Theory and Algorithms for Plan Merging

David E. Foulser * Ming Li Qiang Yang *

Abstract

Merging operators in a plan can yield significant savings in the cost to execute a
plan. This paper provides a formal theory for plan merging and presents both optimal
and efficient heuristic algorithms for finding minimum-cost merged plans. The optimal
plan-merging algorithm applies a dynamic programming method to handle multiple
linear plans and is extended to partially ordered plans in a novel way. Furthermore,
with worst and average case complexity analysis and empirical tests, we demonstrate
that efficient and well-behaved approximation algorithms are applicable for optimizing
plans with large sizes.

*Silicon Graphics Computer Systems, M/S TU-550, 2011 N. Shoreline Blvd., Mountain View, CA 94039,
USA. Supported in part by Office of Naval Research grant N00014-86-J-1906 and by NIH Grant R01 LM05044
from the National Library of Medicine.

IDepartment of Computer Science, University of Waterloo. Waterloo, Ontario, Canada, N2L 3G1. Sup-
ported in part by NSERC operating grants OGP0036747 and OGP0046506.

{Department of Computer Science, University of Waterloo. Waterloo, Ontario, Canada, N2L 3G1. Sup-
ported in part by NSERC operating grant OGP0089686 and an ITRC grant.

1 Introduction

1.1 The Plan Merging Problem

The value of helpful or positive interactions among the different parts of plans was recognized
early in Al planning research [13, 16, 18]. A helpful goal interaction occurs in a plan, or
among several plans, if certain portions of the plan can be modified to improve its quality.
An important type of helpful goal interaction occurs when certain operators in a plan can
be grouped, or merged, together in such a way as to make the resulting plan more efficient
to execute. This happens often in domains where redundant setup and restore operations
can be eliminated in the execution of consecutive tasks and where redundant journeys can
be eliminated by fetching multiple objects at once.
Consider the following description given by Wilensky [17].

John was planning to go camping for a week. He went to the supermarket to buy
a week’s worth of groceries.

The main character in this example, John, had a set of subgoals to achieve, each subgoal
being to buy food for a meal during the camping week. However, instead of making several
shopping trips separately for each individual meal, John was able to merge the plans for the
subgoals, and achieve them simultaneously with a single trip to the market. The resultant
merged plan is more efficient to execute than the separate ones.

Merging actions for reducing plan costs, as demonstrated above , is typical of the kind of
optimization task people do for general transportation problems. For example, suppose that
cargo items A and B both need delivered from location L; to location L, by planes. If the
two delivery goals are planned separately, then two airplanes would be required for both A
and B. For each item, a separate loading and unloading operation are needed. However, if
A and B fit into one plane, then combining the two sub-plans can produce a more efficient
overall plan for both goals. This merged plan requires one combined loading and unloading
operation for A and B, as well as a single flying operation. The result is a plan that is
considerably cheaper than the original ones.

Plan merging is equally important for minimizing the costs of robot task plans. As an
example, consider a blocks world problem with variable-sized blocks. To pick up one block
of a certain size, the robot arm has to mount a gripper of an appropriate size. Suppose that
only one robot arm exists, and in order to grab a block of a different size, the robot has to
unmount the current gripper and mount the gripper with the new size. In this case, it is
more efficient to group block stacking operations that use the same type of grippers. In the
example shown in Figure 1, the blocks are of two different sizes. Suppose that the robot can
use two different grippers of type A and B to pick up a corresponding type of block. Then a
minimal cost way for achieving the goal would be to move A1 and A2 to the table together,
then move B1 and B2 to the the top of A1 and A2. This plan saves two gripper changing
operations as compared with moving A’s and B’s interleavingly.

Initial G oal

Al A2 B1 B2

B1 B2 Al A2

Figure 1: A blocks world where blocks are of different sizes.

The blocks world problem is illustrative of the role of operator merging in robotic as-
sembly domains. Identical plan merging issues also arise in the domain of automated manu-
facturing where process plans for metal-cutting [6], set-up operations [4] and tool-approach
directions [10] need to be optimized. Similarly, in the area of query optimization in database
systems [15], as well as domains having multiple agents [2, 12], operator merging in multiple
plans seems inevitable.

1.2 Previous Work

Sacerdoti’s NOAH [13] system is one of the first planners to explicitly seek opportunities
for plan merging. It relies on its set of Critics to handle possible interactions among the
different parts a plan. Three critics are introduced for the purpose of improving the quality of
plans, including “eliminate redundant preconditions,” “use existing objects” and “optimize
disjuncts.” For example, the “eliminate redundant preconditions” critic can be considered as
merging two or more operators that are used to achieve the same preconditions, as long as no
precedence relation in the plan is violated. Wilkins’ SIPE [18] and Tate’s NONLIN [16] are
other planning systems that have relatively more advanced capabilities in operator merging.
For example, they are able to recognize that a goal is achievable by another operator in
the current plan. In such situations, it will impose constraints on orderings and variable
bindings so that the operator is used to achieve it. This process, known as phantomization
of a goal, is also used in the plan reuse framework of Kambhampati’s plan reuse framework
for reducing plan cost [?]. At a meta-planning level, Wilensky [17] considers different types
of positive goal relationships, in the context of cognitive modeling of human problem solving.

In contrast to the above domain-independent approaches to planning, Hayes [4] proposed
a domain-dependent method for plan merging in machining domains. In her Machinist
system, a greedy algorithm is implemented and compared with human machinists in terms
of the quality of the plans produced. It was shown that it can out-perform an experienced
human process planner in many instances.

As an intermediate approach that falls between domain-independent and domain-dependent
extremes, Yang, Nau and Hendler [11] proposed a limited-interaction approach to planning,

taking into consideration operator merging as one type of interactions allowed. In recog-
nizing the complexity of the general problem, they imposed certain restrictions that work
well for a number of domains. An interesting feature of their system is that they considered
the case where there is more than one alternate plan for each goal, and proposed a branch
and bound algorithm for selecting the plans that can be merged optimally from a set of
alternative choices.

These previous research have had successes in various practical domains. But the under-
standing of plan merging has largely remained at a qualitative level. Most existing systems
have adopted some heuristic methods for encouraging plan merging, but little has been
known about the condition under which plans may be merged, the computational complex-
ities of optimal and approximate algorithms for plan merging, as well as the quality of the
merged plans that the approximation algorithms produce. This lack of knowledge is partly
due to the fact that the majority of planning research so far has concentrated on methods for
dealing with negative relationship among goals and plans, such as goal conflict and resource
competitions. As a consequence, formal theories are appearing on methods for construct-
ing sound and complete planners|1], for efficiently resolving conflicts [19, 1], for reusing past
planning experiences[5], and for building “good” abstraction hierarchies [7, 21] for improving
problem-solving efficiency. A common theme of these research has been on finding a solution
that works. In contrast, this paper attempts to address the issues of finding solutions with
optimal or “good” quality.

1.3 Overview

The purpose of this paper is to develop a computational theory on plan mering. This theory
will attempt to address the following issues:

1. What are the conditions under which operators in a plan can be merged?
2. What is the computational complexity of optimal plan mering?

3. What are the optimal algorithms for plan merging? When are these algorithms feasible
in practice?

4. Where the optimal algorithms are infeasible to apply, what are the approximation
algorithms that perform fast? What are the worst and average-case complexities of
these algorithms?

Our approach to addressing the above questions is to combine formal methods developed
in Artificial Intelligence and computational techniques from Operations Research (OR). In
particular, we first propose a formalization of plan merging using the STRIPS operator
definitions. Based on the formalization, we present a dynamic programming algorithm for
determining the optimal solution by reducing the problem to the shortest common superse-
quence problem, a variant of the longest common subsequence problem, and apply several

known results from that area. While the dynamic programming algorithm has traditionally
formulated for inputs corresponding to matrices of symbols, Al planning has been concerned
about plans represented as partially ordered operator sets. To bridge the two different fields,
we also extend the dynamic programming method to handling partially ordered plans in a
novel way.

One drawback of the dynamic programming method is that it becomes computationally
infeasible for problems of larger sizes. While we are able to phrase an optimal algorithm
for general purpose, domain-independent plan merging, its run time requirements may be
prohibitive for inputs of practical sizes. To make the planning problem more tractable, most
existing systems that consider helpful interactions employ certain kinds of greedy algorithms
for plan merging [4, 13, 16, 18]. Thus, we also describe four approximation algorithms for
merging plans, and analyze the qualities of their outputs in average cases. The approximation
algorithms all have linear time complexity in the number of operators of the input plan.
Finally, we present a set of empirical results comparing the quality of the plans produced by
the optimal and approximation algorithms under various conditions.

The remainder of the paper has the following organization. Section 2 gives a formal
description of plan merging. Section 3 presents the optimal algorithm for merging linearly
ordered plans. Section 4 extends the traditional dynamic programming algorithm to par-
tially ordered plans as well. Section 5 develops four approximation plan merging algorithms
and analyzes their behavior. Section 6 presents experimental results for the four heuristic
methods. Conclusions are stated in section 7.

2 Formal Description of the Problem

2.1 A Formal Definition of Operator Merging

Given a set of goals to be achieved, a plan II is a partially ordered set of operators, where
each operator « is represented by preconditions P, and effects F,, which for the sake of
simplicity are assumed to be sets of literals (positive or negative atomic sentences). No
operator’s preconditions or effects can contain both a literal and its negation. A plan II
may be represented as a graph II = (O, B) where the vertices O are the set of operators
in II and the edges B are the set of precedence relations in II. It is also assumed that two
special operators exist in every plan II that represent the initial and goal states in II. The
initial state operator 7 precedes all other operators in II, and the goal state operator G is
preceded by all other operators. Z has an empty set of preconditions, and has as its effects
the set of initial conditions. Likewise, the goal operator G has an empty set of effects, and
has as its preconditions the goal conditions to be achieved. In a least-commitment plan,
there is usually a set of constraints on the binding of variables, known as codesignation and
noncodesignation constraints [1], which we omit here for simplicity. Thus, plans are fully
ground.

In addition to preconditions and effects, we also assume that each operator a has an

associated cost cost(a), and that the cost for a plan II, denoted cost(Il), is the sum of the
costs of the operators in II.

In a partially ordered plan, operator a necessarily precedes (3 if a precedes B under every
consistent total ordering of the plan. We will use < to denote necessary precedence in the
partial order on II.

We assume that the plan II is justified, in that every operator in II is useful in establishing
some preconditions of other operators, or the goals themselves. Operator a necessarily
establishes a precondition p for an operator 3, denoted by Establishes(a,3,p) [20], if and
only if p is a precondition of 3 and effect of o, and no operator necessarily between o and 3
has either p or —p as an effect.

For a given plan, there may be some operators in the plan that can be grouped together,
and replaced by a less costly operator that achieves all the useful effects of the grouped
operators. In such a case, we say that the operators are mergeable. We formalize this notion
below.

We start by defining what operators in a plan can be grouped together. A set of operators
Y in a plan II = (O, B) induces a subplan (X, By) within II, where By is a maximal subset
of B that are relations on . Operators in ¥ can be grouped together if and only if no other
operator outside X is necessarily between any pair in . More precisely,

Va,8 € ¥,—~dy € O — X, such that a < v < 3.

Let IIy be a subplan of II = (O, B) induced by X, where ¥ is a set of operators that
can be grouped together. Consider the collective behavior of Iy in II. Some effects of
the operators in X are useful in II, because they establish the preconditions of some other
operators in II that are outside X, or the goals directly. Other effects are either side-effects
of the operators, or are used to achieve the preconditions of the operators within ¥. We use
Useful-Effects(X, II) to denote the set of all useful effects of the operators in X. Likewise,
we use Net-Preconds(%,II) to denote the set of all preconditions of the operators in ¥ not
achieved by any operators in Y. More formally,

Useful-Effects(X, II) = Uaez{e | e € E, and 3B € (O — X) such that Establishes(a, 3,¢€)}.

Net-Preconds(%,II) = Uaez{p € P, |38 € (O —) such that Establishes(3, a,p)}.

We now give a more precise definition for plan merging. A set X of operators is mergeable
in a plan II = (O, B) if and only if 3B, i, where B’ is a set of precedence relations on % ,
and p is an operator, such that

1. ¥ can be grouped together in II,
2. BUPB' is consistent, and in plan II' = (O, BUB')

P, C Net-Preconds(%, IT'),

and

Useful-Effects(X,11') C E,,.

That is, the operator p can be used to achieve all the useful effects of the operators in
Y while requiring only a subset of their preconditions, after precedence constraints B’
is imposed on plan II.

3. cost(p) < cost(X).

The operator y is called a merged operator of ¥ in the plan II, and denoted by p = merge(X)
(or simply merge(X) if it is clear about the plan II).

We now explain why the set of precedence relations B’ is needed in the above definition.
Recall that the set of operators in ¥ can be grouped together. Depending on different
precedence relations (i.e., B') imposed upon %, the set ¥ of operators will require different
sets of overall preconditions to be achieved by operators outside . Thus, a different choice
of B’ can give rise to a different merged operator p. We choose the least expensive one to
be our merged operator. For example, consider a plan with two operators a; and a, that
are unordered. The preconditions and effects of the two operators are given in Table 1. The
choices in p are listed below:

Choice 1: B’ = {a; < a,}. Then «; achieves the precondition ¢; of a,. Therefore, the net
preconditions of ¥ should be {¢;}.

Choice 2: B’ = {ay < oy }. Then a, achieves the precondition g, of a;. Therefore, the net
preconditions of ¥ should be {g,}.

In each choice above the precondition set is different from the other choice. Thus, each choice
of B’ may result in a different merged operator p. In this case, the one with the lower cost
is a merged operator.

Operator Precondition Effects
Q T P1, 92
Qs q2 P2,

Table 1: Operator Definition.

The definition for operator merging clearly covers the examples given in the previous
section. Below, we show three examples of plan merging according to the definition.

Example 1.

Consider again the multi-gripper blocks world problem with variable sized blocks (See
Figure 1). The plan for solving the goals is shown in Figure 2. Suppose that Can-Grab-A
is a precondition of the operator moveA, and Can-Grab-B is a precondition of the operator
moveB. Then the following establishment relations hold in the plan:

T
Mount-Gripper-A Mount-Gripper-A
MoveA(Al,Table) MoveA(A2,Table)
Mount-Gripper-B Mount-Gripper-B
MoveB(B1, A1) MoveB(B2, A2)

g

Figure 2: Plans for a blocks world problem.

Establishes(Mount-Gripper-A, moveA(Al, Table), Can-Grab-A),
Establishes(Mount-Gripper-A, moveA(A2, Table), Can-Grab-A),
Establishes (Mount-Gripper-B, move A(B1, A1), Can-Grab-B),
Establishes (Mount-Gripper-B, move A(B2, A2), Can-Grab-B), and

where each Mount-Gripper-A operator involves unmounting any previously mounted gripper
and mount a gripper of an appropriate size. In the plan, the two Mount-Gripper-A operators
can be merged into a single instance of the operator, so are the Mount-Gripper-B operators.
This can be verified by the following facts:

1. The two Mount-Gripper-A operators can be grouped together in the plan, since no
other operators are necessarily between them.

2. If we choose B’ to be an empty set, then trivially BB’ is consistent. Moreover, the set
Useful-Effects ({ Mount-Gripper-A, Mount-Gripper-A}) is exactly { Can-Grab-A}, which
is identical to the effect of a single Mount-Gripper-A operator. Similarly, the subset
condition for net preconditions is also satisfied.

3. cost(Mount-Gripper-A) < 2 * cost(Mount-Gripper-A).

After a similar merging of the two Mount-Gripper-B operators, the plan after merging is
shown in Figure 3.

Example 2.

As another example, consider a plan for achieving two goals, going to school S from home
H and back, and going from home to the grocery store G to get X and back. This plan
consists of two subplans,

goto(H, S) < goto(S, H),

I

Mount-Gripper-A

4 \

MoveA(Al, Table) MoveA(A2,Table)
\ /
Mount-Gripper-B
- T~
MoveB(B1, QA MoveB(B2, A2)
g

Figure 3: The merged plan for blocks world.

goto(H,G) < get(X, Q) < goto(G, H).

The two subplans can be merged by replacing goto(S, H) and goto(H,G) by goto(S,G). If
G is located between home H and school S, then the resultant plan

goto(H,S) < goto(S,G) < get(X,G) < goto(G, H)

costs less than the original one.
In the above example, the set B’ of precedence relations is {goto(S, H) < goto(H,G)}.
Let I’ be the plan with B’ imposed on the original plan, then

Net-Preconds(X,Il') = {at(S)}, Useful-Effects(X,1I') = {at(G)}

where ¥ = {goto(S, H), goto(H,G)}. Thus, ¥ can be merged into the operator merge(X) =
goto(S,G). Notice that there is another way of merging the operators in this plan, i.e.,
{goto(G, H), goto(H, S)} can be merged into goto(G,S), but one has to decide which way
to merge since it is impossible to merge both sets of operators. The ability to optimally
choose between several inconsistent possible mergings is an important feature of our dynamic
programming algorithm.
Example 3:

Consider the abstract example shown in Figure 4. In this plan, if the operators are
defined as in Table 2, the following establishment relation holds:

Establishes(ay, 81, p), Establishes(as, 32, p)
Establishes(f8;, G, q), and Establishes(8,,G,7).

For the set ¥ = {ay,a,}, the net preconditions are empty, while the useful effects are
{p}U{p} = {p}. If cost(a;) < cost(ay), then a; is the merged operator for ¥. The resultant
merged plan is shown in Figure 5.

I

O\

(&3] Qo

| |

IS B

~

g

Figure 4: An example plan.

T
\

By Bz
~ g/

Figure 5: A merged plan.

10

11

Operator Precondition Effects

(e3] D

(o3} D

B1 P q

B2 p T

7 -p, g, T
g q,T

Table 2: Operator Definition.

Let II be a plan and ¥ be a set of operators in II that are mergeable. Then after merging
Y in II, every precedence relation in II that involves an operator @ € ¥ and an operator
B & X is replaced by the relation with a modification: every occurrence of « is replaced by
. Let the new set of precedence relations be NewB. Formally, let , 3 be operators in O(II)
such that (a <) € B, then

a<pBifa,fgX
NewB =< p<pifaceX,fgX
a<pifagd,feX

The plan II; = (O, B;) with the operators in ¥ merged into p is defined as a plan
Hg = (Og,Bz), in which

1. Oy = (01 — X)U{p}, and
2. B, is NewB.

The merged plan is denoted as Iy = merge(Il;, X,).

Operators can be merged in both correct and temporarily incorrect plans. A plan II =
(O, B) is correct if B is a partial ordering relation, every precondition of every operator
in O is necessarily established, and all goals are necessarily achieved. Operator merging,
as defined here, is not a means of making an incorrect plan correct, but rather to make a
plan more efficient. Therefore, in general, we do not require that an incorrect plan be made
correct after merging. However, we would like to ensure that after merging, the correctness
of a plan is preserved, given that certain conditions hold. We explain one such condition
next.

Recall that after merging, the effects of the merged operator g must include all useful
effects of operators in set X. In addition to the useful effects, there may also be other side
effects that p achieves. To preserve plan correctness during merging, we could require that
no side effects of u negate the “establishment structure” of the original plan. This is stated
formally as:

12

Vq € (E, — Useful-Effects(X,II)),Vai,as ¢ X and a condition p
such that Establishes(a, as,p) holds in II.
if 7(p < 1) and —(ap < p, then ¢ # —p. (1)

That is, if g can possibly be between a; and a, after merging, and a; establishes a precon-
dition p of ay, then no extraneous effect of u negates p.
The following theorem holds given that Condition (1) holds.

Theorem 2.1 Let II; be a correct plan and X2 be a set of operators in Il that are mergeable.
Let p be a merged operator of £. Suppose that E, satisfies Condition (1). Then I, =
merge(Il,, X, 1) ts also correct.

Proof: We prove by contradiction, showing that if I, is incorrect, then II; is also incorrect.

Suppose that II, is incorrect. Then from the definition of correctness of plans, it must
have a total order II, that is also incorrect. From II,, we construct a total order of operators
in II;, by replacing the operator y in II, by a total order of ¥ consistent with the ordering
constraints B’ in the definition for operator merging. The resulting operator sequence II; is
a total order of the operators in II; because all operators of II; are also operators of II;, and
B’ is consistent with the precedence relations in II;. Let a; be the first operator, and «,, be
the last operator, of the operators in ¥ that appears in II;. From the definition for New B
above, the relationship between II; and II, is as follows:

1. The subsequence of operators of II; before oy is identical to that of II; before p.
2. The subsequence of operators of II; after a, is identical to that of II, after pu.

Now we show that II; is incorrect.

Because II, is assumed to be incorrect, there must be an operator 3 in II, with a precon-
dition p such that no operators in II, establish p for 8. From the definition of establishment,
there can be two cases where this is true.

Case 1: there is no operator o < 3 in II, such that p € E,. Case 1 can be further split into
three possibilities:

Case 1(a): B < p in II,. Since the subsequence of operators before y in II, is identical to
that before a; in II;, the precondition p of @ in II; is also unestablished. That is, II;
is incorrect.

Case 1(b): 8= p in II,. Since P, C Net-Preconds(X,II;), this case implies that there is
some operator 3' € X, such that a precondition p of B’ is not asserted by any previous
operators in II;. Therefore, II; is also incorrect.

Case 1(c): p < B3 in II,. Since Useful-Effects(X,1I;) C E,, this case implies that no oper-
ator in X, or before a; in II; has an effect p either. Therefore, II; is also incorrect.

13

Case 2: For some 3 with precondition p in II,, and for the last operator a before 8 with p
as an effect, there is an operator v such that a < v, y<83, and —p € E,.
Case 2 can be split into four different situations:

Case 2(a): a,3 and v # p. This implies that a, 3 and « are also operators in II; that has
exactly the same relative ordering as in II,. Also, recall that « is the last operator in
I, that has p as an effect. Thus, from the conditions that Useful-Effects(%, 1) C E,,,
and that u does not establish p for B in II,, no operator in ¥ can re-establish p for 3
in II; either. Thus, p is not established in II;, and as a consequence, II; is incorrect.

Case 2(b): a = p. Then there is an operator o that is the last operator in II; such that
(1) & < a, or & = a,, and (2) p € E,. However, since p <y < B in Il,, o' <y <3
in II,. Hence the precondition p of 3 is not established. Thus, II; is incorrect.

Case 2(c): B = u. Since P, C Net-Preconds(X,II,), in plan II;, there is an operator 4’ in
Y with precondition p that is not established by operators within ¥. Since the ordering
a < v < B also holds in II;, the precondition p of 3’ is not established in II, either.
Therefore, II; is incorrect.

Case 2(d): v = p. Then —p € E,. Since p satisfies Condition (1), —p must be a member
of Useful-Effects(X,II;). But this means that for some operator 4’ in ¥, —p € E..
Thus, the ordering a < 4’ < B in II; implies that the precondition p is not established
for operator 3. Therefore, II; is incorrect.

To sum up, both Case 1 and 2 implies that II; is incorrect. As a result, II; is also
incorrect, contradicting to the initial assumption of the theorem. a

Condition (1) trivially holds when the merged operator g has no side effects. That is,
when E, = Useful-Effects(X, II). Thus, the following corollary holds:

Corollary 2.2 If E, = Useful-Effects(X,II), and II is correct, then merge(X,1I, p) is also
correct.

The merging examples 1, 2, and 3 presented earlier all satisfy the equality condition of the
corollary.

A second special case of the theorem is when no side effect ¢ of the merged operator p
deny any precondition p of any operator a, that are possibly after p in merge(X,II, p). This
special case satisfies the condition

Va,, Vp € P,,. if possibly u < ay then g # —p. (2)
This condition logically implies the implication in Condition (1). Thus,

Corollary 2.3 If Condition (2) is satisfied, and II is correct, then merge(X, 11,) is also
correct.

14

To illustrate the application of the corollary, consider again the blocks world problems with
variable sized blocks and grippers. If a new gripper GripperC is introduced that can grab
any block of sizes A, B, C, then even though the problem at hand only concerns blocks of
size A and B, the additional side effects of the new operator would include an additional
side-effect Can-Grab-C. Since this side effect is harmless to the preconditions of operators
for moving Al and B2, etc., correctness of a plan is preserved after merging.

It can be further shown by induction that the correctness of a plan is preserved by
merging operators in a plan any number of times, as long as the conditions in the theorem
or corollaries are satisfied.

2.2 Finding Mergeable Operators

There are two important issues in optimizing II via plan merging. The first one is to find
the set ¥ of mergeable operators and, for each set of mergeable operators, find one or more
merged operators g. The second issue is computing the optimal way to merge the plan,
given that several sets of merged operators are found.

The problem of finding operators that can be merged in a plan II may be a computa-
tionally expensive process if no additional domain knowledge is given, since then it would be
necessary to examine the useful effects and net preconditions of every subset of operators. To
make the process more efficient, various domain knowledge can be employed. For example,
one way for the operators in ¥ to be merged is when they contain various sub-operators
which cancel each other out, in which case the merged operator p would correspond to the
set of operators in ¥ with these sub-operators removed. In manufacturing domains where it
is desirable to minimize set-up costs, this situation occurs often and can be profitably em-
ployed [11]. This case also corresponds to what Wilensky calls “partial-plan merging” [17].
Another case is when all the operators in % share a common schema, and in this case, the
goals of these operators can be achieved by executing the schema only once. This case
corresponds to what Wilensky calls “common-schema merging.”

In this paper, we assume that knowledge is available about what operators can be merged,
and for each set of these operators, what the merged operators are. Given this knowledge,
we concentrate on the second issue, that of finding and analyzing methods for computing the
optimal plan. We will call this problem the plan merging problem. We start by discussing
its complexities in the next section.

2.3 Complexity

Several complications exist that make the plan merging problem computationally expensive
in general. First of all, for a given set ¥ of operators to be merged, there may be several
alternative merged operators, {g1,...,p:}, to choose from, each with a different set of pre-
conditions, effects and cost value. Second, an operator may lie in the intersection of several
non-identical groups of operators, but not all operators in these groups may be merged, even

15

though all the operators in question are unordered in a plan. For example, in the blocks
world domain, there may be a gripper capable of picking up blocks of sizes A and B, and
another gripper capable of picking up blocks of sizes A and ', but no gripper that can pick
up a block of type B and C'. Then a gripper-changing operator for picking up a block of type
A may be merged with ones for either B or C, but not all three can be merged together.
An optimization algorithm has to make a choice in such a situation. A third complication
occurs because the partial order on Il may render inconsistent some pairs of mergings. For
example, consider the two plans

a1<cl<b1anda2<bg<cz,

where operators can have three types, a, b or c. Thus, after operator merging, one merged
plan is
merge({ai,as}) < by < merge({c1,c2}) < by,

another merged plan is
merge({a1,as}) < ¢; < merge({b1,b2}) < ca.

However, it is impossible to merge both pairs by, b, and ¢, cs.

To remove the first complication, we assume that for each set ¥ of mergeable operators,
there is a unique merged operator p. In addition, we assume that operator merging is an
atomic action, so that the merged operator 4 may not be combined with any other operators.
The second complication is naturally resolved by our definition of operator merging; since
each merged operator has an associated cost, at all times we know which set of merging will
result in a least-cost plan. This set of merging then is all we are interested in.

We now consider the computational complexity as a result of the third complication. The
problem is to decide which set of mergeable operators to merge, if temporal orderings prevent
all of them from being merged together. To see the complexity involved, consider a simplified
plan II, consisting of a set of linear sequences of operators. Let the k linear input plans S?,

5%, ..., S*, each of which is a linear sequence of operators. Each sequence S* is denoted as
sish .. 'STS"I' A supersequence U = u;...up of § = s;...s) has the property that there
exist ¢; < .- < 1pr such that u; = sq, ..., u;,, = spyr. In other words, the operators of S

can be found in order in the sequence U. We say that U is a common supersequence of §
and T if it is separately a supersequence of S and of T'. Elements of S and 7" may overlap in
a common supersequence U, so that |U| < |S|+ |T'|. For any set of input sequences, there
exists at least one SCS.

As a special case, let an operator sequence of length N have cost N. In this case, the
optimal operator merging for an input plan is the shortest common supersequence of the
linear input operator sequences, S*, S%, ..., S*. Under some formulations the problem of
finding the SCS is NP-complete [3]. However, in planning the total number of final goals to
be achieved usually stays constant. As a result, for the naturally occurring case of a fixed

number of input sequences, the SCS may be simply calculated in polynomial time.

16

We next consider the problem of finding an optimally merged plan using dynamic pro-
gramming. For simplicity, we first consider in the next section plans that are linear sequences
of operators and apply dynamic programming directly to solve the problem. In Section 4 we
extend the algorithm to handle general partially ordered plans as well.

3 Optimal Plan Merging for Linearly Ordered Plans

Assume that the input plan II consists of k linear sequences of operators. If S¢ is a sequence,
then Si...i, denotes the subsequence of S¢ from the first to the I** operator. Consider also a
k-dimensional array M. To dimension 7 of M assign the subsequence costs of S¢. That is,

M(0,0,...,0,5,0,...,0) = cost(Si), i =1,2,...]5

where the index j appears on the i** dimension. The matrix A has a size of (|S*|+1) x (| S?|+
1)x...x(|S*|+1). M will be used to represent the least cost plan costs of partial inputs, so
that M(iy,...,1) is the optimal cost of merging St , , ..., Sf_“ik. Define also the identically-
sized array R, which will be used to represent the components of the actual index set where
merging occurs. Therefore, after the optimal computation, the element M(|Sy[,|Sa|,...|Sk|)
contains the optimal cost of merging all plans, and R(|S1],|S2|,---,|Sk|) contains a set of
elements, where each element is a subset of indices denoting where an operator merging
should occur in the optimally merged plan.

For a set of indices 71,15, ...,1, let ¥ be the set of index pairs {(1,%,),(2,72),...,(k,z)}-
Let ¢ C ¥ be the index pairs of operators, such that all operators in ops, = {sfj|(],1,3) €
o} can be merged, The minimal costs in M is computed using the dynamic programming
principle, which states the following:

M(i1,y...0) = Eneig{cost(merge(o)) + M3 — b1y vyt — Ok},

where each 6, is 1 if and only if ¢; appears in . Otherwise ; is 0. This recurrence forms
the basis for the inner loop of the optimal plan merging algorithm. As initial conditions, let
M(0,...,0) = 0 and assume that M(3y,...,3x) = oo if any 7; < 0. Also, R(0,...,0) = 0.

Compute the cost M (%1, ...,7) and indices R(%1,...,%) where merging occurs:
for i; = 0to|S!| do

for i, = 0to |S*| do
minval = oo
for all o C {(1,41),(2,42),...,(k,ik)} such that
the operators ops, = {sgj |(j,i;) € o} can be merged,
for j =1tok do
5 = { 1 if jeo

0 otherwise

17

endfor

if minval > cost(merge(operators,)) + M(i; — 61,...,i, — &) then
minval = cost(merge(operators,)) + M (i; — é1,...,9% — Ok)
R(il, oo ,ik) = R(ll - 61, oo ,ik - 6k) U{O’}

endif
endfor
A(%1,...,1) = minval
endfor

endfor

The key steps are the location of the contributing sequence indices o, updating the cost
to reflect cost of the minimal cost merged plan, and setting the optimal mergeable indices
in R. The matrix cell R(|S],...,|S*|) contains a set of index sets, where each index set
{(415351)s (J2585)5 -« +» (4m %5,) } indicates that the operators in ops, = {s; |(j,i;) € o} should
be merged in the final optimally merged plan. Notice that once all operators are merged as
indicated, the resultant plan is a partially ordered one in general, since after merging the
newly imposed ordering constraints for operator merging only linearizes a portion of the plan
II, but leaving all other parts unordered as before.

The cost of the algorithm is O(J]%_, | 5?|), assuming a fixed number k of input sequences.

4 Dynamic Programming Methods for Partially Or-
dered Inputs

Just as the dynamic programming method can be used to compute an optimal plan from
two or more linear input sequences, a similar computation determines the optimal merged
plan from a partially ordered input plan. We consider as input a plan II, partially ordered
by <. The method we present creates the optimal merged plan from II.

Recall that the dynamic programming method for linear plans pushes forward a frontier
that ranges across all plans. The frontier marks a set of operators that could be merged
(See Figure 6). The method then decides on the best merge up to the frontier by comparing
different subsets of possible merges and previously computed best merges. With a partially
ordered plan II, we could push a frontier forward in a similar manner. As well, the frontier
at all times crosses a set of plan segments that are also linear. Notice that the frontier at
any time crosses a mazimally unordered of linear plan segments. As an example, the current
frontier in the partially ordered plan II of Figure 7 crosses plan segments {A;, By, C,}, each
of which is a linear sequence of operators. Thus, we could apply directly the dynamic
programming principle to compute the optimal cost up to the frontier based on possible
merges along the frontier as well as computation result just before the frontier. However,
with partially ordered plans, a complication arises when two or more branches of linear plan

18

Frontier

Planl AN

Plan2 > i

Plank <\ .

Figure 6: A set of linear plans.

Initial B, \ B, Goal

State
State
o O\ 02\

Figure 7: A partially ordered plan.

segments directly precede another set of segments. For example, in Figure 7 the segment
B; precedes not only B,, but also A5 and 5. To ensure optimality, the partially computed
results has to be transferred from one set of segments to the next. The method below deals
mainly with this difficulty.

Informally, the new method first converts a set of partially ordered plans into a set of
linear plan segments that are partially ordered. Then it computes the set of maximally
unordered sets of the plan segments, and transform the original plan into a dual graph
whose nodes are the maximally unordered sets. The dual graph is a directly acyclic graph.
Finally, it applies the dynamic programming algorithm for linear plans as a subroutine, by
systematically computing the optimally merged plan in a topological order of the dual graph.
In the process, care is taken to transfer the result of merging the subplans from one frontier
to the next. Below, we discuss each step in detail.

4.1 Conversion to Linear Plan Segments

19

01 02 Og¢ o7

~o
Q—L
O o O—0O
O3 04 0g Og
Al A4
N A4 7
AN
A, As

Figure 8: Conversion to linear plan segments.

The subsequent computation requires that II is represented by an augmented plan con-
sisting of a set of linearly ordered plan segments, such that the plan segments are partially
ordered and no two adjacent segments share an operator. An ordering relation exists between
two linear plan segments if every operator of the first segment precedes that of the second.
Every plan can be easily converted to one with this property. Consider the plan in Figure 8,
where a complication arises because operator os has two predecessors and two successors.
However, o5 by itself can be considered as a single plan segment. Thus, the whole plan in
Figure 8 has five linear plan segments that are partially ordered: A;, A,, A3 which contains
o5 alone, A4 and Ay (See Figure 8). The converted plan is hereafter referred simply as II.

4.2 Conversion to Dual Graph

As mentioned earlier, the dynamic programming algorithm for linear plans will be applied
to the individual linearly ordered plans. Any operator merging can only take place between
unordered operators, which must come from unordered linear plans. Conversely, any set
of unordered operators is a candidate for merging. After the conversion from last section,
ordering constraints exist between the set of linear plan segments. Let w represent a set of
linear plan segments from II, such that all plan segments in w are unordered with respect
to one another. We say that w is mazimally unordered if every linear segment in Il — w is
ordered by < with respect to w. For example, in the plan II in Figure 7, the maximally
unordered sets of plan segments are {A;, By, C1}, {A1, By, C1}, etc.

For a given plan II the set of all maximally unordered sets, along with the ordering
relations among them, defines a dual graph corresponding to II. Each node in the dual
graph DualGraph(Il) corresponds to a maximally unordered set of plan segments, and an

20

A c

—
B / D
—

Plan II

DualGraph(ll):f g B\ — 14, D} —{C, D}

Figure 9: A plan and its dual graph.

arc between two nodes n; and n, in the graph exists if a plan segment in n; precedes a plan
segment in n,. Figure 9 shows the dual graph of the plan in the same figure. As a special
case, a plan II is a set of linear sequences S;, 2 = 1,2,...,n. Then the dual graph has only
one node, consisting of the linear sequences themselves.

The size of the dual graph can be exponential in the worst case, in which the plan II takes
the shape of a tree. But in general, the worst case doesn’t happen frequently. For example,
if each plan segment in a plan II is unordered with at most C other plan segments, then the
time complexity for constructing the dual graph is O(N), where N is the total number of
plan segments in II. This is a realistic assumption in nonlinear planning, since the number
of unordered linear plan segments generally corresponds to the total number of goals to be
achieved, or the total number of preconditions of an operator. The goals are fixed for each
set of plans, and the number of preconditions of each operator is also bounded by a constant.
Furthermore, in a planning domain, interactions among operator preconditions and effects
usually require the imposition of ordering constraints, which greatly reduces the number of
unordered plan segments. Therefore on the average, the complexity of converting a plan to
its dual graph is polynomial in the number of plan segments.

4.3 Boundary Conditions

Consider Figure 9, where there are four linear plan segments A, B, C, and D that are partially
ordered. The dynamic programming algorithm for partially ordered plans will apply its
linear plan version to the nodes of this dual graph in a topological order. The nodes of the
graph are sets of linear plan segments. Suppose that instead of returning an optimal cost
of merging, the dynamic programming algorithm for linear inputs returns an entire matrix
of computation. For a given set of unordered linear plan segments n, let the output of the
dynamic programming algorithm be DP(n), which is a multi-dimensional matrix. The first

21

A MAB MAD

Boundary
Condition

Figure 10: Boundary Conditions.

application to the dual graph in Figure 9 is straightforward, since it involves only merging
A and B. Let the result of the first merging be DP({A, B}), which is a two dimensional
matrix. When the next merging starts with A and D, however, the algorithm must take
into account that B is before D in the chronological ordering of II, and thus results of the
previous merging must be used to ensure optimality. Recall that merging A and B will
produce a two dimensional matrix Mg of size (|A| + 1) x (|B| 4+ 1), in which each location
(1,7) contains the cost of the lowest cost merged plan segments A; ; and B, ;. If we’re only
seeking to merge A and B, then the output is the value at the lower right corner of M p,
plus the matrix R p which records the indices where merging happened. However, if we
seek to continue merging beyond this set of plans, then we take the entire lower or right side
of the matrix as initial conditions for the next match. This is because when doing the next
merging, all possible combinations of the previous merging must be taken into account. In
the previous example, if we intend to compute DP({A, D}) after DP({A, B}), then we first
form a two dimensional matrix M4p(z,5),7 =0,1,2,...|4|,7 =0,1,2,...|D|. Along the D
direction we assign the costs of subplans in D without merging with any of A’s operators.
That is, M(0,7) = cost(|D(j)|. But along the A direction we assign the results of merging
A,,..; and B without also merging with any of D’s operators. That is,

Map(3,0) = Myp(i, | Bl).

This corresponds to taking the right side of the first matrix as the initial condition for
merging A and D. Likewise, when B and C are merged, the initial conditions along the B
direction is provided by the bottom side of the M 45 matrix.

In general, let n be a node in DualGraph(Il) corresponding to the merging of plan
segments {A4;,7 = 1,2,...k}. Let M(¢1,%s,...1;) be the resultant matrix after merging
the plans by the dynamic programming algorithm, with 0 < ¢; < N;. Let Subset =
{Au, Auyy .. . Ay}, 1 < k, be a subset of n. We define the projection of n on Subset as

22

1 T o vee My

\\//
O

n

Figure 11: A node n and its predecessors in a dual graph.

a matrix:
Proj(n, Subset) = Myp(N1, Nay - oytuyy Nuyp1y ooy ugs Nugg1, - - Vi), where 0 <y, < Ny,

That is, the projection is obtained from M by replacing all indices outside the subset by
their limits, while letting all indices within the subset free. This is a matrix of dimension
(Ny, +1) X (Ny, +1) x ... X (Ny, +1). In the example of Figure 10, Proj(Msp,{A}) =
M ,p5(t,|B]), which corresponds to the right column.

With the definition of projections, we now explain how the results of merging is passed
from one set of nodes to the next, in the dual graph DualGraph(Il) of plan II. Let n;,i =
1,2,...m be the predecessor of node n in the dual graph DualGraph(Il) (see Figure 11).
Then the initial condition assignment for computation at node n is given as follows:

Algorithm Set-Initial-Condition (n, {n;,i = 1,2,...m}).
for each n;,i =1,2,...m do
Subset; := nn;
Let Subset; be {4;,, A;,,...,4;},
M,(0,0,...,41,0,...,32,...,4;,0,...,0) := Proj(n;, Subset;),
where 0 < i; < N, for j =1,2,...L
endfor

As an example, consider the node {C, D} in Figure 9. According to the above algorithm,
the initial condition is M¢p(3,0) = Proj(Mpc,{C}) = Mpc(3,|B|).

4.4 Computation of Plan Merging

Given the above method for computing the initial conditions, a dynamic programming algo-
rithm scans the dual graph of II by computing the merging of plan segments in a topological
order. At each node, the initial condition for the dynamic programming computation is set
using previous results by projection. The algorithm is presented formally below.

23

Comment: M, = DP(n) is a matriz after each processing of node n.
1. Perform a topological sort of DualGraph(II). Let the resultant sorted list be L.
while L is not empty do
2. Let n be the first node in L. Remove n from L.
3. Let n;,i = 1,2,...m be the parents of n in DualGraph(II)
4. Apply Set-Initial-Condition (n,{n;,i = 1,2,...m}).
5. Apply dynamic programming algorithm: M, := DP(n).
endwhile

For simplicity of discussion, we have so far assumed that our computation only concerns
the minimal cost of optimal merging. Let r be the last node in the topologically sorted list
L. Then this minimal cost is stored in M,(Ny, N,,..., Ni), where N;,i = 1,2,...k are the
lengths of the plan segments in r. In a similar fashion, we could extend our algorithms to
compute the optimal merged plan as well. Recall that in the linear input case, a matrix R is
used to record a set of index sets, indicating the subsets of operators that should be merged
to yield an optimal plan. With partially ordered inputs, we could likewise associate with each
node n in the dual graph DualGraph(Il) a matrix R,,, which records sets of operator identifiers
where merging should occur. Then the boundary conditions of R,, can be computed in exactly
the same manner as M, that is, via projection computation from previously computed R,,.
Suppose that we augment the function DP(n) so it returns a pair of matrices: (M,, R,),
then in the dynamic programming algorithm above, we can modify step 5 to:

5. (M,, R,) := DP(n).

When the algorithm terminates, the operators to be merged optimally in plan II can be found
in the matrix cell R,(Ny, N,,..., Ni). If the set of indices {i1,%5,...%;} is associated with
node n; = {A;, A,,...A;}, then we know that in the optimal merged plan, the operators
{4;(1;),7 = 1,2,...,1} should be merged to yield the optimal cost. In this way, we could
find out all operators that are to be merged in the optimal merged plan. In the merged
plan no additional ordering constraints are imposed except those required by merging. As a
result, the merged plan is also partially ordered.

Finally, we discuss the properties of the algorithm. The algorithm enumerates all maxi-
mally unordered sets of operators in a partially ordered plan in a systematic way. By setting
the initial conditions of each matrix during the operation of the algorithm, all previously
computed best merges are considered when deciding the current set of best merging oper-
ations. Therefore, the merged plan produced by the algorithm will have an optimal cost,
according to the dynamic programming principle.

The algorithm also degenerates to the dynamic programming algorithm for linear inputs
in a trivial way. If the plan II consists of several linear sequences of operators that are un-
ordered with each other, then the dual graph DualGraph(II) simply has one node, containing
the set of all sequences. The dynamic programming algorithm DP for linear plans is applied
only once to this node, equivalent to an application of DP to the sequences directly.

24

5 Approximation Algorithms

For problems of large sizes, the complexity of the dynamic programming methods may be
too high to be useful. An alternative choice is to use approximation algorithms that operate
in low-order polynomial time but output a suboptimal supersequence. In the past, many
planning systems [13, 18, 4] have resorted to the application of greedy algorithms for plan
merging. Thus, a unresolved but important issue is to determine the qualities of these
algorithms in worst and average cases. In this section, we consider a spectrum of algorithms
and their analysis, and in the next section, we show the experimental results.

For simplicity of mathematical analysis, we first assume the following input and output
of each algorithm:

Input: A set II of plans, which are assumed to be a set of k linear sequences of operators,
each sequence has n operators.

Output: A merged plan S for II.

In addition, it is also assumed that every operator in plan II is of one of m different types,
Q1,Qa, ..., Qy. A set of operators can be merged if and only if they are of the same type. In
blocks world where blocks can have different sizes, this assumption requires that for a block
of a given size, there is a corresponding gripper for picking it up, and no gripper can pick
up blocks of different sizes. Finally, we assume that the cost of a set of operators equals the
total number of operators in that set. Therefore, if N operators of the same type are merged
together, the cost reduces from N to one. Thus, the merged plan S is a supersequence of
the plans in II. The above assumptions are for the purpose of simplifying the presentation
of the algorithms and their analysis. In the next section, we relax these assumptions.

As stated above, our key motivation in this section is to develop and analyze approx-
imation algorithms that perform in low-order polynomial time. In fact, the algorithms to
be presented all have linear time complexity in the number of operators of the input plans.
Thus, the main concern here is not the time complexity of the algorithms, but the quality
of the merged plan produced by each algorithm.

Given a plan II = (O, B), one can find a set of operators that can be performed in the
initial situation. Denote this set by Start(II). Formally,

Start(Il) = {a € O | -3 € O, B < a.}

Let ¥ be a set of operators in a plan II = (O, B). The updated plan remove(X,II) is the
plan with all operators in ¥ removed, and all the precedence relations relevant to operators
in 3 removed.

For ease of exposition, it is assumed that all plans are arranged in a “left to right” way,
so that they start from the left and end at right. All algorithms below basically operate by
sweeping through the input plans in a left to right manner. In the sweeping process, operators
that are mergeable are merged and collected into a superplan. Although the description of

25

the algorithms and subsequent analysis assume the left to right way of merging, all the
results apply equally to merging in the opposite direction, i.e., in a right to left way. Such
a process does not violate any existing precedence constraint in II.

The algorithms we will discuss are all simple. They even look very similar. But there are
subtle differences. These subtle differences give very different results. Analyzing these subtle
differences helps us to choose good algorithms in practice wisely. Below, the algorithms are
discussed in order of increasing sophistication.

5.1 Algorithm M1

Our first algorithm, M1, is the most greedy one. It looks for as many merges as possible in
each iteration. In particular, it takes an operator on the left side of the remaining plan II,
and looks for nearest merges by searching through each of the next plans from left to right
for operators that can be merged with a. The operators that are mergeable with a can be
considered as forming a “thread” that partitions the plan II into three subplans, where II;;
is on the left of the thread, II;5 is on the right of the thread, and II, is the set of those
sequences not touched by the thread. Below is a recursive version of the algorithm.

Algorithm M1.

1. If IT = () then return (). Otherwise, arbitrarily find a € Start(II). Let ¥ be a leftmost
maximal set of operators in II mergeable with a. Let g be the merged operator of ¥.

2. Partition II into two sets of sequences, II; and II,, such that each sequence in II; contains
an operator in X, and no operator in any sequence of II, is a member of X.

3. For each operator sequence T in II;, let o' be the operator in X. Split 7' at o' into T}
and Ty, so that 7" = T1a'T,. Let II;; be the set of all Ty, and II;, be the set of all T5.

4. Return M1(IT;;UII,); s M1(II;5), where “;” stands for concatenation.
Theorem 5.1 Algorithm M1 has worst case cost O(n?).

Proof: We will consider plans with just two operators a, 3. We will construct » plans each
being a sequence of n operators from {a, 3}, arranged as rows in an n X n matrix M. We
will show that M1 will construct a supersequence of length Q(n?) for some M. Let the first
row of M contain entirely a. Row 2 of M contains n — ¢ initial operators «, followed by ¢ — 1
operators 3, and then a terminal a. At step ¢ of the algorithm, M1 removes column 2 from
the first n — ¢ rows, and the entirety of row n + 1 — 2. M1 is then applied to an equivalent
submatrix of size n — ¢ X n — 7. Each merge requires n + 1 — ¢ operators in the merged plan,
for a total cost of n(n + 1)/2. Concatenation of the input plan gives n? operators, so the
worst case behavior is indeed ©(n?). O

26

5.2 Algorithm M2

Algorithm M2 is less greedy, and is the most straightforward algorithm. It merges the
operators in a plan II in a left to right scanning process. In each iteration, it merges all of
the leftmost operators into the m types of merged operators in the supersequence, removes
the leftmost operators from the remaining plan and continues until no operators are left in
the original plan.

Algorithm M2.
1. §:=0,

2. let ¥ := Start(II). Partition ¥ into m classes, such that each class ¥; contains operators
that are mergeable. Let p; be the merged operator, for each class «.

3. II := remove(X%, II),
4. For: =1,2,...,m, S := S; ;.
5. If II is empty, then return S, otherwise, goto 2.

Theorem 5.2 Given a set of plans, each of length n. The worst case and average case costs
for M2 are both mn.

Proof: At each of the n columns, there are m different types of operators in general.
Algorithm M2 simply merges each column into m operators in the superplan, regardless of
what follows these operators in plan II. Thus the total length of the superplan is mn, in
both worst and average cases. O

5.3 Algorithm M3

The next algorithm, algorithm M3, is slightly more sophisticated than M2 in that during
each iteration, it only merges the operators in the partitioned subclass ¥; with the greatest
cardinality.

Algorithm Ma3.
1. S:=0,

2. let ¥ := Start(Il), Partition ¥ into m classes, such that each class ¥; contains operators
that are mergeable. Let X; be the subclass with the largest cardinality, and let x be
the merged operator for %;.

W

. II := remove(%;, IT),

'

.S =5,

27

5. If II is empty, then return S, otherwise, goto 2.

We now analyze the worst case and average case complexity of M3. M3 appeals to our
intuition as a more aggressive algorithm than M2. However, as the following theorem shows,
it actually performs worse than the trivial algorithm M2 in the worst case. This is of course
counterintuitive since we expect M3 performs better in general. Such intuition is captured
in our average case analysis: for a random instance, M3 does perform provably better than
M2. We first give the worst case analysis and then give the average case analysis (under
uniform distribution).

Theorem 5.3 Given a set of n plans each of length n, the worst case cost of M3 1s ©(nlogn).

Proof: We first give a set of n plans each containing n operators in {a, 3}, from which
algorithm M3 will produce a superplan of size Q(nlogn). We conveniently arrange the plans
into an n by » matrix M such that each row of M corresponds to a plan, one operator per
entry. We recursively construct M: Its first [n/2| + 1 rows are all a. The first column of
the rest of the rows contains 3. Therefore, according to its description, algorithm M3 always
chooses the first column of the first [n/2] + 1 rows to merge at the first n steps. At step
n + 1, M3 chooses the first column of 3 from the rest of rows. After the execution of the
first n + 1 steps, we are left with a matrix of roughly [n/2] — 1 by n — 1. If we recursively
apply above construction to the remaining matrix, it is apparent that the merge process will
go on for (nlogn) steps.

We now show that M3 always produces a superplan no more than size O(nlogn) on
plans drawn from a binary operator alphabet (for fixed alphabet size m > 2 the proof is
similar). The minimum number of operators possibly merged by M3 in successive steps is
a monotonically decreasing function f(k) of step number k. The worst case behavior of M3
maximizes the step number at which f(k) vanishes. (We approximate f(k) by its continuous
analog f(z).) All realizations of f(z) have [° f(z)dz = n?, that is, M3 merges all n?
operators into a superplan. As well, f(z) > (2n)™! [*° f(y)dy, for M3 is able to merge at
least half of the number of plans not yet exhausted by step k. The worst case behavior of
M3 is obtained by setting f(z) to its minimum value for all z. In this case, f(0) = n/2 and
f(z) = (2n)7! [*° f(y)dy, with solution f(z) = (n/2)e~*/?". For large n, this function first
vanishes when z = cnlogn for some ¢ > 0.

O

We now examine the average case cost of M3. We employ a new tool, Kolmogorov
complexity, in the proof of the following theorem. An equivalent proof is obtainable by
probabilistic argument, but the Kolmogorov argument is simpler. The Kolmogorov com-
plexity K(z) of a string z, over alphabet {ay,...,a,}, is the length of shortest PASCAL
program (encoded over the same alphabet) that prints # with empty input. We call z Kol-
mogorov random (or, simply, random) if K(z) > |z| — log |z|. Easy counting shows that
there are at least (1 — 1/n)2" random strings of length n. We refer the reader to Li and
Vitanyi [8] for an introduction to Kolmogorov complexity.

28

Theorem 5.4 Given n random plans each containing at most n operators from the set
{ai,as,..., 0}, and for any small positive constant €, the average case cost of M3 is no
greater than n(m + 1)/2 + O(nl/2+E logn).

Proof: We first give an informal description of the ideas. We will consider a fixed set of
Kolmogorov random plans, which includes nearly all plans of a given length. The advantage
of considering such set is that if we can show that on this particular set of plans M3 has certain
complexity then M3 has the same complexity on average over all plans. Without loss of
generality, we assume that we merge n plans, each containing n operators from {a, ..., a,}*.
Arrange a single Kolmogorov random string of length n? such that K(z) > |z| — log |z| into
a matrix M row by row, giving n plans. Each of these plans is also Kolmogorov random.
Then the claim is that, in the first column, there are almost exactly n/m operators of each
type a;. And if we merge operators of type a;, then the operators ordered after the merged
a; must be again almost evenly divided into m groups with n/m? operators for each «;; in
the Kolmogorov case there are no realizations which deviate significantly from the mean.
This nice property continues to hold until some row is completely removed, but by then,
the rest of rows are all pretty short (about O(n'/2*¢)). Further we show any Kolmogorov
random string (over some m alphabet) of length n is a subsequence of 7™(™+1)/(2m)+e(r) for
any permutation m of the m operator alphabet.

It is now sufficient to show that, for this random M, M3 constructs a supersequence of
length at most n(m +1)/2 + 0(71,1/2"'e log n). This is because a fraction 1 — % of all matrices
are Kolmogorov random within a logarithmic additive factor (i.e., K(z) > |z| —log |z|). M3
constructs merged plans of length n(m + 1)/2 4 o(n) on these inputs and of length nlogn
in the worst case for the other 1/n fraction of inputs. On average, our bound follows. We
need the following fact about Kolmogorov complexity.

Lemma 5.5 Let z be a Kolmogorov random string over an m operator alphabet with |z| = n.
Define an 13-block to be adjacent operators of types o; followed by aj. Fiz any € > 0. Let
K(z) > n—logn. Let s be a subsequence of . We write z—s to denote the new string formed
by deleting s from its corresponding places from x. We say s is an enumerable subsequence
of if there is a program, p, such that K (p|z — s) < logn, that outputs s together with the
locations of each character of s in ©. Then for large n,

(1) For each o; € {aa,...,an}, o; appears in & at most = + n'/?*€ times, and at least
L — n'/2te times.

(2) For each a;,a; € {ai,...,an} & contains at most %—Pnl/”f, and at least %—nl/zﬁ,
17-blocks.

(3) For any enumerable subsequence s of of length n' = n®, for § >0, (1) and (2) are
true with © and n replaced by s and n' respectively.

'In case some plan contains less than n operators, we can always add to it a (uniform) random sequence
(over our alphabet) so that it has length n. Then in the superplan, we remove these added operators. We
consider plans of same length only in order to provide a clean analysis.

29

Remark. Intuitively, this lemma simply states that every operator appears equally likely
in a random sequence and in an “easily enumerable” subsequence of the random sequence
(since this subsequence also has to be random). In particular, the first row of M is of course
“enumerable”; Also the sequence of operators (say, in top down order) that appeared behind
the group merged by M3 at some step is an enumerable subsequence. This important fact
will be used later, and will be simply referred to as Lemma 5.5 (1)(3).

Proof: We prove the second statement in (1) by contradiction. Suppose operator o €

{ou,...,)} appears in z at most d = 2 — n!/2*< times. Then there are at most (3) (m —

1)"~< strings of length n with d occurrences of a. Using a standard estimation?, log,, (3) (m—

1)"¢ < n — én° for some § > 0. Hence z can be coded in n — §n¢ digits, implying that z is
not random and a contradiction. A similar argument proves the first half of (1).

In order to prove (2), one only needs to observe that by pairing the operators two ways:
T9; 1 With zy; for i = 1,2,...,n/2, and z,; with 244, fori =1,2,...,n/2 —1, we reduce the
problem to two half size problems in form of (1) with alphabet size m%. Then (2) follows
immediately.

Part (3) of the lemma automatically follows from (1), (2), and from the fact that every
enumerable subsequence of z is also random [8].

O

Lemma 5.6 For Kolmogorov random inputs ©, M3 will keep outputting n*, where m 1s a
fized permutation of oy, s, ..., Qn, until some row of M is completely deleted (i.e., some
plan is totally merged).

Proof: We prove by induction, on steps of M3, with the following induction hypothesis
from which the lemma follows. Before some row is completely removed,

(a) For each operator «;, ¥ always contains at least n/ m? — npl/?te operators ;.

(b) If at step s an operator «; is put into the supersequence, then from the end of
step s (after deleting the «; from X), for each operator a; there will be always at least
n/m? — mn'/2*¢ more a; than ; in ¥ until o; is chosen to be in the supersequence (i.e., a;
in ¥ are deleted).

At the first step, hypothesis (a) is true by Lemma 5.5 (1)(3). Hypothesis (b) is trivially
true since nothing is deleted yet. Assume (a) and (b) are true until the end of step s and
operator «; is put into the supersequence at step s. To prove (a) we note that at step s we
must have deleted at least n/m a; by algorithm M3. It is easy to see that the subsequence
appearing behind the deleted operators is enumerable. By Lemma 5.5 (1)(3), each operator
appears at least n/m? — n'/2*¢ times in this subsequence of length at least n/m, from which
(a) follows. In order to prove (b), notice that the number of each element is increased by
d/m + n'/**¢ uniformly, where d > n/m is the number of o; deleted from ¥ in step s. But

2An estimation can be found in M. Li and P. Vitanyi, An introduction to Kolmogorov complexity and its
applications, Addison-Wesley, forthcoming.

30

only the operator ; starts from 0, and all others had at least O(n/m?) elements in ¥ already.
At each of the next m rounds, all operators are increased by almost equal amount with a
variance of up to n'/2*¢, which will never make up the discrepancy. (Note the difference
here between Kolmogorov random strings, from which we have excluded the set of strings
having variance that could reverse the order of some (3, 7) pair, and probabilistically random
strings, which contain such inputs with small probability.) So operator o; will only become
the most frequent operator after every other operator has appeared in the supersequence
exactly once. We thus have proved (b).

By (a) and (b), it is clear that M3 will continue to output 7* until some row of M (some

plan) is completely merged, where 7 is a fixed permutation of oy, s, ..., m. a

Lemma 5.7 Again let K(z) > n—logn where z € {a;,...,a,}* andn = |z|. Let 7 be any
permutation of ay ...ou,. Let h(n,e) = n'/?*¢ for notational convenience. Then

(1) z is a subsequence of w™(m+1)/(2m)th(re) for any e > 0.

(2) © is not a subsequence of w1/ (2m)=h(ne) for any fired €.

Proof: Consider the n — 1 operator pairs z;z;;; in @, for 1 < ¢ < n. By Lemma 5.5 (2),

x; appears in a given 7 before z;,; in at least L of these pairs, where L = (@%) —

O(nt/?*e) = (3 — 5=)n— O(n'/2*€). For each such pair, z;,, is fitted into = for “free”. The
other n(3 + 5-) + o(n) pairs require an additional copy of m for z;;;. Also, every sequence
z can fit into n copies of 7, i.e., ™. Since L of those m can be deleted because of the above

free-fitting scheme, = can fit into a sequence

=L _ rento(n)
for ¢ = % + ﬁ, which proves (1). But there are also at least L operator pairs z;z;; such
that z; appears in 7 after z;;,. For such a pair z;;; needs to be put into a next 7 block.
By letting € in Lemma 5.5 (2) be less than the above €/, we have proved (2). O

We complete the proof of main theorem. By Lemma 5.6, M3 continues to output a
prefix of 7*, where 7 is a permutation of a;...q,,, until some row r of M is completely
deleted. However, by Lemma 5.7, every row of M is a subsequence of 7™(m+1)/(2m)+h(r.e) for
any € > 0, but not a subsequence of (7)™ m+1)/(2m)=h(ne) for any fixed €. So when row r
of M is completely deleted, all the rest of rows are of length at most O(n'/2*€). From this
point on, the worst case analysis (Theorem 5.3) of M3 guarantees that M3 will finish within
O(n'/?*¢log n) steps. When r is totally deleted, the partial supersequence has length at most
n(m 4+ 1)/2 4+ O(n'/?*¢), by Lemma 5.7 (1). Therefore the total length of the supersequence
constructed for M is n(m + 1)/2 + O(nl/z"'E log n) for any small € > 0.

Then since M is formed from a Kolmogorov random string, this is also the average length,
for the remaining (non-Kolmogorov random) matrices contribute to the total average at most
an nlogn term times their average 1/n occurrence. O

Remark. We provide another point of view. Since the Kolmogorov random inputs have
the behavior that M3 outputs a repeating pattern (Lemma 5.6), we can model its merging

31

behavior by a simple Markov chain on m states. Let state o; refer to the operator group
Y with ;th greatest cardinality. When operators are merged, all operators in state o; are
randomly distributed to other states, while operators in o3, ..., o,, move to states oy, ...,
Om_1, respectively. The probability transition matrix for the process is just

1/m 1/m 1/m --- 1/m
1 0
1 0
1 0

and its stationary vector is 2/(m(m + 1))(m,m — 1,...,1). At each step of M3, there is
thus a compression ratio of 2n/(m + 1), so that the n? operators can be merged to form a
superplan of expected length n(m + 1)/2.

5.4 Algorithm M4

Algorithm M3 has the best average case cost among the three algorithms we discussed so
far (= n(m +1)/2), but M2 has the best worst case cost (mn). Algorithm M4 combines the
advantages of both M2 and M3. As M3, it looks for the largest set of mergeable operators
to merge from the left frontier Start(II) of the remaining plan. However, it carefully avoids
the worst case behavior of M3. Similar to M2, it collects all the other operators on the left
frontier Start(Il) as well, and merges them before looking for new operators to merge in the
next iteration.

Algorithm M4.

1. §:=10,

2. let ¥ := Start(Il), and 7 := {Type(a) | @ € E}.
3. Until T is empty, do

a. Partition ¥ into m classes, such that each class X; contains operators that are
mergeable. Let ¥; be the subclass with the largest cardinality, and let u be the
merged operator for ;.

b. II := remove(%;,II), S := S;pu, T := T — Type(p).
c. ¥:={a| a € Start(Il) and Type(a) € T'}.

5. If II is empty, then return S, otherwise, goto 2.

Theorem 5.8 The worst case cost of M/ is mn and the average case cost of M} is the same
as M3.

32

Proof:

The reader should notice the subtle difference between M3 and M4. In M3, we always
choose an operator with maximum cardinality. But in M4, we consider set 7" which contains
operator types of all leftmost operators; M4 chooses the best operator from T such that we
would merge more operators from the current frontier. M4 will use up all operator types in
T and then take new operator types from current frontier. This in fact is very similar to
M2 since M2 simply merges every set of operators of the same type in the current frontier
(column). If all input plans are of length at most n, and there are m operators, then, as for
M2, M4’s worst case is mn.

However, M4 is also more aggressive than M2. In fact, it tries to merge as many operators
as possible, not restricting itself to the current column as M2. From the analysis of M3, it
turns out that if the input plans are random, then, if we merge as M3, the output will be
precisely a cyclic alternation of operators. This is precisely what we are doing with M4.
Thus Lemma 5.6 in the proof of M3 implies that M4 has the same average case complexity
as that of M3. O

From above analysis, an algorithm that is too greedy (M1) or an algorithm that is not
greedy enough (M2) performs worse. On the other hand algorithms that compromise the
two extremes (M3 and M4) perform better on average.

So far, our analyses have not compared with the behavior of optimal plan merging, as
this is still an open problem. Also, the analyses assumed large input sizes. To verify our
theoretical analysis with small input sizes, we have also conducted a series of experiments in
Section 6.

5.5 Generalizations

For mathematical simplicity, so far we have restricted our attention to simple cases of linear
input plans and disjoint mergeable operator types in analyzing the approximation algorithms.
In this section, we generalize our results in two ways, by inputing and outputting partially
ordered plans and by merging arbitrarily mergeable sets of operators. In blocks world, this
relaxation allows a single gripper to be able to pick up blocks of different sizes.

As noted in the previous section, M3 and M4 have the same average case performance.
Since M3 is slightly simpler than M4, we present a generalization of M3 to handle partially
ordered inputs. Recall that Algorithm M3 sweeps through the input plan II by merging
operators on each frontier. After each merging step, a new frontier is formed, and thus
merging continues until the whole plan is exhausted. With partially ordered plans, the
frontier at each step is still well-defined by Start(Il). Let Mergeables(Start(Il)) = {X;,¢ =
1,2,...} be the sets of operators in the frontier that can be merged. Let X; be a set of
operators among Mergeables(Start(Il)) such that cost(X;) — cost(merge(%;)) is maximum.
Then in this iteration ¥; will be chosen to be merged. This is the same with M3 in spirit,
because at each iteration the most profitable merging is chosen along the current frontier.

To output a partially ordered plan after merging is done, we only need to keep track of

33

what operators are merged by the algorithm in each iteration. Then after the whole plan is
merged, these operator sets are merged in the original plan with no more ordering constraints
imposed, which leaves a partially ordered resultant plan in general.

Algorithm MS5.

1. R := (. Each element of R is a set of operator identifiers indicating where merging should
occur.

2. Let ¥;,0 =1,2,...,m be sets of operators that can be merged, such that

1. ¥; C Start(II),
2. no ¥, is also a proper subset of ¥;, for 7 # 7.

That is, ¥; contains operators that are mergeable. Let ¥; be the set such that
cost(X;) — cost(merge(X;)) is minimal.

3. II := remove(%;, IT),

'

. R:= RU{%:},
5. If II is not empty, goto 2.

6. Reset II to be the original input plan. For each set ¥; in R, merge ¥; in II.

Note that when operators belong to disjoint classes partitioned by operator types, and when
the subplans are linear sequences of operators, M5 degenerates to M3. M4 can be similarly
generalized.

6 Experimental Results

In this section, we compare the empirical behavior of the algorithms over several sets of
randomly generated test cases. These empirical tests are important because they reveal
the behavior of the algorithms when input sizes are small, a situation not covered by the
theoretical analysis in the previous section. Each random test case is a set of linearly ordered
sequences of operators with equal lengths. Each sequence is generated by assuming a uniform
distribution of operator types. Test cases are distinguished by three parameters: the size of
the operator alphabet, the length of each input sequence and the number of input sequences.
Test programs were written in Kyoto Common Lisp. Figures showing the test results can be
found at the end of the paper.

The tests are grouped into two classes. The first class aims at comparing each approxima-
tion algorithm with the optimal solution generated using the dynamic programming method.

34

Each test datum obtained in this class corresponds to the average result over five inputs. Fig-
ure 12 shows the length of the supersequences generated by the approximation and optimal
algorithms as a function of the length of each input sequences. Figure 13 shows the results
as a function of alphabet size. It appears from these tests that algorithm M4 performs the
best on the average among all four algorithms, while M1 performs the worst. As the length
of each input sequence increases (Figure 12), algorithms M1 and M2 perform increasingly
worse when compared with the optimal, while M3 and M4 stay fairly close to the optimal
solutions. In Figure 13, M3 and M4 perform much better than M1 and M2 with small al-
phabet sizes. But as the size of the alphabet increases, all four approximation algorithms
deviate from the optimal. Since the dynamic programming algorithm has a higher time and
space complexity, no tests were done with the changing number of input sequences.

The second group consists of tests comparing the performance of the approximation
algorithms with large input sizes. Each test in this group corresponds to the average over
10 randomly generated data. For those input sequences, the optimal dynamic programming
algorithm becomes infeasible to execute. Figures 14, 15 and 16 show the performance of each
algorithm as a function of the length of each input sequence, the size of the alphabet, and the
number of input sequences, respectively. It again appears from these tests that algorithms
M3 and M4 perform increasingly better than M2, which in turn performs increasingly better
than M1 with the length of input sequence and the size of alphabet. Also note that no
algorithm is affected by the number of input sequences (Figure 16), as might be inferred
from our average complexity theorems. Note that in Figure 16 algorithms M3 and M4
has identical performance. Further, it is worth noting that as the length and number of
input sequences gets larger, the empirical behavior of the algorithms converges closer to our
theoretical average case analysis in the previous section.

In Section 5 we stated that algorithm M1 not only has the highest worst case complexity,
it also has the worst average case behavior. It is our conjecture that M1 has a average case
complexity of O(nlogn), where n is the length of input sequences, taking plans with binary
alphabet as input, and taking the length and the number of input sequences being equal.
In support of our conjecture, we conducted an experiment on M1, with results presented
in Figure 17. The figure shows that the average case behavior of M1 is indeed worse than
2n log n.

In summary, we conclude that algorithm both M3 and M4 have the best empirical per-
formance among all approximation algorithms when the input size gets large. However, with
small enough input sizes, the difference between the for algorithms is not significant.

7 Conclusion

In this paper, we have presented a formalism as well as a computational theory for optimal
and approximate plan merging. Using the STRIPS operator definition, we have formally
defined when operators in a plan can be merged, and discussed the complexity for optimal

35

plan merging. With plans of relatively small sizes, our dynamic programming method can be
used to compute the optimal solution. Various extensions of the algorithm are considered,
including plan merging with partially ordered input plans. For plans with large sizes, the
optimal algorithm is no longer feasible. In such cases, approximation algorithms can be
utilized to compute high quality plans at low cost. We have presented several approximation
algorithms and have shown, through theoretical and empirical analysis, that the algorithms
M3 and M4 perform the best among the greedy algorithms in terms of the worst and average
case complexities.

Acknowledgement

The authors would like to thank W.P. Tang for bringing us together, and to D. Wood and
U. Manber for many useful comments. The authors would also like to thank the referees for
their constructive comments.

References

[1] David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333-377,
1987.

[2] E.H. Derfee and V.R. Lesser. Using partial global plans to coordinate distributed prob-
lem solvers. In Proceedings of the 10th IJCAI pages 875-883, 1987.

[3] Michael R. Garey and David S Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

[4] Caroline C Hayes. A model of planning for plan efficiency: Taking advantage of operator
overlap. In Proceedings of the 11th IJCAI Detroit, Michigan, 1989.

[6] Subbarao Kambhampati and James A. Hendler. A validation structure based on theory
of plan modification and reuse. In Artificial Intelligence (To appear), 1990.

[6] Raghu Karinthi, Dana S. Nau, and Qiang Yang. Handling feature interactions in process
planning. to appear, Journal of Applied Artificial Intelligence, 1991.

[7] Craig Knoblock, Josh Tenenberg, and Qiang Yang. Characterizing abstraction hierar-
chies for planning. In Proceedings of the 9th AAAI, Anaheim, CA, 1991.

[8] M. Li and P. Vitanyi. Two decades of applied kolmogorov complexity. In 3rd Structure
mn Complexity Theory, pages 80-101, 1988.

[9] U. Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, Read-
ing, Massachusetts, 1989.

36

[10] M. Mantyla and J. Opas. Hutcapp—a machining operations planner. In Proceedings of
the Second International Symposium on Robotics and Manufacturing systems, 1988.

[11] Dana S. Nau, Qiang Yang, and James Hendler. Optimization of multiple-goal plans
with limited interaction. In Proceedings of the 1990 DARPA Workshop on Innova-
tive Approaches to Planning, Scheduling and Control, pages 160-165, San Diego, CA.,
November 1990.

[12] D.A. Rosenblitt. Supporting Collaborative Planning: The Plan Integration Problem.
PhD thesis, MIT, Cambridge, MA, Feb. 1991.

[13] Earl Sacerdoti. A Structure for Plans and Behavior. American Elsevier, 1977.

[14] D. Sankoff and J. B. Kruskal, editors. Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, Mas-
sachusetts, 1983.

[15] T Sellis. Multiple query optimization. ACM Trasactions on Database Systems, 13(1),
March 1988.

[16] Austin Tate. Generating project networks. In Proceedings of the 5th IJCAI, pages
888-893, 1977.

[17] R. Wilensky. Planning and Understanding. Addison Wesley, 1983.

[18] David Wilkins. Practical Planning: Eztending the Classical Al Planning Paradigm.
Morgan Kaufmann, CA, 1988.

[19] Qiang Yang. An algebraic approach to conflict resolution in planning. In Proceedings
of the 8th AAAI Boston, MA, August 1990.

[20] Qiang Yang and Josh Tenenberg. Abtweak: Abstracting a nonlinear, least commitment
planner. In Proceedings of the 8th AAAI pages 204-209, Boston, MA, August 1990.

[21] Qiang Yang, Josh Tenenberg, and Steve Woods. Abstraction in nonlinear planning.
University of Waterloo Technical Report CS91-65, 1991.

37

Figure 12: Tests with fixed number of sequences (k = 4) and alphabet size (m = 2). Each
datum is an average over 5 random inputs.

Figure 13: Tests with fixed number of sequences (k = 4) and sequence length (n = 10).
Each datum is an average over 5 random inputs.

Figure 14: Tests with fixed number of sequences (k = 4) and alphabet size (m = 2). Each
datum is an average over 10 tests.

38

Figure 15: Tests with fixed number of sequences (k = 40) and sequence length (n = 40).
Each datum is an average over 10 tests.

Figure 16: Tests with fixed alphabet size (m = 2) and sequence length (n = 10). Each
datum is an average over 10 tests.

Figure 17: Tests with fixed alphabet size (m = 2). Each datum is an average over 10 tests.

