Automatically Abstracting the Effects of Operators

Eugene Fink
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L3G1
efink@violet.waterloo.edu

Abstract

The use of abstraction in problem solving is
an effective approach to reducing search, but
finding good abstractions is a difficult prob-
lem. The first algorithm that completely au-
tomates the generation of abstraction hierar-
chies is Knoblock’s ALPINE, but this algo-
rithm is only able to automatically abstract
the preconditions of operators. In this pa-
per we present an algorithm that automat-
ically abstracts not only the preconditions
but also the effects of operators, and pro-
duces finer-grained abstraction hierarchies
than ALPINE. The same algorithm also for-
malizes and selects the primary effects of op-
erators, which is thus useful even for plan-
ning without abstraction. We present a the-
orem that describes the necessary and suffi-
cient conditions for a planner to be complete,
when guided by primary effects.

1 INTRODUCTION

Recently, there has been an increasing amount of inter-
est in formalizing abstraction and abstract problem-
solving. Much work has stemmed from Sacerdoti’s
ABSTRIPS system [Sacerdoti, 1974], which builds an
abstraction hierarchy by systematically eliminating
preconditions of operators. Given a problem space and
a hierarchy of abstractions, a hierarchical problem-
solver first solves a problem in an abstract space, and
then refines it in successively more detailed spaces.
Abstraction often reduces the complexity of search by
dividing up a problem into smaller subproblems.

A notable achievement in recent research is Knob-
lock’s ALPINE system [Knoblock, 1991], which com-
pletely automates the formation of abstraction hier-
archies. The hierarchies that ALPINE constructs sat-
isfy the ordered property [Knoblock et al., 1991], which
states that while refining an abstract plan on a con-
crete level, no abstract-level predicate will be changed.

Qiang Yang
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L3G1
qyang@logos.waterloo.edu

To a large extent, the property is successful in for-
malizing an important intuition behind the use of ab-
straction: one wants to preserve the abstract-plan
structure while adding concrete-level operators. Ex-
periments [Knoblock, 1991] have demonstrated that in
many problem domains, ALPINE gains an exponential
amount of savings in planning time.

The ability for a problem-solver to reduce search re-
lies heavily on the quality of an abstraction hierarchy
it generates. A problem with ALPINE is that it of-
ten generates a hierarchy with too few levels. In some
cases, the entire hierarchy collapses into a single level.
The “collapsing-problem” of ALPINE makes it inca-
pable of handling many real-life domains.

In this paper, we present a new algorithm for gener-
ating abstraction hierarchies that satisfy the ordered
property. The new algorithm addresses the collapsing
problem of ALPINE by providing more levels of hier-
archies than ALPINE does. It often succeeds in cases
where ALPINE fails to create a multi-level hierarchy.
The intuition behind our success is due to the fact
that our algorithm automatically abstracts not only
preconditions but also the effects of operators. On
the other hand, ALPINE only abstracts the precond:-
tions of operators automatically, while its abstraction
of effects depends critically on a set of user-provided
primary-effects.

The paper starts by reviewing the terminology used
in the planning literature and a brief discussion of the
ALPINE system. Then we provide a theory for con-
structing abstraction hierarchies, and demonstrate the
application of the described method via theorems and
examples. Finally, we will discuss the advantages and
possible shortcomings of our approach, and methods
for fixing the shortcomings.

2 ABSTRACTION IN PLANNING:
A REVIEW

We follow the terminology used in [Knoblock et al.,
1991]. A planning domain consists of a set of literals

and a set of operators. Each operator « is defined by
a set of precondition literals Pre(«) and effect literals

Eff ().

A state of the world is a set of literals. Applying an op-
erator o produces a new state, where all literals from
Eff («) hold, and all literals that do not conflict with
Eff (o) are left unchanged. For example, suppose p;
and py are some atomic statements in a problem do-
main. The corresponding literals are p1, ps, —p1, and
—pa. Let Eff (@) = {—p1}. Then applying « to a state
S = {p1, p2} produces a new state S = {—p1,p2}.

A plan IT = (a1,...,a,) is a sequence of operators,
which can be applied to a state by executing each
operator in order. An nitial state Sy is a state of
the world before executing plan, and S; is the state
achieved by executing first ¢ operators of II. A plan
I = (a1,...,a,) is legal relative to an initial state
if the preconditions of each operator are satisfied in
the state in which the operator is applied, i.e. (Vi €
[1...n]) Pre(a;) C Si—1.

A planning problem is a pair (S, Sy), where Sy is an
initial state, and S, is a goal state. A plan Il is correct
relative to the planning problem (Sp,S,) if II is legal
relative to Sy and the goal is satisfied in the final state:
Sy C Sy.

To build an abstraction hierarchy, one can associate
some natural number, called criticality, with every lit-
eral in the problem domain. While solving problem at
the i-th level of abstraction, we ignore all literals with
criticality less than i. Abstract planning is usually
done in a top-down manner: first we find an abstract
solution at the highest level of abstraction. Then we
refine it to account for successive levels of details. The
process of transforming a correct plan II from level ¢
to a correct plan at a lower level is called refinement.
Given a correct plan II at level ¢ of abstraction, the
refinement process can be briefly described as follows:

1. Add the level i —1 literals into both the precondi-
tions and effects of operators, and initial and goal
states in II

2. Add operators that achieve these new literals.

This concept of refinement captures the intuition be-
hind plan refinements not only in ABSTRIPS, but also
in the task-network based planning systems, such as
SIPE [Wilkins, 1984] and NONLIN [Tate, 1977].

For a given set of operators, different criticality as-
signments may result in different behavior in problem
solving. We would like an abstraction hierarchy to help
reduce the complexity of planning. Ordered hierar-
chies, introduced in [Knoblock et al., 1991], are aimed
at achieving this goal. Informally, an abstraction hier-
archy is an ordered hierarchy if every refinement of an
abstract plan leaves the abstract plan structurally un-
changed. Experiments have shown that the ordered

hierarchies often increase the efficiency of planning
algorithms exponentially [Knoblock, 1991]. ALPINE
has been implemented by Knoblock to automatically
generate ordered hierarchies that conform with human
intuition behind “good” hierarchies. Hierarchies gen-
erated by ALPINE are based on the following syntactic
restriction:

Restriction 1 (Ordered restriction)

Let O be the set of operators in a domain. Yo €
O, Vey, ey € Eff(a), and Yp € Pre(a) such that p is
achieved by some operator,

(1) crit(eq) = crit(es), and
(2) crit(ey) > crit(p).

Intuitively, all effects of an operator have the same
criticality, and their criticality is at least as great as
the criticalities of operator’s preconditions (except the
preconditions that cannot be achieved by any opera-
tor).

Consider the Tower of Hanoi domain with 3 pegs and
3 disks. Let the three pegs be Py, P, and Ps, and
let the disks be Large, Medium and Small. We can
represent the locations of the disks using literals of
the form OnLarge(z), OnMedium(z), and OnSmall(z).
The operators for moving disks can be represented as
shown in Table 1. Observe that the literals of the form
IsPeg(x) cannot be achieved by any operator, while all
other literals may be achieved by some operator.

We may assign criticality 3 to each IsPeg literal, crit-
icality 2 to each OnLarge literal, criticality 1 to each
OnMedium literal, and criticality 0 to each OnSmall
literal. It is not hard to verify that this assignment
satisfies the Ordered Restriction.

3 A MOTIVATING EXAMPLE

Suppose that in the Tower of Hanoi example, we add
the operators that can move two disks at a time, as
long as both disks are on the same peg, and there are

no disks between them. The extra operators are listed
in Table 2.

ALPINE fails to generate a hierarchy for this new do-
main: all literals collapse into a single level of abstrac-
tion. To see this, observe that according to State-
ment 1 of the Ordered Restriction, all effects of op-
erators must have the same criticality. The oper-
ator MoveL M has effects OnLarge and OnMedium,
and therefore crit(OnLarge) = crit(OnMedium). Sim-
ilarly, for effects of the operator MoveMS we have
crit(OnMedium) = crit(OnSmall).

So the only criticality assignment satisfying the Or-
dered Restriction is

crit(OnLarge) = crit(OnMedium) = crit(OnSmall).t

!One may easily verify that a hierarchy collapses into a

Table 1: Operators For the Tower Of Hanoi

|| Preconditions

Effects ||

MoveL(x,y)

IsPeg(x),

—OnMedium(y), OnLarge(x)

IsPeg(y),
—OnSmall(x), =OnSmall(y), ~OnMedium(x),

—OnLarge(x), OnLarge(y)

MoveM(x,y)

WPeg), TePea(y),
—OnSmall(y), OnMedium(x)

—OnSmall(x),

—OnMedium(x), OnMedium(y)

MoveS(x,y)

IsPeg(x), IsPeg(y), OnSmall(x)

| “OnSmall(x), OnSmall(y)

Table 2: New Operators For the Tower Of Hanoi

|| Preconditions

Effects ||

MoveLM(x,y

BPeg(x), TPeg(y),

—OnSmall(x),
—OnSmall(y), OnLarge(x), OnMedium(x)

—OnLarge(x), OnLarge(y),
-OnMedium(x), OnMedium(y)

Move MS(x,y)

IsPeg(x),
OnMedium(x)

IsPeg(y),

OnSmall(x),

—OnMedium(x), OnMedium(y),
—OnSmall(x), OnSmall(y)

MoveLS(x,y)

—OnMedium(x), “OnMedium(y)

IsPeg(x), IsPeg(y), OnLarge(x), OnSmall(x),

—OnSmall(x), OnSmall(y),
—OnLarge(x), OnLarge(y)

Notice that even with the operators for moving two
disks, intuitively it is still true that moving the large
disk is more difficult than moving the small one. Thus,
intuitively one should still consider the movement of
a large disk at an abstract level. This example shows
a shortcoming of ALPINE: the addition of a few new
operators may collapse an abstraction hierarchy into
a single level, even though intuition tells us that the
abstraction hierarchy should stay intact.

The purpose of this paper is to remove this deficiency
of ALPINE. In the sections below, we achieve this by
presenting a new algorithm that constructs abstraction
hierarchies and still preserves the ordered monotonic-

ity property.

4 ORDERED HIERARCHIES WITH
PRIMARY EFFECTS

A key point to observe in the above example is that,
if we want to move the small disk alone, we do not
use the operator MovelLS or MoveMS. It is more nat-
ural to move the small disk with the operator MoveS.
Similarly, we use the MovelL M operator if we want to

single level even if we use problem-specific ordered restric-
tions [Knoblock, 1991].

move either the large disk?, or the large and medium
disks together. But we do not use MovelL M to move
the medium disk alone. In other words, an opera-
tor is used for the sake of its primary effects. In the
Tower of Hanoi example, we can envision OnLarge(y)
as the primary effect of the operator MovelS(z,y),
and OnSmall(y) as its side effect. The set of primary
effects of the Tower of Hanoi operators are listed in

Table 3.

As another example, suppose you are going to a com-
puter shop to buy diskettes. The primary effect of this
action is obtaining diskettes — this is your main goal.
Side effects are spending $20, having a pleasant walk
on a sunny day, wearing your shoes, and so on.

The purpose of recognizing primary effects is to re-
duce the complexity of a problem-solving process by
reducing the branching factor of search space. When
achieving some literal, a problem-solver needs to con-
sider only operators whose primary effects contain this
literal. If a problem-solver uses operators only for the
sake of their primary effects, it is said to be primary-
effect restricted. ALPINE is primary-effect restricted,

?The reason to use MoveLM when we need to move
only the large disk is that the medium disk may be above
the large one, in which case we cannot use Movel without
removing the medium disk first.

Table 3: Primary Effects Of Operators In the Extended Tower Of Hanoi.

Operators Primary Effects Operators Primary Effects
MoveL(x,y) OnLarge(y) Move LM(x,y) OnLarge(y)
MoveM(x,y) | OnMedium(y) MoveMS(x,y) | OnMedium(y)
MoveS(x,y) OnSmall(y) MoveLS(x,y) OnLarge(y)

but the primary effects of operators have to be pro-
vided by the user. Therefore, an extension of ALPINE
would be to consider methods for automatically find-
ing the primary effects that facilitate abstraction.

In the next section we present an algorithm for au-
tomatically finding the primary effects of operators.
But for now, we assume that the primary effects of
the operators in a domain have been found. The
set of primary effects of an operator « is denoted by
Prim-Eff(a). We now consider how to construct a
finer-grained ordered abstraction hierarchy based on
the primary effects. Consider the following modified
ordered restriction:

Restriction 2 Let O be the set of operators in a do-
main. Yo € O, Ve € Eff(a), Ver,es € Prim-Eff(«a),
and Vp € Pre(a) such that p is achieved by some op-
erator,

(1) crit(eq) = crit(eq),

(2) crit(ey) > crit(e), and

(3) crit(ey) > crit(p).

This restriction formalizes the syntactic conditions
behind the algorithm used by ALPINE ([Knoblock,
1991], page 83). For a primary-effect restricted
problem-solver, Restriction 2 provides a sufficient con-
dition to guarantee a hierarchy to be ordered:

Theorem 1 If a planner is primary-effect restricted,
then every abstraction hierarchy satisfying Restric-
tion 2 1s ordered.

That is, if an abstraction hierarchy satisfies Restric-
tion 2, then no new operators in the refinement of an
abstract plan achieves an abstract literal, as long as
the problem-solver is primary-effect restricted. To see
that the theorem holds, consider the achievement of
a precondition literal { at level (¢ — 1) during the re-
finement of an abstract plan. Suppose an operator «
is selected for achieving [. Since our problem-solver
is primary-effect restricted, [is a primary effect of
a. The criticalities of all other effects of a are not
greater than (i — 1), and therefore no higher-level lit-
erals are achieved by a. For a more formal proof, see
[Fink, 1992]. It is easy to create an algorithm that au-
tomatically generates an abstraction hierarchy based
on Restriction 2.

5 AUTOMATICALLY SELECTING
PRIMARY EFFECTS

The construction of an ordered abstraction hierarchy
for a primary-effect restricted problem-solver is based
on a definition of primary effects for the set of opera-
tors in a domain. For each planning domain, there are
different ways to define primary effects, which can be
grouped into the following three categories:

1. All Effects Are Primary Effects. This option
is implicitly used in the syntactic restriction given
in [Knoblock et al., 1991], and used as default by
ALPINE if no primary effects are provided by the
user. As we have demonstrated, it often creates
too few number of abstraction levels.

2. User-Defined Primary Effects. This is the ap-
proach taken by ALPINE, and many other sys-
tems. For example, the ABTWEAK system
[Yang et al., 1991] depends on the user to define
the set of primary effects of operators.

3. Automatically Selecting Primary Effects.
This is the approach we are taking. We now give
a more detailed description of the algorithm.

For each operator, a definition of primary effects
should make a clear distinction between those effects
that are important, and those that are not. A good
distinction thus relies on a formalization of what 1s im-
portant. The notion of importance that we follow is
based on the intuition of ordered hierarchies:

Given two effects epr; and egec of an operator
@, €pri 1s more important (i.e., primary) than
esec 1f 1t 1s possible to achieve ege. without
violating epri, while to achieve ey, one has to
violate egec.

In other words, es.. is easier to achieve compared to
epri, because it is possible to achieve it without vio-
lating epri. As an example, one can have a pleasant
walk without going to a computer shop, but to buy
diskettes, one has to go to a computer shop. Thus,
taking a walk is a secondary effect of going to a com-
puter shop as compared with buying diskettes.

From Theorem 1, every choice of primary effects that
satisfies Restriction 2 results in an ordered hierarchy.
But different choices of primary effects give rise to

different hierarchies. The finest distinction between
primary and secondary effects also corresponds to an
ordered hierarchy with the greatest number of abstrac-
tion levels. Therefore, when finding the primary effects
of operators, we strive to maximize the total number
of abstraction levels for an ordered hierarchy.

Our strategy is to augment the ALPINE algorithm
by providing it with a facility of choosing primary ef-
fects. ALPINE constructs an abstraction hierarchy
by building a constraint graph of literals. The liter-
als in a problem domain are represented as nodes of
a directed graph. Constraints are represented as di-
rected edges. An edge from /5 to [indicates that
crit(ly) > crit(lz). Initially, the graph is a set of lit-
erals without any constraints. When the algorithm
terminates, the strongly connected components of the
graph correspond to abstraction levels. The abstrac-
tion levels also relate closely to the primary effects for
each operator: an effect e; is primary if it has a criti-
cality value no less than the other effects of the same
operator. Our algorithm will thus try to leave as many
strongly connected components as possible.

To avoid an exhaustive search, we use a greedy algo-
rithm. The algorithm uses a heuristic for incremen-
tally adding edges to the graph, attempting to im-
pose as few constraints as possible. To do this, the al-
gorithm processes operators which impose the fewest
number of constraints first, and consider the operators
which have the potential to impose a large number of
constraints later. A heuristic function for determining
the amount of constraints equals the total number of
effects of an operator. At the same time, we also try to
guarantee planning completeness, by making sure that
every operator has a primary effect, and every literal
is the primary effect of at least one operator.

To sum up, our algorithm first sorts the operators in
ascending order of the number of their effects. While
building the constraint graph and choosing primary
effects, the algorithm starts by considering operators
each of which achieves exactly one literal. Thus, for
each operator a that has a unique effect e, we make e
the primary effect of @, and add directed edges from e
to all preconditions of av. Then we consider each literal
achieved by a unique operator. Since each achievable
literal must be a primary effect of some operator, we
make every literal achieved by a unique operator a pri-
mary effect of the corresponding operator. In the next
iteration, we consider the set of operators that estab-
lishes two distinct literals, and the literals that are
achieved by two different operators. At the i-th step,
the algorithm performs the following two operations:

e choose primary effects of each operator that es-
tablishes ¢ different literals, and

o for every literal [that is achieved by i different
operators, make [a primary effect of one of the
corresponding operators.

Each choice of a primary effect will add edges to the
constraint graph. Given an operator with m effects,
there are m possible choices. The best choice is dic-
tated by maximizing the total number of strongly con-
nected components in the constraint graph. In other
words, the algorithm uses a greedy strategy by making
locally optimal choice at each step.

Our algorithm, Choose_Primary_Effects, is shown in
Table 4. Its input is a set of operators in a domain,
and it outputs a selection of primary effects for each
operator. It gives the user the option to define pri-
mary effects of some (not necessarily all) operators,
and then chooses primary effects of the remaining op-
erators. The notation || Graph|| refers to the total num-
ber of strongly connected components in the graph.

We now give a more detailed description of the al-
gorithm. Line 2 of the main algorithm adds edges
defined by Restriction 2 for the user-defined pri-
mary effects. Then the algorithm chooses primary
effects of the remaining operators. At the i-th
step, we choose primary effects of operators that
achieve ¢ literals. This is performed by the algorithm
Choose_Prim_Effects_Of-Operator. Let a be an oper-
ator, ey,€es,...,e; be effects of a, and Graph be the
constraint graph before a primary effect of « is cho-
sen. First the algorithm tries to make e; a primary
effect of an operator, by adding directed edges from
e1 to all other effects of & and to all preconditions of
o, thus creating a new graph Graph,. Then the algo-
rithm tries to make e5 a primary effect of @ and creates
the corresponding graph Graph,. Similarly, it gener-
ates Graphg,...,Graph;. After all graphs are gener-
ated, the algorithm counts the number of strongly con-
nected components in each of the graphs, and chooses
the graph Graph; with the largest number of compo-
nents. e; is then chosen as a primary effect of a. This
operation is performed for all operators that achieve 7
distinct literals.

The algorithm next considers all literals achieved
by ¢ different operators, and make each literal
a primary effect of one of the corresponding op-
erators. This is performed by the procedure
Make_Literal_Be_Prim_Effect, which is similar to
Choose_Prim_Effect_Of_Operator. For the lack of
space, we do not present it here. Interested readers
can refer to [Fink, 1992].

After the Graph is completely built, line 10 of the main
algorithm chooses the remaining primary effects of op-
erators according to the imposed constraints: for each
operator «, the criticality of every effect of « is com-
pared with the criticality of the primary effect found by
the procedure Choose_Prim_Effect_Of Operator. All
effects of o whose criticalities are equal to the criti-
cality value of the primary effect, are added to the set
of primary effects of a.

It can be shown that the running time of the algorithm
is O(IL]* - Y qeo | Eff (@)]), where L is the set of all
literals in the problem domain, and O is the set of all
operators in the problem domain.

As an example, we consider the Extended Tower of
Hanoi domain. Each of the operators Movel, MoveM,
and MowveS achieves one literal, and at the first step
the algorithm makes this literal a primary effect. Af-
ter performing this step the graph G is as shown on
Figure la. Then the algorithm considers operators
that achieve two distinct literals. These operators
are MovelL M, MoveMS, and MoveLS. The effects of
MoveLM are OnLarge and OnMedium. One of them
must be chosen as a primary effect. If OnLarge is a pri-
mary effect, its criticality must be at least as great as
the criticality of OnMedium and the criticalities of all
preconditions of MovelL M. These restrictions already
hold in G, so it is not necessary to add new constraints.
If OnMedium is chosen as a primary effect of Movel M,
we must have crit(OnMedium) > crit(OnLarge). Af-
ter the constraint defined by this inequality is added
to G, we receive a new graph G’ shown in Figure 1b.
G’ contains fewer strongly connected components than
(. Since the purpose is to maximize the number of
strongly connected components, the algorithm finally
chooses OnlLarge to be a primary effect of Movel M.
Then the algorithm uses the same method to choose
primary effects of MoveMS and MovelS. One may
check that the algorithm chooses OnMedium to be a
primary effect of MoveMS, and OnLarge to be a pri-
mary effect of MovelS. According to Restriction 2,
the predicates OnLarge, OnMedium and OnSmallhave
criticality values 2, 1, and 0, respectively.

6 ADVANTAGES AND
LIMITATIONS OF USING
PRIMARY EFFECTS

In this section, we discuss the advantages and limi-
tations of an abstraction hierarchy based on Restric-
tion 2, as compared to a hierarchy built by ALPINE.
We compare two types of abstraction levels in terms
of the number of hierarchies generated by each algo-
rithm, and discuss the completeness of the resulting
planning system.

First observe that the number of abstract levels gen-
erated by our algorithm is always no less than that
generated by ALPINE. This is because our algorithm
imposes criticality constraints only for primary effects,
while ALPINE imposes constraints for all effects of an
operator, unless the primary effects are provided by
the user.

Second, if we need to establish some literal {, we may
use only operators with a primary effect [, not all the
operators that achieve {. This reduces the branching
factor of search.

Table 4: Creating an Ordered Hierarchy

Choose_Primary_Effects
1. Graph := create a directed graph where
(a) every literal in the problem domain
is represented as a node, and
(b) there are no edges between the nodes
Add_Constraints_For_User-Defined _Prim_Effects;
fori:=1tondo
begin
for each a that achieves 7 distinct literals do
if the user have not defined prim. effects of «
then Choose_Prim_Effect_Of_Operator(a);
for each [achieved by i distinct operators do
if [is not yet a prim. effect of some operator
then Make_Literal Be _Prim_Effect(!);
end;
10. Choose_Prim_Effects_According_To_Graph
11. Topological _Sort

W N

WO 00 ~J O O

Choose_Prim_Effect _Of_Operator(«)
1. Maz_Number_Of-Comps := 0;
2. for each e; € Eff(a) do

begin

3. Graphl := Graph;
4. for each e; € Eff () do
3. add an edge in Graphl from e; to es;
6. for each p € Pre(a) do
7. if p can be achieved by some operator
8. then add an edge in Graphl from e; to p;
9. Combine_Strongly _Connected _Comps(Graphl);
10. if ||Graphl|| > Maz_Number_Of-Comps
then
begin
11. Graph2 := Graphl,
12. primary = ey}
13. Maz_Number_Of Comps = || Graphl||
end
end;

14. Graph := Graph2;
15. Prim-Eff(a) := {primary}

OnLarge

/N

OnMedium — OnSmall

(a) Graph G

OnLarge

2N\

OnMedium — OnSmall

(b) Graph G’

Figure 1: Graphs In the Extended Tower Of Hanoi Example

Now we discuss the completeness of a system based
on the abstraction hierarchy produced by our algo-
rithm. Ideally, we would like an abstraction hierarchy
to have the monotonic property. The monotonic prop-
erty holds if for every solvable problem there exists a
justified 3 abstract-level plan that can be refined to a
concrete-level plan that solves the problem. Yang and
Tenenberg have shown that every abstraction hierar-
chy satisfy this property [Yang et al., 1991]. However,
this claim holds only for problem-solvers that do not
use primary effects. A primary-effect restricted plan-
ner applied to an abstraction hierarchy may not satisfy
the monotonic property.

To solve the completeness problem, we present a the-
orem that allows us to test whether given hierarchy
(built with primary effects) has the monotonic prop-
erty. Let S be a state, and a be an operator whose
preconditions are satisfied in S. Let [y,...,l; be the
primary effects of a, and l41,. .., 1, be its side effects.
We say that « is replaceable on a lower level for an ini-
tial state S if there exists some plan II with an initial
state S such that II achieves all side effects of o and
leaves all other predicates unchanged. In other words,
all side effects of @ may be achieved on some lower
level of abstraction without violating any higher-level
literals and any other low level literals. In our exam-
ple with the computer shop, this means that you can
spend $20 and have a walk without bying diskettes.

Theorem 2 A hierarchy has the monotonic property
if and only if for every state S and for every operator o
whose preconditions are satisfied in S, o s replaceable
on a lower level for the initial state S.

The reason why this theorem holds may be explained
informally as follows. Suppose we have some plan-
ning problem and a concrete-level plan II that solves
this problem. Let II’ be a justified version of II on
the abstract level. Such a version always exists by
the Upward Solution Property [Tenenberg, 1988]. We
wish to show that II’ may be refined on the concrete
level. II may not be a concrete-level refinement of II’,
since it may contain additional operators that achieve
abstract-level literals. But all operators inserted into
I’ are used to achieve concrete-level literals. So if some

?A plan is justified if every operator either directly or
indirectly contributes to achievement of a goal. In other
words, a justified plan does not contain “useless” operators.

inserted operator has primary effects on the abstract
level, it is inserted only for the sake of its side effects.
The operator is replaceable, so we may replace it with
a sequence of operators that achieve only its side ef-
fects, and leave all abstract-level literals intact. Let
us replace all the newly inserted operators that have
abstract-level effects with sequences of operators that
achieve only their side effects. Our plan is still cor-
rect, and all operators inserted into II’ now have only
concrete-level effects. So, this new plan is a concrete
level refinement of II'.

Based on this theorem, we can build an algorithm to
test whether a particular selection of primary effects
yvield a monotonic hierarchy. It can be verified that the
Tower of Hanoi domain, with the extended operators
and the chosen primary effects satisfies the conditions
of the theorem.

7 A ROBOT-DOMAIN EXAMPLE

In this section we demonstrate the result of applying
our algorithm to a simple robot domain taken from
[Yang et al., 1991], which is a simplification of the do-
main from [Sacerdoti, 1974]. In this domain there is a
robot that can walk within several rooms. Some rooms
are connected by doors, which may be open or closed.
In addition, there are a number of boxes, which the
robot can push either within a room or from one room
to another. Figure 2 shows an example of a robot do-
main. The domain may be described by the following
predicates:

open(d)
boz-inroom(b,r)
boz-at(b, loc)
robot-inroom(r)
robot-at(loc)
location-inroom(loc, r)
is-door(d)

is-boz(b)

door d is open

box b 1s in room r

box b 1s at location loc
the robot is in room r

the robot is at location loc
location loc is in room r

d 1s a door

b 1s a box

(Observe that the last three predicates are not achiev-
able.) The list of operators in this domain, described

on LISP, is given in Table 5.

A straightforward application of Restriction 1 to
this domain fails to produce a multilevel hierarchy,

Table 5: The Operators Of the Robot World

—---- Operators For Moving Within a Room ----

; Go to Location within room
(setq o1 (make-operator
:name ’(goto-room-loc $from $to $room)
:preconditions ’(
(location-inroom $to $room)
(location-inroom $from $room)
(robot—inroom $room)
(robot—-at $from))

ceffects ’(
(not robot-at $from) ;**
(robot-at $to)))) ;R*

; Push box between locations within a room
(setq 02 (make-operator
:name ’ (push-box $box $room $box-from-loc
$box-to-loc robot)
:preconditions ’(
(is-box $box)
(location-inroom $box-to-loc $room)
(location-inroom $box-from-loc $room)
(box-inroom $box $room)
(robot-inroom $room)
(robot-at $box $box-from-loc)
ceffects ’(
(not robot-at $box-from-loc)
(not box-at $box $box-from-loc) ;**
(robot-at $box-to-loc)
(box—-at $box $box-to-loc)))) 5 *k

—-—--- Operators For Moving Between Rooms —----

; Push box through door between two rooms
(setq 03 (make-operator
:name ’ (push-thru-dr $box $door-nm
$from-room $to-room
$door-loc-from
$door-loc-to robot)
:preconditions ’(
(is—-door $door-nm $from-room $to-room
$door-loc-from $door-loc-to)
(is-box $box)
(box-inroom $box $from-room)
(robot-inroom $from-room)
(box-at $box $door-loc-from)
(robot-at $door-loc-from)
(open $door-nm))
ceffects ’(
(not robot-inroom $from-room)
(robot-inroom $to-room)

(not box-inroom $box $from-room) s *k
(box-inroom $box $to-room) s *k
(robot-at $door-loc-to)

(box-at $box $door-loc-to) sk

(not robot-at $door-loc-from)
(not box-at $box $door-loc—from)))) ;*x*

; Go through door between two rooms
(setq o4 (make-operator
:name ’(go-thru-dr $door-nm $from-room
$to-room $door-loc-from
$door-loc-to)
:preconditions ’(
(is-door $door-nm $from-room $to-room
$door-loc-from $door-loc-to)
(robot-inroom $from-room)
(robot-at $door-loc-from)
(open $door-nm))
ceffects ’(
(robot-at $door-loc-to) sk
(not robot-at $door-loc—from) ;*x*
(not robot-inroom $from-room) ;**
(robot-inroom $to-room)))) s ®*

—---- Operators For Opening and Closing Doors ---—-

; Open door
(setq o5 (make-operator
:name ’ (open $door-nm $from-room $to-room
$door-loc-from $door-loc-to)
:preconditions ’(
(is-door $door-nm $from-room $to-room
$door-loc—from $door-loc-to)
(not open $door-nm)
(robot-at $door-loc-from))
reffects ’(
(open $door-nm)))) ;**

; Close door
(setq 06 (make-operator

:name ’(close $door-nm $from-room $to-room
$door-loc—from $door-loc-to)
:preconditions ’(
(is—door $door-nm $from-room $to-room
$door-loc—-from $door-loc-to)
(open $door—-nm)
(robot-at $door-loc-from)
teffects 7 (
(not open $door-nm)))) L

Room 2 Room 3

N N
N\ AN

Box 2 Robot/lil\

Room 4 | Room 5

Room 1

Box 1

Figure 2: Example of a Robot Domain

level 1 box-inroom, box-at

level 0

robot-inroom, robot-at, open

Figure 3: Abstraction Hierarchy In the Robot Domain

while the algorithm Choose_Primary_Effects divides
the achievable predicates of the robot domain into two
abstraction levels shown in Figure 3. The primary ef-
fects of operators chosen by the algorithm are marked
by “ *x” in Table 5.

8 CONCLUSION

This paper presents an extension of Knoblock’s
ALPINE algorithm for automatically generating ab-
straction hierarchies. Using the notion of primary
effects and primary-effect restricted problem-solvers,
we are able to generate ordered hierarchies where
ALPINE fails. The algorithm for finding primary ef-
fects is also novel in automatically selecting primary
effects in a given domain. We also discussed possible
shortcomings and advantages of our system as com-
pared to ALPINE.

An important extension of the described method is the
algorithm that generates problem-specific ordered hi-
erarchies based on primary effects. Such hierarchies
are built based on individual problem instances. We
have found such an algorithm, a description of which
is presented in [Fink, 1992]. It allows one to generate
an ordered hierarchy for a specific goal, while permit-
ting the resulting hierarchy to be finer-grained than a
problem-independent hierarchy.

The method for finding primary effects presented in
the paper is purely syntactic. A possible direction
of future work is to address the semantic meaning of
primary effects. Another open problem is to find an
algorithm that generates a hierarchy with the maxi-
mal possible number of levels, using the A* algorithm.
Such a hierarchy will be particularly useful in a domain

where the same hierarchy will be used many times.

Acknowledgements

The authors are supported in part by a scholarship
and grants from the Natural Sciences and Engineering
Research Council of Canada and ITRC.

References

[Fink, 1992] Eugene Fink. Justified plans and ordered
hierarchies. Master’s thesis, University of Water-
loo, Department of Computer Science, Waterloo,
Ont. Canada, Forthcoming 1992.

[Knoblock et al., 1991] Craig Knoblock, Josh Tenen-
berg, and Qiang Yang. Characterizing abstraction
hierarchies for planning. In Proceedings of the 9th
AAAIL Anaheim, CA, 1991.

[Knoblock, 1991] Craig A. Knoblock. Automatically
Generating Abstractions for Problem Solving. PhD
thesis, School of Computer Science, Carnegie Mel-
lon University, May 1991. Tech. Report CMU-CS-
91-120.

[Sacerdoti, 1974] Earl Sacerdoti. Planning in a hier-
archy of abstraction spaces. Artificial Intelligence,

5:115-135, 1974.

[Tate, 1977] Austin Tate. Generating project net-
works. In Proceedings of the 5th IJCAI pages 888—
893, 1977.

[Tenenberg, 1988] Josh Tenenberg. Abstraction in
Planning. PhD thesis; University of Rochester,
Dept. of Computer Science, May 1988.

[Wilkins, 1984] David Wilkins. Domain-independent
planning: Representation and plan generation. Ar-
tificial Intelligence, 22, 1984.

[Yang et al., 1991] Qiang Yang, Josh Tenenberg, and
Steve Woods. Abtweak: Abstracting a nonlinear,
least commitment planner. Dept. of Computer Sci-
ence, University of Waterloo, Dec. 1991. Research
Report CS-91-65.

