Characterizing and Automatically Finding Primary Effects in
Planning

Eugene Fink *and Qiang Yang '

Abstract

The use of primary effects of operators in plan-
ning is an effective approach to reduce search
costs. However, the characterization of “good”
primary effects has remained at an informal
level. In this paper we present a formal crite-
rion for selecting useful primary effects, which
guarantees planning efficiency, completeness,
and optimality. We also describe an inductive
learning algorithm based on this criterion that
automatically selects primary effects of opera-
tors. Both the sample complexity and the time
complexity of our learning algorithm are poly-
nomial in the size of the domain.

1 Introduction

1.1 Planning with Primary Effects

Planning with primary effects is an effective approach to
reduce search costs. The idea of this approach is to select
primary effects among the effects of each operator and
to use an operator only when we need to achieve one of
its primary effects. A primary-effect restricted planner
never inserts an operator in a plan in order to achieve
any of the side effects of the operator. For example, the
primary effect of lighting a fireplace is to heat the house.
If we have lamps in the house, we could consider illumi-
nating the room as a side effect of lighting a fireplace.
We would not use a fireplace just to illuminate the room.

The advantages of using primary effects in planning
are well-known. If a planner considers only operators
whose primary effects match a current goal, the branch-
ing factor of search can be reduced. This may result in an
exponential reduction of running time. For this reason,
primary effects are used by many implemented planning

*School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213. Email: eugene@cs.cmu.edu. The au-
thor is supported in part by a scholarship and grants from
the Natural Sciences and Engineering Research Council of
Canada.

"Department of Computer Science, University of Wa-
terloo, Waterloo, Ont., Canada N2L 3GI. Email:
qvang@logos.waterloo.edu. The author is supported in part
by grants from the Natural Sciences and Engineering Re-

search Council of Canada and ITRC.

systems, such as SIPE [Wilkins, 1988], PRODIGY [Car-
bonell et al., 1990], and ABTWEAK [Yang and Tenen-
berg, 1990]. Besides, primary effects play an important
role in systems that automatically generate abstraction
hierarchies. Recent work [Knoblock, 1991], [Fink and
Yang, 1992b] has shown that the use of primary effects
allows us to increase the number of levels in abstraction
hierarchies, resulting in hierarchies that in many cases
increase the efficiency of abstract planning.

Despite the importance of primary effects, the char-
acterization of a “good” selection of primary effects has
remained at an informal level. Most systems rely on a
human user to select primary effects. If the user has not
chosen primary effects, then by default all effects are as-
sumed to be primary.

A lack of a formal guideline for selecting primary ef-
fects could cause two serious problems in planning. First,
an improper selection of primary effects may result in
the loss of completeness in planning. Incompleteness
happens when a primary-effect restricted planner can-
not find a plan for a solvable planning problem. For
example, if a fireplace is the only source of light, but
lighting is not chosen as a primary effect of using fire-
place, a primary-effect restricted planner will not find a
plan to illuminate the room. Second, primary-effect re-
stricted planning may produce non-optimal plans. This
happens because primary effects place a bias in directing
the search for a solution. If not set properly, the bias can
favor a search path toward a more costly solution.

Recently we have developed an algorithm, MARGIE,
for automatically selecting primary effects [Fink and
Yang, 1992b]. Although in many cases this algorithm
leads to a dramatic improvement in running time, our
experiments revealed that the above two problems some-
times cause a planner to perform worse than without the
use of primary effects.

1.2 Overview of the Results

The purpose of the paper is twofold. First, we pinpoint
the exact reason for a primary-effect restricted planner to
be incomplete and non-optimal. This result is presented
in the form of a theorem, which states a necessary and
sufficient condition for a primary-effect restricted plan-
ner to be admissible. The theorem formalizes the intu-
itions behind “good” choices of primary effects. Using
the theorem, it is now possible to determine whether a

| operator | preconditions | effects | cost |
go(z,y) robot-in(z) robot-in(y) 2
door(z, y) —robot-in(z)
carry-ball(z, y) | robot-in(z) robot-in(y) 3
ball-in(z) —robot-in(z)
door(z, y) ball-in(y)
—ball-in(z)
throw(z, y) robot-in(z) ball-in(y) 2
ball-in(z) —ball-in(z)
door(z, y)
break(z, y) robot-in(z) robot-in(y) 4
—robot-in(z)
door(z, y)

given selection of primary effects enables a planner to be
complete and admissible.

Second, for incomplete or inadmissible choices of pri-
mary effects we present an inductive learning algorithm
to automatically find additional primary effects. The
learned set of primary effects guarantees a planner’s com-
pleteness and ensures its ability to find a near-optimal
solution. To use the learning algorithm, an initial set of
primary effects can be chosen by the user or by an ini-
tialization algorithm. The learner then analyzes either
a collection of previous plans or new plans generated by
the planner to augment the set of primary effects of op-
erators.

The utility of our inductive learning algorithm is
demonstrated by its time complexity and sample com-
plexity. The former characterizes the running time of
processing a set of sample plans, while the latter speci-
fies the number of sample plans required by the learner
to reduce the probability of planning errors to a small
user-defined number. We show that the time complexity
of our algorithm is polynomial in the size of the domain,
and the sample complexity is linear in the total number
of effects in operator definitions.

2 A Motivating Example

2.1 Planning Domain

We describe a planning domain with a robot, which may
move within four rooms (see the picture), and a ball in
Room 4. The robot may go between two rooms con-
nected by a door, and it may carry the ball. Also, the
robot may throw the ball through a door into another
room. If two rooms are separated by a wall, the robot
may break through the wall to create a new door.

To describe a current state of the domain, we have to
specify the location of the robot and the ball, and pairs
of rooms connected by doors. This may be done with
three predicates, robot-in(x), ball-in(z), and door(x,y).

Literals describing a current state of the domain may be
obtained from these predicates by substituting specific
room numbers for z and y. For example, the literal
robot-in(1) means that the robot is in Room 1, ball-in(4)
means that the ball is in Room 4, and door(1,2) means
that Room 1 and Room 2 are connected by a doorway.

The operations performed by the robot, such as mov-
ing between rooms or throwing the ball, are called oper-
ators. Each operator « is described by a set of precon-
ditions Pre(w), a set of effects Eff(a), and a real-valued
cost (see the table). The preconditions of « are the con-
ditions that must hold before the execution of the oper-
ator, and the effects are the results of the execution. If
[is a member of Eff(«), then we say that a achieves (.

A plan is a sequence of operators that achieves some
desired goal'. For example, assume that the initial state
is as shown in the picture, and we wish to bring both
the robot and the ball into Room 3. This goal may be
achieved by the plan (break(1,4), carry-ball(4,3)). A plan
is correct if (1) all goal literals are achieved, and (2) the
preconditions of every operator « of the plan are satisfied
before the application of «. We define the cost of a plan
as the sum of the costs of its operators. The cost of our
planis 4 +3 = 7. An optimal plan is one that achieves
the goals with the minimal cost.

2.2 The Completeness Problem

If an operator has several effects, we may choose certain
“important” effects among them and insert the operator
into a plan only for the sake of these effects. Intuitively,
an effect is not important if it may be achieved by some
other, less expensive operator. The chosen important
effects are called primary. Using primary effects in plan-
ning restricts the branching factor of search, which may
improve efficiency.

For example, consider the following selection of pri-
mary effects:

go(z,y) {robot—@n(y)} .
carry-ball(z, y) {robo.t—m(y), ball-in(y)}
throw(z, y) {ball-in(y)}

break(z,y) {door(z,y)}

Assume that the initial state is as shown on the picture
and the robot must go into Room 3. The robot may
achieve this goal by breaking through the wall between
Rooms 1 and 3. However, since changing the location of
the robot is not a primary effect of breaking through a
wall, a planner will not consider this possibility. Instead,
it will find the plan (go(1,2), go(2,3)).

The planner is not as fortunate when we consider an-
other goal: to remove the robot from Room 1. The for-
mal description of this goal is {—robot-in(1)}. This may
be achieved by the operator go(1,2) or, less efficiently,
by break(1,3). However the planner will not find either
of these plans, because —robot-in is not a primary effect
of any operator. Therefore, the planner will report that
the goal cannot be achieved. This shows that planning
with primary effects may not be complete, that is, it may
fail to find a plan for an achievable goal.

n this paper we consider total-order plans. However, our
results can be easily generalized to partial-order plans.

To preserve completeness, we have to add some addi-
tional primary effects to our selection:

go(z,y) {robot-in(y), ~robot-in(z)}
carry-ball(z,y) {robot-in(y), ball-in(y)}
throw(z,y) {ball-in(y), —ball-in(z)}
break(z, y) {door(z,y)}

With this modification the planner is complete. However
planning with these primary effects may still prevent us
from finding an optimal plan. Suppose that we want the
robot to go from Room 1 to Room 4. The goal may be
achieved by the operator break(1,4), the cost of which
is 4. However, entering Room 4 is not a primary ef-
fect of this operator, and a planner will not apply the
operator. The best plan that the planner may find us-
ing primary effects is (go(1,2), go(2,3), go(3,4)), with the
cost 6. This example demonstrates that planning with
primary effects may not be admissible, that is, it may fail
to find an optimal plan.

In the following sections, we formalize the notion of
planning with primary effects and present a technique for
ensuring the completeness and admissibility of planning.

3 Formalizing Primary Effects

3.1 Primary-Effect Restricted Planning

A planner is called primary-effect restricted if, when it
inserts a new operator to achieve a goal or a precondition
of another operator, it always uses an operator with a
matching primary effect. To describe the completeness
of a primary-effect restricted planner, we need to define
a number of key concepts.

We first define the notion of justification. Informally,
an effect | of some operator o in a plan II is justified if
achieving [by « is required for the correctness of II.

Definition 1 An effect | of an operator « in a correct
plan is justified if either

e [is a goal, and no operator after a achieves I, or

e [is a precondition of some operator a1, such that
one of the effects of oy is justified and no operator
between o and oy achieves |

Observe that the operators that do not have justified
effects may be removed from the plan without violating
the correctness of the plan [Fink and Yang, 1992a). In
this paper we assume that all operators of every plan
have justified effects.

Definition 2 A correct plan II is primary-effect justi-
fied if every operator of Il has a justified primary effect.

One may verify that if a planning problem has a
primary-effect justified solution, then the primary-effect
restricted versions of many planning systems, such as
STRIPS [Fikes and Nilsson, 1971], TWEAK [Chapman,
1987], and PRODIGY [Carbonell et al., 1990], will find

a solution to the problem.

Definition 3 Primary-effect restricted planning is com-
plete if, for any initial state Sy and goal state S,, the
existence of some plan that achieves S, from Sy always
implies the existence of a primary-effect justified plan
that achieves Sy from Sp.

Our next concern is the optimality of primary-effect
justified plans. To describe the possible loss of efficiency
when using primary effects, we introduce the notion of
the greatest cost increase. A positive real number C' is
called the greatest cost increase for a given selection of
primary effects, if for any goal achieved by any plan II,
there exists a primary-effect justified plan for achieving
this goal, with the cost no greater than C - cost(II).

For example, consider the plan in the last example
of Subsection 2.2. The optimal way for the robot to
travel from Room 1 to Room 4 is to break through the
wall, with the cost 4. However, the best primary-effect
justified plan is to go through Rooms 2 and 3, which
costs 6. Thus the cost increase for this problem is 6/4 =
1.5.

The greatest cost increase is the factor we will use for
judging the degree of optimality for a given selection of
primary effects. Its value is always greater than or equal
to 1. The smaller its value, the better the selection of
primary effects.

3.2 Necessary and Sufficient Condition of
Completeness

To address the problem of selecting primary effects, we
present a theorem that allows us to test whether a given
choice of primary effects guarantees the completeness of
planning and to estimate the greatest cost increase.

Let S be a state and « be an operator whose precon-
ditions are satisfied in S. A plan II; with the initial
state S is called a replacing plan for o in S if II; is a
primary-effect justified plan such that

1. II; achieves all side effects of «, and

2. II; leaves unchanged all literals of S that are not
changed by «

For example, consider the state S = {robot-in(1), ball-
in(4)} and the operator break(1,4). The side effects of
this operator are robot-in(4) and —robot-in(1). A replac-
ing plan for break(1,4) is 1 = (go(1,2), go(2,3), go(3,4)),
since II; achieves both side effects of break operator and
does not change any other literals of S.

The replacing cost increase is the ratio of the cost of
cost(Il;)

cost(a) *
In our example the cost of break is 4, and the cost of 11

is 6, and thus the replacing cost increase is % =1.5.

an optimal replacing plan II; to the cost of «,

Theorem 1

[Completeness] Primary-effect restricted planning is
complete if and only if for every state S and for every
operator o whose preconditions are satisfied in S, there
erists a replacing plan.

[Optimality] For a given complete selection of primary
effects, the greatest cost increase equals

max{l, max{replacing cost increase of a}}.
o

The second part of the theorem states that the greatest
cost increase is equal to the maximum of replacing cost
increases when the latter is greater than 1. Otherwise,
it equals 1.

Sketch of the proof We prove the second part of
the theorem, that the greatest cost increase is equal to

the maximum of replacing cost increases. The proof of
the first part is similar.

Let C, be the maximal replacing cost increase. We
have to show that (1) the cost increase for every plan-
ning problem is at most Cy, and (2) there is a planning
problem for which the cost increase is exactly C,.

(1) Consider an arbitrary planning problem with
an initial state Sp and a goal S,;, and an optimal plan
I = (a1, .., @,) that achieves the goal. We have to show
that there exists a primary-effect justified plan achieving
the same goal, with the cost no larger than C, - cost(II).
We may convert II into a primary-effect justified plan by
replacing some of its operators. We begin by consider-
ing the last operator, «a,,. If it is not primary-effect justi-
fied, we replace it with the corresponding replacing plan.
Since C; is the largest replacing cost increase, the cost of
the replacement is no larger than C-cost(ay,). We repeat
this process for the rest of the operators, a,—_1, an—s,
and so on, until all operators without justified primary
effects are replaced by primary-effect justified plans. It
may be shown that when we replace some operator «;,
all operators after it remain primary-effect justified. So,
after we replace all n operators, we obtain a primary-
effect justified plan the cost of which is no greater than
Cy - cost(ay) + ..+ Cyp - cost(apn) = Cy - cost(II). We con-
clude that the cost of an optimal primary-effect justified
plan that achieves S, from Sp is at most C, - cost(II),
and therefore the cost increase is no greater than C,.

(2) Consider an operator a and a state S such that
the replacing cost increase of @ in S is Cy, the largest of
the replacing cost increases. Consider a planning prob-
lem with the initial state S and the goal to achieve all
side effects of a and to preserve the values of all liter-
als not changed by a. The goal may be achieved by a
single operator «, and thus the cost of an optimal plan
is no greater than cost(a). On the other hand, an opti-
mal primary-effect justified plan that solves the problem
is a replacing plan for « in S, and therefore its cost is
C, - cost(a). Thus, the cost increase is at least C,. O

The theorem can be applied to check whether a given
choice of primary effects ensures the completeness and
near-optimality of a primary-effect restricted planner, by
examining each operator in the domain and finding a re-
placing plan for the operator’s side effects. The theorem
can also be used to design a learning algorithm that auto-
matically finds primary effects. We present our learning
algorithm in the next section.

4 Automatically Finding Primary Effects

We would like to minimize the number of primary effects
in order to limit the branching factor of search, but the
selected set of primary effects must be large enough for
ensuring the planner’s completeness and optimality. Our
algorithm is designed to ensure both of these criteria.
The initial phase of the algorithm attempts to minimize
the number of the primary effects. Then a learning com-
ponent augments the selected set to ensure completeness
and optimality.

4.1 Initial Selection of Primary Effects

First, all user-defined primary effects are taken as a part
of the initial selection. Then the algorithm ensures that
every literal is a primary effect of at least one operator.
Thus, the algorithm makes each literal [be a primary
effect of some operator. Since we wish to minimize the
cost increase of planning with primary effects, the algo-
rithm chooses the operator with the minimal cost among
all operators achieving [. The corresponding procedure,
Initial_Choice, is presented in Table 1. Here the func-
tion User-Defined_Eff adds primary effects chosen by
the user. The function Cheapest_Operator(l) finds the
minimal-cost operator @ among the operators achieving
. If no operator achieves [, Cheapest_Operator returns
“not-found”.

Example Suppose that Initial_Choice is applied to our
robot domain, and the user has chosen robot-in(z) and
—robot-in(y) as primary effects of carry-ball(z,y). The
procedure finds the cheapest operators for the remaining
literals, ball-in, —ball-in, and door. The cheapest opera-
tor that achieves the literals ball-in and —ball-in is throw,
and the cheapest operator for door is break. Thus, Ini-
tial_Choice selects the following primary effects:

go(z,y) none
break(z,y) {door(z,y)}
throw(z, y) {ball-in(y), —ball-in(z)}

carry-ball(z,y) {robot-in(y), —robot-in(z)}

4.2 Learning Additional Primary Effects

The learning algorithm augments the set of primary ef-
fects chosen by the procedure Initial_Choice. It asks the
user to provide the greatest cost increase C. The value
of C'is the cost increase that the user is willing to accept.
Then the algorithm randomly generates example plans
and tests whether every example plan II may be replaced
with a primary-effect justified plan II; that achieves the
same goal, with the cost no greater than C - cost(Il). If
such a plan II; cannot be found, the algorithm selects
additional primary effects for the operators.

Our method may be viewed as an inductive learning
algorithm. At any moment of learning, the current se-
lection of primary effects is the hypothesis of our learn-
ing method. Example plans are produced by a random-
example generator. An example plan II is a positive ez-
ample if the planner finds a replacing primary-effect jus-
tified plan with the cost at most C'-cost(II) that achieves
the same goal as II. If a replacing plan cannot be found,
the example is negative. Our inductive learner ignores
positive examples. For each negative example, it im-
proves the hypothesis by selecting new primary effects.

Processing One Example Plan The learning algo-
rithm selects additional primary effects by analyzing cor-
rect plans. Given an initial state Sy, a goal S,, and a
plan II that achieves the goal, the algorithm converts
II into a primary-effect justified plan that achieves Sy,
with the cost no greater than C - cost(II). (Recall that
C' is the greatest cost increase set by the user.) If the
selected primary effects do not allow such a conversion,
the learner selects additional primary effects.

To obtain a primary-effect justified plan, the algorithm

considers each operator « of Il without justified primary
effects and calls the procedure Prim_Eff_Planner to re-
place a by primary-effect justified plan II;, such that
the cost of II; is at most C - cost(ca). If the replacement
found by Prim_Eff_Planner does not achieve all justified
effects of a, then the learner chooses some justified ef-
fect [of a that is not achieved by the replacing plan and
makes [a primary effect of a. After all operators are
processed and new primary effects are selected as neces-
sary, the learner obtains a primary-effect justified plan
that achieves S;. These operations are performed by the
procedure Process_Plan shown in Table 1.

Example Let us apply the learning algorithm to our
robot domain, with the initial selection of primary effects
from the previous example. We choose C' = 1.5 and con-
sider the single-operator plan (go(1,2)) with the initial
state as shown on the picture and the goal {robot-in(2)}.
Since the operator go does not have primary effects, this
plan is not primary-effect justified. So the learner calls
the planner Prim_Eff-Planner (see line 3b of the algo-
rithm) to find a primary-effect replacement for go. The
planner fails to find a primary-effect justified plan to
achieve the goal, and the learner chooses robot-in(y) as a
primary effect of go(z,y). Thus, the selection of primary
effects becomes as follows:

go(z,y) {robot-in(z)}
break(z, y) {door(z, y)} '
throw(z,y) {ball-in(y), —ball-in(z)}

carry-ball(z,y) {robot-in(y), ~robot-in(z)}

Now we consider another plan. Let the initial state again
be as shown on the picture, and the goal is to bring the
robot into Room 4, {robot-in(4)}. This may be achieved
by the plan (break(1,4)), with the cost 4. This plan is not
primary-effect justified, since the location of the robot
is not the primary effect of break. So the learner will
achieve the same goal by a primary-effect justified plan
(go(1,2), go(2,3), go(3,4)). The cost of this plan is 6, and
the cost increase is 6/4 = 1.5, which is no greater than
C = 1.5. Thus, the learner concludes that the effect
robot-in of break may be achieved by a replacing plan
and does not choose it as a primary effect.

The Learner and the Example Generator The
above algorithm for processing one plan is used as a sub-
routine by a top level loop that scans the set of operators.
For each operator, it uses the condition of Theorem 1 to
generate example plans for the learner. For every state S
and every operator & whose preconditions are satisfied in
S, the condition of the theorem makes it necessary to find
a primary-effect justified replacing plan that achieves all
side effects of o and leaves unchanged all literals of S
that are not changed by «. Let us denote the state re-
sulting from applying « to S by a(S). Then a replacing
plan must achieve all literals of a(S) except the primary
effects of a, i.e. its goal is (a(S) — Prim-Eff(«)). Thus,
the example generated for a state S and an operator « is
the single-operator plan («) with the initial state S and
the goal (a(S) — Prim-Eff(«)). This information is then
passed to the subroutine Process_Plan.

For every operator «, the procedure Learn_Prim_Eff
(Table 1) randomly chooses several states in which the

Initial_Choice

la. for all operators @ do Prim-Eff(«) := 0;
2a. User-Defined _Eff;

3a. for all literals [do

begin

4a. a := Cheapest_Operator(!);

ba. if a# “not-found” {l is not static}

6a. then Prim-Eff(a) := Prim-Eff{o) U {l}
end

Process_Plan(Sy, Sy, II)
1b. for all « € Il do
2b. if Justified_Effects(So, Sy, I,) N Prim-Eff(o) =

then
begin
3b. II, := Prim_Eff_Planner(So, Sy, II — {a});
4b. if Unsatisfied _Pre(Il;) # 0
then
begin
5b. choose | € Unsatisfied _Pre(II;);
6b. Prim-Effla) := Prim-Eff{a) U{l}
end
7hb. else 1I :=1I;
end

Learn_Prim_Eff
lc. for every operator o do

begin

2c. Count := 0;
repeat

3c. S := Random_ State(a);
4c. Process_Plan(S, (a(S) — Prim-Eff(a)), (a));
ac. if a new primary effect is added by the learner
6c. then Count := 0
Tc. else Count := Count+1
8c. until Count=m

end

Table 1: Learning algorithm

preconditions of « are satisfied and generates the cor-
responding single-operator example plans. It generates
examples until it considers m consecutive examples with-
out adding new primary effects, where m is an integer
chosen by the user. In the next section we show a rela-
tionship between m and the probability of failure when
planning with the selected primary effects.

Our experiments show that it is best to process the
operators in the ascending order of the number of their
side effects. Intuitively, the more side effects an operator
has, the larger is the probability to make a non-optimal
choice of primary effects among them. However, if we
consider an operator a with a large number of effects at
a later stage, we may use the already selected primary
effects of other operators for constructing a replacing
plan for « and thus reduce the opportunities for a non-
optimal choice of a new primary effect of a.

5 Sample and Time Complexities

The performance of our inductive learning algorithm is
characterized by two factors. The first factor, known

as sample complexity, is the number of example plans
required by the learning algorithm to reduce the proba-
bility of completeness violation to a user-specified value.
The second factor is the time complexity. In this section
we show that both the sample and time complexities of
the learner are polynomial in domain size.

The purpose of learning is to ensure that planning
with primary effects is complete and the cost increase for
any problem is no greater than C'. We denote by ¢ the
probability that for a randomly chosen initial state Sy
and a random goal S, achievable from Sy by an optimal
plan II, there is no primary-effect justified solution with
the cost no greater than C - cost(Il). Informally, € is
the probability that a primary-effect restricted planner
behaves worse than expected.

Intuitively, the value of € decreases with increasing
the number of example plans analyzed by the learner.
The number of plans produced by the example generator
depends on the user-defined constant m (see the previous
section and line 8¢ of the algorithm). The theorem below
establishes a relationship between m and e.

Theorem 2 Consider a random problem with an opti-
mal solution (oinit, @1, Q, .., 0, Ogoal). The probability
that the problem does not have a primary-effect justified
solution within the cost increase C' is no larger than

|Eff (o) + |Eff (e2)[+ ... + | Eff (00n) | +
m+1

The proof of the theorem may be found in [Fink and
Yang, 1992¢]. The theorem shows that ¢ decreases in
reverse proportion to m.

The running time of the learning algorithm depends
on the size of a domain, the maximum allowed cost in-
crease C, and m. For every «, the algorithm generates
examples until the value of Count reaches m (see line 8c).
Count is used to count the number of the already gen-
erated examples. It is set back to 0 when the algorithm
selects a new primary effect of «, and thus it may be
set to 0 at most |Eff(a)| times, where |Eff{«)| is the
number of effects of a. Therefore, the maximal num-
ber of examples generated for a is m - | Eff(«)|, and the
number of examples for all operators is no greater than
m -y |Effla)|. Thus, the number of examples is pro-
portional to m, and therefore the value of ¢ decreases in
the reverse proportion to the number of examples.

The maximal allowed cost increase, C', determines the
depth of the search for replacing plans, performed by the
procedure Process_Plan. Thus the running time of ana-
lyzing each example exponentially depends on C'. How-
ever, for small C search does not take long time. If
we assume that C is a constant, the time complexity
of Prim_Eff_Planner becomes polynomial in the size of
a domain. The other parts of Learn_Prim_Eff and the
procedure Initial_Choice run in polynomial time.

6 Conclusions

This paper presents a formalism for planning with pri-
mary effects. It describes a method of selecting primary
effects for the purpose of improving the efficiency of plan-
ning without losing its completeness. The paper also

demonstrates a tradeoff between the reduction of the
branching factor of planning and the cost of resulting
plans. This tradeoff shows a dependency between the
running time of a primary-effect restricted planner and
the quality of plans produced by the planner.

The algorithm presented in the paper is novel in
that it automatically finds primary effects. The learner
may be integrated with an algorithm presented in [Fink
and Yang, 1992b] to increase the number of levels of
ordered abstraction hierarchies generated by ALPINE
[Knoblock, 1990], while preserving the completeness of
planning and ensuring a small cost increase.

References

[Bacchus and Yang, 1991] Fahiem Bacchus and Qiang
Yang. The downward refinement property. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence, pages 286-291, 1991.

[Chapman, 1987] Planning for conjunctive goals. Artifi-
cial Intelligence, 32, pages 333-377, 1987.

[Carbonell et al., 1990] Jaime G. Carbonell, Craig A.
Knoblock, and Steven Minton. PRODIGY: an in-
tegrated architecture for planning and learning. In
Architectures for Intelligence, ed.: Kurt VanLehn,
Erlbaum, Hillside, NJ, 1990.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J.
Nilsson. STRIPS: a new approach to the application
of theorem proving to problem solving. Artificial In-
telligence, 2, pages 189-208, 1971.

[Fink and Yang, 1992a] Eugene Fink and Qiang Yang.
Formalizing plan justifications. In Proceedings of the
Ninth Conference of the Canadian Society for Com-
putational Studies of Intelligence, pages 9-14, 1992.

[Fink and Yang, 1992b] Eugene Fink and Qiang Yang.
Automatically abstracting effects of operators. In
Proceedings of the First International Conference on
Al Planning Systems, pages 243-251, 1992.

[Fink and Yang, 1992c] Eugene Fink and Qiang Yang.
Planning with primary effects. In preparation, 1992.

[Knoblock, 1990] Craig A. Knoblock. Learning abstrac-
tion hierarchies for problem solving. In Proceedings
of the Eighth National Conference on Artificial In-
telligence, pages 923-928, 1990.

[Knoblock, 1991] Craig A. Knoblock. Automatically
Generating Abstractions for Problem Solving. PhD
thesis, School of Computer Science, Carnegie Mellon
University, 1991. Tech. Report CMU-CS-91-120.

[Wilkins, 1988] David Wilkins. Practical Planning: Ez-
tending the Classical AI Planning Paradigm, Morgan
Kaufmann, CA, 1988.

[Yang and Tenenberg, 1990] Qiang Yang and Josh
Tenenberg. ABTWEAK: abstracting a nonlin-
ear, least commitment planner. In Proceedings of
Eighth National Conference on Artificial Intelligence,
pages 923-928, Boston, MA, 1990.

