Formalizing Plan Justifications

Eugene Fink *
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L3G1

efink@violet.waterloo.edu

Abstract

This paper formalizes the notion of justified
plans, which captures the intuition behind
“good” plans. A justified plan is one that does
not contain operators which are not necessary
for achieving a goal. The importance of formal-
izing this notion is due to two reasons. First,
it gives rise to methods for optimizing a given
plan by removing “useless” operators. Second,
several important concepts describing abstrac-
tion hierarchies are defined via justified plans.
In the past, relatively few attempts have been
made to formalize such a notion. This paper
defines several different kinds of plan justifica-
tions, presents algorithms for finding a justi-
fied version of a plan, and shows that the task
of finding the best possible justified version of
a plan is NP-complete. Finally, it presents a
greedy algorithm for finding a near-optimal jus-
tified plan in polynomial time.

1 Introduction

While searching for a plan that achieves a certain goal,
we wish to find an efficient plan, which does not contain
“useless” steps. Such a plan can be obtained from an
inefficient plan by removing all operators that are not
necessary for achieving the goal. For example, suppose
that one wishes to prepare tea, by following the plan:
“put a tea bag into a cup; boil water in a kettle; pour
water into the cup”. Suppose that later on one discovers
that the kettle already contains hot water. Then the sec-
ond step of the plan, “boil water”, is no longer necessary
for achieving the goal. After removing the second step,
the resulting plan “put a tea bag into a cup; pour water
into the cup” contains fewer steps while still achieving
the same goal. The operation of removing useless oper-
ators from a plan is known as justification. The main
purpose of our paper is to formalize different ways of
performing plan justifications.

One application of plan justification is to augment a
non-optimal planner such as STRIPS with an optimiza-

*The authors are supported in part by a scholarship and
grants from the Natural Sciences and Engineering Research
Council of Canada.

Qiang Yang *
Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L3G1
qyang@logos.waterloo.edu

tion routine. The resulting plan will then be more ef-
ficient to execute. Another application is reusing old
plans. Suppose that we have found a plan for achieving
goals GG1, G2, and G3. Later on we may use the same
plan to achieve the goal GG; alone. In this case we wish
to find a subset of the initial plan which is “relevant”
to achieving G1, by removing all unnecessary operators.
Thus, justification is useful for adapting an old plan to
new situations.

The notion of justified plans is important not only for
the purpose of optimizing plans, but also for abstract
problem solving. Several important concepts describing
the algorithms for generating abstraction hierarchies are
defined via justified plans. For example, the theoretical
concepts underlying Knoblock’s planner ALPINE [Kno-
block, 1990] are based on the notions of justified plans.
Other results that depend on this notion are presented
in [Tenenberg and Yang, 1990], [Knoblock et al., 1991],
and [Bacchus and Yang, 1991].

In spite of the importance of the concept of justified
plans, relatively few efforts have been made to explore
different kinds of justification. This paper begins to ad-
dress this problem by formalizing and extending the pre-
vious work. We first consider the notion of backward
justified plans that researchers have used before, which
guarantees that each operator in a plan establishes a
literal necessary for achieving a goal. We then present
a definition of well-justified plans. Informally, a plan
is well-justified if none of its operators may be omitted
without violating the correctness of the plan. We also
compare well-justified and backward justified plans in
terms of their qualities. Finally, we consider the task of
finding the “best possible” justification of a given plan,
a subplan of a given plan that cannot be further opti-
mized by removing any subset of its operators. We show
that the task of finding such a subplan is NP-complete.
To satisfy the practical need for efficient planning, we
present a greedy algorithm that finds a near-optimal jus-
tification in polynomial time.

We begin by presenting a formal description of the
problem space language used for describing our results.
Then we consider each type of justification in turn.

2 Problem Space Language

A planning domain consists of a set of literals £ and a
set of operators O. Each operator « is defined by a set
of precondition literals Pre(a) and effect literals Eff{«).

A state of the world is a set of literals. Applying an
operator « to some state produces a new state, where all
literals from Eff(e) hold, and all literals that do not con-
flict with Eff(«) are left unchanged. For example, sup-
pose p; and p, are some atomic statements in a problem
domain. The corresponding literals are p1, ps, —p1, and
—pa. Let Eff (o) = {—p1}. Then applying « to the state
S = {p1, p2} produces the new state S’ = {—p1,p2}.

A linearly ordered plan T = (ay,...,ay) is a se-
quence of operators, which can be applied to some ini-
tial state by executing each operator in order. A plan
I = (ai,...,ay,) is legal relative to an initial state Sp
if the preconditions of each operator are satisfied in the
state in which the operator is applied, i.e. Vi € [1...n],
Pre(a;) C S;—1. A plan II solves a goal state S, if Il is
legal and the goal is satisfied in the final state: S, C S,.
A legal plan that solves the goal S, is called correct rel-
ative to 9.

A partially ordered plan is a set of operators
{a1,@s,...,a,} with a partial order <y on it. This
partial order represents the time-precedence relation be-
tween operators: a; <1 @9 means that a; must be ex-
ecuted before as. A linearly ordered plan II is a lin-
earization of II if it contains all the operators of II and
the order defined by < is not violated, that is for any
a; and a5, if o; < «@j, then a; occurs before «; in II.
A partially ordered plan is legal if all its linearizations
are legal, and it solves a goal S, if all its linearizations
do. Throughout the remainder of the paper all plans are
partially ordered unless otherwise specified.

A plan I’ is called a subplan of II if it is obtained from
IT by eliminating one or more operators. The precedence
relation between the remaining operators must be pre-
served. That is, II’ is a subplan for II if and only if

Vai,as € II'
(1) a1,2 €I and
(2) 1] <1 g & A <1 Q9.

3 Backward Justification

To formalize the notion of justified plans, we first gener-
alize the concept of establishment defined in [Knoblock
et al., 1991] to partially ordered plans.

Definition 1 (Establishment) Let II be a legal lin-
early ordered plan. Let oy and as be two operators of
the plan I, ay,a9 € 10, | € Eff(ay), and | € Pre(az).
Then aq establishes [for aq if

1. a1 < as, and

2. Va €I, if oy < o < ay then |, -l ¢ Eff(a)
We say that «ay possibly establishes a literal l for ay in
a partially ordered plan Il if it establishes | for as in at
least one linearization of 1.

Intuitively this means that the precondition [of the op-
erator as holds before the execution of as, and «; is the
last operator that achieves it.

Definition 2 (Backward justification) Let IT be a
legal plan that achieves a goal S;. An operator o € i
is called backward justified if I € Eff (o) such that o
possibly establishes | either for the goal S, or for another
backward justified operator.

We say that a plan II is backward justified, if all its
operators are backward justified. This definition of jus-
tification was used in the planner ALPINE [Knoblock et
al., 1991]. For linearly ordered plans it is equivalent to
the definition stated in [Tenenberg and Yang, 1990]. For
partially ordered plans, backward justification is weaker
then the justification described in [Tenenberg and Yang,
1990].

An operator is backward justified if it possibly estab-
lishes some literal necessary for achieving the goal. How-
ever, it may happen that [has already been established
before o, and then « is useless in II. Thus backward jus-
tified operators are not “truly justified”. We illustrate
this point with the following example.

Assume that one has a kettle with hot water and an
empty cup, and wishes to have a cup of hot water. The
following plan achieves the goal

1. Pour water into the cup.

2. Put the cup into a microwave.
The second operator is backward-justified, because it
makes the water hot, while no other operator after it
achieves the same goal. However, this operator may still
be removed, because the water was already hot before
its execution. Thus, the second operator is not truly
justified.

Observe that if « is the last operator in some lineariza-
tion of a plan that does not establish any goal literals or
operator preconditions, then it can be removed without
violating correctness of the plan. After its removal, the
plan remains correct. We could then apply the same
procedure recursively, until no more operators can be
removed without violating the correctness of the plan.
This is the basis of the algorithm for finding a backward
justified plan.

The algorithm is shown in Table 3a. It first linearizes
the plan II. Then it checks whether or not the last opera-
tor e in the plan establishes a goal. If o doesn’t establish
any goal, then it should be removed. Then the algorithm
considers the rest of the operators, going from the end
to the beginning of the plan. Each operator that does
not establish any literal for the goal nor for any other
operator is removed. Observe that when we consider an
operator, all operators after this operator that are not
backward justified are already removed. Thus, the op-
erator is not removed only if it establishes a literal for
some backward justified operator, which means that the
operator itself is backward justified. Since the algorithm
proceeds from the end to the beginning of the plan, the
resultant plan is called backward justified.

To check the condition in line 5, we need to check
for every a; € II with the precondition [, if there is a
linearization of the plan II where no operator between
o and oy establishes or removes the literal {. In other
words, for each operator that achieves [or —l, we have

to check whether it is necessarily between o and aq?.
If there is no such an operator, « possibly establishes
[for a;. If the order of operators is represented by a
transitively closed graph, this condition may be checked
in O(|I]) time for each «j, where |II| is the number
of operators in the initial plan. Therefore the search
of a; established by « takes O(|II|?) time. The overall
running time of the algorithm is O(E - |I1|?), where E =
Y aco | Eff(a)], and |Eff ()| is the number of literals in
the set of effects of a.

4 Well Justification

Definition 3 (Well-justification) An operator «; in
a linearly ordered plan T is called well-justified if 3 €
Eff(c;) such that «; establishes | for some operator or
for the goal Sy, and 1 does not hold before oy, that is
I ¢ Si_1.

An operator in a partially ordered plan is called well-
Justified if it is well-justified in at least one linearization
of the plan.

A plan is well-justified if all its operators are well-
justified. Intuitively, an operator is well-justified if it
establishes some literal which has not been established
before, and which is necessary for executing some other
operator. This means that if we remove a well-justified
operator from a plan, the plan is no longer correct. We
state this result as a lemma.

Lemma 1 An operator is well-justified if and only if we
cannot remove it from the plan without violating correct-
ness of the plan.

The next theorem follows directly from the lemma.

Theorem 1 A plan is well-justified if and only if there
1s no operator that can be removed without violating cor-
rectness of the plan.

This theorem shows that well-justification captures
the intuition behind “good” plans: a well-justified plan
does not contain any operator that is not necessary for
achieving the goal. Recall that if a plan II is not back-
ward justified, then any operator that is not backward
justified may be removed without violating the correct-
ness of II. By Theorem 1 this means that II is not
well-justified either. Thus, every well-justified plan is
backward justified. In other words, well-justification is
stronger than backward justification.

For a given legal plan, there might be several distinct
well-justified subplans of the same plan, as the following
example demonstrates.

Suppose one has a kettle of cold water, and needs a
cup of hot water. The following plan would lead to the
desired result

1. Boil water by putting the kettle onto a stove.

2. Pour the water into the cup.

3. Put the cup into a microwave.

This plan is not well-justified, because either the first
or third operator may be skipped without violating the

LAn operator § is necessarily between o and oy, if o < 3
and 8 < a;.

correctness of the plan. Thus, the plan has two well-
justified subplans: one of them consists of the first two
operators, and the other consists of the last two.

The simple algorithm that finds a well-justified sub-
plan of a given plan is shown in Table 3b. The run-
ning time of the algorithm that checks correctness of a
given plan is O(P - |II|*), where P = Y, .o |Pre(a)],
and | Pre(a)| is the number of literals in the set of pre-
conditions of a. Therefore the overall running time of

the algorithm is O(P - [II[*).

5 Perfect Justification

While well-justified plans cannot contain unnecessary
operators, they still may contain unnecessary groups of
operators. This means that while no single operator may
be eliminated from the plan, several operators may be
eliminated together. In particular, a linearly ordered
well-justified plan II = (ay,as,...,,) may contain a
cycle, which means that the same state is achieved twice
during the plan execution. Formally, a sequence of oper-
ators ojq1, @jg2,...,a; in 10 is called a cycle if S; D S;.
Observe that we may eliminate a cycle from II without
violating correctness of II. For example, consider the
following plan of boiling water:

1. Fill a cup with water.

2. Empty the cup.

3. Fill the cup with water again.
4. Put the cup into a microwave.

This plan is well-justified: we cannot skip operator 2, be-
cause then we could not fill the cup again; and we cannot
skip operator 3, because the cup has to be full when we
put it into a microwave. However, we may skip opera-
tors 2 and 3 together. To formalize this observation, we
introduce the notion of perfect justification.

Intuitively, a plan is perfectly justified if no subset of
its operators may be removed from the plan. In other
words, this is the “best possible” justification.

Definition 4 (Perfect justification) A correct plan
IT is called perfectly justified w.r.t. a goal S, if it does
not have any legal proper subplan that achieves the goal.

Just by definition perfect justification is stronger than
all justifications discussed above. Unfortunately, a per-
fect justification of a given plan cannot be found in poly-
nomial time. In this paper we show that the task to find
a perfect justification of a given plan is NP-hard, even for
linearly ordered plans. Moreover, it is NP-hard to check
whether a linearly ordered plan is perfectly justified.

Theorem 2 Suppose we are given a linearly ordered
plan 11 with an initial state Sy and a goal Sy, and we
wish to determine whether this plan is perfectly justified.
This problem is NP-complete.

Sketch of the proof. The problem is trivially NP,
since, given a subplan of II, we may check whether this
subplan is legal and achieves the goal in polynomial time.
To show that the problem is NP-hard, we reduce 3-clause
satisfiability problem to our problem.

Suppose we are given a 3-clause conjunctive normal
form with n distinct variables V1, V5, ..., V,, and k dis-

| operators | preconds | effects
a; (for each i €[1...n]) vl -l
Bi;j (for each V; € Cj) v ¢j, Dij
7i; (for each =V; € Cj) vy ¢j, Dij
6 -y, Wy, ..., | U, 05, ..., v, and all opy;Ts

Table 1: Operators in the proof of NP-completeness

tinct clauses C1,C5, ..., k. For each variable V; we in-
troduce two predicates, vj and v; . For each clause Cj
we introduce a corresponding predicate c;. Finally, for
each pair (V;,C}), where Vj is a variable in the clause
C;, we introduce a predicate p;;. We define a problem
domain that contains all literals defined by the intro-
duced predicates. (Each predicate p gives rise to the two
literals: p and —p.) We define operators in our problem
domain as shown in Table 1.
We define an initial state Sy as follows

o(Vie[l...n]) v; = True and v} = False

o(Vje[l...k]) ¢;j = False

o for all predicates p;; in our domain, p;; = True
and a goal S, as follows:

o(Vje[Ll...k]) ¢;j = True

o for all predicates p;; in our domain, p;; = True
Now we present a linearly ordered plan with the initial
state Sp:

O=(a1,9,...,an, 8, all §;’s, all y;;’s)

where the order of §;;’s and 7;;’s is arbitrary. It is
straightforward to verify that the plan II is legal and
solves the goal S,;. Further, one may show that if i
has a legal proper subplan that achieves the goal, this
subplan cannot contain §, for if some of a-operators is
removed from II, the preconditions of § are not satisfied,
and if one or more @’s or 7’s are removed, ¢ interferes
with achieving the goal. Thus, if I has a legal proper
subplan, this subplan must have the form

=
J— 2 b
0 =(ag,, o, ..., a,, some f;;’s, some ¥;;’s)

It may be shown that the following two statements are
equivalent:

e II has a legal subplan of the form ' that achieves
the goal

o Vi, = Vi, = ... = Vg, = True, and all other vari-
ables Vi, = ... = Vi, = False is a satisfying
assignment of the conjunctive normal form

Thus, the conjunctive normal form has a satisfying as-
signment ¢f and only if the plan II has a legal proper
subplan that achieves the goal, in other words, if and
only if II is not perfectly justified. O

Corollary 1 The problem to find a perfectly justified
subplan of a given plan is NP-complete.
6 Greedy justification

While the task of finding the best possible justified plan
is NP-hard, one can design a greedy algorithm that finds
an “almost” perfect justification. To check “usefulness”

of some operator « in a plan II, the algorithm proceeds
as follows. First, it removes an operator « from the plan.
After a has been removed, some operators of II may be-
come illegal, which means that now their preconditions
are not satisfied before their execution. The algorithm
removes every operator which is the first illegal operator
in at least one linearization of I. Then the algorithm ex-
amines the resulting plan, finds the remaining illegal op-
erators, and again removes all earliest illegal operators.
The algorithm repeats this step until the plan becomes
legal. If this plan still solves the goal, then the initially
removed operator a was not useful, and we say that « is
not greedily justified.

The description of the algorithm is presented in Ta-
ble 3c. The set of illegal operators in line 3 may be
found in O(P - |lI|?) time. The same time is required
for correctness checking in line 6. Finally, computing
the set Earliest_Illegals in line 4 requires O(|I1|?) time,
if the order of operators is represented by a transitively
closed graph. The overall running time of the algorithm
is O(P - |11}3).

As an example, consider again the water-boiling plan:

1. Fill a cup with water.

2. Empty the cup.

3. Fill the cup with water again.
4. Put the cup into a microwave.

Suppose we remove operator 2. Now operator 3 is illegal,
because we cannot fill a cup which is already full, and it
should be removed from the plan. The resulting plan is:
1. Fill a cup with water.
4. Put the cup into a microwave.
which is legal and solves the goal. Thus, operator 2 in
the initial plan is not greedily justified.

If an operator « in a plan is not well-justified, and
we use the algorithm Greedy_Justify_Checking to check
the usefulness of a, then a will be removed at the first
step of execution. The resultant plan is legal and solves
the goal. Thus, if an operator is not well-justified, it
is not greedily justified either, and therefore greedy jus-
tification is stronger than well-justification. Also, the
algorithm is able to detect and remove cycles: if a lin-
early ordered plan contains a cycle a;41,i42,...,0;,
then, while testing usefulness of ;41, the algorithm will
remove «;y1, then a;ya, then o;43, and so on till o,
and then it receives a legal subplan that solves the goal.

A plan is greedily justified if all its operators are greed-
ily justified. It follows from the above discussion that
such a plan is always well-justified and does not contain
cycles. An algorithm that finds a greedily justified sub-
plan of a plan II may be briefly described as follows

kind of subplan | running time

perfectly justified | NP-complete stronger justification
greedily justified | O(P - [II]) 1

well-justified o(P - 1] !

backward justified | O(E - [II[*) weaker justification

Table 2: Kinds of justified subplans and running time to find them

1. for each operator of the plan II
la. use Greedy_Justify_Checking to check
if the operator is greedily justified
1b. if it is not greedily justified, we receive some cor-
rect subplan II’ of II; then we recursively call the
algorithm for II’, to find its greedy justification
2. if all operators are greedily justified, then our plan
is greedily justified, and so a greedily justified
subplan of the initial plan is found

It may be shown that Greedy_Justify_Checking is called
at most |II|? times, and thus the running time of the
algorithm is O(P - [I1]?).

The running time may be considerably improved in
the case of a linearly ordered plan. The algorithm for
this case is shown in Table 3d. To determine whether
some operator « is greedily justified, the algorithm re-
moves this operator and executes the remaining opera-
tors in order. If an illegal operator is encountered, the
algorithm removes this operator and continues to exe-
cute the plan. Thus, it removes all illegal operators and
receives the final state that the plan achieves with the
illegal operators removed. If the goal is not achieved,
then the initially removed operator « is greedily justi-
fied. On the other hand, if the new plan achieves the
goal, than it is an optimized version of the initial plan.
Then we apply our algorithm recursively to check if this
new, shorter plan is greedily justified. The running time
of the algorithm is O((P + E)|II|?), providing the prob-
lem domain contains the finite number of literal classes.

7 Conclusion and Open Problems

This paper formalizes the intuition behind “good” par-
tially and linearly ordered plans. Table 2 presents differ-
ent kinds of justification and running time necessary to
find justified subplan of a plan for each kind of justifica-
tion. Running time is presented for algorithms dealing
with partially ordered sets. Recall that the algorithm to
find a greedily justified version of a linearly ordered plan
is much faster; it takes only O((P + E) - |II|?) time.

The table may be viewed as a spectrum of justified
plans. On one end of the spectrum plans are backward
justified. A backward justified subplan of a given plan is
not hard to find, but it may contain some “useless” oper-
ators. The other end of the spectrum contains perfectly
justified plans. They cannot have any useless operators,
but it is NP-hard to find a perfectly justified subplan of
a given plan.

The results of this paper may be used for creating ab-
straction hierarchies. According to the definition of or-

dered abstraction hierarchies presented in [Knoblock et
al., 1991], different kinds of justification give rise to dif-
ferent ordered hierarchies. More restrictive kinds of jus-
tifications give rise to less restrictive conditions for build-
ing an abstraction hierarchy, resulting in finer-grained
hierarchies. So, using the definitions of well-justified and
greedily justified plans, we may build finer ordered ab-
straction hierarchies than those generated by Knoblock’s
ALPINE. The theoretical results and algorithms that al-
low us to build such finer hierarchies are presented in

[Fink, 1992).

References

[Bacchus and Yang, 1991] Fahiem Bacchus and Qiang
Yang. The downward refinement property. In Pro-
ceedings of the 12th IJCAI pages 286-292, Sydney,
Australia, August 1991.

[Fink, 1992] Eugene Fink. Justified plans and ordered
hierarchies. Master’s thesis, University of Waterloo,
Department of Computer Science, Waterloo, Ont.,
Canada, Forthcoming 1992.

[Knoblock, 1990] Craig A. Knoblock. Learning abstrac-
tion hierarchies for problem solving. In Proceedings
of Eighth National Conference on Artificial Intelli-
gence, pages 923-928, Boston, MA, 1990.

[Knoblock et al., 1991] Craig Knoblock, Josh Tenen-
berg, and Qiang Yang. Characterizing abstraction
hierarchies for planning. In Proceedings of the 9th
AAAIL Anaheim, CA, 1991.

[Knoblock, 1991] Craig A. Knoblock. Automatically
Generating Abstractions for Problem Solving. PhD
thesis, School of Computer Science, Carnegie Mellon
University, 1991. Tech. Report CMU-CS-91-120.

[Sacerdoti, 1974] Earl Sacerdoti. Planning in a hierarchy
of abstraction spaces. Artificial Intelligence, 5:115-
135, 1974.

[Tenenberg, 1988] Josh Tenenberg. Abstraction in Plan-
ning. PhD thesis; University of Rochester, Dept. of
Computer Science, Rochester, NY, May 1988.

[Tenenberg and Yang, 1990] Josh Tenenberg and Qiang
Yang. ABTWEAK: abstracting a nonlinear, least
commitment planner. In Proceedings of Eighth Na-
tional Conference on Artificial Intelligence, pages

923-928, Boston, MA, 1990.

Table 3: ALGORIHMS

Backward_Justification
1. let II be some linearization of II; .
2. for « := (last operator of II) downto (first operator of II) do
begin
Justified := False;
for each ! € Eff () do
if (Jaq € II sth « establishes ! for a1) or (« establishes for Sy)
then /x « is backward justified */ Justified := True;
if Justified=False [+ « is not backward justified */
then remove « from the plan II;
end

OO ~1 O Otk W

(a) Finding the backward justified subplan of a given plan.

Well_Justification

1. repeat

2 for each a € II do

3. if I without « is legal and achieves the goal

4 then remove «a from II

5. until no operator is removed during the last execution of the loop

(b) Finding a well-justified subplan of a given plan.

Greedy _Justify_Checking (1T,)

1. remove « from II

2. repeat

3. Illegals := “the set of illegal operators of 117,

4. Earliest_Illegals := {a' € Illegals | (Yoy € II) a1 < & = a1 & Illegals}

/+ That is Farliest_Illegals is the set of earliest illegal operators x/;

remove all operators of the set Farliest_Illegals from II;

until I does not contain illegal operators;

if II still achieves the goal
then return(“Il is a legal subplan of the initial plan”)
else return(“e in the initial plan is greedily justified”)

O oo =~ O Ot

(c) Checking if the operator « in the plan II is greedily justified.

Linear_Greedy Justification(II, Sy, S,)
1. for each o € I do

begin
II; := II with o removed;
S := Sp;

for a;:= (first operator of II;) to (last operator of II;) do
if Pre(a1) €S /+ aj islegal */
then /x execute oy x/ S := state received by applying ay to S
else remove a; from Ii;
if S; C S /+ II; achieves the goal Sy */
then return(Linear_Well Justification(II1, So, Sy))

WO 00~ O O i L N

end;
10. return(II)

(d) Finding a greedily justified subplan of a linearly ordered plan.

