Proceedings of the Ninth National Conference on Arti-
ficial Intelligence, AAAT Press, Menlo Park, CA, 1991

Characterizing Abstraction Hierarchies
for Planning*

Craig A. Knoblock

Carnegie Mellon University

Pittsburgh, PA 15213

cak@cs.cmu.edu

Abstract

The purposes of this paper are threefold. The first
is to provide a crisp formalization of ABSTRIPS-
style abstraction, since the lack of such formaliza-
tions has made it difficult to ascertain the uses
and value of this type of abstraction in previous
research. Second, we define the refinement rela-
tionship between solutions at different levels of the
abstraction hierarchy. Such definitions are crucial
to developing efficient search strategies with this
type of hierarchical planning. And third, we pro-
vide a restriction on the abstraction mapping that
provides a criterion for generating useful abstrac-
tions.

Introduction

Ever since Sacerdoti’s ABSTRIPS system [Sacerdoti,
1974], researchers have used the technique of elim-
inating preconditions of operators in order to form
abstraction spaces for planning [Christensen, 1990,
Tenenberg, 1988, Unruh and Rosenbloom, 1989, Yang
and Tenenberg, 1990]. There is some empirical evi-
dence that suggests that such abstraction systems can
significantly reduce search, but the selection and eval-
uation of the individual abstraction hierarchies is con-
fined to the individual systems. As a result, it has been
difficult to 1) explicate heuristics that are used implic-
itly to construct abstraction hierarchies, 2) compare
the results between different systems, and 3) uncover
and evaluate new heuristics and properties. Even more

*The first author is supported in part by an Air Force
Laboratory Graduate Fellowship, and in part by the Avion-
ics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force,
Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, Arpa Order No. 7597. The second au-
thor is supported in part by ONR/DARPA under research
contract N00014-80-C-0197, and in part by U.S. Army
Communication-Electronics Command grant DAAB10-87-
D-022. The third author is supported in part by an operat-
ing grant from Natural Sciences and Engineering Research
Council of Canada number OGP0089686.

Josh D. Tenenberg
University of Rochester
School of Computer Science Computer Science Department
Rochester, New York 14627

josh@cs.rochester.edu

Qiang Yang
University of Waterloo
Computer Science Department

Waterloo, Ont., Canada N2L 3G1

qyang@watdragon.waterloo.edu

seriously, the characterization of “good” abstraction
hierarchies has remained at an informal level.

This paper begins to fill this gap by formalizing, uni-
fying, and extending the previous work on ABSTRIPS-
type planning systems. These systems are character-
ized by the elimination of precondition constraints on
the operators as one ascends the hierarchy. Planning
occurs in a length-first fashion [Sacerdoti, 1974], by
first planning at the most abstract (least constrained)
level, and refining this plan at successively lower lev-
els by inserting new plan steps which satisfy the re-
introduced preconditions which were eliminated dur-
ing abstraction By formalizing this refinement process,
we are able to provide a set of conditions that can be
enforced between the concrete- and abstract-level rep-
resentations. These conditions guarantee certain rela-
tionships between the abstract and concrete solutions
that provide strong constraints on search.

In particular we show that all abstraction hierarchies
have the monotonicity property, whereby the existence
of a concrete-level solution IT implies the existence
of an abstract solution that is structurally similar to
II. This property enables one to prune a considerable
amount of the search space without loss of complete-
ness. Yet, the monotonicity property fails to charac-
terize the intuition behind “good” abstraction hierar-
chies. We also identify a restriction of the monotonic-
ity property, called the ordered monotonicity property,
which holds when every refinement of an abstract plan
is guaranteed to leave the abstract plan structurally
unchanged. This property reduces the search space
even further than allowed by the monotonicity prop-
erty. More importantly, the property provides a quali-
tative characterization of the intuition behind a “good”
abstraction hierarchy. We show that this property can
be guaranteed by imposing sufficient syntactic restric-
tions on the abstraction hierarchy. As a result, it is
straightforward to automatically generate abstraction
hierarchies with the ordered monotonicity property.

With the formalization of abstraction hierarchies,
and the characterization of the various properties they
possess, it is easy to see the relative merits and draw-
backs of different planning systems with abstraction.

We show that many systems can be placed on a spec-
trum; at one end, the abstract level provides only very
weak heuristic power, but is applicable to a broad
range of problems, while the opposite end of the spec-
trum is heuristically strong, but narrowly applica-
ble. By developing precise formal characterizations,
we hope to provide a context in which researchers can
determine which place along the spectrum balances
the trade-offs appropriately for problem solving within
their domain.

We will first present a formalization of these prop-
erties and identify sufficient conditions on the ab-
straction hierarchies that guarantee the satisfaction
of these properties. We then discuss the relation-
ship between several existing abstraction systems in
the context of our formal characterization. The def-
initions and properties presented in this paper are
based on earlier work presented in [Knoblock, 1990b,
Tenenberg, 1988, Yang and Tenenberg, 1990]. Theo-
rems are presented without proofs, but the proofs can

be found in [Knoblock, 1991].

Abstract Problem Spaces
Problem-Space Language

A problem space is defined by a set of states, and a
set of operators that map between states. Problem-
space search involves finding a sequence of operators,
called a plan, that transforms a given initial state into
a goal state. Formally, a problem space is a triple o =
(L, S,0), where L is a first-order language, S is a set
of states, and O is a set of operators. Each S; € S
is a finite set of atomic sentences of L. We apply the
closed-world assumption to each S;, so that implicitly,
if @ is an atom of L not in S;, we take =@ to be an
element of S;. To simplify the reading, we will not
encumber our notation by including this implicit set of
negated atoms in every state definition, leaving it to
the reader to make this inclusion.

Each operator « is defined by a corresponding triple
(Pay Do, Aa), where Py, the precondition list, is a set
of literals (positive or negative atomic sentences) in L,
and both the delete list D, and add list A, are finite
sets of atomic sentences in L. Applying an operator
a to a state S; produces a new state by removing the
deleted literals from, and inserting the added literals
of a to S;, in that order. A plan T = (a1,...,a,) is a
sequence of operators, which can be applied to a state
by executing each operator in order.

A problem is a pair (Sp, Sy), where Sy € S is the
wnitial state, and S, € S is the goal state. A plan
T = {a1,...,an) is correct relative to an initial state
whenever the preconditions of each operator are satis-
fied in the state in which the operator is applied, t.e.,
Py, € S;—q, i=1,...n. Aplan II solves goal S; when-
ever II is correct and the goal is satisfied in the final
state: Sy C Sp,. We take a<m 3 to mean that operator
a precedes operator § in plan II. The subscript to <

will be dropped if the intended plan is unambiguously
identified.

Criticalities
Formally, a k-level abstraction hierarchy is a quadruple
Y = (L,S5,0,crit), where L, S, and O are just as in
the problem space definition, and crit is a function as-
signing one of the first k£ non-negative integers to each
precondition of each operator. Note that under this
definition, the same literal may be assigned different
criticalities when it appears as a precondition in differ-
ent operators. Thus, criticality 1s a two-place function
of both the precondition and the operator.

Let « be an operator. We take ; Py to be the set
of preconditions of « that have criticality values of at
least 2:

iPa =A{p|p€ Po and crit(p, o) > i.},

and ;« is operator « with preconditions ; Py, adds Ay,
and deletes Dg,. Let the set of all such ;a be ;0. This
defines a problem space on each level 7 of abstraction:

2 =(L, S, ;0).

Example 1 Consider the Tower of Hanoi domain with
3 pegs and 3 disks. Let the three pegs be Pq,P5, and
P3, and let the disks be Large, Medium and Small. We
can represent the location of the disks using literals of
the form OnLarge(x), OnMedium(x), and OnSmall(x).
Initially, all disks are on P4, and in the goal state they
are on P3. The operators for moving the disks can
be represented as shown in Table 1. Note that the
add list is denoted by the unnegated literals, and the
delete list by the negated literals. One criticality as-
signment is to assign each Ispeg and OnLarge predi-
cate to level 2, each OnMedium predication to level 1,
and each OnSmall predication to level 0. Thus, at the
highest abstraction level, each operator has only the
Ispeg and OnLarge preconditions. At this highest ab-
straction level, a plan to solve the problem of getting
all pegs to P3 from an initial state in which all opera-
tors are on Pq, is

(MoveL(P4,P3),MoveM(P4,P3), MoveS(P4,P3)).

Refinement of Abstract Plans
Establishment

Abstract planning is usually done in a top-down man-
ner. An abstract solution is first found on the k**
level of abstraction. Then it is refined to account for
successive levels of detail. We formalize the notion of
refinement by first defining the concept of “operator
establishment.” Intuitively, an operator « establishes
a precondition of another operator £ in a plan, if it 1s
the last operator before 8 that achieves that precondi-
tion.

Definition 1 Let II be a correct plan. Let a,p €
operators(Il), p € Pﬁ,Aa‘ Then a establishes p for

3 (establishes(a, 8, p)) if and only if

|| Preconditions

Effects ||

MoveL(x,y)

Ispeg(x), Ispeg(y), —0OnSmall(x),
—0nSmall(y), —OnMedium(x),
—0OnMedium(y), OnLarge(x)

—0OnLarge(x), OnLarge(y)

MoveM(x,y)

Ispeg(x), Ispeg(y), —0OnSmall(x),
—0nSmall(y), OnMedium(x)

—0OnMedium(x), OnMedium(y)

MoveS(x,y)

Ispeg(x), Ispeg(y), OnSmall(x)

| ~OnSmall(x), OnSmall(y)

Table 1: Operators for the Tower of Hanoi

(1) a < f,
(2) Vo' € operators(I), if a« < o' < B, then p ¢

Aaqr.

This final condition states that o must be the last oper-
ator that precedes g and adds precondition p. Since 1T
is a correct plan, this implies that there is additionally
no operator between « and @ that deletes p.

Justification

An operator in a plan is justified if it contributes, di-
rectly or indirectly, to the satisfaction of the goal.

Definition 2 Let I be a correct plan, and S, a goal.
a € operators(I) is justified with respect to Sy if and
only if there exists u € Aq such that either

(1) uw € Sy, and Va' € operators(Il), if (a<mna’)
then u & Aqr, or

(2) 38 € operators(I) such that 3 is justified, and
establishes(a, 3, u).

If « is justified in II with respect to S;, then we say
Justified(o, I, S;). In cases where it is clear which S,
and plan are referred to, we will simply say that « 1s
justified (Justified(c)). A plan II is justified if every
operator in it is justified. An unjustified plan I (one
for which Justified is false) can be justified by removing
all unjustified operators.

In the plan for Example 1, each operator is justified,
since each establishes one of the three goal conditions.
If we were to prepend MoveS(1,2) onto the beginning
of this plan, it would remain correct, but would no
longer be justified, since this first operator makes no
contribution to the satisfaction of the goal. Although
it might seem odd that this plan is correct, note that at
the abstract level only the IsPeg preconditions of the
MoveS operator need to be satisfied since the OnSmall
precondition has a lower criticality. Thus, at the ab-
stract level, one can add the operator MoveS(1, 2) even
of the small disk is not on the first peg at the point in
which the operator is inserted into the plan.

If I is a plan for achieving S,, then ;II is the plan ob-
tained by replacing each operator « in Il by ;. Since
only the justified operators are needed to satisfy the

goals, it can be easily shown that if II is a plan that
solves goal S, at level 4, then its justified version is also
a plan that solves S;. For example, if the OnMedium
preconditions of each operator are eliminated at level
2, then those plan steps from levels below 2 that only
achieve OnMedium can be removed. This result, known
as the Upward Solution Property [Tenenberg, 1988],
can be easily extended to a multi-level hierarchy: if
IT is a plan that solves S, at the base level of a k level
abstraction hierarchy, then the justified version of ;I 1s
also a plan that solves S, on the itP level, 0 < i < k—1.

A formal proof can be found in [Tenenberg, 1988].

Refinement

With the notion of justification, we can now define the
“refinement” of an abstract plan. Intuitively, a plan
II is a refinement of an abstract plan II’, if all opera-
tors and their ordering relations in II’ are preserved in
I, and the new operators have been inserted for the
purpose of satisfying one of the re-introduced precon-
ditions.

Definition 3 A plan I at level i — 1 is a refinement
of an abstract plan I’ at level i, if

1. 11 s justified at level 1 — 1, and

2. there is a 1-1 function ¢ (a correspondence function)
mapping each operator of Il' into I, such that

(a) Ya € operators(Il'), ;e(a) = «,

(b) if a < B, then c(a) < (),

(¢) Yy € operators(Il), Vo € operators(Il'), if c(a) #
v, then 38 € operators(Il) with precondition p
such that Justified(y, I, p) and crit(p) =i — 1.

If I is a refinement of II’, then we say that II’ refines to
II. This formal definition captures the notion of plan
refinements used in many different planners, includ-
ing ABSTRIPS [Sacerdoti, 1974], sipE [Wilkins, 1984],
ALPINE [Knoblock, 1991], and ABTWEAK [Yang and
Tenenberg, 1990].

Example 2 In our previous Tower of Hanoi example,
the following plan at level 2,

(MoveL(P4,P3),MoveM(P4,P3), MoveS(P4,P3))

refines to the following plan at level 1, when we re-
introduce all OnMedium preconditions:

(MoveM(P4,P5), MoveL(P4,P3), MoveM(Py,Py),
MoveM(P4,P3),MoveS(P4,P3)).

To verify that it satisfies the refinement definition, note
that it solves the problem at level 1, the ordering of the
abstract operators is preserved in the refinement, and
the inserted operators at level 1, (the new MoveM oper-
ators), establish the preconditions -0nMedium(P4) for
MoveL(P4,P3), and OnMedium(P4) for MoveM(P{,P3),
respectively, each of these preconditions having crit-
icality 1.

The Monotonicity Property

The refinement of an abstract plan places almost no
constraint on search. This section defines the mono-
tonicity property, which relates the plans at successive
levels of abstraction in terms of the establishment re-
lations. First, we define a monotonic refinement of an
abstract plan, which in turn is used to define a mono-
tonic abstraction hierarchy.

Definition 4 Let II' be an abstract plan that solves
p=(S0,Sy) at level i, i > 0 and is justified relative to
Sg. A level t — 1 plan II s @ monotonic refinement of
a level 1 plan II' if and only if

(1) I is a refinement of I,
(2) I solves p at level i — 1, and
(8) Justified(;I1) = TI".

This last condition states that the refined plan when
justified at the abstract level 1s equal to the abstract
plan. That is, plan refinement does not result in the
introduction of any new abstract establishments. The
refined plan from Example 2 is a monotonic refinement
since the inserted MoveM operators satisfy a criticality
1 precondition, which can be eliminated at level 2.

Definition 5 A k-level abstraction hierarchy is mono-
tonic, if, for every problem p = (So,S,) solvable at the
concrete (0'*) level, there exists a sequence of plans
y_1q,..., g such that y_q ts a justified plan for solv-
mg p at level k — 1, and for 0 < 7 < k, I;_1 s a
monotonic refinement of Il;.

An important feature of the monotonicity property
lies in its generality:

Theorem 1 FEvery abstraction hierarchy is mono-
tonzic.

It can be shown that if IT is a monotonic refine-
ment of II’, then all of the establishment relations
establishes(a, B,p) in T’ hold in plan TI. Thus, one
can backtrack on any refinement that is not monotonic
without losing completeness.

Example 3 As another example, consider a simple
domain where a robot can move between two rooms,
Roomq and Rooms, connected by a door, Doorys, that

can be opened or closed. We can build an abstrac-
tion hierarchy by eliminating all preconditions involv-
ing whether the door is open or closed. Given the goal
of getting the robot into Roomy and closing Doorys the
system might construct an abstract plan that moved
the robot into Rooms and closed the door, and then
moved the robot through the closed door into Room;.
This plan could be refined by inserting steps to open
Dooryy in order to get into Room;. But this is not a
monotonic refinement since it violates a condition es-
tablished in the abstract plan. In planning terms, the
establishing literals from the level above are protected
during plan refinement. Instead of forging ahead with
this refinement, the system can backtrack and change
the abstract plan to close the door once the robot is
inside Roomy, which produces the correct solution.

The Ordered Monotonicity Property
Partitioned Abstraction Hierarchies

We consider here a more restrictive type of abstraction
hierarchy, which we call a partitioned hierarchy. Parti-
tioned abstraction hierarchies are obtained from crit-
icality functions constrained to assign the same criti-
cality to all precondition literals having the same pred-
icate. More formally, a k-level partitioned abstraction
hierarchy is a k-level hierarchy ¥ = (L, S, O, crit), such
that Yo, 8 € O, l1 € Oq, Iy € O[)” crit(ly, o) =
crit(ly, B) if Iy and I3 have the same predicate. Since
the criticality of a literal I does not depend on the op-
erator, it will simply be denoted as crit({).

Ordered Abstraction Hierarchies

Now we consider a property that ensures that literals
added at an abstract level are never violated by any
operators added at lower levels in the refinement pro-
cess. A refinement of an abstract plan that satisfies
this property is called an ordered refinement.

Definition 6 Let Il be a justified plan that solves p =
(So0,Sy) at level i, 1 > 0. A level i — 1 plan II is an
ordered refinement of a level 1 plan I’ if and only if

(1) T is a monotonic refinement of ', and

(2) Yo € operators(IT), if ;o ¢ operators(IT'),

then o does not add or delete any lLiteral | with

crit(l) > i — 1.
The second condition states that in plan II, only the
operators that correspond to the operators in the ab-
stract plan II’ are allowed to modify literals with crit-
icality values higher than ¢ — 1.

We now define the ordered monotonicity property for
an abstraction hierarchy:

Definition 7 An abstraction hierarchy has the or-
dered monotonicity property! if, for all levels i,i — 1

! This definition of ordered monotonicity is slightly more
restrictive than the ordered monotonicity property that was
informally described in [Knoblock, 1990a].

(0 < i < k), for every problem p, if I is a justified
plan that solves p at level i, then every refinement of
I’ at level 1 — 1 is an ordered refinement.

An abstraction hierarchy is said to be ordered if it
has the ordered monotonicity property. Note that this
property does not say that every abstract solution can
be refined; it only states that every refinement of an
abstract plan must be ordered.

An ordered hierarchy has at least two important im-
plications. First, it guarantees that every possible re-
finement of an abstract plan will leave the conditions
established in the abstract plan unchanged. In con-
trast, the monotonicity property requires explicit pro-
tection of these conditions. By ensuring that every re-
finement 1s ordered, the ordered monotonicity property
guarantees that no violation of the monotonic property
will ever occur during plan generation. Thus, there is
no need to spend an additional computational resource
in checking for such violations.

Second, the ordered monotonicity property captures
an important intuition behind “good” abstraction hi-
erarchies. An ideal abstraction hierarchy decomposes
a complex problem into parts with different levels of
difficulties. Once a solution is found for solving the
most difficult parts, one solves the detailed, less diffi-
cult parts by inserting steps into the abstract solution.
During the refinement process, the ordered monotonic-
ity property guarantees that the problem solver will
naturally avoid the parts of the search space relevant
to the problems already solved in more abstract spaces.

Unlike the monotonicity property, the ordered
monotonicity property is not satisfied by all abstrac-
tion hierarchies. It is therefore important to explore
conditions under which a hierarchy satisfies this prop-
erty. The followingis a set of conditions which are suffi-
cient but not necessary to guarantee the ordered mono-
tonicity property. (A set of less restrictive problem-
specific conditions that are also sufficient to guaran-
tee the ordered monotonicity property is described in

[Knoblock, 1991].)

Restriction 1 Let O be the set of operators in a do-
main. Yo € O,Vp € Py and Ve, es € AalJDa,

(1) cr@t(el) = cr@t(eg), and
(2) crit(eq) > crit(p).

This restriction is called the Ordered Restriction.
Stated simply, all effects of an operator have the same
criticality, and have criticality at least as great as the
operator’s preconditions.

Theorem 2 Any partitioned abstraction hierarchy
satisfying Restriction 1 is an ordered hierarchy.

The reason why this theorem holds can be explained
informally as follows. Restriction 1 partitions the oper-
ators into disjoint classes according to their effects. It
also imposes a partial ordering on the classes. The or-
dering has the following property: if an operator class
A precedes B in that ordering, then an operator f in

B does not change any condition e in the effects of any
operator o in A. This implies that if all predicates that
are effects of operators in A have a higher criticality
than the effects of any of the operators in B. Thus,
the ordered monotonicity must hold.

Example 4 The criticality assignment that has been
used throughout in our Tower of Hanoi problem sat-
isfies Restriction 1, and hence results in an ordered
hierarchy. Consider our earlier level 2 plan:

(MoveL(P4,P3),MoveM(P4,P3), MoveS(P4,P3)).

To see that every refinement at each lower level is an or-
dered refinement, note the following. By definition, for
every refinement, every added operator must be justi-
fied by a criticality 1 literal. Since the MoveL operator
only satisfies the OnLarge preconditions, it cannot be
justified with respect to any criticality 1 or 0 literal,
and thus no MovelL operators can occur in any refine-
ment. But then, this satisfies the ordered monotonicity
property, since the only added operators, MoveS and
MoveM, never add or delete literals having criticality
2. The argument for the level 0 refinement with re-
spect to the OnMedium literals and the MovelM operator
is analogous.

On the other hand, consider the criticality function
assigning 2 to OnSmall, 1 to OnMedium, and 0 to Ispeg
and OnLarge. A level 2 solution to the same problem
is:

(Moves(Pq,P3), MoveM(P4,P3), MoveL(P{,P3)).

Any level 1 refinement to this plan will require the
addition of MoveS operators in order to establish the
MoveM and MoveL operators. Since OnSmall is a crit-
icality 2 literal, this violates the ordered monotonic

property.

A Spectrum of Abstraction Hierarchies

The heuristic power of an abstraction hierarchy de-
pends on the constraints placed on the assignment of
criticalities to the preconditions. Above, we provided
a formal discussion of refinement in abstract planning,
the monotonicity property and the ordered monotonic-
ity property. One purpose of the formal characteriza-
tion is to facilitate the comparison between different
planning systems. Here, we will demonstrate how some
of the existing systems can be classified under the same
formalism.

Our analysis reveals that various systems and their
associated abstraction hierarchies can be placed on
a spectrum formed by the formal properties and re-
strictions, where each restriction includes the previous
ones. Thus, at each place in the spectrum, the given re-
striction ensures not only its associated heuristic prop-
erty, but all of the previous ones as well. Table 2 lists
each restriction with the corresponding properties and
examples of systems whose abstraction hierarchies sat-
isfy the restrictions. Below, we briefly discuss each in
turn.

Restriction Properties Examples
Precondition Upward Solution ABSTRIPS
Elimination SOAR
Monotonicity ABTWEAK
PABLO
Partitioned LAWALY
SIPE
Ordered Ordered Monotonicity ALPINE

Table 2: Restrictions and Properties of Abstraction
Hierarchies

At the first point in the spectrum, criticalities are as-
signed without constraint to the preconditions of the
operators. A literal that occurs as a precondition in
two different operators can be assigned different criti-
calities in each operator. ABSTRIPS [Sacerdoti, 1974],
ABTWEAK [Yang and Tenenberg, 1990], soar [Unruh
and Rosenbloom, 1989], and PaBLo [Christensen, 1990]
are examples of systems in this class. Any system in
this class will have both the upward solution prop-
erty and the monotonicity property. Although the
monotonicity property applies to any system in this
class, only ABTWEAK explicitly uses this property in
its search strategy.

At the second point in the spectrum the following
constraint i1s enforced on the assignment of the criti-
calities: literals of the same predicate must have the
same criticality. This corresponds to partitioned ab-
straction hierarchies. LAWALY [Siklossy and Dreussi,
1973] and sipE [Wilkins, 1984] are both examples of
systems in this class. The additional partitioning con-
straint does not provide any additional known formal
properties.

At the third point on the spectrum lie the ordered
hierarchies. Recall that these hierarchies impose an
order on a partitioned hierarchy such that every re-
finement of an abstract plan will leave the literals in a
more abstract space unchanged. This property is used
in the ALPINE system [Knoblock, 1990a], which auto-
matically generates abstraction hierarchies that have
this property.

Conclusion and Future Directions

This paper presents a formalism for studying abstrac-
tion in planning. It explores the properties of ab-
straction hierarchies that are generated by gradually
restricting the assignment of criticality values to pre-
conditions of operators. These properties can be ap-
plied to both the construction and use of abstraction
hierarchies for planning. The monotonicity property
holds for every abstraction hierarchy and can be used
to prune the search space without sacrificing complete-
ness. The ABTWEAK planner [Yang and Tenenberg,
1990] exploits this property (within a nonlinear, least-
commitment planner) to constrain the search space.

The ordered monotonicity property and the associated
restriction can be used to generate abstraction hierar-
chies from a set of operators. For example, to build or-
dered hierarchies, one can impose an ordering relation
upon the literals in a domain, based on Restriction 1.
If the resulting relation is partially ordered, then any
total ordering of the relation gives a criticality assign-
ment to literals that satisfies the ordered monotonicity
property. Algorithms for automatically generating ab-
straction hierarchies based on the ordered monotonic-
ity property are presented in [Knoblock, 1991].

References

[Christensen, 1990] Jens Christensen. A hierarchical
planner that generates its own abstraction hierar-
chies. In Proceedings of Eighth National Conference
on Artificial Intelligence, pages 1004-1009, 1990.

[Knoblock, 1990a] Craig A. Knoblock. Learning ab-
straction hierarchies for problem solving. In Pro-
ceedings of Eighth National Conference on Artificial
Intelligence, pages 923-928, 1990.

[Knoblock, 1990b] Craig A. Knoblock. A theory of ab-
straction for hierarchical planning. In D. Paul Ben-
jamin, editor, Change of Representation and Induc-
tive Bias, pages 81-104. Kluwer, Boston, MA, 1990.

[Knoblock, 1991] Craig A. Knoblock. Automatically
Generating Abstractions for Problem Solving. PhD
thesis, School of Computer Science, Carnegie Mellon

University, 1991. Tech. Report CMU-CS-91-120.

[Sacerdoti, 1974] Earl Sacerdoti. Planning in a hier-
archy of abstraction spaces. Artificial Intelligence,

5(2):115-135, 1974.
[Siklossy and Dreussi, 1973] L. Siklossy

and J. Dreussi. An efficient robot planner which
generates its own procedures. In Proceedings of the
Third International Joint Conference on Artificial
Intelligence, pages 423-430, 1973.

[Tenenberg, 1988] Josh Tenenberg. Abstraction in
Planning. PhD thesis, University of Rochester,
Dept. of Computer Science, 1988.

[Unruh and Rosenbloom, 1989] Amy Unruh
and Paul S. Rosenbloom. Abstraction in problem
solving and learning. In Proceedings of the Eleventh

International Joint Conference on Artificial Intelli-
gence, pages 681-687, 1989.

[Wilkins, 1984] David Wilkins. Domain-independent
p
planning: Representation and plan generation. Ar-

tificial Intelligence, 22(3):269-301, 1984.

[Yang and Tenenberg, 1990] Qiang Yang and Josh D.
Tenenberg. Abtweak: Abstracting a nonlinear, least
commitment planner. In Proceedings of Eighth Na-
tional Conference on Artificial Intelligence, pages

204-209, 1990.

