
The Program Understanding Problem: Analysis and a Heuristic Approach

Steven Woods

Department of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1
Canada

sgwoods @logos.uwaterloo.ca

Abstract
Program understanding is the process of making sense

of a complex source code. This process has been con-

sidered as computationally dzficult and conceptually com-

plex. So fac no formal complexity results have been pre-

sented, and conceptual models difer from one researcher

to the next.

In this paper we formally prove that program under-

standing is NP-hard. Furthermore, we show that even a

much simpler subpmblem remains NP-hard. Howevec we

do not despair by this result, but rathec offer an attrac-

tive problem-solving model for the program understand-

ing problem. Our model is built on a framework for solv-

ing Constraint Satisfaction Problems, or CSPS, which are

known to have interesting heuristic solutions. Specijcall~

we can represent and heun”stically aaliress previous and

new heuristic approaches to the program understanding

problem with both existing and specially designed con-

straint propagation and search algorithms.

1 Introduction
An expert attempts to understand the source code of

a legacy program as part of the legacy maintenance task.

Understanding can be thought of as at least the process

of constructing mappings between existing knowledge and

some perceived artifact. In the domain of maintaining

legacy source, an expert would attempt to construct these

mappings based upon a previous knowledge set which in-

cludes general knowledge about how programs are con-

structed and specific knowledge about typical program
plans. We describe abstracted program plans as templates,

both generic and domain specific. Given a particular store

and representation of expert programming knowledge, and

some perceived structure of a legacy artifact, one might de-

scribe the process of constructing a mapping between these

as understanding. An understood or partially understood

program is one which has had its structures and compo-

nents at least partially contextualized in the scope of ex-

Qiang Yang

School of Computing Science

Simon Fraser University
Burnaby, British Columbia V5A 1S6

Canada

qyang@cs.sfu.ca

isting knowledge about programs and programming. Once

constructed, an expert can, and typicrdly does, use these

mappings to infer other higher level and lower’ level goals

for a source program. The mappings raise the level of ab-

straction of the legacy code representation from purely raw

source level to include the more abstract level of the ex-

isting representational framework for expressing domain

knowledge. This abstracted representation may subse-

quently be exploited as part of the process of at least the

following tasks:

1. translating the program into the source code of an-

other programming language,

2. recognizing errors in legacy code and assisting in de-

bugging the code, or

3. replacing understood code portions with generic ap-

plication code or calls to other code libraries.

There have been a variety of methods proposed which

partially solve the program understanding problem, pri-

marily as parts of a supposed interactive assistant or main-

tenance toolset[ 11, 13, 14, 5, 9, 10]. Each of these ap-

proaches attempts to integrate perceptions or recognitions

of particular abstracted program plan templates into an

overall understanding of the source in terms of a partic-

ularly configured library of pre-existing knowledge about

how programs (in general or in a particular domain) are

known to be structured. Past work has not provided a for-

mal analysis of the complexity of the understanding prob-

lem, or presented an understanding framework shown to be

general enough framework to include most of the previous

approaches.

In this paper, we present two results.

● First, we show that the program understanding prob-

lem is NP-hard. This result provides a formal justi-

fication for researchers to look for heuristic methods

for solving the problem.

0270-5257/96 $5.0001996 IEEE 6
Proceedings of ICSE-18



● Second, we present a CSP (constraint-based) model

for program understanding. This model allows much

of the previous work to be cast under a unifying

framework. We illustrate this model with associated

algorithms and examples.

2 Previous Approaches
In Artificial Intelligence research, the problem of pro-

gram understanding has been approached indirectly from

the perspective of plan recognition [4, 1]. These programs

have been applied mostly to toy domains (such as the cook-

ing domain), involving small knowledge bases and a small

amount of search. Woods et al[ 16] describe in more detail

how current approaches to program understanding funda-

mentally differ with earlier and some current plan recogni-

tion methodologies.

Recently, researchers have adopted a more direct ap-

proach to program understanding. An explicit library of

programming plan templates and concepts is constructed,

and various top-down and bottom-up search strategies are

utilized to implement the mapping process. Kozaczyn-

ski and Ning[5] describe a method of automatically rec-

ognizing abstract concepts in source code. Given a li-

brary of concepts and a set of rules for how to recog-

nize the higher-level concepts from lower-level language

concepts, the search in their Concept Recogni z er is

controlled in what is essentially a top-down, library-driven

manner. Rich and Waters[ 11] headed the Programmer’s

Apprentice project which focused on the development of a

demonstration system (Knowledge-Based Editor in Emacs

or KBEmacs) with the ability to assist a programmer in arr-

alyzing, creating, changing, specifying and verifying soft-

ware systems. In addition, Rich and Waters[ 11, pp. 171-

188] describe a clich6 recognize called Recognize,

based in KBEmacs. Understanding tools rely on the ex-

istence of structured legacy source. As part of the effort

at providing this structure for maintenance engineering,

Muller et al[8] are involved in the construction of Rigi.,

a system for analyzing software systems which includes

visual representations of data and control-flow structures

in a code for the identification of subsystems and hierar-

chies of structure in the code. Along this line, Devanbu

and Eaves[2] have constructed Gen+ +, a tool which gen-

erates tools for analysis of C++ code. Specifically, Gen+ +

can generate tools which in turn generate annotated ab-

stract syntax trees (ASTS) of C++ code showing control

and data-flows.

In subsequent sections we review two major themes rep-

resentative of the endeavor to create understanding tools.

In Figure 1 a subset of expert knowledge about a particular

application domain is represented in a fragment of a hierar-

chical library of program templates. One possible mapping

is shown between a plan template from the library and a

specific legacy source fragment, in this case a single source

statement. The existence of such a mapping essentially ex-

plains the presence of the low-level source statement at a

higher level of abstraction, as an instance of the plan tem-

plate copy-character specified in the library.

There has been a rich tradition of heuristic approaches

to program understanding. One recent approach by

Quilici[9, 10], a derivative of earlier work by Kozaczynski

and Ning[5], is based on a construction of an explicit li-

brary of programming plan templates, complete with an in-

dexing ability, which can quickly associate a particular rec-

ognized source code fragment with program plan templates

in the knowledge base. In this “code-driven” fashion, a

combination of top-down and bottom-up search strategies

is utilized to implement the matching process. With his

DECODE system, Quilici demonstrated how simple C pro-

grams could be translated to C++ programs. This approach

marks one of the first cognitively motivatedl attempts to

program understanding using a hierarchical library of pro-

gram plans.

Program plans, such as those embedded in Abstract

Data Types (ADTs), are organized hierarchically in a li-

brary as shown in Figure 1. Legacy source code pre-

processed as an annotated AST is mapped to the plan li-

brary through the use of indices. Indices are pre-defined

“keys” or pointers in the plan library mapped to key in-

stances in the legacy source. Index tests indicate when it

is appropriate to specialize or to attempt to infer the exis-

tence of other plans according to a set of pre-defined con-

ditions. As an example of specialization, consider Figure 1

in which the program plan initialize-string is specialized

to builtin-char*-copy when a direct string assignment is

observed in the source code. An example of an infer-

ence test is also shown in Figure 1, where the existence of

loop-initialize-string is inferred when an instance of loop-

through-character-array is “near” a related instance of

copy-character in the source code.

In a different approach, Wills[ 11, 13, 14] models stereo-

typical program or data structures (cliclx?s) as a type of

flow-graph grammar and parses2 legacy source represented

as a flow graph. Each successful partial parse represents a

one explanation of part of the source program.

3 Complexity Analysis
Our survey of the approaches to program understanding

has resulted in the following model. One is given a source

program to understand in terms of a library of program plan

templates. From these, one is to compose a solution in

1Quilici’s work has included observation of the behaviour of student
programmers in manipulating legacy examples.

2WIIIS notes ttrat nlthough the parsing problem is NP-complete in gen-

eraf. experience suggests that attribute constraint checking significantly
prunes the search space in practice.



Legacy Source Code

maino
{

char” A, B, C;
...

A=”s”+”t” +”r’+”i”+’n”+”g”+ “l-;
...

B = “string 2“;
...
Sz. z
for (int j = sz; j >0 j--) (

...
C[sz -j]= B[sz - j];

...
C[sz] = 3;
...

for (int i=m Bfi]; i++)
...

pnnt(B~]) \

Program Plan Library (excerpt)

specializewhen:
contains= “$string” J=%

,~

initialize-string

,/’ indexwhen:

/“
OR%, ‘hearinstance”of

/ \\ copy-character

buiitin-char’ copy

9=? !

loop-initialize --,
strin ..

AND

~(i;’;w-’for (int k=O;A[k]; k++) (
. .
oyhar(A[k]); plan instance
...

.,.)

Figure 1: Conceptualizing source with a plan library.

the form of a mapping from portions of the source code to

part of the plan library. In this section, we prove that this

problem is intractable.

Simple Program Understanding Problem
Our strategy will be to simplify the problem. Consider

the following Simple Program Understanding (SPU)

problem, depicted in Figure 2. We are given the follow-

ing:

● The source code consists of a collection B of pro-

gram blocks B~, i = 1,2,...,m. These blocks can

be viewed in terms of a corresponding graph P =

(B, D) where D is the set of edges of the graph

Dk, k = 1,2, ..., n, such that an edge Di,j exists be-

tween nodes B~ and Bj if and only if a data-flow ex-

ists between the program blocks.

● We are also given a library of program plan templates

represented as a graph L = (T, C) where T, the set of

templates TO, o = 1, 2, ... . -tin L are related to one an-

other through data-flow relationships. These relations

are specified by a set C of edges, such that an edge

ck,l exists between templates T’ and Tt if and only if

a data-flow possibly exists between them.

Given the above structure, the SPU problem is to de-

termine if a correspondence exists from program blocks to

a subset of templates.

of a mapping between

The correspondence is of the form

templates and program blocks, and

between their data-flow relationships. As an example, in

Figure 2, the following correspondence gives rise to an un-

derstanding of the example program:

BI w T3

B2 ~ T6

B3 @ T4

B4 w Ts

We contend that the SPU problem is representative

of many program understanding tasks. In Kozaczynski

and Ning’s approach in the Concept Recogni zer sys-

tem, program plans which consist of components and con-

straints abstracted away from a particular implementation

language or method are utilized. Quilici extends these

plans with the provision of indices (memory) that -con-

trol the selection of candidate plans more selectively than

in Concept Recogni zer. The library of interrelated

program plan templates in each approach are essentially

the same as we outline in SPU, with the exception that
a hierarchical structure may be imposed on the library.

In Wills’ approach, program components are modeled as

graph grammars and are used to parse an intermediate flow

graph representation of a source program. A component’s

make-up is constrained by it’s grammar, and these com-

ponents are composed in a library (of constraints). The

SPU program understanding model abstracts these differ-

ing representations of components and constraints into a

8



r--------

wx~?p
Program to Understand ‘

‘.. . . . .---— ---

.- 4------------------------.

Library of Program Template Plans
L = IT,CI

Figure 2: Simple Program Understanding.

unifying constraint-based library format. Understanding

approaches uniformly assume that source programs have

been pre-processed into a intermediate representation (an-

notated abstract syntax trees, annotated flow graphs) which

makes explicit use of data-flow and control-flow informa-

tion. In SPU, this information is represented as a simple

program graph of related program blocks.

The SPU problem could be stated more formally as fol-

lows. Given a library of program plans L = (2”, C) and

a source program P = (13, D), does there exist at least

one subgraph of the library Ls = (T$, C*) where the tem-

plates in the subgraph T’ ~ T, and the constraints among

the templates C’ C C’, are matched to the source program

by a mapping fun;tion X, defined as follows:

● X maps every program block l?~ to a member of TS;

and

● X maps every program data-flow edge D~,k to a cor-

responding member C.,0 of C’, where u = X (l?i )

andv = X(13~).

We can prove the claim that SPU is NP-hard by a re-

duction from the Subgraph Isomorphism problem which

is known to be NP-hard[3, p. 202]. The Subgraph Isomor-

phism problem maybe stated as follows:

Given a graph G = (Vl, -?71)and a graph H =

(Vz, Ez), Does G contain a subgraph isomorphic

to H, i.e., a subset V ~ VI and a subset E ~ El

such that IV! = IV21, I-El = IE21, and there ex-

ists a one-to-one function f : V2 -+ V satisfying

{u, v} ~ E2 if and only if {~(u), j(v)} E E?

The transformation to an SPU problem can be done as

follows. Every vertex of Vl in G is a program template,

and every edge of El in G signifies a data-flow between

templates. Each vertex of V2 in H is a program block and

each edge of Ez in H is a data-flow between blocks. A

mapping between a program P and a subset of a library of

related templates T exists if and only if H is a an isomor-

phic subgraph of G. Furthermore, this tramformation can

clearly be done in polynomial time.

Program Template Matching is NP-hard
Earlier we discussed that many recognition approaches

attempt to recognize typical program plans or clich6s, and

then integrate these instances into a coherent or consistent

global understanding. We have proven the simple program

understanding problem is NP-hard. Now, what about the

seemingly much simpler problem of finding instances of a

given pattern in a program source code? In this section, we

establish that even this simpler problem is NP-hard.
The Simple Program Template Matching Problem

(SMAP) problem, is depicted in Figure 3. We are given

the following:

● There exists a collection 1? of program blocks B~, z =

1,2,..., m. These blocks can be viewed in terms of

9



●

a corresponding graph P = (B, D) where D is the

set of edges of the graph Dk, k = 1, 2, ..., n, such

that an edge Da,j exists between node Bi and Bj if

and only if a data-flow exists between the program

blocks.

We are also given a program template plan T =

(N, C) where-each m;mb;r iVi of& p~icipates in

data-flow relationships with some other nodes in N.

These relationships are specified by C, the set of

edges between nodes N, such that ck,1 E C’ exists

between nodes Nk and Nl if and only if a data-flow

exists between the two.

Given the above structure, the SMAP problem is to de-

termine if a mapping exists from the template nodes N to

a subset of program blocks in B. The mapping is a func-

tion between relationships among template nodes and data-

tlows among program blocks. As an example, in Figure 3,

the following correspondence gives rise to a matching in-

stance of the program template:

N1 ~ BZ

N2 w B4

N3 ~ B1

N4 w B3

The formal definition for the SMAP problem is similar

to that for the SPU problem. We can once again prove that

SMAP is NP-hard by a reduction from the NP-hard prob-

lem Subgraph Isomorphism, described earlier in Sec-

tion 3 on page 4.

The transformation to a SMAP problem can be done as

follows. Every vertex of VI in G is a program block, and

every edge of El in G signifies a data-flow between blocks.

Each vertex of Vz in H is a program template and each

edge of E2 in His a data-flow between templates. A map-

ping between a template T and a subset of program blocks

in a program P exists if and only if H is a an isomorphic

subgraph of G.

4 Modeling Program Understanding
In this work we have outlined our approach[18, 17, 19]

for representing and potentially solving the program un-

derstanding problem. This approach exploits a constraint-

based methodology for recognizing program plan tem-

plates in legacy source. We have shown both the larger
program understanding problem (SPU) and the template

recognition problem (SMAP) to be NP-hard. Conse-

quently, we must resort to heuristic methods for the so-

lution of each problem. Our algorithms for each are based

on the exploitation and adaptation of existing algorithms

for solving constraint satisfaction problems. In general,

sK“MU[6] provides a good survey of C.SpS.

solution strategies are search-based, propagation-based, or

hybrid.

The Modeling Process
The SPU program-understanding constraint-satisfaction

problem (refered to as PU-CSP when formed as a con-

straint satisfaction problem), is formed in the following

way. Suppose that an initial decomposition of the source

code is given. Each block of source code corresponds to a

variable in the PU-CSP. The van”able domains correspond

to all possible explanations (mappings to the knowledge

or library) of an individual block of the source code. The

constraints between the variables can be specified via both

the structural relationships in the source program, and sub-

sequently, knowledge relationships in the program plan li-

brary. A solution is a mapping between the source code

blocks and the library such that the constraints are satis-

fied.

We illustrate the modeling process in more detail. A

Program Understanding CSP (PU-CSP) is formulated via

four distinct steps shown in Figure 4. First, the legacy

source is pre-processed, creating an intermediate rep-

resentation which precisely captures many interrelation-

ships among the elements of the abstract syntax tree im-

plicit from a parsing of the source. This representation

includes data-flow and control-flow between functional

blocks. Second, the source code is partitioned into spa-

tially localized, cohesive code blocks5 which exhibit sev-

eral inter-block functional relationships. Third, a skeleton

CSP is formulated consisting of one variable for each iden-

tified source block, and constraints between these variables

are derived from the intermediate representation level arti-

facts. The combination of types input and output flows into

each particular block are adopted as rejlexive constraints on

the corresponding variable, effectively limiting the range

of program plans that might explain that block. Finally,

each CSP variable is matched (or indexed by type infor-

mation) against the templates in the program plan library.

Potentially matching plan templates are then composed as

the domain ranges of each variable.

In a PU-CSP, the constraints among variables are of two

types:

● Structural constraints are determined from the legacy

4This decomposition is such as would be created from Devanbu’s an-
notated abstract syntax free parsing of C++ programs.

5These code blocks maybe of varying size and complexity. The actual
determination of appropriate blocking characteristics will be investigated
empirically in later work. It is important to note that since the library of
knowledge is arranged bierarchicatly it will otlen be the casethat smatler
blocks will tend to correspond to lower-level program plans and vice-
versa. Consequently, the problem itself may be thought of as the need to
genesatea sequence of multi-layered mappings. It has been suggested by
Alex Quilici in a personat comrnrrnication that these mappings would best
be generated bottom-up from smafl code fragments and plans to larger,
however, this is not the only possible approach.

10



F’. {lf,lf)

~ !“-;--:----;-i;-------
B6

“Mapping” from Program Template

B7 “,
\\

Source Program P = (B, D)

Selected Program Template Plan

Figure 3: Program Template Matching.

code. They include such things as scope or

called/calling relations, precedence relations, or

shared information relations between component

blocks.

Knowledge constraints are independent of the legacy

code. These constraints reside in the AND/OR hi-

erarchical program plan library, restricting program

plan inter-relationships. The AND connections indi-

cate a parent-child component relationship, while the

OR connections indicate specializationlgeneralization

relations. Each of ANDs and ORS can serve to indi-

cate important details of the parent-child relationship,

such as the role6 of a child as part of the higher level

parent, or what details specialize a child from a par-

ent. specializing an abstract plan in one of several

ways. Assigning one program plan as an explana-

tion of a particular PU-CSP variable thus constrains

consistent assignments of other component variables.

This detail effectively describes the allowable range

of known program plan structure.

A solution to the PU-CSP is an assignment to each vari-

able by one program plan component in the plan library,

such that no structural constraint from the source code, or

knowledge constraint from the plan library is violated.

6For instance, a compositional role might describe what data-flows

a child provides in its function as part of a parent. In a more abstract
instance, this role might be a service rather than a low-level data-flow.

The representation of program understanding as PU-

CSP provides a convenient framework for the interpreta-
tion of earlier program understanding heuristics as partic-

ular constraint manipulations. For example, the Quilici-

style indexing outlined earlier in which an index instance

in a source code signals the need to attempt to match a par-

ticular program plan from the library can be thought of as

a specific constraint ordering during CSP search. Quilici-

style specialization preferences can be viewed as a heuris-

tic for ordering the application of hierarchical knowledge

constraints, essentially reducing the range of domain vari-

ables in a hierarchical CSP. Similarly, Quilici and oth-

ers refer to inferences or implications which indicate the

likely existence of plans based on the identification of other

plans. Such behaviour can be interpreted as a special kind

of dynamic variable-ordering heuristic in which successful

instantiation of a particular variable suggests the need to

attempt to instantiate a related variable next.

5 Applying Local Constraint Propagation
In general, the more constrained a particular CSP, the

easier it is to solve, provided it is known in advance which

parts of the problem are the most highly constrained. It is

our contention that program understanding can be thought

of as a well-constrained problem in many useful instances.

Software is ideally well-structured and compartmented by

design, and a rich system of structural constraints between

functional blocks can be extracted through known meth-

11



HGL
Legacy

PrOwyln Intermediate Representation Blocks

Complete
Identi

Abstract Syntar Tree Program

*E

BhekVl
Program
Analysis Control Flow Diagram Blocks

DataFlow Diagram
Mock V2

BhekV3
1 I

Skeleton CSP Graph
\

c

lockV4

Create
~ PU-CSP

Structure

PU CSP Graph
I

Figure 4: A PU-CSP Formulation.

ods. Program plan libraries such as commercial or shared

object libraries contain a similar structure of knowledge
constraints which can be annotated with design informa-

tion much more readily than is the case with any particular

piece of software since it has been intended for wider dis-

tribution and use.

The large number of knowledge and structural con-

straints in a particular problem instance combine to effec-

tively limit the number of consistent explanations or map-

pings for collections of related program blocks. In par-

ticular, the application of even one such structural con-

straint among blocks could reduce the domain size of a

program block significantly. This reduction can in turn

be cascaded through adjoining block relations into succes-
sive reductions of other domains. This process is known

in CSP related algorithms as local constraint propagation.

An algorithm which enforces that all domains be consistent

with their immediate neighbors is known as an arc consis-

tency algorithm. Many variations and extensions to
the original AC algorithm, AC-3[7] have appeared in the

literature, some of which are mentioned in [12]. These al-

gorithms and many variations have been extensively ap-

plied and tested with a wide range of problems.

Consider a pair of variables (X, Y) and a relation

7Other algorithms enforce different degrees of consistent, from only
partial arc consistency overa subsetof ail arcs, to consistency atong paths
of arcs of varying lengths.

1

R(X, Y). The arc R is said to be consistent, if for every

domain value of X there is at least one consistent domain
value of Y. If this condition is not satisfied, a REVISE rou-

tine can be applied to the pair to remove any value of X

that does not have a corresponding consistent value of Y.

If, for every pair of related variables in a problem, all are

consistent, the problem has been made arc-consistent.

5.1 An Example PU-CSP using Local Constraint
Propagation

In this section we demonstrate the applicability of local

constraint propagation with an example. The repeated ap-

plication of local constraints to reduce variables domains

admits a solution with no search in this example.

A piece of input legacy code is shown on the left of

Figure 5. The code is parsed and program blocks extracted

along with data-flow information as shown on the right side

of the figure. This figure has been significantly simplified

for the purposes of our example.

We wish to utilize the PU-CS~ framework to unders-

tand the legacy source in terms of the hierarchical pro-

gram template library fragment given in Figure 6. The

legacy source blocks are mapped to variables, and ini-

tial domain ranges are assigned according to block in-

put and output types. Variable isrt potentially maps

to several library plans based solely on input and out-

put typing. A further (reflexive) constraint application

8PU-CSP corresponds to the SPU model.

12



mamo

I struct2 isrt( structl *thLs, struct2 * mL ) I
If ( mbr(this,inL) )

then return inL

else return app(inL,this)

[ end Isrt
J

mt mbr(stmctl *ck, stmct2 *cM

If ( (cks == nil) or (cks.iirst ==nd)) then return O
Stmctl *try = Cks.fimt

whde( not(try.id == ck.id) and not(try. next == nil) ) do

try. try.next

end while

f (try.ld == ck.id)

then return 1

else return O

end mbr

r >
struct2 app(struct2 * mtL, stmctl *putE)

i@L first == ml)

then intL first= pntE

putE.next = ml

else structl ‘temp = intL.tirst

intL first = putE

putE next. temp

return intL
end app

this: structl Outistructz
inLstruct2,!!!!!!,,,,!, .,, >...>,, .,, ,,, ,., ., !,, ,,, .,,,, ,,, ,, ..,,., u..

‘h

.... Contains “IF sub-plan.,, .,
,.. .,

,,, ,. .!!., a uisrt ‘ .:
...’ .,..

... ........ ..
/ ~outiint“’”..:thi:~;truct,

: out&ruct2 ::.0~:inL=ckwtruct2...

mbr ~“

..
-.
.. ., CALL... ..,. .. this=nutE:structl.,,

,..,
,.,,

.,
inL=inLstruct2

‘“Q -
,,,.,

,,,0~~app

Figure 5: One Simple “Blocking” of a Legacy Fragment.

Notation Meaning

SMAP Simple Program Template Matching Problem

MAP-CSP Template Matching Constraint Satisfaction Problem

SPU Simple Program Understanding Problem

PU-CSP Program Understanding Constraint Satisfaction Problem

Table 1: Notation Summary.

based on observation of key components (If )in the struc-

ture of is rt could significantly reduce this set. In

our example, only plans Insert,s~t, Deletes~t, and

DeleteL1,t satisfy this constraint. Similarly, app maps

to Memberset and Member~~St; mbr to PutinS~t,

PutinLi,t, Cutse~, Cut~~.t, Insert,set, Insert~i,t,

Deleteset, and DeleteList.

The domain range of variable i srt may be revised

with respect to mbr. In this case no values maybe removed

since Insert.s~t is consistent with value MemberS~t,

Deletes.t is consistent with value Members et, and

Delete~ist is consistent with value MemberLi~t. Revis-

ing app with respect to is rt yields consistent mappings
for values Putinset, Cutset, and Cut~igt.

After this revision, no further reductions can be made,

and we are left with three combined alternate explanations

that are consistent with the structure that we have outlined.

These three are: (1) a set insertion plan, (2) a set deletion

plan, or (3) a list deletion plan.

This ambiguity can be easily resolved if we more

closely expanded the structure of app, showing that the

structure is an insertion rather than a deletion plan on the

basis of the lack of an iteration which a deletion would re-

quire. A reduction in the range of app would result, leav-

ing only the value Putinse~ in the range. A revision of

is r t with respect to app would now result in a singleton

value Insert5.t remaining, and subsequently mbr could

be reduced to only Members.t.

Our example problem is completed with the successful

construction of a single mapping to the given program plan

13



BOOI Collection

Int
5=? C-Insert

EnumType
C-D Iete

I

C.Create C-Structure

(range 2) (ear~~ity 2) c- c+ c- ~+ C*

Ei=-
E-

,et,n&~ ::~:c0”ect;&=2
:C-insert :C-~elete :C-Create 1 -1

1 J

If Member cut

,! 4,,,,!,,,., ,, .,,.,,,,,,, ,,

SymbolKey

S:c:
.“

: Sc
Es:E:

Es:E 1“

r # :: 5==!% ‘c
Putin

M c ;4 Inheritance ~
Sc E

c

EsE
~ * Aggregation ~

input output ;
type type ~

If Putin Me ber
Temporal ~-

Bool c c

l“

constraint :

typeA WPA c Bool
E E kc Type AieA ~

typeA Type C,,, ,,, .,,,, .,, .,,,.,,, ,,, ,,, ,,, ,, .“

Figure 6: Library Fragment,

library. The legacy source consisting of three slices is an

instance of an Inserts.t program plan with two primary

subplans Memberset, and PutinS~t. Insertset occurs

in the library fragment only as a part of the Set abstract data

type plan group, and further as part of the Collection ab-

stract data type plan. No other interpretations are possible

given the knowledge constraints and structural constraints

of this example.

6 Implementation and Research Status
In earlier work we introduced our CSP model of pro-

gram understanding, including promising empirical re-

sults in the sub-problemg of recognizing individual pro-
gram plan templates in a range of large generated legacy

exarnples[ 18, 17, 19]. As well, we have outlined the sim-

ilarities and differences that we perceive between current

and past program understanding methodologies and earlier

plan recognition work[16]. For an overview of our termi-

nology, pleaser refer to Table 1.

We are currently engaging in cooperation with a main

9The SMAP implementation is refered to as MAP-CSP in other work.

telecommunications provider to investigate the applicabil-

ity of this approach to extremely large source code in the

telephony domain. Achieving partial automatic recogni-

tion of even a small percentage of the code would greatly

benefit software maintainers.

In addition to including earlier understanding efforts in

our CSP paradigm[ 15], our current work includes efforts to

elucidate and complete implementation of the encompass-

ing program understanding representation and algorithm

(PU-CSP or SPU), accommodating the hierarchical nature
of program plan libraries. These hierarchical program phm

libraries give rise to interesting algorithms that must ac-

commodate hierarchically organized domain values in con-

straint satisfaction. We are working towards a future dis-

sertation in which we shall demonstrate that useful cases

exist in which the inherent structure in legacy code is suf-

ficient to allow existing constraint propagation methodolo-

gies to provide efficient solutions even in the case of large

instances of “real” industrial legacy code.



7 Conclusion
In this paper we showed that the program understand-

ing problem is NP-hard. This result provides a formal jus-

tification for researchers to look for heuristic methods for

solving the problem.

We also presented a constraint-based model for program

understanding, allowing much of the previous work to be

cast under a unifying framework. We illustrated this model

with an example and a brief overview of the associated al-

gorithm.

Acknowledgments
We thank Alex Quilici and Toby Donaldson for their in-

sight and comments. This research has been carried out

with the support of the Natural Sciences and Engineering

Research Council of Canada and the Information Technol-

ogy Research Centre.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Sandra Carberry. Modeling the user’s plans and

goals. Computational Linguistics, 14(3):23-37,

1988.

Prem Devanbu and Laura Eaves. Gen++ -an analyzer

generator for c++ programs. Technical report, AT&

T Bell Labs, New Jersey, 1994.

Michael R. Garey and David S. Johnson. Comput-

ers and Intractability: A guide to the theory of NP-

Completeness. W. H. Freeman and Company, Bell

Laboratories, Murray Hill, New Jersey, 1979.

Henry Kautz and James Allen. Generalized plan

recognition. In Proceedings of the Fijth National

Conference on Art@cial Intelligence, pages 32–37,

Philadelphia, Pennsylvania, 1986.

Wojtek Kozaczynski and Jim Q. Ning. Automated

program understanding by concept recognition. Au-

tomated SofWare Engineering, 1:61–78, 1994.

Vipin Kumar. Algorithms for constraint-satisfaction

problems. AI Magazine, pages 32-44, Spring 1992.

A.K. Mackworth. Consistency in networks of rela-

tions. Artificial Intelligence, 8:99–1 18, 1977.

H. Muller, K. Wong, and S.R. Tilley. Understand-

ing software systems using reverse engineering tech-

nology. In Proceedings of the Colloquim on Object

Orientation in Databases and SofWare Enginenng,

pages 88-98, December 1994.

Alex Quilici. A memory-based approach to recog-

nizing programming plans. Communications of the

ACM, 37(5):84-93, May 1994.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Alex Quilici and David Chin. DECODE: A coopera-

tive environment for reverse-engineering legacy soft-

ware. In Proceedings of the Second Working Confer-

ence on Reverse-Engineering, pages 156-165. IEEE

Computer Society Press, July 1995.

C. Rich and R.C. Waters. The programmer’s appren-

tice. Addison-Wesley, Reading, Mass., 1990.

P. Van Hentenryck, Y. Deville, and C-M. Teng. A

generic arc-consistency algorithm and its specializa-

tions. Artificial Intelligence, 57:291–321, 1992.

L. M. Wills. Automated program recognition: A

feasibility demonstration. Artificial Intelligence,

45(2): 113–172, February 1990.

L. M. Wills. Automated program recognition by

Graph Parsing. PhD thesis, MIT, July 1992.

Steven Woods and Alex Quilici. Representing

memory-based program understanding as constraint

satisfaction. Technical report, University of Water-

100, Department of Computer Science, 1995.

Steven Woods, Alex Quilici, and Qiang Yang. Pro-

gram understanding and plan recognition: reasoning

under different assumptions. Technical report, Uni-

versity of Waterloo, Department of Computer Sci-

ence, 1995.

Steven Woods and Qiang Yang. Constraint-based

plan recognition in legacy code. Working Notes of

the Third Workshop on AI and Software Engineering

: Breaking the Toy Mold (ALSE), August 1995.

Steven Woods and Qiang Yang. Program understand-

ing as constraint satisfaction. In Proceedings of the

IEEE Seventh International Workshop on Computer-

Aided Software Engineering (CASE), pages 3 18–327,

July 1995.

Steven Woods and Qiang Yang. Program understand-

ing as constraint satisfaction: Representation and rea-

soning techniques. Technical report, University of

Waterloo, Department of Computer Science, 1995.

15


