To appear in AAAI Technical Report - Verification and Validation Workshop 1996 1

On the Consistency Management of Large Case Bases: the Case for
Validation

Kirsti Racine and Qiang Yang
School of Computing Science
Simon Fraser University
Burnaby BC V5A 156
Canada
Email: {kracine,qyang }@cs.sfu.ca;
Web: http://fas.sfu.ca/cs/research/groups/CBR/
Tel: 604-291-5415; Fax: 604-291-3045

Abstract

Case-based reasoning (CBR) is a practical, relatively
new technology. CBR is based on the idea that new
problems can often be solved by using past solutions.
The basic method used to implement CBR is to build
a case base of previously solved problems. These cases
are then retrieved and adapted to solve new problems.
Using this CBR process, a case-based system can learn
incrementally and improve its performance over time.
However, a pervasive, yet relatively ignored, problem
inherent in using this approach is the possible pres-
ence of inconsistencies within and among cases. These
can be in the form of contradictions within the case
base, possibly causing a degradation of performance
efficiency, the retrieval of two conflicting solutions or
no retrieval at all. Past research has only dealt with
the problem superficially.

In this paper, we present an analysis of inconsistency
problems arising from contradiction in a potentially
large case base. We classify these problems according
to their nature, and suggest validation solutions to
deal with them effectively.

Introduction

Case-based reasoning is a relatively new problem solv-
ing and knowledge reuse technique in Artificial Intelli-
gence (Kol93b). To solve a problem, a reasoner re-
calls previous situations similar to the current one
and adapts them to help solve the current problem.
The existing problem descriptions, known as cases, are
used to suggest a means of solving the new problem,
to warn the user of possible failures that have been
observed in the past, and to interpret the current sit-
uation. In many practical application domains, this
technique is more effective in solving problems than
rule-based expert-system approaches, since it can
overcome the so-called knowledge acquisition bottleneck
by storing entire cases for later analysis, rather than
asking the domain experts to extract their knowledge
in the forms of rule-like languages. FExamples of suc-
cessful applications are those where extensive previous
knowledge exists in recorded forms, including a help-
desk system for suggesting repairs to COMPAQ print-

ers (NCL93), and a system for helping with manufac-
turing design (HT95).

A pervasive, yet relatively ignored, problem inher-
ent in using this approach is the possible addition of
incorrect or incomplete cases to the case base. As the
case base grows, errors within the case base become
increasingly difficult to detect. The result can be con-
tradictions or inconsistencies within a case base. These
problems can potentially harm the performance of a
case based reasoning system. This is because the pres-
ence of inconsistent cases will not only place a large
burden on a case retriever, but also possibly present in-
correct solutions to the users. These problems deserve
careful study; if not handled properly, the coverage of
a case based system could be badly affected, making
some user queries un-answerable.

We address the case-base consistency problems in
this paper. We start out by clarifying the need for the
validation facility in a case-based system by present-
ing illustrative examples. We then present a classifica-
tion of the potential problems associated with incon-
sistency. Finally, we propose several solutions aimed
at solving these inconsistency problems under differ-
ent contexts.

Problem Identification

In this section we clarify the inconsistency problems
inherent in a case base. We start out by presenting an
example case base for a car diagnosis domain.

An Example Domain

Consider an car diagnostic and repair example. Two
cases are shown in Table 1. These cases are stored in a
case base, which could be implemented by a database,
or any legacy data source.

An important requirement for a case base reasoner
is efficient retrieval. To make this possible one can
identify a number of important features by which to
ask a user. In this example the features (or indexes)
include the make of the car, the model of the car, the
year of the car, engine type and mileage, and so on.

In any real world situations it is likely that the num-
ber of features is quite large; in the car domain one can



Case 1
make: mazda

problem:

model: 626
engine type: 20L EFI  mileage 12,498
Engine is stalling

model year 1988

validation procedure: fuel injector clogged — condition of fuel injector.

| repair:

clean the MAZDA 88 fuel injector.

Case 2

make: Toyota
engine type: 2.8L
problem:

model: Camery
mileage 67,183

No good gas mileage

model year 1987

validation procedure: had a broken gas pump — condition of gas pump.

| repair:

Replace the Toyota 87 gas pump

Table 1: Example cases for automobile diagnosis and repair.

New Problem

make: mazda

model: 626

model year 1985

engine type: 20l EFI  mileage 51,293

problem:

Engine does not start

Table 2: New problem for a given car

identify close to 30 different features. Some features
such as the mileage have common-sense meanings to
average users, and thus can be directly presented as
questions for a user to answer. Others, such as engine
type (20L EFT), may not be meaningful to an average
user of the system. Thus a translation process must be
in place to ensure that a higher level question is asked
and its answers translated to these lower level index
values. In this domain an example of a higher level
question is “Is the car engine powerful?” An answer to
this question could be translated to detailed specifica-
tions such as engine type, fuel type and auto-insurance
rate.

One important use of the case base is in solving a
new problem. Suppose that the new problems with a
given car are described in Table 2.

For this task, the case-based reasoning system might
perform the following operations:

1. retrieval: retrieve the MAZDA 88 case from case
base,

2. adaptation: new repair action: clean the MAZDA
85 fuel injector,

3. learning: decide if the MAZDA 85 case should be
saved in case base, and whether the MAZDA 88 case
should be removed.

Criteria for Evaluating Case Bases

There are many different ways to evaluate the quality
of a case base. In this section we explore some of the
criteria by which one can judge the effectiveness of a
case base. Intuitively, an “effective” case base is one

which is able to answer as many queries as possible
efficiently and correctly.

More specifically, we evaluate a case base by the fol-
lowing criteria.

Consistency Consistency can be defined in many
different ways. A single case may be consistent with
the background knowledge, if it “makes sense” in the
context of the knowledge. Similarly, two cases must
be consistent with each other when both are used in
a composite solution. The former is called intra-case
consistency, while the latter 1s called inter-case consis-
tency. In the automobile domain, a case is inconsistent
with the background knowledge if an engine type is not
available given the particular model of a car. In the
same domain, an engine-diagnosis case is inconsistent
with an exhaust-diagnosis case if they result in incor-
rect explanations for the problem of a car.

Correctness The correctness of a case base is mea-
sured by how often the case that is retrieved is the
case in the case base that answers the query most ef-
fectively. Due to the heuristic nature of case bases, this
is a difficult criterion to measure.

Redundancy Due to the ever evolving nature of
case bases, 1t i1s important to have a mechanism to
determine if the incoming case is subsumed by other
cases 1n the case base or if it subsumes existing cases
in the case base. If two or more cases in a case base
are very similar and are retrieved for the same set of



queries, it 1s unnecessary to keep both in the case base
and may degrade the efficiency of the case reasoner.

Revision Effort The revision effort is defined as the
cost associated with revising the retrieved case to an-
swer the query.

Coverage A case base should be able to answer the
full set of queries that it purports to satisfy. We call
this criterion coverage as in (SK95).

Reachability Reachability is also defined as in
(SK95). Given the set of cases that the reasoner pur-
ports to satisfy, the reachability of a case base can be
defined as the set of cases needed to provide solutions
for these problems.

Retrieval Cost The retrieval cost is measured by
the number of disk accesses necessary to retrieve the
correct case, given the problem description, from the
case base.

Relevancy A case base should only present to the
user those cases relevant to the problem at hand. For
example, a problem description regarding automobile
problems should not result in information about gar-
dening.

Abstractness A case base can either contain con-
crete cases or it can be generalized. The level to which
the case base is generalized is the “abstractness” of a
case base.

Due to limited space, in this paper we only focus on
the first criterion, namely consistency.

Consistency Problems

When a case base gets large, the number of inconsis-
tent cases will inevitably increase as well. Below, we
classify the consistency problems in a case base in two
dimensions (see Figure 1): on the number of cases in-
volved in a constraint violation, and on the way in-
consistencies present themselves; that 1s, soft vs. hard
constraint violations.

Intra-Case Inconsistencies Intra-case inconsis-
tency occurs when values assigned to different features
within a single case violate one or more constraints.

Consider the following example.

Contradiction Range

Severeness
+ Hard Inter, Hard
+ Soft
Intra Inter
} t Number of Cases
1 2 3 n
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Figure 1: Dimensions of problem classification.

Attribute Case
Type of Car Toyota
Name of Car Corolla
Year of Make 1995
Other Attributes
Transmission Standard

Size of Interior 8 cubic meters

The above example seems totally reasonable - un-
fortunately, 1995 Toyota Corollas are only available
with automatic transmission. Therefore, this case is
self-contradictory. Cases such as this one should be
identified before being entered into the case base.

The above example is an instance of a hard con-
straint violation. A soft constraint violation could also
occur in the intra-case situation. As an example in
the car domain, a car’s description might specify its
mileage with an uncommonly high value (say, 100,000
miles). In this case, a warning is desired to bring this
item to the user’s attention.

Inter-case Incomnsistencies More difficult to deal
with are the inter-case consistency violations. Inter-
case contradictions are those which occur across two or
more distinct cases. Consider the example in Table 3.

The reason that the second case proposes such a dire
solution is that the car in that case is a 1987 Honda.
Let us suppose that 87 Hondas have structural prob-
lems causing engine leaks in some cases and that fluctu-
ating power is a symptom of these leaks. If the valve is
replaced while the engine is leaking, the person chang-
ing the valve could suffer serious irritation and inflam-



Attribute Case 1 Case 2 Case 3

Type of Car Honda Honda Honda

Type of Engine 8 Cylinder 8 Cylinder 8 Cylinder

Year of Make 1994 ? 1994

More Attributes

PROBLEM Fluctuating | Fluctuating Fluctuating
Power Power Power

SOLUTION Replace DO NOT DO NOT
valve TOUCH CAR/! | replace valve

Table 3: Inter-case contradiction examples.

mation. Due to noise, the attribute Year of Make was
not recorded. In this case, it would be useful to signal
a contradiction so that a human expert can determine
why the solutions appear to oppose one another.

Similarly, consider the situation where the attribute
Year of Make is entered incorrectly as 1994 - in this
case we have a hard contradiction; two cases match
on every attribute, yet propose conflicting solutions.
Again, if a contradiction signal is shown at the time
the second case is being entered into the case base,
this error can be detected and corrected.

Table 3 illustrated some possible instances of inter-
case contradictions. Finding the contradiction between
the first and the second case involves multiple steps.
The two cases do conflict with each other, but the sys-
tem must know that replacing the valve involves touch-
ing the car to identify this contradiction. The conflict
between the first and third cases is more obvious-itisa
one step contradiction. These examples were provided
to both prove the need for a validation mechanism and
the problems inherent in implementing one.

There are more types of possible contradictions, two
of which are subset and temporal contradictions. A
subset contradiction occurs when a solution in a case
only refers to a subset of the queries that may access
the case. The problem is that the necessary discrimina-
tor is not an attribute of the case. A temporal contra-
diction would occur when the correct solution changes
over time. Table 4 illustrates both types of contradic-
tions.

In Table 4, both cases are valid. The reason that
the two cases offer different solutions is that in the first
case, the time elapsed between the car overheating and
the user querying the case base was sufficient time for
the car to have cooled down. If coolant is added while
the car is still heated, it will spray out of the tank
and possibly harm the applicant. However, no time

Attribute Case 1 Case 2
Type of Car Toyota Toyota

Name of Car Corolla Corolla

Year 1994 1994

More Attributes

PROBLEM Overheating | Overheating

SOLUTION Add Coolant | Do nothing

Table 4: Inter-case contradiction examples.

attribute is available in the case base. To solve prob-
lems of this sort, it is necessary to add the necessary
discriminators.

Previous Research

There has been very little research done specifically
on maintaining the consistency of a case base. Many
of the land mark books on case-based reasoning sug-
gest that it is an area which needs further attention,
(Kol93a), (SKR94). These texts also offer many sug-
gestions why it is necessary to maintain the integrity
of a case base including maintaining competence of the
system, the possibility of returning contradictory solu-
tions and the possibility of returning no solution what-
soever to a query that should be answered.

Most of the research in this area is concerned with
optimization. Due to the large size of some case bases,
it 1s necessary to “forget” cases as time goes by or re-



trieval stages become increasingly expensive (SK95).
The strategy of deciding which cases to forget is sim-
ilar to the question of validation. Some researchers
advocate a random deletion policy (MS88). This is a
very simple, inexpensive policy and is completely do-
main independent. Simply randomly select and delete
a case from the case base. A slightly more complicated
approach is to calculate the frequency that each case
is retrieved and delete those who are not frequently
accessed (Min90) . The problem with both of these
approaches 1s that “important” cases can be deleted.
In other words, a case that is necessary to answer a
query or set of queries can be deleted from the system

To overcome this problem; Smyth et. al (SK95),
suggested a competence-preserving deletion approach.
The premise of this approach is that each case in the
base should be classified according to its competence.
These classifications are made according to two key
concepts: coverage and reachability. Coverage refers
to the set of problems that each case can solve. Reach-
ability 1s the set of cases that can be used to provide
solutions for each current problem. Cases that are the
only case that can answer a specific query are pivotal
cases. Auwuziliary cases are those which are completely
subsumed by other cases in the base. In between these
two extremes are the spanning cases which link to-
gether areas independently covered by other cases and
support cases which exist in groups that support an
idea. The deletion algorithm then deletes cases in the
order of their classifications : auxiliary, support, span-
ning and then pivotal cases.

Smythe has also written a paper on incremental case-
based reasoning in which he advocates classifying cases
through the use of a decision tree (SC95). A deci-
sion tree is a classification mechanism. Each branch
of the tree corresponds to a different class of cases.
Although the paper does not address the problem of
validation, this approach could be modified to perform
validation through optimization. Classifications would
obey the constraints of the system, thereby eliminat-
ing the more obvious contradictions. Using the de-
cision tree approach, discriminators are identified to
distinguish different classes. These discriminators can
then be added to the system in the form of additional
constraints. This can potentially solve the subset con-
tradiction problem. Also, this approach does address
the problem of missing data in cases. Through the use
of induction, this data is discovered by extrapolating
data from similar cases.

The approaches mentioned above are motivated by
the need to delete cases in order to maintain the case
base at a reasonable size. However, the focus of this
paper is to establish an approach that can identify in-
correct, incomplete or inconsistent cases as they are
added to the case base regardless of the current size of
the case base. Very few papers address this problem

Tronically, this policy degrades the competence of the
case base more than the random deletion policy (SK95)

directly. One of the papers that does address this prob-
lem focuses on noisy cases, specifically cases that have
incorrect or incomplete information (Sha91). This pa-
per refers to a case based reasoner to identify genes.
Due to the nature of the domain of this system, in-
correct and incomplete information is difficult to de-
tect by humans. The errors typically take the form of
extraneous or missing DNA strands which render the
cases incorrect and unusable. The approach used to
overcome these errors involves generating all possible
partial matches to the current case and then combining
them to achieve a global picture.

Another approach to extrapolating incomplete data
has been suggested by Simoudis, (Sim92). He has done
extensive research on a process named validated re-
trieval. Validated retrieval is very similar to the above
process of generating all possible matches, but uses
heuristics to reduce the processing time. As each query
is executed, all similar cases are located. Validated
retrieval uses only these similar cases to extrapolate
missing information, thereby reducing the number of
cases to be considered.

The papers above provide the needed background
knowledge to implement a validation mechanism for
a case-based reasoner. However, none of them specifi-
cally address the current problem. A validation mecha-
nism must identify inconsistent cases a high percentage
of the time. Furthermore, it should not significantly
increase processing time. Possible approaches are dis-
cussed 1n the next section.

Proposed Solutions

We are currently investigating different ways to handle
the different types of contradictions mentioned above.
We aim at devising a validation module which could
handle the following tasks:

Inconsistency Detection A system for detecting
soft or hard inconsistency will be devised. The sys-
tem will present warnings to a user should inter or
intra case inconsistency occurs.

Inconsistency Correction When detected, a facil-
ity should be provided to the user for correcting
these inconsistencies. This could range from inter-
active correction methods to automatic ones.

Inconsistency Prevention An attractive approach
would be to prevent the contradiction from happen-
ing in the first place. This could be accomplished by
a rule based system, or a truth-maintenance system,
which could make inferences on the range of poten-
tial values to questions, based on a subset of answers
obtained so far.

Optimization of Validation Methods To make it
efficient for the detection and correction methods to
work, it is necessary to reduce the number of consis-
tency rules and the number of cases under scrutiny.
This is referred to as optimization.



We are currently developing two solutions to the val-
idation problem. One solution is to use a forward-
chaining rule based system for validation. The rules
could record integrity constraints for maintaining con-
sistency in the case base. For example, one rule could
state that for all cars, there is only one engine; fur-
thermore, the engine must be a car engine. If this rule
is applied to all incoming cases, the intra-case contra-
diction mentioned above could be detected. Another
example of a constraint is

If type_of _car(Toyota) Aname_of _car(Corolla) A
year_of _make(1995)

Then transmission(automatic).

Such constraints could be enforced in different ways.
A warning could be issued as soon as an invalid field is
entered or as each field is entered values could be en-
forced in the following attributes. In this case, as soon
as the user identified the car as a '95 Toyota Corolla,
the system would fill in the transmission attribute as
standard. The rules could also be generalized to handle
groups of cases. Therefore the same approach could be
applied to inter-case consistency problems, for dealing
with both soft and hard constraint problems.

There are a number of problems with the rule-
based approach. The first problem is the knowledge-
acquisition bottleneck. The primary advantage of us-
ing case-based reasoning is that domain experts are not
required to lend their expertise in the form of rules. To
address this problem, our research is focused on both
reducing the number of rules necessary to implement
our validation mechanism or discovering the rules im-
plicitly stored in the case base as discussed in (HF96).
The latter approach alleviates the necessity of obtain-
ing information from a domain expert. Given a rich
enough case base, this approach should return strong
enough rules to solve many contradiction problems.

A further problem is the number of cases to which
the rules must be applied may be very large. A large
case base could therefore be very inefficient to check for
consistency. To solve this problem, we could supply a
concept hierarchy for features, whereby a case can be
abstracted at various levels of abstraction in this hi-
erarchy. This can be done for a given case by replac-
ing the concrete values for indexes by the correspond-
ing concept symbols in the hierarchy. A similar idea
was explored in (HF96) for mining conceptual rules in
a database. The effect of this substitution process is
that the case base would be collapsed to a smaller size.
At the same time the rules could also be abstracted
to contain the same language terms. When the ab-
stracted rules are applied to the abstracted database,
the process of consistency-checking is expected to be
much more efficient.

An obvious advantage in using the concept hierar-
chy approach is that many soft constraint violations
such as range aberrations can be detected easily . If
an attribute can not be generalized using the concept
hierarchy, the value for that attribute is likely out of

range or incorrect. Also, using this approach effectively
optimizes the case base. Hopefully, the abstracted case
base can be used to answer a large proportion of the
queries enabling efficient retrieval. Case bases are con-
tinually growing; developing an abstract representative
case base can assist in query answering efficiency.

One disadvantage of this approach is the reliance on
background knowledge. Often concept hierarchies can
be discovered from existing data (HF96). However, at-
tributes that have too many distinct values can not be
generalized in this fashion. Also, difficulties arise in
breaking up continuous valued attributes into distinct
intervals. For some domains, such as DNA identifica-
tion, this approach may be untenable.

Currently, our research is directed toward testing
this method on a variety of domains.

Conclusions

In this paper we have accomplished three objectives:
(1) we have clarified the need for validation in a case
based reasoning (CBR) system; (2) we have classified
different types of consistency problems into classes, so
that a divide-and-conquer approach can be applied to
solve these problems; and finally, (3) we have pointed
out a logic-based method for validating a case base.
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