions: getting into room1, getting
near objectl, and picking up objectl, in that order. The third
subaction, picking up objectl, can be considered as the main
subaction in this reduction. Notice that the condition that
object] is in rooml is a precondition of both the non-
primitive action, fetch, and the main subaction. The com-
plete reduction schema is given in Table 2.

Let A be the set of action templates of a planning system,
and & be the set of action reduction schemata.

Restriction 6.2
' @ satisfies Restriction 6.2 if and only if for every reduc-
tion schema R € ® and every action template a € A to

which R is applicable, R(a) satisfies the Unique-Main-
Subaction Restriction.

Theorem 6.1
' Every set of action reduction schemata satisfying Restric-
tion 6.2 is downward-unlinearizable.

~ Before discussing how this theorem can be used for check-
Ing the downward-unlinearizability property, we would like
10 comment on the applicability of the Unique-Main-
Subaction Restriction to planning domains. Intuitively, the
Ur}lqpé-NIain—Subaction Restriction requires that every non-
primitive action & has a unique main subaction aj that
asserts every effect of a, and requires every precondition of
a as its precondition. Domains that satisfy this restriction
have the following characteristics:

1. The goals to be achieved can always be broken down
to several less-complicated subgoals to solve. For each sub-
.goaJ', a number of primitive actions are available for achiev-
Ing it. Each such action requires several preparation steps
beforg 1t can be performed, and a number of clean-up steps
after it is done. This action can be considered as the main

- Step in a reduction schema.

2. Forea

. L ch group of actions mentioned above, a hierarchy
1s built by

associating with a non-primitive action a set of

effects which are the purposes of the main step mentioned
above, and a set of preconditions which are certain impor-
tant preconditions of the main step.

A number of domains can be formulated in ways that
satisfy the property of downward-unlinearizability. In
Appendix B, we provide a representation of the planning
knowledge of the blocks-world domain. In this domain, a
number of blocks exist on the top of a table. A robot can
move one block on top of another, or onto the table. Each
block can have at most one block on top of it, and a block
can be at most on one other block. Condition On(x, y)
represents that the block x is on top of another block y,
Ontable(x) means that the block x is on. the table, and Clear-
top(x) means that block x has no other blocks on top of
x. The top-level actions are also the subgoals that the sys-
tem knows how to solve. They are achieve (On(x, y)),
achieve(Ontable(x)), and achieve(Cleartop(x)). More com-
plicated goals can be composed from the conjunction of
these. .

It is not hard to verify that every reduction satisfies the
Unique-Main-Subaction Restriction. For example, consider
the reduction R for achieve(On(x, y)). Notice that in
R (achieve(On(x, y))), the action makeon-block-1(x, y) is
the main subaction, which asserts the effect On(x, y) of
achieve On(x, »)). In addition, the set of preconditions of
achieve(On(x, y)) is empty, and neither achieve(Cleartop(x))
nor achieve(Cleartop(y)) asserts On(x, y). Thus, the Unique-
Main-Subaction Restriction is satisfied. Likewise, the reduc-
tion Rs for makeon-block-1(x, y) also satisfies this restric-
tion, since the reduction contains only one subaction. For
the rest of the reductions, the Unique-Main-Subaction
Restriction can be similarly verified.

As another example, consider a domain in which there
is a room, a ladder, supplies for painting, as well as a robot
whose goal is to paint portions of the room and (or) the
ladder. Suppose in addition to the actions and reduction
schemata for painting, the robot also knows how to fetch
an object using the action “‘fetch’ in Table 2. Represented
in this way, every action reduction schema satisfies the
Unique-Main-Subaction Restriction. For instance, the
‘““apply-paint-to-ceiling’” step in the reduction of ‘‘Paint
(Ceiling)”’ is the main subaction. Also, the “‘pickup’’ step
in the reduction of ‘‘fetch’’ is also a main subaction. More-
over, these reduction schemata all satisfy the Unique-Main-
Subaction Restriction.

The advantage of the Unique-Main-Subaction Restriction
is that it allows for more efficient preprocessing. Specifi-
cally, this restriction only restricts the way a non-primitive
action relates to its set of subactions. Thus the checking does
not have to take into account any other actions in the plan-
ner’s planning knowledge.
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Preconditions: p a Effects: q
\/p
A
Preconditions: p a, a, Effects: q
(@)
Preconditions: a Effects: g
\/1p
Preconditions: p a, a, Effects: q
(b)

Fi1G. 12. Modifving a reduction schema (a) by removing some
preconditions of an action template (b).

7. Checking for downward-unlinearizability

The algorithm for preprocessing a set of action reduction
schemata makes use of Restriction 5.1. This algorithm is
run after the planning knowledge for a domain is defined,
taken as input the set of action reduction schemata, &, and
action templates, A. Two goals will be achieved through pre-
processing: (1) to see if the set of action reduction schemata
is downward-unresolvable, and (2) if not, -try to modify the
schemata so that they have this property. Let ¢ be a set of
action reduction schemata and A be a set of actions.
Together & and A provides the planning knowledge for a
system. The algorithm for preprocessing is presented below.
It returns ““true’’ if & satisfies the restrictions imposed in

the previous sections. If so, the set of schemata, &, satisfies

the downward-unlinearizability property.

Algorithm Checking.
begin
B.= A,
while B # 0 do
a := pop(B);
if VR € «afa), R(a) satisfies Restriction 6.1 then
Mark a;
B:= B — {a};
end; (while)
if all the action templates in A are marked then
return(True)
else return(False)
end

To check if R(a) satisfies the Unique-Main-Subaction
Restriction, first check to see if there is a unique main subac-
tion in A (R(a)) that asserts every effect a asserts and has
in its set of preconditions every precondition of a. If such
a main subaction a,, exists, then check for every other
subaction ¢; in A (R (a)).

1. ¥p & preconditions(a), (p, a;, a,) ¢ C(R(a)). That is,
no other subacticn of a asserts p for a,,.

2. effects(a;) N effects(a) = @. That is, no other subaction
of a asserts an effect of a.

To check each R (a) for unique-main-subaction restriction,
the above algorithm suggests a worst-case time complexity

Preconditions: p a Effects: g.g .
NV
a, 9P, a, Effects: g
(a)
Preconditions: p a Effects: q
)
a, gpP a, Effects: q
(0)

FI1G. 13. Modifying a reduction schema {a) by removing effects
of action template a (b).

of O(JA]), where [A] is the number of actions in A. Let &
be the maximum number of action reduction schemata
applicable to an action template. Then Algorithm Checking
has a worst-case complexity of O(k x |A|?).

If the algorithm Checking returns ‘‘true,”’ then the set
of reduction schemata, &, satisfies the downward-unresolv-
ability restriction. In which case, whenever a hierarchical
planner detects unresolvable conflicts in a plan, it does not
have to consider the reduction of the plan as a means of
resolving the conflicts.

8. Modifying action reduction schemata

If the algorithm Checking returns ‘‘false’” for ¢, then in
some cases it might be possible to modify the schemata, so
that ® is made to satisfy the restrictions of previous sections.

For example, let a be an action template with a precondi-
tion p and an effect g. Suppose R (a) consists of two subac-
tions, @, followed by a,, such that the precondition of g,
is p, and the effect of a, is g (see Fig. 12a). If (= p, a,, ay)
is a protection interval associated with R(a), then clearly
Restriction 5.1 is violated. One way to modify this reduc-
tion schema is to remove the precondition p from effects(a).
As a result, the modified reduction R’ satisfies Restric-
tion 5.1. This new reduction schema is shown in Fig. 12b.

The above example shows how to modify a reduction
schema by removing the preconditions of an action template.
Other ways of schemata modification also exist. For
instance, let a be an action template with two effects, ¢ and
g, such that the subaction o, of a has an effect ¢ while
another subaction a, has an effect g (Fig. 13a). If g is con-
sidered as a side effect of a that is considered to be less
important than g, then removing g from the effects of a will
make the reduction schema satisfy the Unique-Main-
Subaction Restriction. This is shown in Fig. 135.

Unfortunately, the above examples do not suggest any
general procedures for modifying a given set of action reduc-
tion schemata. This is because changing the representation
of the action templates in A may make them less expressive
than before. This can occur when, for example, some effects
of an action are removed from its effects set. In extreme
cases, changing the representation of an action template may
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Fic. 14. Reduction schemata.

cause planning to be less efficient than before. For example,
removing the preconditions from an action may delay the
detection of deleted-condition conflicts with the removed
conditions, and as a result, more reasoning may be needed
to fix those interactions after the modification. On the other
hand, there may exist classes of planning problems for which
a particular kind of schemata modification method exists,
and finding out the characteristics of these domains is one
of our future research directions.

9. Preprocessing individual action template

In the previous section, the checking algorithm requires
that for every action template in A, all of its reductions
satisfy Restriction 5.1. Sometimes not all the action tem-
plates in A fit this requirement, but only some of them do.
In situations like this, it may still be possible to ensure that
unresolvable conflicts in a plan cannot be resolved in any
of the plan’s reduction.

For example, suppose P is a plan which is A-unlineariz-
able, and for all the actions @ in P, all the reductions of their
corresponding action templates in A and their “‘descendents’’
satisfy Restriction 3.1. Then any composite reduction Q(P)
of P is Q(A)-unlinearizable.

Before introducing the new restriction formally, we first
define a notation, TC(a), for the transitive closure of action
templates induced by action/subaction relationships. This
notation will be used to refer to the descendents of an action
Femplate a. Thus, TC(a) represents all the action templates
In A that can be obtained from a by reducing it in one or
more steps using the reduction schemata in ®. More for-
mally, let A be the set of action templates and & be the set

of action reduction schemata in a planning system’s planning
knowledge. Then

Definition 9.1

~Leta € A be an action template. TC(a) is defined recur-
sively as follows:

l.a € TC(a),

2. If b € TC(a), then VR € «(b) if ¢ € A(R (b)), then
template(c) € TC(a).

As an example of TC(a), consider the set of action reduc-

tf{OH schemata in Fig. 14. For the action template a in the
igure,

TC@) = {q, a, a5, a3, a,)

For a given A, suppose each action template has a maxi-
Mum of & action reduction schemata applicable to it. Then
the relationship between actions and subactions can be rep-
fesented as a directed graph, with k& x |Aj? edges. For any
glven action template a, the computation of TC(a) can be
Implemented as a depth-first search in this graph. Thus, the

worst-case time complexity for computing TC for one action
template is O(k x [A]?).
Now we formally present the restriction:

Restriction 9.1

Let A be the set of action templates and & be the set of
action reduction schemata of a planning system’s planning
knowledge. Let a € A be an action template. Va’' &€ TC(a)
and VR € «a(a’), R{(a’) satisfies the Unique-Main-Subaction
Restriction.

Intuitively, this restriction requires all the action templates
that can be reduced to from a satisfy the Unique-Main-
Subaction Restriction. If it is satisfied, we can prove a similar
result concerning the nonexistence of solutions below any
unlinearizable plan.

Theorem 9.1

Let P be a A-unlinearizable plan. If for every action a in
the plan, template(a) satisfies Restriction 9.1, then
AUg(P) is AUp(A)-unlinearizable for any composite
reduction 0.

The set of action templates in A can be preprocessed in
a way similar to the previous section. First, Algorithm
Checking can be performed on A. If it returns ‘‘false,”” then
the following processing can be done: for each action tem-
plate a € A, if every action template in TC(a) is marked
by Algorithm Checking, then a satisfies Restriction 9.1.
Mark all the action templates in A which satisfies Restric-
tion 9.1. Suppose P is a plan unresolvable with respect to
its set of protection intervals. If for every non-primitive
action ¢ in P, template(a) is marked in the above sense, then
no composite reduction of P is linearizable with respect to
its set of protection intervals. Therefore, backtracking from
P will not lose any possible solutions.

10. Point-protected conditions

In the previous sections, we have considered unresolvable
conflicts among the actions in a plan, which contains a set
of conditions that have to be protected throughout inter-
vals of time. This type of condition can be referred to as
interval-protected conditions. There is another kind of con-
dition in planning which requires only the validity of a set
of conditions right before an action is started. This type can
be called point-protected conditions.

Point-protected conditions are more complicated than
interval-protected conditions in that there are more ways to
resolve an unresolvable conflict in a plan through reduction.
In particular, there may be some subaction w of an action
in the plan P, which achieves the precondition of some
actions in a conflict, and thus resolves it. Such actions have
been referred to as white knights (Chapman 1987). For
instance, suppose that there is a double cross conflict involv-
ing actions @ and . A white knight in this situation could
be an action w such that

effects(w) D preconditions(a),
effects(b) D - preconditions(w), and
effects(w) 2 —effects(b).

LI N —

Therefore the conflict can be resolved by the ordering
b < w< a. The action w can be a subaction of some
existing action c in the plan. Because w only appears in some
reduction of the current plan, an unresolvable conflict in
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P can be resolved in Q(P). The restrictions we have devel-
oped so far do not prevent white knights from appearing,
and therefore a set of new restrictions has to be developed
in order for our theory to work also for point-protected con-
ditions. This is one aspect of our future work.

11. Conclusion

We have developed a set of syntactic restrictions on the
relationship between a non-primitive action and its set of
subactions. These restrictions enable hierarchical planning
systems to recognize a dead-end state much earlier. If these
restrictions are satisfied, one can conclude that a plan is
unlinearizable at any level of reduction below, given that
it is unlinearizable at the current level. If this downward-
unlinearizability property holds for a set of action reduc-
tion schemata, hierarchical planners need not reduce an
unlinearizable plan further to explore possible solutions at
some level or reduction below, and can backtrack from such
a dead-end point. Moreover, because of the static nature
of the restrictions, it is possible to preprocess a given set
of reduction schemata to check which schema satisfies the
restriction before the planning process starts.

There are a number of issues that we will address in our
future work. In this paper, we have considered hierarchical
planning with a particular kind of action representation, in
which the preconditions and effects of an action are sets of
literals. This restricts the techniques developed to be only
useful for a subset of the existing hierarchical planning sys-
tems. For example, SIPE (Wilkins 1984) allows in its action
representation conditions which can be context-dependent,
quantified, and disjunctive. In addition, some effects can
be deduced from a set of external axioms. With action rep-
resentations as expressive as these, some of our results no
longer apply. For example, consider actions with precondi-
tions in the form of disjunctions of conditions. Then the
effects of a group of actions can collectively deny or assert
the preconditions of other actions. With these representa-
tions, the detection of interactions during planning is a more
complicated problem, since at every step of planning, groups
of actions have to be tested for possible interactions. We
believe that the idea of extracting information about interac-
tion a priori can be used to help ease this computational
burden, in the same way this paper has shown. For exam-
ple, information about which actions are more likely to
interact may be obtained through preprocessing, and used
to provide a better control strategy for the detection and
handling of interactions.

Preprocessing can also provide a planner with good
heuristics for choosing among alternative action reduction
schemata. To reduce a non-primitive action, there is usually
more than one available schemata, and current hierarchical
planning systems select the alternatives in a depth-first man-
ner. Depending on which reductions are chosen, different
conflicts may be introduced, and this may affect the plan-
ning efficiency.

One heuristic which can be used in choosing a reduction
1s to minimize the amount of conflicts introduced. Prepro-
cessing can be helpful for predicting which reductions are
likely to vield a set of conflicts that is small — and just as
importantly, a set of conflicts that is easy to resolve.

During hierarchical planning, a plan often has more than
one non-primitive action to be reduced. A least-commitment
planner delays commitment to both decisions about order-

ings between the actions and bindings of the variables.
Therefore, a plan usually contains a set of variables yet to
be bound. The order in which the non-primitive actions are
reduced may affect how the variables are bound in a plan,
which in turn affects both the efficiency of planning and
the quality of the final plan. The order in which the non-
primitive actions are reduced can be called planning order,
which may be quite different from the temporal orderings.
One of our future works is to develop techniques for obtain-
ing a good planning order via preprocessing.
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Appendix A. Proofs

This appendix provides proofs for two of the main
theorems, theorems 5.1 and 6.1, in the paper. The proofs
to the other theorems and corollaries can be found in Yang
(1989).

Theorem 5.1

Let P be a plan containing a non-primitive action a. Sup-
pose for every other action b in P, R(a) satisfies Restric-
tion 5.1 with respect to b. Let R(P) be the reduction of P

1
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by reducing a using R(a). Then if Pis A-unlinearizable, then
R(P) is AUgz(A)-unlinearizable.

Below we only prove one part of Theorem 5.1, under the
condition that every action in P satisfy Restriction 5.1.
A similar proof can be constructed for the theorem when
the actions satisfy Restriction 5.2.

Proof

Let L be a linearization of R(P) that is AUg(A)~consistent,
where R(P) is obtained by reducing the action z in P. Below,
we provide a transformation which converts L to a lineariza-
tion of P and AUg(A) to A, and show that the resultant
linearization of this transformation does not violate any pro-
tection interval of A in L. The transformation is defined as
follows:

Let the first subaction of ¢ in L be g, and the last sub-
action of @ in L be a,,. For every action & € A(P) such that
b¢ A(R(a))and a; ¥ b < g, in L, relocate b to the left
of a,. Repeat this step for all such b starting with the left-
most one after gy, in a left-to-right order. Also, the original
ordering between the bs are still kept after the relocation,
so that if b; < b, before the relocation, then | X b, after
the relocation. After all the relocations are done, merge all
the main subactions of ¢ from a; to a, into a. Let the new
sequence be L.

Next, update the protection intervals in AUgz(4A) as
follows:

i e e T

»
P
.«
-

{
3
i
i
=

L. If {p, ¢, a; € AUg(A) and preconditions(g;) N precon-
ditions{(a) # @ then replace g; by a;

2. If {p, a;, @ € AUg(4) and effects(a;) N effects(a) #
9 then replace g; by a; -

3. For any other protection interval 8, if q; € A(R(a))
appear in 6, then remove 8 from AUg(A).

Let the resultant protection intervals be A’. Then A’ is A,
and L’ is a linearization of P. This transformation does not
create any new conflicts, since if it does, then it must be
because either some b deletes a precondition of a, or a deletes
an effect of b. But this is impossible, since according to
Restriction 5.1, b would have created a conflict in L before
the relocation, contradicting to the assumption that L is
AUg(4)-consistent. Thus, P must be A-linearizable, con-
tradicting to our original assumption. =

The part of the theorem concerning Restriction 5.2 can
be similarly proved, except the transformation is done by
moving every b to the right of the last action.

To prove Theorem 6.1, first consider the following
lemma:

Lemma 4

" Leta € A(P)bea non-primitive action satisfying Restric-
ifog 6 1. Le[.R be.a reduction schema applicable to a. Then
1S A-unlinearizable, then R(P)is R(A)-unlinearizable.

Proof

'oiuffﬁse R (P)is R(A)-linearizable. Let L' be a lineariza-
there 3. (#) which is R (a)-consistent. From Restriction 6.1,
.cffecxs 0? unique subaction A of @ which asserts all the
‘the pre a relevant for A, which preconditions includes all
A Preconditions of @ relevant for A. Let L” be L' with

Occurrences of q; = a, deleted, where ¢, € A(R(a)).
arly, let A" be R(A) with all the intervals containing

9m removed, where a; € A(R(a)). Then L” is

uQ W

A”-consistent, since the above operations did not create any
conflicts.

Now replace every occurrence of a,, in both L” and A”
by a. A" will be transformed to A, and the resultant sequence
L must be A-consistent. This is because all of a,,’s effects
relevant to A are kept after this replacement, and any effects
in effects(a)-effects(a,,) are irrelevant and not harmful
to A. However, L is a linearization of P. Therefore, P must
be A-linearizable, contradicting to the assumption of the
lemma. |

Theorem 6.1
Every set of action reduction schemata satisfying Restric-
tion 6.2 is downward-unlinearizable.

Proof

Let & be a set of action reduction schemata, and let P
be a plan which is A-unlinearizable. We prove the theorem
by induction on the number of reductions applied to P. Spe-
cifically, we prove that for any i = 0, Q(P) is Q(4)-
unlinearizable, where Q(P) is any composite reduction of
P produced by reducing / non-primitive actions, using.the
reduction schemata in &.

The base case, i = 0, corresponds to the plan P without
any reduction. Since P is assumed A-unlinearizable, the
theorem holds for the base case.

For the inductive hypothesis, assume that Q(P) is Q(A)-
unlinearizable, where Q(P) is a composite reduction of P
produced by reducing n = 0 actions.

Let Q'(P) be produced by reducing non-primitive action
in Q(P), and let the corresponding reduction of Q(A) be
Q’(A). Since every action in @Q(P) is an instance of some
action in A and since & satisfies Restriction 6.2, from
Lemma A any reduction Q(P) of Q(P) must be Q'
(A)-unlinearizable. Thus, the theorem holds for any com-
posite reduction of P. ]

Appendix B. Action templates and reduction schemata for
the blocks-world domain

This appendix provides a representation of the planning
knowledge in the blocks-world domain.? In this domain,
there are a table and a number of equally sized blocks.
A block can have at most one other block immediately on
top of it. A robot can stack blocks on top of each other,
or put a block on the table. The table is considered to be
always clear. The robot can handle only one block at a time.

The following actions are non-primitive:

1. achieve(On(x, y))
comment: a goal for achieving On(x, y).
preconditions = {}
effects ={On(x, y)i

2. achieve(Ontable({ x))
comment: a goal for achieving Ontable(x).
preconditions = {}
effects = {Ontable(x)}

3. achieve(Cleartop(x))
comment: a goal for achieving Cleartop(x).
preconditions = {}
effects = {Cleartop(x)]}

>This domain representation is adopted from Kambhampati
(1989).
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4. makeon-block-1(x, y)
comment: put block x on the top of block y.
preconditions = {Block(x), Block(y), Cleartop(x),
Cleartop(»)}
effects = {= Cleartop(y), On(x, ¥}
5. makeon-table-1(x)
comment: move x to the table
preconditions = {Block(x), Cleartop(x)}
effects = {Ontable(x))
6. makeon-block-2(x, y, 7)
comment: move x from the top of y to the top of z.
preconditions = {Block(x), Block(y), Block(z),
On(x, y), Cleartop(z), Cleartop(x)
X # y,x 2,y * I}
effects = {Cleartop(y), On(x, z) —Cleartop(z)}
7. makeon-table-2(x, y)
comment: move x from the top of y to the table.
preconditions = [Block(x), Block(y), Cleartop(x),
On(x, »)}
effects = {Ontable(x), Cleartop(y))

The following actions are primitive:

1. put-block-on-block(x, y, )
comment: move x from the top of y to the top of z.
preconditions = {Block(x), Block(y), Block(z),
On(x, y), Cleartop(z), Cleartop(x)
X #= Y, X, #7,y #* 7}
effects = {Cleartop(y), On(x, z), —Cleartop(z),
- On(x, )]
2. put-block-on-table(x, y)
comment: move x from the top of y to the table.
preconditions = {Block(x), Block(y), Cleartop(x),
On(x, y)]
effects = {Ontable(x), Cleartop(y), = On(x, )}

Below are action reduction schemata:

1. R;(achieve(On(x, »))):
actions: {achieve(Cleartop(x)),
achieve(Cleartop(y)),
makeon-block-1(x, )}
orderings: {achieve(Cleartop(x)) <
make-on-block-1(x, y)
achieve (Cleartop(y)) <
make-on-block-1(x, ¥)}
protection intervals: {(Cleartop(x),
achieve(Cleartop(x)),
makeon-block-1{x, »))
(Cleartop(y),
achieve(Cleartop(y)),
makeon-block-1{x, )}

3]

. R.(achieve(Cleartop(x))):
actions: {achieve(Cleartop(y)),
makeon-block-2(y, x, 2)}
orderings: {achieve(Cleartop(y)) <
makeon-block-2(y, x, z)]
protection intervals: {Cleartop(y),
achieve(Cleartop(y)),
makeon-block-2(y, x, )}
3. Rs(achieve(Cleartop(x))):
actions: {achieve(Cleartop(y)), makeon-table-2(y, x))
orderings: {achieve(Cleartop(y)) <
makeon-table-2(y, x)}
protection intervals: {(Cleartop(y),
achieve(Cleartop(y)),
makeon-table-2(y, x)}]

4. R4(achieve(Ontable(x))):
actions: fachieve(Cleartop(x)), makeon-table-1(x)}
orderings: {achieve(Cleartop(x)) <
makeon-table-1(x)}
protection intervals: {{Cleartop(x),
achieve(Cleartop(x)),
makeon-table-1(x)}}
5. Rs(makeon-block-1(x, »)):
actions: {put-block-on-block(x, z, »)}
orderings: {}
protection intervals: {}
6. R¢(makeon-block-2(x, y)):
actions: {put-block-on-block(x, z, 3)}
orderings: {}
protection intervals: {}
. R-(makeon-table-1(x)):
actions: {put-block-on-table(x, y)|
orderings: {}
protection intervals: {}
8. Rg(makeon-table-2(x, y)):
actions: {put-block-on-table(x, y)}
orderings: {}
protection intervals: {}

~1

In addition to the above reduction schemata, everv non-
primitive action of the form “‘achieve(C(x))’’ can also be
reduced to ‘‘no-op,’”” which is a primitive action requiring
no real action. no-op corresponds to a phantom goal In
NONLIN (Tate 1977) or SIPE (Wilkins 1984), and can be
considered as a primitive action whose precondition and
effect are both the condition C(x) to be achieved.
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