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Abstract. Program understanding is often viewed as the task of extracting plans and design goals from program
source. As such, it is natural to try to apply standard AI plan recognition techniques to the program understanding
problem. Yet program understanding researchers have quietly, but consistently, avoided the use of these plan
recognition algorithms. This paper shows that treating program understanding as plan recognition is too simplistic
and that traditional AI search algorithms for plan recognition are not suitable, as is, for program understanding.
In particular, we show (1) that the program understanding task differs significantly from the typical general plan
recognition task along several key dimensions, (2) that the program understanding task has particular properties
that make it particularly amenable to constraint satisfaction techniques, and (3) that augmenting AI plan recognition
algorithms with these techniques can lead to effective solutions for the program understanding problem.
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1. Introduction

Program understanding is often described as the process of recognizing program plans in
source code (Woods and Yang, 1995; Quilici, 1994; Kozaczynski and Ning, 1994; Wills,
1990; Johnson, 1986). In particular, most program understanding algorithms explicitly use
a library of programming plans, along with various heuristic strategies, to locate instances
of these plans in the code. Because the program understanding task is so closely related
to plan recognition, one would expect to see researchers directly apply well known plan
recognition algorithms to the task (Kautz, 1987; Kautz and Allen, 1986). However, they
have not, and have instead chosen to develop their own special purpose algorithms. This
paper is an attempt to understand and explain why.

Program understanding can be divided into two general categories:preciseand impre-
cise. Preciseprogram understanding occurs when a program understanding mechanism
recognizes in a program every instance of a particular plan.1 That is, there are no false
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positives (incorrectly recognized instances of a plan) and there are no false negatives (in-
correctly missed instances of a plan). This level of understanding is what is required for
correctness preserving automatic program transformations.Impreciseprogram understand-
ing allows the program understanding mechanism to guess that a particular plan is present
or to miss instances of a plan defined in the library. This type of understanding is useful as
a starting point for further human exploration of the code, but is not suitable for automatic
transformation.

In this paper, we examine the relationship between plan recognition andpreciseprogram
understanding and study the assumptions underlying each task. As part of this analysis,
we present an approach to program understanding in the spirit of typical plan recognition
algorithms, and we illustrate the inadequacy of this approach. We then demonstrate how
a constraint satisfaction-based approach to plan recognition is particularly well-suited to
this type of program understanding, and we show how one existing AI plan recognition
algorithm can be modified to take this into account. Finally, we discuss the practical
relevance of plan-based program understanding to real-world software engineers working
to reverse engineer legacy systems.

Our motivation for this work is to help move program understanding from being an
isolated subproblem of AI into the mainstream of AI research. This will allow results in
AI involving plan recognition and constraint satisfaction to be quickly integrated into our
program understanding algorithms, and it will allow work in program understanding to
influence the general AI community and perhaps benefit other AI application areas.

2. An AI Approach To Plan Recognition

Plan recognition is the task of determining thebest2 unifiedcontextwhich causally explains
a set of perceived events as they are observed. A context is essentially a hierarchical set
of plans and goals that accounts for the observed actions. This process generally assumes
a specific body of knowledge which describes and limits the types and combinations of
events that may be expected to occur.

Kautz and Allen (Kautz, 1987; Kautz and Allen, 1986) formalized an approach to plan
recognition that has served as a primary building block for many subsequent plan recognition
methodologies, including (van Beek et al., 1984; Song and Cohen, 1991). They provide
a general algorithm by which “a set of observed or described actions is explained by
constructing a plan that contains them”. In particular, as actions are observed, hypothetical
explanations are proposed for them. This process involves uncertainty, as at any time there
are a number of candidate explanations for an action, but only a portion of the actions
within each of those candidates may have been observed. The process of arbitrating this
uncertain selection process is the primary focus of the work of Kautz and Allen, and of plan
recognition systems in general.

Kautz and Allen’s approach is based upon ordinary deductive inference. Therules for
deduction are rooted in the exhaustive body of knowledge about actions in a particular
domain encoded in the form of anaction hierarchy. This action hierarchy describes all
ways an action may be performed or used as a step in a more complex action.
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2.1. An Example Action Hierarchy

Figure 1 is an example action hierarchy.
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Figure 1. An example action hierarchy.

This hierarchy is sufficient to understand the three code fragments in Figure 2. Figure 2(a)
sums the input values as each is read, Figure 2(b) first reads them into an array and then
computes the sum by traversing the array, and Figure 2(c) sums and counts the input values
as each is read.

An action hierarchy captures specialization and decomposition relationships between
actions. In Figure 1, the specialization relationships are illustrated using a dashed line and
the decomposition relationships using a regular line.

Specialization relationshipsbetween actions capture the notions that there are multiple
ways to perform a given task and that a given action can be used to perform multiple
tasks. For example,Direct-Sum andIndirect-Sum are two alternative ways to accomplish
Calculate-Sum, andPrint-Item is one way to accomplish both thePrint-Sum and the
Print-Count actions. Decomposition relationshipsrepresent the situation where a plan
requires a set of actions. For example,Compute-Print-Sum requires both aPrint-Sum
and aCalculate-Sum.
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sum = 0;

while (scanf("%i", &value) == 1)

sum += value;

printf("%i\n", sum);

(a)Directly compute and print the sum of the input values.

n = 0;

while (scanf("%i", &value) == 1)

a[n++] = value;

sum = 0

for (i = 0; i < n; i++)

sum += a[i];

printf("%i\n", sum);

(b) Use an array to compute and print the sum of the input values.

n = 0;

sum = 0;

while (scanf("%i", &value) == 1)

{

sum += value;

n++;

}

printf("%i %i\n", sum, n);

(c) Directly count and sum input values.

Figure 2. Some examples of C code our hierarchy can be used to understand.

In addition, although not shown, the action hierarchy also captures constraints between
these actions. For example, inCompute-Print-Sum, there’s a constraint that the sum
computed byCalculate-Summust be the one displayed byPrint-Sum.

2.2. Using The Action Hierarchy

The Kautz and Allen approach starts by turning the action hierarchy into a set of axioms
that captures the structure of the hierarchy and its underlying assumptions. The actual
recognition process then undertakes a specialized forward chaining reasoning process over
these axioms.3

Figure 3 contains this algorithm. As the program understander encounters each action, it
chains up the action hierarchy until it reaches a top-level plan. The result is a set of possible
paths from the observed action to top-level actions. These paths constitute an initial set of
possible explanations (in terms of higher-level plans) of the action.

After more than one observation arrives, the system will have derived two or more sets
of paths to top-level action instances (that is, it will have found a set of paths from each
observed action, through the action hierarchy, to top-level actions). It then forms the cross-
product of these explanation graphs, which constitutes an initial set of disjoint explanations
for all actions so far, and it forms additional possible explanations by attempting to merge
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Algorithm: KautzRecognize(Obsset,Hier);

Input: A set of observationsObsevent∈ Obsset, a plan hierarchyHier structure, withObsfirst
being the first observation;

Output: A hypothesisHypo consisting of a set of instantiated portions ofHier that cover the set
of observationsObsset;

SubRoutines
A. ExplainObservation(Obsevent, Hier): returns a set of explanationsObsEventGraph

which explainsObsevent.
B. AddHypo(Hypo,NewExpl): returns a new hypothesis by adding a hypothesized

explanation for an event,NewExpl, to an existing hypothesized explanation for the
previous events,Hypo, without merging.

C. MergeHypo(Hypo,NewExpl): returns the set of hypotheses generated by merging a
hypothesized explanation for an event,NewExpl, with a hypothesized explanation for
the previous events,Hypo.

Main Routine
1 Hyposet := ExplainObservation(Obsfirst, Hier);
2 Obsset =Obsset - Obsfirst;
3 for eachObsevent in Obsset do
4 NewExplset := ExplainObservation(Obsevent, Hier);
5 NewHyposet = NULL;

6 for eachHypo in Hyposet do
7 for eachNewExpl in NewExplset do
8 NewHyposet :=

NewHyposet +AddHypo(Hypo,NewExpl) +MergeHypo(Hypo,NewExpl);
9 endfor (step 7)
10 endfor (step 6)

11 Hyposet = NewHyposet;
12 endfor (step 2)
13 return Hypo ∈Hyposet with minimumcardinality(Hypo);

Figure 3. The Kautz non-dichronic plan recognition algorithm.

these disjoint explanations into a single explanation. The merge is done by trying to locate
and bind a shared top-level ancestor and by using constraints to eliminate inconsistent
merged explanations. Finally, it uses a “simplicity heuristic” to determine the best merged
explanation. This heuristic is to prefer as few high-level actions as possible or, in other
words, to prefer the explanation for a set of actions that has a minimal set of higher-level
plans that “cover” them.

2.3. An Example Using The Action Hierarchy

We illustrate the Kautz and Allen algorithm by showing how it uses the hierarchy in Figure 1
to understand the program in Figure 2(a).

The first action is aZero. Figure 4 shows the five possible explanation graphs for this
action. All of these explanation graphs lead to a single top-level action, which varies
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depending on the particular explanation graph, so the system’s simplicity heuristic can’t
determine a single best explanation.

Zero
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Zero Zero

Zero

A-5

Compute-Print-Count Compute-Print-SumCompute-Print-Sum Compute-Print-Sum Compute-Print-Sum

Calculate-Sum Calculate-Sum Calculate-Sum

Direct-Sum Indirect-Sum Indirect-Sum Indirect-Sum

Sum-ArrayZero-Sum Fill-Array Sum-Array

Zero-Sum Zero-Index Traverse-Index

Zero-Index

Calculate-Count Calculate-Sum

Zero-Count

A-1 A-2 A-3 A-4

Figure 4. The possible explanations for aZero action.

The second action is aRead-Values. Figure 5 shows the three possible explanation graphs
for that action.

Read-Values

Read-Values

Read-Values

Fill-Array

Compute-Print-Count Compute-Print-Sum Compute-Print-Sum

Calculate-Sum Calculate-SumCalculate-Count

B-1 B-2 B-3

Direct-Sum Indirect-Sum

Figure 5. The possible explanations for aReadValuesaction.

The system must then try to form the cross product of these explanation graphs, merge
them, and determine the preferred explanations. The result of this process is a set of
explanation graphs, which have eitherCompute-Print-Count, Compute-Print-Sum, or
both as their set of top-level nodes. Figure 6 shows several of the merged explanation graphs
that result.
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Figure 6. A few of the possible merged explanations for the first two actions.

The simplicity heuristic says to prefer the explanation graphs with the fewest top-level
nodes, which in this case are those that have a single top-level node, eitherCompute-Print-
Count or Compute-Print-Sum. The heuristic does not, however, specify which of these
top-level nodes is the most appropriate explanation.

The third action is anAccumulate-Sum. After the system generates the two explanation
graphs that contain it and merges them with the explanation graphs for the previous actions,
the result is once again a set of explanation graphs. Again, the simplest explanation graphs
are those with a single top-level node, and these explanations all happen to haveCompute-
Print-Sum as their single top-level node. As a result,Compute-Print-Sum is understood
as the high-level plan. Figure 7 shows several of these “simple” explanations.
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Figure 7. A few of the possible merged explanations for the first three actions.
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The final action is aPrint-Item . There are two possible explanation graphs for it, and
merging these with the set constructed to understand the previous actions leads to a final
set of explanation graphs. Once again, there are explanation graphs terminating in a single
top-level node, and these explanation graphs all shareCompute-Print-Sum as that node.
Figure 8 shows several of these final “simple” explanations, one of which we would consider
the most reasonable explanation graph.
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Calculate-Sum
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Figure 8. A few of the possible merged explanations for all four actions.

This “simplicity” heuristic is key: by minimizing the number of hypotheses which account
for all observations and accepting this event covering set as the current plan, we describe
precisely how to recognize a top-level plan from low-level observations.

3. Problems With Applying AI Plan Recognition To Program Understanding

The Kautz and Allen approach to plan recognition is elegant and the basis for much sub-
sequent work in plan recognition. Given that program understanding appears to be a form
of plan recognition, it’s worth considering whether this approach is applicable to program
understanding.

One key difference between plan recognition and program understanding is that plan
recognition assumesOpen Perceptionand program understanding assumesClosed Percep-
tion. That is, at any point in time, the plan recognition algorithm has an incomplete set of
observed actions and, as a result, the plan recognizer is making a best guess as to what plan
is present, and most of its work is in coming up with this best guess. In contrast, in pro-
gram understanding exactly the opposite is true. The source program under consideration,
together with any derived structural constraints, makes up all of the perceptual information
that will ever be available. That is, it will never be the case that a program action that was
absent in the previously encountered functional specification will appear later. Although
the focus of program understanding may be only a sub-part of a larger program, the part in
question is itself complete.
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3.1. Incorrect Plan Recognition

As a consequence of its open perception assumption and the simplicity heuristic used to
deal with it, the Kautz and Allen approach can find an incorrect explanation, despite there
being sufficient knowledge to eliminate it as a candidate.

To illustrate, consider removing theprintf statement (thePrint-Items action) from
Figure 2(a), leaving only theZero, Read-Values, andAccumulate-Sumactions. As we
just saw, after seeing theAccumulate-Sum, the Kautz and Allen algorithm will conclude
thatCompute-Print-Sum is the appropriate top-level explanation. However, if thePrint-
Item that this plan requires never occurs, the problem is that this explanation cannot be the
case. The explanation, in fact, should be limited toCalculate-Sum, and should not include
the top-level node at all.

It is also possible for the Kautz and Allen algorithm to select a very misleading explanation
graph based on the idea of minimal cover. Figure 9 contains the most appropriate explanation
for the fragment in Figure 2(c) (which counts and sums its input values) and Figure 10
contains the minimal cover explanation graph determined by Kautz and Allen’s algorithm.

Zero Read-Values

ZeroAccumulate-Sum

Calculate-Count

Increment-Count

Calculate-Sum

Direct-Sum

Increment

Zero-Sum

Zero-Count

Compute-Print-SumCompute-Print-Count

Figure 9. The most appropriate explanation for the input counting and summing fragment.

Unfortunately, this minimal cover explanation is that the user is filling and summing an
array, and it relies on the possibility that actions such as accessing and assigning array
elements will be encountered later. The problem is that this explanation is wrong, given
that we know no more actions relevant to these plans will appear in the program. Although
this explanation is minimal in terms of top-level actions, it allows for the assumption that
future actions will be encountered. Here, in fact, the knowledge that certain actions will
not occur dramatically changes the understanding of the code.

The idea of ”minimal cover” is intended to be an application of Occam’s principle: prefer
the explanation that requires the fewest assumptions. In particular, it minimizes the number
of top-level actions the recognizer is assuming the user is trying to accomplish. However,
each individual explanation is assuming that certain actions that haven’t yet appeared will
eventually appear, and these assumptions aren’t being taken into account. This problem
suggests that other interpretations of Occam’s principle could readily be applied to plan
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Accumulate-Sum

Zero

Read-Values

Zero Increment

Increment-Index

Compute-Print-Sum

Calculate-Sum

Indirect-Sum

Fill-Array Sum-Array

Zero-SumZero-Index

Figure 10.The incorrect explanation minimal cover produces for the input counting and summing fragment.

recognition. One alternative, for example, is to prefer the top-level plans with the fewest
missing actions.

In fact, in program understanding it is inappropriate for the covering set to ever cover
actions than have not been encountered. Consequently, an exact covering set that is not
necessarily minimal would give the correct explanation. To make the distinction more
precise, letE be a set of observed events; in program understanding,E is the set of
program statements. LetH be the set of hypotheses where the search is performed. These
are the program plans at various levels of detail. The goal of both plan recognition and
program understanding is simply to find one or more subsets of hypothesesH fromH such
thatH “covers”E.

The two problems differ in howH is defined. We can understand a hypothesis as the set
of events that it covers. Then Kautz’s principle can be understood as finding a smallest set
of hypothesesHK such that

HK ⊇ E

In contrast, program understanding can be defined as finding a smallest set of hypotheses
HP such that

HP = E

The difference is that in the latter, the cover must be exact. The hypotheses must explain
all observed events, but no more. We call this theprinciple of minimal exact-coverage

Situations like the ones in these examples can occur frequently in program understanding
because ofincomplete plan libraries. It is unlikely that a plan library will contain all the
plans necessary to understand a program (Chin and Quilici, 1996; Quilici, 1995).Calculate-
SumandCalculate-Count, for example, might also be part of aCalculate-Averageplan,
which may not actually occur in the plan library. The result is that any algorithm we use
must be capable of producing a forest of intermediate plans and should not attempt to infer
potentially incorrect high-level groupings.
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It is reasonable to wonder whether Kautz’s approach can easily be modified to address
this problem. Figure 11 shows the architecture of one such modification.

Kautz
Algorithm

Precise

Plan
Instances

Graph

Complete

Of Library
Filter

Generate/Merge
Explanation

Graphs

Ordering
Static

Imprecise

Relevant Subset

Top-Level Plans

Explanation
Incomplete
Explanation

Verified

Explanation

Figure 11.The architecture of an extended version of Kautz’s algorithm.

This modification is to add an explanation filter that, after all events have been processed,
runs throughall of the hypothesized explanations and eliminates any nodes that cover
an event that did not occur. This guarantees that the algorithm never terminates with an
incorrect explanation. However,all hypothesized explanations must be examined, not just
those with the minimum ”cover”. In the explanation shown in Figure 10, for example,
pruning any node that covers an absent action leaves no recognized plans. However, there
are other explanations, such as that shown in Figure 9, that do contain plans that cover only
actions that are present. These plans will be recognized after pruning these explanations.

The Kautz and Allen algorithm carries along every candidate hypothesized explanation,
so this is a relatively straightforward change to make. It’s computational cost, however,
depends on how many hypothesized explanations must be computed and carried along
during the understanding process. The next section discusses this issue.

3.2. Inefficient Plan Recognition

Another consequence of the open perception assumption of the Kautz and Allen approach
is that it implies that events must be processed in the order they are encountered, which
is not necessarily the most efficient event ordering. The approach provides no mechanism
to take into account alternative orderings that might reduce the number of hypothesized
explanations generated.

In fact, the Kautz and Allen algorithm may compute and maintain an exponential number
of hypothesized explanations. Suppose the program’s abstract syntax tree hasN actions:
A1,A2, . . .,AN . Given the first two actions,A1 andA2, and their respective sets of stand-
alone explanations, the Kautz algorithm does two things: it generates the cross product of
these explanations, and it attempts to formadditionalmerged explanations.4 If, on average,
an actionAi hasK possible explanations, the cross product alone will generate up toK2

new explanations. Thus, the cost of generating these explanations,C1, will be at leastK2

(this ignores any explanations generated by the merge). The algorithm then repeats the
process with these explanations and the explanations for the next action,A3. The cost of
this merge,C2, is at leastK × K2 or K3 explanations. After repeating this process for
subsequent syntax tree entries, the number of explanations is at least

∑n−1
i=1 Ci, which is

K2 +K3 + . . .+KN , orO(KN ), explanations. As a result, the Kautz algorithm is in some
cases at least exponential inN , which is the number of program actions. This problem is
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especially relevant to program understanding since most programs involve many thousands
of actions (or more).

How large isK? It’s clearly dependent on the structure of the plan library. To estimate
the sizeK, we assume a plan library that is organized ind rows, with the first row being the
top-level explanations and a bottom row that corresponds to program actions. If we assume
a uniform connection, so that each entry in the first row connects to two nodes in the second
row (as a component in two plans or as a specialization of two plans), every node except the
top-level node has two parents. In this case, each leaf node has2d paths leading from the
node to a root node, soK = 2d. As a result, in that case the actual worst-case complexity
of the Kautz Algorithm is no better thanO(2d

N

).
Determining an overall explanation for a set of events can be viewed as proceeding

through a search space of explanation graphs. That is, the algorithm must repeatedly
generate and merge explanation graphs. In plan recognition, there are several key factors
that contribute to the size of the search space and the effectiveness of the search. One is the
overall complexity of the plan hierarchy. Specifically,K (the average number of different
explanations for a given observation) is affected by the number of nodes in the plan hierarchy
and the number of plans in which a typical action or plan is a component (the out-degree of
nodes in the graph). Another factor is the effectiveness of constraints. Specifically,Ci (the
effort in generating and merging explanations), is affected by how many potential merges of
explanation graphs fail based on constraints, lessening the number of potential explanations
that need to be formed. A final factor is the relatedness of the events being understood. The
less related an event is to previously understood events (in terms of its explanations sharing
common ancestors with previous explanations), the more explanation graphs will need to
be generated.

To lower the cost of understanding a set of events, we must minimize the overall number
of explanation graphs formed. Unfortunately, the complexity of a plan hierarchy and the
overall effectiveness of its constraints is fixed. That leaves only one option for reducing the
size of the search space: ordering the events so that the events that are most closely related
and have the most effective constraints are processed first. The problem is that the Kautz
algorithm processes events in a single, static ordering that is fixed by the order in which
observations appear. For program understanding, this static ordering is the order in which
statements appear in the source. However, as a result of the closed perception assumption,
program understanders have all events available and are therefore free to process these
events in any order. This observation suggests exploring ways to most effectively order the
processing of events so as to constrain the size of the search.

4. Modifying Plan Recognition Approaches To Support Program Understanding

One way to characterize plan recognition approaches that are derivatives of the Kautz and
Allen algorithm is to say that they process actions in order, try to hypothesizecomplete
explanation chains that cover each action, and use subsequent actions to shrink the set of
explanations (when the actions can be combined under some high-level action) or hypoth-
esize additional explanations (when they can’t). At the end of a pass through all actions,
the plan recognizer has a set of preferredhypothesizedexplanations for those actions.
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In some sense, program understanding has more knowledge available than is assumed
by the Kautz and Allen approach to plan recognition. In particular, program understanders
have the complete set of actions that are present in the program. This allows program
understanders to process actions in any order, including orders determined by the structure
of the plan library, not simply the order in which they appear in the program. They can
hypothesize and verifypartial explanation chains that directly cover an action, rather than
forming and later discarding complete explanation chains. And they can form a precise
understanding by repeating this process, gradually constructing explanations chains from
verified partial explanations.

In addition, the program understanding domain provides detailed data-flow and control
flow constraints between its actions. The prevalence of these inter-action constraints should
reduce the size of the overall search space that must be processed, as compared to the wide
open domains with which the Kautz and Allen approach was designed to deal.

4.1. The Hierarchical MAP-CSP Approach

We have developed an approach to program understanding that takes full advantage of the
closed perception assumption. The resulting algorithm is shown in Figure 12.

Algorithm: Hierarchical, Library-Driven Verification(Obsset,Hier)

Input: A set of observations,Obsevent∈ Obsset and a set of plansP1, P2, . . . , Pn, where eachPi
is composed of a set of components,Ci1 , Ci2 , . . ., and the plans are organized into a set of layers,
L1, L2, . . . , Lk, such that layerL1 contains only those plans whose components are AST entries,
and where any otherLi contains only components that are in layerL1 throughLi−1.

Output: A set of instantiated plans from the hierachy that are verified to be present in the program.

SubRoutines
A. V erify(Plan) : return instances of plans that are present in the program
B. PotentialInstances(Pi) : return TRUE if eachCij of Pi has at least 1 instance in

Obsset orRecognizedset.

Main Routine
1 Recognizedset := NULL;
2 for eachLi in L1 . . . Lk do
3 for eachPjinLi do

4 if PotentialInstances(Pj) then
5 NewInstancesset := V erify(Pj)
6 if NewInstancesset ! = NULL then
7 Recognizedset := Union(Recognizedset, NewInstancesset);

8 endfor (step 3)
9 endfor (step 2)

10 return Recognizedset;

Figure 12.Hierarchical Bottom-Up Program Understanding.

There are two key ideas in this algorithm. The first insight is that given a hypothesized
plan that contains only actions (and not sub-plans), we can immediately verify whether
that plan actually exists by locating the plan’s actions and verifying its constraints. For
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example, suppose we have a counting plan consisting of an assignment, a comparison, and
an increment, where the comparison is a loop test and the increment is in the loop body.
Since all its actions are AST (abtract syntax tree) entries, we can immediately search the
program for occurrences of this plan. As a result, we can use each action in the AST as an
index to the set of potential plans that might contain it and then check whether each of these
plans are present. At the end of a pass through all actions, the plan recognizer has located
all verified single-plan explanations for each action.

The other insight is that one way to locate complete, verified explanation chains is to
organize the plan library in layers, where the first layer is those plans that consist solely
of events in a program’s AST, the next layer is those plans that depend only on the events
in the AST and plans in the first layer, and so on. An example of a bottom-layer plan is
Double, the plan of doubling a value, which is implemented either using an AST multiply
(multiplying by 2) or add (adding a value to itself). Similarly, any plan combiningDouble
and other AST entries is in the next layer. As a result, after recognizing those plans in the
initial layer, the plan recognizer can run through each of these plans and verify whether
the plans in the next layer that can contain them are actually present, creating a new set
of verified recognized plans. This process is repeated until there are no newly recognized
plans.

The key question is how can we perform this process of verifying a hypothesized plan.
That is, given that an action suggests a set of possible plans that might explain it, how can
we verify which of these plans are actually present? Given the presence of many constraints
between the actions in any plan, this suggests using a constraint satisfaction approach.

4.2. MAP-CSP: Verifying A Hypothesized Plan

A Constraint Satisfaction Problem5 (CSP) typically consists of three major components: a
set of variables, a finite domain value set for each variable, and a set of constraints among
the variable that restrict domain value assignments. A solution for a CSP is a set of domain
value to variable assignments such that all inter-variable constraints are satisfied, and there
exist a large variety of methods to choose from for solving CSPs (Woods, 1996; Kondrak
and van Beek, 1995; Prosser, 1993; Dechter, 1992; Freuder and Wallace, 1992; Minton et
al., 1992; Sidebottom and Havens, 1992; Yang and Fong, 1992; Sosic and Gu, 1990; Nadel,
1989; Mackworth et al., 1985).

We can use a CSP for the task of verifying whether a single plan is present in the following
way:

• Each plan action is a variable in the CSP representing it. The set of domain values
for each variable is the set of source statements and sub-plans that have already been
recognized.

• The type of each action corresponds to a reflexive (node) constraint on the variable
representing it.

• The constraints between actions (such as required data- and control-flow relationships)
correspond to inter-variable (arc) constraints.
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Various example plans using this representation can be found in (Zhang, 1997; Quilici and
Woods, 1996; Woods and Yang, 1995).

A solution to this CSP consists of the mapping of all assignments of plan actions to
source code statements, where each assignment must satisfy all constraints. This solution
provides a mapping thatexplainsthe matched source statements as parts of one or more
plan instances. We call the CSP engine for recognizing all instances of a program plan
Map-CSP, and the repeated application of Map-CSP on a plan library organized in layers,
hierarchicalMap-CSP(H-Map-CSP).

This CSP-based approach differs somewhat from traditional AI plan recognition in that
the search for explanatory plans is now library driven rather action driven. That is, rather
than taking an action and searching for a plan that explains it, we are instead taking a plan
and trying to determine which actions it explains.

4.3. Efficiency Expectations For H-Map-CSP

The H-Map-CSP algorithm’s complexity isO(N ∗ CMAP−CSP ), whereN is the number
of plans in the library andCMAP−CSP is the complexity of verifying whether there are
instances of a hypothesized plan present. WhileCMAP−CSP in the worst case is still
exponential (Woods and Yang, 1996), in practice, there is reason to believe this algorithm
will perform far better than Kautz.

As shown in Figure 13 H-Map-CSP moves directly toward the target of precise under-
standing, without first forming an imprecise understanding and then trying to refine it. At
a macro-level, the algorithm reorders and groups events so that they are considered only in
terms of a hypothesized explanation in which they are related. At a micro-level, constraint
satisfaction algorithms explicitly relax the temporal ordering of domain ranges (e.g., events)
by dynamically re-arranging the domains (in the spirit of some types of forward checking
algorithms); in effect, trying to reap the benefits of improved search results through more
effective constraint applications which reduce entire sub-parts of the search space.

Precise

Plan
Instances

Incomplete
Explanation

Verified
H-Map-CSP

Ordering
Dynamic

Direct Explanations
Hypothesize/Verify

Using CSP

Figure 13.The architecture of our approach to precise program understanding.

5. Some Experimental Evidence

The previous section has shown how we can derive a new approach to program plan recog-
nition by examining an existing AI plan recognition algorithm, studying its assumptions,
determining how these assumptions differ from the program understanding problem, and
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then modifying this approach to take advantage of the differences. While it’s clear that
our new plan recognition approach to program understanding addresses the correctness
issue, and there’s clearly potential to address the efficiency issue, it’s necessary to carry out
experiments to determine whether the efficiency issue is, in fact, addressed.

5.1. An Initial Experiment

As an initial experiment, we generated a set of test programs and applied the constraint
satisfaction approach to locate instances of a given plan. That is, we assumed that a plan
has been suggested by the presence of a program action and then empirically verified how
efficient or inefficient it is to recognizeall instances of the plans containing this action (or
any action of the same type appearing later in the program).

Our mechanism for generating programs was to start with a particular plan instance (or set
of instances) and to randomly add program statements surrounding each instance according
to a pre-determined distribution of program statement types (Woods, 1996). We used this
approach to form a collection of programs of the desired sizes.

Why have we chosen to work with artificially generated programs rather than real-world
programs? Our primary motivation has been that we wanted to focus solely on the scalability
of the recognition algorithm as programs with similar characteristics grow in size. In
particular, we wanted to keep the distribution of AST components, the particular plans we
were trying to locate, and the likelihood of finding those plans constant across different
program sizes. That’s difficult if not impossible to do with real-world programs. While we
can certainly find real-world programs of varying sizes, the distribution of their components
and the particular plans they contain will vary significantly.

While our approach runs the obvious danger of generating artificial programs that are far
divorced from real-world programs, we have tried to mitigate this problem in several ways.
First, we are generating programs containing plans that frequently appear in real-world
programs, such as traversing arrays or strings. And second, we are generating programs
according to a “standard” distribution of statements that corresponds to what we’ve found
in student C programs.

Our test programs ranged in size from of 50 to 6,000 lines in size, with 10 different
programs at each size. Based on the results of solving 10 CSP problems at each size level,
we generate a 95% confidence interval for the number of constraint checks occurring during
the search.

As in earlier experiments with smaller programs, we usedForward Checking with Dy-
namic Rearrangement(FCDR) as our particular method of solving constraint satisfaction
problems (Quilici and Woods, 1997). Our measure of efficiency is the number of constraint
checks performed, as constraint checking is where the dominant amount of work occurs in
an attempt to recognize a program plan.

Figure 14 shows the results of running our initial experiment. The plan instances we
tested had an average of approximately 10-15 components and 20-25 constraints.

Essentially, the results show a curve in which our standard distribution increases from
5,000 constraint checks for 1,000-line programs, up to 65,000 constraint checks for 5,000-
line programs. While this curve appears to be potentially exponential in nature, there is at
least one reason to remain optimistic: the steepness of the curve may be an artifact of our
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Figure 14.The results of a representative experiment with generated programs.

particular method of representing programs. In particular, our experiments rely primarily
on the equivalent of control-flow constraints and do not have data-flow constraints. Since
data-flow constraints tend to be much more restrictive than control-flow constraints, they
have the potential to reduce the steepness of the curve significantly and extend the size of the
programs to which we can apply our plan recognition algorithm. In essence, we can view
our initial results as showing the potential for the CSP-based approach with only minimal
structural constraints in the programs being understood.

5.2. An Experiment With A “Real-World” Program

We would like to know whether the data-flow constraints present in real-world programs
will lead to a performance improvement in our constraint-based approach. One obvious
experiment is to search for our existing plan in a collection of real-world programs of
various sizes and measure the constraints evaluated in the process. However, this approach
has several practical problems. One is that to have meaningful scaling results, we want
to vary the size of the programs but not the distribution of components, the plan we are
trying to locate, or the data-flow and control-flow complexity. Another is that our current
home-built C data-flow and control-flow analyzer can only handle a subset of the language
and can’t compute data-flow relationships that cross function boundaries.

To address these problems, our initial real-world experiment works with variants of a
single function that computes some basic statistics. That is, we have taken the core of the
function’s body and replicated it varying numbers of times to generate programs of different
sizes from 50 lines to 5,000 lines (Zhang, 1997). We then searched for the same conceptual
array traversing plan we searched for in our original set of experiments.6
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Figure 15.The results of an experiment with “real-world” programs.

Figure 15 shows the results of running this new experiment overlaid on the results shown
in Figure 14. Unfortunately, the results are exactly the opposite of what we would have
predicted. In applying our plan recognition engine to real-world programs we have a much
more sharply rising curve.

There are several potential explanations for this unexpected increase. One is that while
we are using similar plans, there is a substantially different component distribution between
our artificial and real-world programs. For example, there were roughly twice as many
assignments in the real-world program as in the artificial program, and one-fifth as many
tests. Our earlier results have shown that the distribution of program components (equally
distributed versus some components appear far more often than others) makes a significant
difference in the performance of the recognizer (Woods and Quilici, 1996). Another is
the possibility that our particular CSP algorithm is not fully exploiting the tightness of
real-world constraints. That is, there may be information that has been computed in the
data-flow graph of the program that is not being used to reduce the size of the search space.

5.3. An Experiment With A Two-Phase CSP Algorithm

One key to solving CSPs quickly is to narrow down the sets of domain values for the nodes
participating in any given constraint. That’s because the constraint may be evaluated once
for each pair of values in the cross product of the domain values of those nodes. To see
why, suppose we are evaluating a constraintC that holds between two variablesA (with
domain valuesA1, A2, . . . , Am) andB (with domain values andB1, B2, . . . , Bn). A CSP
essentially evaluates this constraint by checking whether the constraint holds for eachAi,Bj
pair. As a result, the more we can reduce the size of the sets of domain values, the more
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we can reduce the complexity of the search space. A common technique for doing so is to
have a constraint propagation phase before attempting to find a solution to the CSP. That is,
the idea is to set up the CSP, use constraint propagation to try to shrink the domain values
of the CSP, and only then to attempt to find a solution to the CSP.

It appears that we can augment MAP-CSP with a form of domain-specific constraint
propagation. That is, we can add a single preprocessing step that exploits information
gleaned from static analysis to eliminate some of the domain values. This step requires that
we extend the data-flow graph representing the program to group a node’s successor and
predecessor nodes by their type.7 For example, suppose we have a particular statement,S,
that uses a set of program variablesx1, x2, . . ., xn. Its predecessors are the statements that
placed values into eachxi (e.g., assignments, additions, and so on) and its successors are
the statements that use eachxi. This extension allows to take a particular nodeN (e.g., a
multiplication) and a typeT (e.g., addition) and immediately find all ofN ’s predecessor or
successor nodes of typeT (e.g., the particular additions that produced the values that were
multiplied, or the various additions that made use of the multiplication’s results).

We can then make use of this information by adding a set of node constraints to our CSP
variables. In particular, if we have a data-dependency constraint between two plan actions,
A andB, such thatB depends onA for some variableV , we can add a node constraint to
A that it must have at least one successor of typeB, and a node constraint toB that it must
have at least one predecessor of typeA. These node constraints can be quickly evaluated
before processing any inter-variable constraints. In particular, for each domain value ofA,
Ai, we can now determine in constant time whether there exists any value of typeB in
its successor set. If not, it means that there is no wayAi can have a data dependency on
any instance ofB, and we can eliminateAi from A’s domain values. Similarly, for each
nodeBj , we can in constant time determine whether there exists any value of typeA in its
predecessor set. If not, we eliminateBj fromB’s domain values.

As a result of this insight, we have modified our approach to include this additional
filtering step, after setting up the CSP and before attempting to solve it, and we have rerun
our previous experiments starting with the CSP that results after this filtering. Figure 16
shows the results of this experiment.8

As expected, this filtering reduced the amount of work done by the CSP engine to the
point where we could reasonably run experiments on 10,000 line programs. It provides
evidence for our earlier hypothesis that the data-flow information in real-world programs
is useful in constraining the amount of work done by the plan recognition engine.

6. Future Work

There are several key areas for us to explore in the future, each of which is an entire research
project in its own right.

6.1. Additional Experimentation

Our initial results are promising, however, they’re based on a small set of experiments with
a collection of artificially generated C programs and a small group of carefully constructed
C programs. In addition, we have a made a variety of simplifying assumptions in terms
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Figure 16.The results of our experiment with domain value pre-filtering.

of the language constructs that appear in the programs we understand, the overall structure
of these programs, and the type of control and data flow information that’s available to
use from these programs. It’s an open question whether these assumptions, which have
arisen from deficiencies in our home-grown control and data flow analysis tools, change
the empirical performance of our algorithm. As a result, it’s necessary for us to obtain
more powerful analysis tools and use them to apply Map-CSP to explore the performance
of searching for individual plans in real world C code, such as the X-Windows system or
Mosaic.

Our initial experiments have focused on Map-CSP and a simple variant of Map-CSP that
uses pre-filtering of domain values to more efficiently recognize program plans. However,
Map-CSP uses FCDR, a straightforward approach to solving CSP problems that relies on
the size of domain value sets to determine which constraints to consider. FCDR is never
optimal, although always good (Kondrak and van Beek, 1995). As a result, we need to
experiment with other approaches, such as those that rely on knowledge about the relative
effectiveness of different constraints and those that group domain value sets to speed the
CSP solution process. In particular, data-flow constraints appear to be more powerful than
control-flow constraints in eliminating domain values, and components can be organized
into groups depending on which specific variables they access.

Our initial experiments have explored the scaling properties of our CSP-based under-
standing algorithm in terms of program size (by using plans of a given size with different
size programs). We have not, however, explored the scaling properties of this algorithm in
terms of plan size (number of components and constraints). While program understanding
as been shown to be worst-case exponential in terms of plan size (Woods and Yang, 1996),
there is reason to believe that large plans may not be significantly harder to locate than small



APPLYING PLAN RECOGNITION ALGORITHMS 367

plans, as a result of the effectiveness of data flow constraints at narrowing down the search
space. One way to address this question is to search our existing test programs for plans of
varying size and complexity.

Our initial experiments have also focused on only a single part of the understanding
problem: verification that a plan is present. We haven’t experimented with H-Map-CSP
as a whole to determine the total cost to understand a non-trivial program, nor have we
searched for a wide range of different plans within a single program. As a result, it’s
necessary for us to perform experiments using H-Map-CSP on real-world programs with a
real-world plan library. Our likely experiment will be to take a hierarchical library of “Year
2000” plans and a set of real-world COBOL programs and explore the performance of the
algorithm in recognizing these plans. This experiment is particularly attractive not only
because it addresses an important real-world problem, but also because our initial study has
indicated that many Year 2000-related plans (e.g., detecting a leap year) tend to be fairly
small, along the same sizes of plans for which we have already searched. As a result, such
an experiment may lead to a practical confirmation of our previous performance results.

Finally, we need to perform experiments that compare the performance of our approach
to program plan recognition with existing special-purpose algorithms for program plan
recognition. We have done some initial work in this direction, which involves mapping
other approaches, such as the Concept Recognizer (Kozaczynski and Ning, 1994) and
DECODE (Chin and Quilici, 1996; Quilici, 1994) into a CSP framework. This initial work
shows that the CSP approach compares favorably with at least several of these existing
algorithms (Quilici and Woods, 1997). There are, however, a wide variety of different
program understanding algorithms that we haven’t yet explored, such as those used by
GRASPR (Wills, 1992; Wills, 1990). In addition, we have also now found a more effective
constraint evaluation algorithm, which suggests that we should redo these earlier efforts.

6.2. Alternatives to H-Map-CSP

H-Map-CSP is just one approach to program understanding, and it may not be the most
efficient way to make use of CSP techniques. An alternative would be to view understanding
the entire program as a constraint satisfaction problem, not just recognizing instances of a
single, hypothesized plan (Woods and Yang, 1995).

In this model, called theprogram-understanding CSP, or PU-CSP, a program is first
divided into blocks. Each block is a set of closely related source code. The program
understanding problem is then to identify the top-level function of each of these program
blocks, so that we not only explain the inter-relationships among the blocks but also respect
the constraints specified by a program library on the program plans describing the block.

Rather than treating understanding as a sequence of independent problems, we can instead
represent this problem as a hierarchical CSP. At one level, we are worried about the inter-
relationships between explanations for blocks. Each block is represented as a variable in a
CSP and the plan components that can be used to explain the block give rise to the values
for that variable. The data flow and control flow relationships between block may be seen
as constraints among these variables. At a lower level, we worry about determining the
possible explanations for these blocks, which we can do with Map-CSP. A hierarchically
organized CSP intertwines the process of solving these problems so that reducing the
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possible solutions for one block has the potential to eliminate solutions for other blocks. A
solution to this hierarchical CSP is an overall explanation for a program.

We have constructed this plan recognizer and are beginning to run experiments that
compare its performance with the H-Map-CSP approach.

6.3. Imprecise Understanding

While the focus of our paper has been precise understanding, there is also a need for
imprecise understanding. Maintenance programmers, for example, are aided by having
guessesas to what design elements are most likely to be present in the code, even if those
elements can not be proven to be there. Ideally, our initial precise understanding can serve
as the basis for an attempt to infer higher-level understanding, as shown in Figure 17.

Precise
Incomplete
Explanation

Verified
Plan

Instances

Hypothesize/Verify

H-Map-CSP

Direct Explanations
Using CSP

Dynamic
Ordering

?

Relevant Subset
Of Library

Top-Level Plans

Explanation
Complete
Imprecise

Figure 17.The architecture of an extension to our current approach.

One approach to hypothesizing higher-level plans is to attempt to run through those plans
for which we failed to find any instances, heuristically relax the constraints on those plans,
and attempt to re-run Map-CSP on each. It’s possible that the relaxed Map-CSP will find
new plans, which we are then inferring to be present in the code. This execution of relaxed
Map-CSP can be done in layers, as in H-Map-CSP. The ideal end result is a set of top-level
plans that explain the original actions, but not with certainty, as not all of their constraints
were tested and satisfied. The key issue in this approach is in determining which ways to
relax a particular plan out of the many possible ways to do so.

We are planning to flush out and explore this relaxed-CSP approach as a mechanism for
integrating precise and imprecise program understanding.

7. Relevance To The Real-World

We have focused primarily on the scalability of algorithms for recognizing program plans.
But suppose it turns out that recognizing instances of a given plan is sufficiently tractable
that we can deploy our understander and apply it to real-world programs—then what?

One key problem is that the plan recognizer requires a library of program plans. Our
simple example to illustrate the behavior of Kautz’s algorithm showed that a relatively
complex hierarchy is required to understand just a few lines of code. That implies that a
significantly more complex hierarchy will be required to understand 10,000-line modules.
It’s clear that to apply plan-based understanding to real-world systems we will need a
cost-effective way to create plan hierarchies.
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We have begun exploring an approach for helping programmers construct a plan library.
The idea is to provide programmers with a tool that allows them to provide plans by
example. In particular, the approach is to let them highlight existing code as an instance
of a plan, provide them with a detailed view of the components and constraints present
in this instance, and allow them to delete and/or generalize constraints and components.
The system can support this process by checking whether various combinations of the
components/constraints present in this plan instance correspond to already-entered plans,
and then automatically grouping and replacing them with previously-defined plans. The
end result is a definition of the plan and links from it to other library entries. Given a
sufficiently fast program understanding algorithm, the set of programs that may contain
the user-provided plan can be immediately searched, and the user can adjust the plan’s
definition based on the results.

Besides the technical issues involved in constructing this tool, it’s an open, empirical
question whether such a tool can be used to cost-effectively provide plan libraries. However,
it does suggest one possible path toward addressing the problem of how the necessary
plans are provided to program understanding systems. Such a tool also suggests one near-
term application of plan-based program understanding technology: letting users locate
conceptuallysimilar code fragments within a set of source files by using the tool to specify
characteristics of the code to search for.

8. Conclusion

Program understanding is often viewed as a task of understanding the plans inherent in a
piece of source code. We have demonstrated that there are serious problems with the naive
notion of directly applying plan recognition algorithms and that these problems in some
sense justify the rejection of these algorithms by researchers in program understanding. In
particular, we have shown that simply applying AI plan recognition algorithms to program
understanding is not only inefficient but can also lead to incorrect results.

We have discovered that generalized plan recognition and program plan recognition differ
in terms of a key underlying assumption. While general plan recognition assumes “open
perception” (not all actions are known), program understanding assumes “closed percep-
tion” (all actions are known), and we have shown how this difference allows program plan
recognition algorithms to more efficiently recognize plans. In particular, it allows program
plan recognition algorithms to process actions in an arbitrary rather than fixed order and to
eliminate quickly many hypothesized explanations from further consideration, rather than
carrying around a potentially large collection of unverified hypotheses.

We have provided a constraint-based program plan recognition algorithm that takes ad-
vantage of these improvements, and we have provided some initial empirical evidence
that this algorithm appears to efficiently recognize certain classes of plans in real-world
programs—despite program understanding having been shown to be NP-hard (Woods and
Yang, 1996). In particular, our experimental results strongly suggest that program plan
recognition is potentially quite tractable for programs of up to 10,000 lines with plans of a
similar size and complexity to the ones we have tried.9 While many real world programs
are far larger, there exist techniques that can be used to semi-automatically divide them into
collections of modules in this size (Newcomb and Markosian, 1993). This suggests that
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we are nearly at the point where we can begin to apply plan-based program understanding
techniques to real-world legacy systems. In addition, there are many real-worldmodules
of 10,000 lines or less, and it appears to be worth trying to apply our CSP-based plan
recognition techniques to those modules.

Finally, we believe we have made a contribution not only to the world of program un-
derstanding but also to AI in general. In particular, our plan recognition algorithm may be
applicable to any other plan recognition problem in which the closed perception assumption
holds. One obvious place where this is the case is the problem of recognizing high-level
user plans from detailed audit logs of user actions, and there are likely to be others. This
suggests not only that program understanding is an interesting domain for further study by
AI researchers but also that there is the potential for program understanding results to apply
more generally.
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Notes

1. By plan, we mean a particular code pattern. There may be more than one way to perform a particular task
with each way represented by a unique code pattern.

2. Best is a highly subjective term which changes definition depending on the intent of the particular plan
recognition application.

3. For simplicity, and without losing generality, we focus on the non-dichronic variant of the Kautz and Allen
recognition algorithm. This version obtains the same results regardless of the order in which observations
appear.

4. The Kautz algorithm does not throw away individual explanation chains once they have been merged with
other changes.

5. See (Kumar, 1992) for an accessible and detailed treatment of Constraint Satisfaction Problems.

6. The specific plan we search for is about the same size and complexity as in our original set of experiments,
but the details vary due both to the different constraints available in real-world programs and to differences in
the specific components used to represent the actions in these programs.

7. The cost of this step should be a constant times the total number of domain values for all plan components.

8. For this experiment, implemented in Lisp on a Sparc1000 workstation without any attempt at serious opti-
mization, it took less than 30 seconds of CPU time to recognize all instances of a particular plan in our 5,000
line programs and less than 90 seconds of CPU time in our largest 10,000 line program.

9. We must keep in mind that the search for plan instances is exponential in the size of the plans, and consequently
these results will not hold in general for larger or less well-constrained plans.
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