;=‘ Automated Software Engineering 5, 147-181 (1998)
‘ (© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Program Understanding as Constraint Satisfaction:
Representation and Reasoning Techniques

STEVEN WOODS sgwoods@spectra.eng.hawaii.edu
Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

QIANG YANG gyang@cs.sfu.ca
School of Computing Science Intelligent Software Group (ISG), Simon Fraser University, Burnaby, BC V5A 1S
Canada

Abstract. The process of understanding a source code in a high-level programming language involves comple
computation. Given a piece of legacy code and a library of program plan templates, understanding the co
corresponds to building mappings from parts of the source code to particular program plans. These mappir
could be used to assist an expertr@verse engineeringegacy code, to facilitatsoftware reuse or to assist

in the translation of the source into another programming language. In this paper we present a model of pro
gram understanding using constraint satisfaction. Within this model we intelligently compose a partial globe
picture of the source program code by transforming knowledge about the problem domain and the program its
into sets of constraints. We then systematically study different search algorithms and empirically evaluate the
performance. One advantage of the constraint satisfaction model is its generality; many previous attempts
program understanding could now be cast under the same spectrum of heuristics, and thus be readily compa
Another advantage is the improvement in search efficiency using various heuristic techniques in constraint sat
faction.

Keywords:

1. Foreword

Three years have passed since the inception of the idea of applying constraint-based rey
sentation and techniques (CSP) to program understanding and design pattern recovery. -
original idea was conceived by Steven Woods and Qiang Yang at the University of Waterlo
in late 1994. The original aim of the work was two-fold: to provide a unifying framework
for different approaches in program understanding so they can be compared, and to emp
the heuristic power of well-known CSP algorithms. Since then, several different work
threads have succeeded in extending the representational power and heuristic adequac
this approach.

This article is an extended summary of the original concepts and ideas that spun ti
initial research direction. Originally written in 1995, this paper has spawned a number o
follow-up publications, which have appeared prior to the appearance of this paper:

e Woods and Yang (1996a) present an examination of the complexity of the prograr
understanding task and a discussion of how the various problem aspects contribute

148 WOODS AND YANG

problem complexity. The paper suggests the likely success of using a constraint-bas
control of search as a means of mediating this complexity in practice.

e Quiliciand Woods (1997) provide careful modeling of the heuristic approach of a specific
earlier program understanding system (DECODE) using a CSP framework. The prima
results of this work were to show how the constraint-approach was capable of goo
scaling results in comparison to previous approaches, and to suggest how the constre
model can be adapted to exploit the heuristics developed in previous methodologies.

e Woods and Quilici (1996b) expand upon the CSP model’s initial promising scaling re-
sults and present new benchmarks for legacy code size and plan size for the progre
understanding task.

e Woods’ Ph.D. dissertation (1996) from the University of Waterloo, presents a compre
hensive view of the CSP modeling technique and empirical results. In addition, a detaile
argument is presented as to how a constraint-based model can be structured to effectiv
support the human-centered process of program understanding. In this work, the hier:
chical nature of both plans and the understanding process is woven into the fabric of
new hierarchical algorithm for constraint satisfaction.

e Kazman and Burth (1997) explore the application of constraint-based program unde
standing techniquesto the recovery of architectural patterns. The intent of this architectu
recovery was to assist in the assessment of a legacy system’s overall architectural co
plexity in response to potential system re-engineering or re-structuring. The plan an
architecture recovery paradigms are very similar in problem representation—each e
ploiting both program constraints (structure) and architecture pattern constraints (know
edge) to reduce the computational expense of locating patterns in large source exampl

e Quilici et al. (1997b) investigate the similarities and differences between the Artificial
Intelligence technologies and approaches to plan recognition in general with the moi
specific task of recognizing program plans and understanding legacy systems. This wo
demonstrated that the treatment of program understanding as plan recognition is too si
plistic and that traditional Al search algorithms for plan recognition are not applicable, a:
is, to program understanding. In particular, it was shown that the program understandir
task differs significantly from the typical general plan recognition task along several ke
dimensions, and the program understanding task has particular properties that make
particularly amenable to constraint satisfaction techniques. In addition, it was shown th:
augmenting Al plan recognition algorithms with these techniques can lead to effectiv
solutions for the program understanding problem.

e Yongjun Zhang's masters thesis (1997) at the University of Hawalii, describes an extensic
of the original constraint-based algorithms and an implementation of Woods’ (1996) t
accommodate constraints extracted from structural program analysis—including dat
flow and control-flow constraint annotations of abstract syntax trees.

e Quilici et al. (1997a) present new empirical evidence showing how the process of rec
ognizing program plan templates in software can be greatly assisted through the use
strong constraints obtained through structural program analysis before searching for pl
instances.

PROGRAM UNDERSTANDING 149

e van Deursen et al. (1997) outline how the constraint-based concept recovery proce
can be adapted to assist in the remediation of Year-2000 (Y2K) source code problen
The Year 2000 experiences of one of the authors is combined with the concept recove
experiences of the others to provide a new perspective on how Y2K toolsets could
extended.

e Woods et al. (1997) is a mature, carefully restructured review of the interpretation o
program understanding as a process of constraint-based concept recovery. This bc
brings together the entire range of material published by the authors between 1995 a
1997 in a single, comprehensive framework.

This work has been conducted with the intent of modeling program understanding a
gorithms and heuristics in such a way as to allow the research community to build upo
previous work in an incremental fashion—ultimately arriving at a clear view of how concept
recovery technology can integrate effectively and efficiently into larger reverse engineerin
toolsets. We believe that the move in the research community to assemble libraries
programming patterns or templates in large, shareable libraries is another necessary ste
the direction of producing tools which can approach real-world application quality.

2. Introduction

Humans are particularly adept at successfully interpreting explicit representations of know
edge created by other intelligent agents. A shared understanding of the terms of referer
and subject material provides a basis for this interpretation. In software engineering, e
perts often apply such skill to the task miogram understandingAs shown in figure 1,

it is possible to conceptualize an expert's understanding of a given source program as
successful construction ofraappingbetween the expert’s store of relevant knowledge and

the structures and components inherent in the source code. The expert or agent can use
mapping to infer the source program’s high-level goals. This mapping essentially raise
the level of abstraction of the understanding of the source from the level of actual cod
to the more abstract level of the existing representation (or language of expression) of tl
domain knowledge. This abstract understanding may be exploited as part of the process
(1) translating the program into the source code of another programming language, (2) re
ognizing errors in the legacy code and assisting in debugging the code at the more abstr
level, and (3) replacing understood code portions with generic application code or calls 1
other code libraries. We know that in many real-world circumstances, a reduction in th
size of an existing source code library by only a small percentage can result in a substant
reduction of the maintenance cost. Consequently, the creation of even a partial mappil
between existing domain knowledge and a particular legacy source can be a valuable tc
for maintenance or re-writing engineers.

In Artificial Intelligence research, the problem of program understanding has been af
proached indirectly from the perspective of plan recognition (Kautz and Allen, 1986;
Carberry, 1988; van Beek et al., 1993). In much of this work, existing human knowl-
edge in a particular domain is represented as hierarchies of plans that describe relev
actions and goals. Given such a plan hierarchy, and example of which is shown in figure

150 WOODS AND YANG

Expert Knowledge
Legacy Source Code

znain() Existing Program Libraries

\
char* A, B, C; \
General Algorithms \

A="S" 4" T T Y gt 1
9 General Data Structures

|
|
?= “string 2"; \\ Programming Design and Style
sz=7, \
for (intj=sz;]>0; j—) { |
C

\ Specific Langua

ge Syntax
Clsz - il = Blsz - I ‘ ’ \ S
) o B
=
/,// T~ \\\

for (int i=0; B[i]; i++)

|
print(B[i]) // |
/ Domain Specific Algorithms \
for (int j=0; C[jl;j++) { |
E'r'i;nf("%s",cm); e /
/
| Domain Specific Data Structures
for (int k=0;A[K]; k+) { |

Sh;char(A[k]);

Domain Knowledge

Figure 1L Conceptualizing source with expert knowledge.

plus an observation of another agent’s plan, a plan-recognizer would typically constru
a mapping from input plan fragments to the leaf nodes of the knowledge-base and inf
upwards toward a goal. To disambiguate among alternative goals, the mapping proces:
may employ knowledge about the temporal relations between parts of the plan. These pl
recognition programs have been applied mostlyogpdomaingsuch as the cooking do-
main), involving small knowledge bases and a small search space. The plan recognition a
program understanding approaches have been compared in some depth elsewhere (Wc
etal., 1995).
Recently, researchers have adopted a more direct approach to program understand
In this direction, an explicit library of programming plan templates and concepts is con:
structed, and various top-down and bottom-up search strategies are utilized to impleme
the mapping process. Notable examples are Quilici (1994), Kozaczynski and Ning (1994
Rich and Waters (1990) and Wills (1990, 1992). To some extent, all are aimed at improvin
the effectiveness of the mapping process through heuristic knowledge. The basis for su
heuristic approaches has been the assumed intractability of the complete understand
problem in general. In (Woods and Yang, 1996b), not only is program understanding show
to be NP-hard, butalso the intuitively easier problem of locating partial local understanding:
In figure 2 a subset of expert knowledge about a particular application domain is repre
sented in a fragment of a hierarchical library of program templates. One possible mappir
is shown between a plan template from the library and a specific legacy source fragmel
in this case a single source statement. The existence of such a mapping essptiaiths

PROGRAM UNDERSTANDING

Legacy Source Code

main()

char*A, B, C;

A="S"+ "+ "+ 4N+ g+

151

Program Plan Library (excerpt)

specialize when:
contains = "$string"

String ADT plan

/ AND ‘o
L]
[

B ="string 2"; initialize-string

sz=7,; < i .

=Sz > 0 jm 2N index when:

- ((': J éz] ; J .) { . ,/ OR \\\ "near instance" of
[?Z -i1=Blsz-]; . \“ copy-character

Clsz] = 3; builtin-char* copy Igg?n—glmtlallze RN

\

for (int i=0; Bi]; i++)
print(B[i)

\
/\I \ \
/

loop-through
copy-character character array

for (int j=0; C[jJ;j++) {
b"ri;arf("%s",cm);

for (int k=O;ATK]; k++) {
sﬁ;char(A[k]);
a7

plan instance

Figure 2 Conceptualizing source with a plan library.

the presence of the low-level source statement at a higher level of abstraction, in this ca
as an instance of the plan templatspy-characterspecified in the library.

Much of the previous program understanding work has failed to demonstrate heurist
adequacy in even partially generating “understanding” of large problems. Specifically, man
recognition algorithms presented may be viewed as collections of heuristic tricks. Thi
construction makes it difficult for one to perform a systematic analysis of different searcl
methods within a particular approach, or to understand how the addition or deletion c
certain types of domain-specific knowledge may affect performance. We are unaware
concrete examples or experiments which might suggest that these approaches might sc
up for specific uses in large sources. One exception might be Wills (1992) who presen
empirical results which seem promising in identifying partial mappings of reasonably size
legacy sources to a library of program plans.

The work presented in this paper is part of the initial phase of work focused on demor
strating that an effective approach to partial program understanding is possible with larc
legacy code examples. Specifically, we intend to clearly categorize the circumstance
which this use is possible, and the preconditions which must first be met in terms of rey
resentation and application of domain knowledge. We present a generalized representat
of program understanding a€anstraint Satisfaction ProblexCSP (Mackworth, 1977).

For a given legacy source code, the program components (explained later) are variables
the CSP. The domain values are the known program plans thaerpgineach compo-
nent. The CSP constraints are eitkeowledge constraintehich describe how program
plans may fit together to form larger plans,structural constraintavhich describe how

152 WOODS AND YANG

program components are structurally related. We refer to the program understanding C:
as PU-CSP.

In addition, we present and empirically evaluate a mapping algorithm (as part of the PL
CSP), also formulated as a CSP, which provides the ability to locate all instances of a speci
general programming plan template, and to map the plan’s structure to actual source progr
components. We refer to this mapping CSP as MAP-CSP. Some earlier works also attempt
define and recognize abstract concepts as part of program understanding (Kozaczynski :
Ning, 1994; Wills, 1992). For a given program plan template (explained later), the differen
parts of the template are the variables in the MAP-CSP. The various syntactically know
pieces of the source code correspond to domain values for each variable. The constrai
among the different parts of the program plan are constraints in the MAP-CSP.

There are at least two advantages in our constraint-based approach. The first is
generality; most of the previous recognition methods and heuristics can now be unifiec
under the constraint-based view. Another advantage is an increased ability to addre
heuristic adequacy or scalability; by casting program understanding as a CSP, the pre-
viously known constraint propagation and search algorithms could be easily adapted. V
may now perform a systematic study of different search heuristics, including both top-dow
and bottom-up as well as many other hybrids, in order to discover their applicability to ¢
particular source code.

The rest of this paper is organized as follows. Section 3 outlines the program unde
standing problem including an illustrative example and reference to previous approache
Section 4 provides an introduction to our representational model, constraint satisfaction a
delineates the two primary sub problems in program understanding. Section 5 describ
how the larger sub problem of explaining source block interrelationships (PU-CSP) is moc
eled using constraints. Section 6 details how the sub problem of identifying individua
source code template instances (MAP-CSP) may be modeled. Section 7 presents empiri
results from experiments with MAP-CSP. Section 8 presents our conclusions and indicat
our current research directions.

3. The program understanding problem
3.1. Anillustrative example

Consider the C program outlined on the left-hand side of figure 3. This example prograr
contains declarations, initializations and an embedded print loopafcinof three strings.

As an illustration, strings are treated as a primitive data type by the programmer, with n
shared functionality for printing.

To understand this program, one might use as a basis a library of program plans as sho
in figure 4 which represents previously compiled knowledge about program compositio
within a particular domain. Table 1 shows a program plan for the Abstract Data Type (ADT
or classString which is part of this library of plans. Once a mapping is constructed betweer
the source and compiled knowledge, one could translate the redundant source code to
with a single inclusion of the ADT, as shown in the C++ code on the right-hand side of
figure 3.

PROGRAM UNDERSTANDING

Table 1 Example abstract data type.

Class String {
char localStr [MAXSIZE];

String(char* inStr)
{
for (int j=0; inStr{j]; j++)
localStr[j] = inStr[j]; }

printString()

{
for (int j=0; localStr[j]; j++)
printf(“%S” localStr[j]); }}

main()
char* A; char* B;| char* C; .
A = "string 1"; main()

B = "string 2";

for (int i=0; BIi); i++)
print("%s",Bli]);

‘ for (int j=0; C[jJij++)

K.printString;

%.printString;

} ‘print("%s",C[i]); B.printString;

for (int k=0;A[K]; k+-+) }
print("%s",AK]);

Figure 3 C legacy code mapped as String ADT instance to C++ code.

| String ADT plan |

specialize when:
contains ... = "$string"”

initialize-string

AND

/ /
e .
e %”rZﬁZ:%’L‘?Z {printf, sprintf}
- loop-through - g
copy-character | character-array |’

Figure 4 String ADT within a hierarchical program plan library.

String A("string 1");

‘ C = "string 3" Q String B("string 2");
4
/1

String ADT PString C("string 3");

~
\\ index when:
S “near instance" of
<_c_o_py—cl':aractz-:'r
PECTTIRT) ~
builtin-char*~copy ";‘:ﬂ;;""a"ze AN format-character

153

154 WOODS AND YANG

Given the legacy source code on the left side of figure 3, we would liketterstand
or explainsome portions of the source program within the known context of the prograrr
plans such as represented by ®iging ADT. Successful identification could result in
the replacement of much redundant source code with a single inclusion of the ADT. Th
C++ code shown at the right of figure 3 is obtained with replacement of C source witt
references t&tring ADT functionality. This understanding process might be executed in
two steps. First, one identifies all instances of a particular abstract program plan in a sour
code. We refer to this problem as thEAP-CSPproblem. Second, one relates some set of
identified plan blocks (or program slices) to conform to the hierarchical structure in a giver
program-plan knowledge base. The latter we refer to aPthe&SPproblem.

We identify two important benefits of locating mappings between a programming plar
library and an existing source or legacy code. First, the resulting replacement of legac
code with ADT instances can result in substantial reduction in code. This size savings ce
reduce the amount of effort required for subsequent code understanding or maintenar
by programmers. Second, the mapping between source and library plan can be used ¢
building block in attempting to understand and translate the legacy code. The intent of th
work is two-fold. We describe how various types of individual mappings can be identified
efficiently, and we outline how this mapping process may be integrated into the larger tas
of program understanding.

3.2. Quilici's memory-based method (Decode)

Quilici's method is representative of other earlier work in this area, including work by
Kozaczynski and Ning (1994). This approach (Quilici, 1994, 1995; Quilici and Chin, 1994,
1995) is based on a construction of an explicit library of programming plan templates
complete with an indexing ability, which can quickly associate a particular instance o
recognized source code with program plan templates in the knowledge base. Furthermo
a combination of top-down and bottom-up search strategies is utilized to implement th
matching process. With this system Quilici demonstrated how simple C programs could k
translated to C++ programs.

Program plans (such as embedded in ADTSs) are organized hierarchically in a library
shown in figure 4. Legacy source code in the form of an abstract syntax tree is mapped
the plan library through the use of indices, which are pointers from the source code to pat
of the plan library. Index tests indicate whersfmecializeor toinfer the existence of other
plans according to a set of conditions. As an example of specialization, consider figure
in which the program plamitialize-string is specialized tduiltin-char*-copy when a
direct string assignment is observed in the source code. An example of an inference te
is also shown in figure 4, where the existencéoop-initialize-string is inferred when an
instance ofoop-through-character-array is “near” a related instance obpy-character
in the source code.

Given a source code and a program plan, Quilici describes an approach to understar
ing the legacy source based on a search in the plan library. Search béb#ess-up
when existing index tests indicate possible higher-level explanation plans for a particule
lower-level component in the library. Quilici observes that people only make bottom-uf
inferences in particular “well-known” circumstances, and consequently limits the numbe

PROGRAM UNDERSTANDING 155

of upward explanations by inferring only those specified by explicit indexes. On the othe
hand, search behavesp-downwhen low-level components are indexed and subsequently
matched based on some hypothesized high-level plans. Quilici’s algorithm attempts to sp
cialize any matched plan as much as possible according to predefined specialization te:
and directs search for low-level plans based on high-level hypothesized plans. This approa
marks one of the first cognitively motivated attempts to program understanding using a hie
archical library of program plans. There are, however, a number of shortcomings. First, tt
lack of a general mathematical model of the indexing and search process makes it uncle
as to how one should coordinate the top-down and bottom-up search. Second, Quilic
algorithm depends on a number of heuristics, such as specializing a plan as much as p
sible. Itis not clear how these heuristics integrate or how they scale-up when the proble
size increases. Finally, Quilici makes a substantial effort in capturing actual programmer
methodologies as heuristic enhancements to search control, but presents no empirical rest
While studying this work, it occurred to us that the program understanding problern
could be broken down into a number of choice points. Examples of these choices includ
(1) choosing among candidate unexplained components, (2) choosing among multiple ir
tial plan assignments for a component, (3) choosing among several plans whose existenc
implied top-down, and (4) choosing a particular index or specialization test from a candidat
set. The existence and interactions of these decisions are buried in Quilici’s presentation, |
are very important in addressing the efficiency of the search problem. In the next section, v
explore how to represent and exploit these choice points using a simple and elegant ma
ematical model known asonstraint satisfaction A more detailed treatment of Quilici's
approach in terms of constraint satisfaction (known as Memory-CSP) is provided in (Quilic
and Woods, 1997; Woods and Quilici, 1996a) and elaborated further in (Woods, 1996).

3.3. Wills’ graph parsing method

Wills outlined an approach to recognition in which stereotypical program or data structure
known asclichés are represented as a type of graph grammar (Rich and Waters, 199(
Wills, 1990, 1992). A source program is translated into an intermediate representatic
as a flow graph. These flow graphs are parsed to identify all possible derivations of tt
flow graph based on the knowetichés These derivations each represent a posgpiaigal
interpretation of the source program or mapping to the library of eichWills notes that
although the parsing problem is NP-complete in general, experience suggests that attrib
constraint checking significantly prunes the search space. Wills evaluates the effectivene
of such an approach empirically for two medium-size source code examples.

Wills’ work differs from our approach in at least three important ways: (1) elahd pro-
gram representation, (2) library knowledge representation and exploitation during searc
and (3) method of integrating cliehhstances in the larger understanding problem.

3.4. Other related work

Kozaczynski and Ning (1994) describe a method of automatically recognizing abstrac
concepts in source code given a library of concepts and rules for how to recognize tt

156 WOODS AND YANG

higher-level concepts in lower-level language constructs, essentially controlling the conce
search in a top-down fashion.wMér et al. (1992, 1993, 1994) are involved in the construc-
tion of Rigi, a system for analyzing software systems which includes visual representatior
of data and control flow structures in code allowing the identification of subsystems an
hierarchies of structure in code. Kontogiannis has built an abstract pattern matching to
using the RFINE! code analyzer (Kontogiannis et al., 1994, 1995). This approach attempt:
to identify probable matches using Markov models.

Rich and Waters (1988, 1990) headed the Programmer’s Apprentice project which fc
cused on the development of a demonstration system (Knowledge-Based Editor in Ema
or KBEmacs) with the ability to assist a programmer in analyzing, creating, changing, spe«
ifying and verifying software systems. In addition, Rich and Waters (1990, pp. 171-188
describe a clice recognizer Recognize based in KBEmacs. Rugaber, Stirewalt, Wills anc
others are part of an effort in reverse engineering being conducted at the Georgia InstitL
of Technology. Rugaber et al.'s recent work (1995) describes one major research area
program understanding known as interleaving in which program plans intertwine.

4. An introduction to constraint satisfaction

Constraint satisfaction problems (CSPs) (Mackworth, 1977; Kumar, 1992; Tsang, 199:
provide a simple and yet powerful framework for solving a large variety of Al problems. The
technique has been successfully applied to machine vision, belief maintenance, scheduli
and planning, as well as many design tasks. For a successful application of this techniq
to knowledge-based planning, see (Yang, 1992).

A constraint satisfaction problem can be formulated abstractly as three components:

1. asetofariables, X;,i =1,2,...,n,

2. for each variableX; a set of value$vi1, vio, ..., vik}. Each set is called domain for
the corresponding variable, denotedem(X;),

3. acollection oftonstraints that defines the permissible subsets of values to variables.

The goal of a CSP is to find one (or all) assignment of values to the variables such that r
constraints are violated. Each assignméxt= vij,, i = 1,2, ..., n}, is called asolution
to the CSP.

As an example of a CSP, consider a map-coloring problem, where the variables a
regionsR,i = 1,2,...,nthat are to be colored (see figure 5). In a final solution every
region must be assigned a color such that no two adjacent regions share the same color
domain for a variable is the set of alternative colors that a region can be painted with. Fc
example, a domain foA might be{Green Red Blue}. A constraint exists between every
pair of adjacent variables, which states that the pair cannot be assigned the same co
Between adjacent regioms and B, for example, there is a constraiAt# B. A solution
to the problem is a set of colors, one for each region, that satisfies the constraints.

Letvars = {X, Y,..., Z} be a set of variables. A constraint ¥ars is essentially a
relation on the domains of the variablesVMars . If a constraint relate only two variables
then it is called dinary constraint. A CSP is binary if all constraints are binary. For any

PROGRAM UNDERSTANDING 157

Red, Green, or Blue

Red, Green, or Blue

Red, Green, or Blue

Figure 5 A map coloring problem.

two variablesX andY, we sayX = u andY = v is consistentif all binary constraints
betweenX andY are satisfied by this assignment.

A variety of techniques have been developed for solving CSPs. They can be classifie
as localconsistency-based methodfobalbacktrack-based methodslocal-search meth-
ods Local-search methods (Minton, 1990) is a kind of greedy algorithm which is gaining
popularity. We do not review this method here, but we do intend for our CSP modeling tc
be general enough to include local-search as a reasoning method.

4.1. Local consistency methods

Local consistency methods follow the them@uodprocessingThat is, before a more costly
method is used, a consistency-based method could be applied to simplify a CSP and remc

158 WOODS AND YANG

A domain = { Red, Green, Blue } B domain = { Red, Green, Blue }
Variable A) (adjacent-to A B) Varlable B
(not A Red)
(adjacent-to A C) (adjacent-to B C)

Variable C

C domain = { Red, Green, Blue }

Figure 6 Map-coloring CSP.

any obviously incompatible values. Often these methods yield tremendous headway towa
eventually solving the problem.

Let X andY be two variables. If adomain valueof X isinconsistentwith all values of
Y, thenA cannot be part of a final solution to the CSP. This is because in any final solutiol
S, any assignment t& must satisfy all constraints in the CSP. Sin¢ce-= Aviolates at least
one constraint in all possible solution&,can be removed from the domain Xfwithout
affecting any solution.

If for a pair of variableg X, Y), for every value oX there is a correspondirapnsistent
value ofY, then we say(X, Y) is arc-consistent. By the above argument, enforcing arc-
consistency by removing values from variable domains does not affect the final solutior
The process of making every pair of variables arc-consistent is aateconsistency

4.2. Backtrack-based algorithms

Arc-consistency algorithms only work on pairs of variables, and as such can only handl
binary constraints and cannot always guarantee a final solution to a CSP. A more thorou
method for solving a CSP is backtracking, where a depth-first search is performed on
search tree formed by the variables in the CSP. A thorough examination of these techniqt
can be found in (Nadel, 1989; Kumar, 1992). During a backtracking search, each variab
instantiation is interpreted as extending the current understanding of a legacy program o
step further.

PROGRAM UNDERSTANDING 159

Table 2 Generic CSP search algorithm.

Generic CSP Search
V: variables in a CSHpom(X): the domain values oX.

[Initialization] for each variableX; € V, find the set of domain values fof; ;

[Initial Constraint Propagation] ReduceDom(X) by constraint propagation.
Solution= NULL

[Variable Selection] Select and remove a variab¥efrom V

4. [Value Selection]Select and remove a value ¥ffrom Dom(X).
The value must be consistent with all assignments in Solution.

[In-search Propagation] Apply a subset of constraints 6.
[Backtrack Point Selection] Backtrack if anyDom(X) in V becomes empty.

[Solution Evaluation] If V is empty, exit with Solution (if all-solution, continue);
else, goto Step 4.

Variables:

(x1=vm1) (x1=v12) (x1=v13) — X
— X2
(xe=va1) (x2=v22) = (x2=v2K)
A
’
I, Backtrack!
’
— Xn

Figure 7. A search tree for a backtrack-based algorithm.

A backtracking algorithm instantiates the variables one at a time in a depth-first manne
It backtracks when the constraints accumulated so far signal inconsistency. In figure
we show this process. First, variables are ordered in a certain sequence. Different ord
of variables might entail different search efficiency, and heuristics for good ordering o
variables are calledariable-ordering heuristics. Similarly, for each variable, the values
are tried out one at a time, and the heuristics for a good ordering of values are calle
value-ordering heuristics

Using the CSP representation, we can also consider a more systematic study of differe
search algorithms. Figure 2 provides a general backtracking algorithm for solving a CSP.
this algorithm, we have a number of hooks where we could place different search heuristic
They correspond to heuristics for ordering variables and constraints, as well as heuristi
for deciding the amount of constraint propagation.

There are several choice points which both individually and in combination affect the
resulting search performance. These choice points are explained as follows:

160 WOODS AND YANG

1. Initialization andinitial constraint propagationis the determination of variables and
domain values before the search starts. This can be viewed as a special type of loc
ized constraint propagation algorithm, but one that is directed according to pre-define
domain knowledge. The determination of the $etand of Dom(X) controls how
much work is done in advance. This reduction could also be performed as an in-sear
propagation at Step 6 of the Generic CSP algorithm.

2. Constraint propagatioris the reduction of domains locally or globally within the CSP
problem graph. Existing algorithms include AC-3 (Mackworth, 1977), AC-4 (Mohr and
Henderson, 1986), AC-5 (van Hentenryck et al., 1992), and other variations (Freude
1982; Cooper, 1989).

3. Variable selectiorns the determination of which component variable should be chosen
next for instantiation during search. The decision may be based on domain independe
measures, such as the size of a variable’s domain; on information specific to the instan
and domain plan library, such as frequency of occurrence of particular plan templates
the variable domain set, or on some combination of these types of information.

4. Domain value selectiois the determination of a particular plan explanation, taken from
the plan library, to assign to the component variable. Typically this selection should b
made to most effectively limit the remaining variable ranges, thatis, to be the most conte:
limiting. In terms of our plan library this means a plan that ispscificas possible.

5. In-search propagatiors the reduction (as for Step 2) of the remaining uninstantiated
variable domains according to some constraint propagation algorithm. Problem cha
acteristics such as variable domains that exceed some average or absolute bounds
potential signals that constraint propagation may be useful before continuing search.
(Nadel, 1989) the advantages of exploiting various algorithms for achieving a limitec
degree of partial consistency amongst variable sets are examined.

6. BackTrack point selectiois the determination, after it has become evident that no pos-
sible solution exists along a particular variable-instantiation path, of which instantiatior
to retract. Intelligent backtracking approaches such as BackJumping and BackMarking
attempt to determine the origin of the conflict that caused the failure, and to BackTrac
as far up the search tree as possible to avoid a repeated failure of the same condition

7. Solution evaluatiordetermines whether or not a particular solution is satisfactory. In
a cooperative interactive approach to program understanding, it is at this point that ¢
expert might interact and evaluate a particular partial solution for adequacy. Similarly
if there exists particular measures of adequacyodir, preferentiatonstraints that may
have been relaxed during search, such measures may be applied here. A complete st
egy identifiesall possible solutions, however, it is possible to identify only some set
number or even one solution.

There are in addition several other ways to improve the search efficiency. One methc
is to employ the particular hierarchical structure of the plan library, and ustmigrar-
chical constraint satisfaction algorithrfMackworth et al., 1985). In this approach, the
plan library represents plans at varying levels of abstraction. A set of low-level progran
components which have been mapped to the program library may be grouped accordi
to their functional relationships and form a higher-level component. This component (o
variable) may now be explained by a more abstract plan (or domain value) according t

PROGRAM UNDERSTANDING 161

both the structural constraints imposed in source structure and the knowledge constrail
present in the program plan library. We plan to pursue this type of constraint applicatio
more completely in future work.

Another way of improving the search efficiency is to use the MAP-CSP version of the
algorithm as a subroutine of the PU-CSP algorithm. This could be done at the beginnir
of the generic search algorithm, in Step 1. By performing a MAP-CSP for seuaplan
templates in the library up front, it may be possible to reduce the total number of domail
values for each variable through constraint applications. In terms of search, this could rest
in an substantial amount of savings, and consequently, improved performance.

In the generic search algorithm, a set of choice points are presented in the new context
CSP solving. In the next section of this paper we discuss and evaluate several selection ve
ations for recognition of one particular template in sets of generated source code exampl
We examine variations that include applying AC-3 as Step 1 combined with BackTrackin
and also another more intelligent search algorithm known as Forward Checking (Haralic
and Elliott, 1980), which performs a limited amount of in-search propagation at Step 6
In addition, the intelligent search algorithm dynamically rearranges the order of variable
during search according to the size of the variable domains, selecting the shortest first.

The order in which constraints are applied can also dramatically affect search. Constrai
ordering or selection would occur at Step 6. In particular, it is advantageous to appl
constraints that are inexpensive computationally and that (potentially) prune a large numb
of domain values. In a particular domain it may be possible to determine or estimate suc
relative benefits either from past empirical results or through analysis of the domain structu
itself. For instance, the property that program template features tend to bedpaially
near each other can be exploited through heuristics that limit the range of search for relat
components. The effectiveness of such abstraction heuristics has been reported elsewt
(Holte et al., 1995; Woods, 1993).

4.3. Program understanding as CSP

We view the entire program understanding problem as a constraint satisfaction problem.
this model, a long program code is first divided into blocks, where each block is a set ¢
closely related source code. The program understanding problem is to identify the top-lev
function of each of these program blocks, so that not only the inter-relationships betwee
the blocks are explained, but also the constraints specified by a program library on t
program plans are respected. A key problem, then, is to assign one plan component to e
block, subject to a set of constraints. This problem we calptlogram-understanding

CSP, or PU-CSP.

The number of program plan components that one could assign to each block could |
enormous. To be practical, it is crucial to first reduce the number of explanations for eac
block as much as possible. This process could be helped by a related constraint satisfact
problem, one that we will explain in detail in Section 6: the problem of finding all instances
of a given program plan or pattern in the entire source code. This problem we call th
MAP-CSP problem.

Below, we explain both problems in detail.

162 WOODS AND YANG

5. Program understanding CSP: PU-CSP

PU-CSP is formed in the following way. Suppose that an initial decomposition or slicing
of the source code is given. Each block of source code correspondsatiablein the PU-
CSP. Thevariable domaingorrespond to all possible explanations of an individual source
code block. As an example, consider the legacy code program statements of figure 3 as
blocks. We take each block as a PU-CSP variable which ranges over all possible progre
plans of corresponding statement type, such as “declaration”, “assignment”, “print”, etc
in the plan library of figure 4.

5.1. The modeling process

A Program Understanding CSP (PU-CSP) is formulated via four distinct steps shown i
figure 8. First, the legacy source is pre-processed creating a set of artifacts that describe sc
precise interrelationships in the source regarding data flow relationships between functior
blocks, control flow among the functional blocks, and the creation of an abstract synta
tree in an intermediate abstract language via parsing of the source. Second, the source c
is partitioned according to existing program slicing methodologies into spatially localizec
blocks of code which are known to exhibit functional relationships among one another, an
cohesive properties within one’s boundaries. Third, a skeleton CSP is formulated consistit
of one variable for each identified source block, and constraints between these variables
derived from the intermediate representation level artifacts. Each variable ‘typed’ via th

" \ lLegacy
Program Intermediate Re pr(sentation]u(r,(‘k,.-
Source _Abstract Synatax Troe ™\ LBIock Vl]
_Control Flow Dingram i o
 Data Flow Dingenm h}locl(ﬂ}
(Block V3|
Skelet CSP G b I
.) eleton > -rup-] /@lock V4J
‘\'nrmhh- Vi Variable V3 | T
1 |
l Constraint |
3-4 '
L |
|
Varinble V2 Variable V4 | PU CSP Graph
Program Template Hierarchy Variable V1 Varinble V3
Template Tvmslnu- tA2Zi Az} Cra {Bz2m)
3 =
/U‘IN Crg
W) e) sl -
O AN m Cya ﬁ
- . B IO :
Az; | |Azg 2, UOAL Y
1AZ; L i [le] (Bziil | . {ezg A2y

| Variable V2
- . Varinble V4

Figure 8 PU-CSP formulation; CSP graph exploded in figure 9.

PROGRAM UNDERSTANDING 163

PU-CSP Graph (node consistent)

o s
Variable V1 Variable V3
Constraint 1-3 o
Constraint 2-3 Constraint 3-4
P { 6. 1.}
" Constraint 3-4 " ‘l
Constraint 1- \ \
enstraint 14 Variable V4 \ '
I

Template

Figure 9. PU-CSP graph.

addition of reflexive constraints on the variable which describe properties of the block suc
askindsof input or output. Finally, each CSP variable is compared against the template
in the program plan library, with any templates which potentially match a variable with
regards to input and output typing are composed as the domains of that variable.

Figure 9 shows an example formulated PU-CSP in which the domains of each variable a
shown as instances identified in the program template hierarchy. During discussion of t
PU-CSP we will discuss two distinct types of constrairgsuctural constraintsiepicted
in figure 9 as the inter-variable constraints, which are exactly those constraints derive
from the intermediate source representation and which describe how program compone
are structurally related, aridhowledge constraintglepicted in the figure as the compo-
sitional and specialization constraints in the program template hierarchy, which descrit
how program plans or templates may fit together to form larger (more abstract) plans in th

domain.

164 WOODS AND YANG

c-> m ->
a-> | Template q-> Template
X ->
A B
B, exports n
I
1A | > 1A} P
, exports p
Or
~ - #
And
a->| Template [F™> Template [~ e.=> Template [T > €-> | Template |™M >
> -
Al r-> AZ X B, n-> x> B2 p->

Figure 10 Library knowledge constraints.

The program template hierarchy is composed of hierarchically related plan templates (f
a formalization of hierarchical planning knowledge base, see (Yang, 1990)). A templat
plan may be broken down into several sub-plans, in which case this is recorded as
And relationship between the sub-plans and the parent plan. Further, any required structt
between the sub-plans such as necessary ordering, data flows between the sub-plan
control-flow between the sub-plans is recorded with Am&l relationship. Similarly, a
template plan may be a specialization of another plan (or one of many such specialization
and in this case the constraints that constitute the specialization such as restriction of varial
type or a particular restriction of data or control flow is recorded withQheelationship.
Figure 10 shows a simpkend example in whichTemplate Ais composed of two subplans
A; and A, whereA; provides the data flow which A; requires, and a simpler example
in which Template A may be specialized by either of the plaBg which also exports in
addition to the primary exports @& or B,, which exportsp.

5.2. More on constraints

In a PU-CSP, the constraints among variables are of two types:

e Structuralconstraints are determined from the legacy code. They include such things &
scope or called/calling relations, precedence relations, or shared information relatiot
between component blocks. For instance, in the legacy source in figure Britthe
statements appear within the scopdaf statementsgeclarations precede their initial
assignmenf and print statements act upon array positions indexed by correspdading
statement indexes.

o Knowledgeconstraints are independent of the legacy code. They are program plans ri
stricted in their relationship by the AND/OR structure given in the plan library. AND
constraints are for composing program plans into higher level plans, and OR'’s are fc
specializing an abstract plan in one of several ways. Assigning one program plan as
explanation of a particular PU-CSP variable thus constrains consistent assignments
other component variables.

PROGRAM UNDERSTANDING 165

As an example of a knowledge constraint mandated from the library structure, if ¢
variable corresponding to program compongrt‘string 1” infigure 3 were instantiated
to program plarbuiltin-char*-copy as shown in figure 4, then it is consistent to assign
the lastfor-loop variable an explanation gfrint-string , where the strings are the same.

A solution to the PU-CSP is an assignment to each variable by one program plan comp
nentin the plan library, such that no structural constraint from the source code, or knowledc
constraint from the plan library is violated.

Representing program understanding as PU-CSP provides a convenient framework for |
terpreting Quilici’s index tests as constraint applications as part of search strategies typical
used for solving CSPs. Specialization tests are specific instances of knowledge constrai
that may be used to systematically reduce the range of domain variables in a hierarchic
CSP. Inference tests identify “related” program plan templates according to earlier compe
nent instantiation, and can be interpreted as a special kind of variable-ordering heuristic.

6. Program template matching as CSP: MAP-CSP

We have seen how PU-CSP resolves integration of “local” explanations of source coc
blocks. We represent the process of matching particular abstract program plans to o
legacy source as the MAP-CSP. We view MAP-CSP as an integral part of the more ambitiol
understanding task. Successful matches “locally explain” certain program blocks, and the
local solutions can then be exploited to restrict the larger PU-CSP.

A MAP-CSP or program template matching problem can be stated as follows: givel
a plan template with a number of elements and constraints among the elements, find
instances of the template in a source code. As an example, consider finding all instanc
of an abstract data type in a C program. Figure 11 &rang ADT plan template taken
from a plan library. The ADT is described in terms of five features describing various key
components of a string class. In addition, there are constraints among the different parts
well, such as the one that requires one component to go before another.

We could model this problem as a CSP. For the given plan template (or ADT), eacl
feature is a variable in our MAP-CSP. Tdemain rangeconsists of all possible source
program statements. Variables here can have attributes symtirdis for) that may be seen
asconstraintson allowable assignment of program statements (values) to template feature
(variables). Otheconstraintsare on the sharing of information among variables, and on
the order in which template features or variable are expected to appear in legacy source

A solution to the MAP-CSP consists of the set of all assignments of plan template
features by source code statements, where each assignment must satisfy all constrai
As an example, consider the ADT of Table 1. When represented as a plan template as
figure 11, the variables of the MAP-CSP arg;,i = 1,...,5. Initially the domain for
each variable ranges through all source statements in figure 3. The constraints are as sh
in the figure. The solution to this problem corresponds to the three alternative consiste
assignments to the variables, one for each character griBgandC, respectively. Thus,
the solution to a MAP-CSP provides a mapping thailainshe matched source statements
as parts of an instance of the abstract program plan or ADT.

166 WOODS AND YANG

Variable X1 » same(
; NameA,
Declare array NameA char (SizeA) \\NameD
\\)
A before B \
\
Y \
. \
Variable X2 ~ \
For (indexl, initVal, endVal) \ \
\ \
\ \
B before C \ \
| |
\ | |
same(Variable X3 |same(I
block1, Bevin blockl | index1, |
block2 7/ egin bloc | index2 I’
) |
/ | /
/ C before D I /
/ / /
,I ' / //
Variable X4 s
| . . s _-
\ Print(NameD[index2] -~
\
\
\ D before E
\
\ A
N Variable X5
End block2

Figure 11 TheString ADT in MAP-CSP.

7. Empirical results of MAP-CSP

In this section we present and discuss experiments which were intended to show the init
feasibility of the MAP-CSP representation and related algorithms in addressing the parti
program understanding problem. For the purposes of this paper, this section is intend
to provide the reader with an initial view of our experimental results. In subsequent worl
(Woods, 1996) we present extended results and description.

The format of the remainder of this section is as follows. First, we describe the prograr
templates which will be instantiated in generated source data. Second, we explain how t
modeled source data is generated for each set of experiments, and where the model for
data is obtained. Finally, we describe the results of identifying template instances utilizin
several common algorithms for solving constraint problems.

While our ongoing research effort is directed towards the eventual demonstration of feas
bility of both PU-CSP and MAP-CSP techniques in the domain of large commercial sourc

PROGRAM UNDERSTANDING 167

libraries and legacy sources, that is not the focus of the experiments outlined in this chapt
Rather, we are interested in determining whether, with a minimustro€tural constraint
information, it is possible to utilize the CSP algorithm for MAP-CSP template recognition
as input sources increase in size. For example, if the combinatorics of recognition stopp
at 100 lines of code it would be necessary to reconsider this approach. However, if it i
possible to scale to code on the order of a thousand lines, it is conceivable that MAP-CS
may be seen as a model or prototype of an integral sub-component of a future understand
toolset. In the future, such a model can be extended to take advantage of further structu
source constraint information.

7.1. Program plan templates

Figure 12 shows an internal representation of our earlier example plan. This preserv
the basic component and constraint representation, although the specific constraints v:
from those used in the original systems. In particular, we approximate control and dat:
flow constraints using locality and containment constraints. In addition, we require ¢
same-name-p constraint to capture the notion that a variable appeared in multiple place
represents the same underlying entity, a notion that is impliditénodes representation

*("quilici-t1"

(“‘ Component Set ‘¢

(q1-c While (ResultA (boolean)))

(q1-d Begin (Block1 (block)))

(q1-g Assign (NameC (array (char))) (IndexC (int))
(ElemB (char)))

(q1-e End (Block2 (block)))

(q1-i Increment (IndexD (int)))

(q1-a Decl (NameA (array (char) (0 10000))))

(q1-b Zero (IndexA (int)))

(q1-f Assign (NameB (array (char))) (IndexB (int))

(ElemA (char)))
(q1-h Not-Equals (ElemC (char)) (NULL (char)) (ResultB (boolean))))

(‘‘Constraint Set’’

(before-p (q1-c qi-d))

(close-to-p (qil-c gqi-d) 10)

(before-p (q1-4 qi-g))

(same-name-p (qi-d qi-e) (Blockl Block2))
(before-p (q1-g ql-e))

(before-p (q1-b qi-¢))

(before-p (q1-a q1-b))

(before-p (q1-b qi-h))

(before-p (q1-d qi-e))

(before-p (q1-f qi-h))

(before-p (q1-g q1-1))

(before-p (q1-d q1-i))

(before-p (q1-i qi-e))

(same-name-p (qi-c qi-h) (ResultA ResultB))
(same-name-p (q1-f qi-h) (ElemA ElemC))
(same-name-p (qi-a q1-f) (NameA NameB))
(same-name-p (qi-a qi-g) (NameA NameC))
(same-name-p (qi-b qi1-f) (IndexA IndexB))
(same-name-p (q1-b qi-g) (IndexA IndexC))
(same-name-p (qi-b qi-i) (IndexA IndexD))))

Figure 12 CSP-based internal representation for plans.

168 WOODS AND YANG

for plans. The component set elements consist of a general-component label, a genel
component type, and component-identify constraint information (i.e., component g1-c he
type “While”, signifying that the template requires a loop component whose access i
controlled by the boolean value “Result A").

Thequilici-t1 (figure 12) program plan template is derived directly fromTRAVERSE-
STRINGprogram plan utilized by Quilici (1994), and which we describe in detail in (Woods,
1996). The results described in this paper will refer to experiments which locate instance
of the quilici-t1 template in source data. In (Woods, 1996) additional experiments are
reported involving both smaller/simpler and larger/more complex templates.

The MAP-CSP template version of thiilici-t1 template is composed of 9 primary
components and 20 constraints.

Our experiments are concerned with all-instance template identification in large generat:
source instances. One primary concern (which we address in this paper) is how the relati
size of the given source affects recognition performance. Another concern (addressed
(Woods, 1996)), is how the relative size of a program plan template (in terms of componen
and constraints) will affect the empirical performance of MAP-CSP.

7.2. Generated example sources

We have described one particular program plan template that we will be utilizing the MAP
CSP algorithm to search for in generated legacy examples. Before describing the proce
of legacy generation that we adopt, an obvious question is: “what does an instance of the
program plans look like?”. In answer to this question, figure 13 presents a sample progra
fragment instance of thguilici-t1 plan.

Our prime interest is the performance comparison of different approaches to progra
understanding in terms of the size of the programs being understood. In particular, our foc
is on comparing the amount of effort expended (and consequently, time) in recogalzing
instances of a single plan template as the source program is increased in size. To keep
focus on scale issues alone, our desire was to have programs of varying sizes availal
where those programs have the same relative distribution of different program entities (tt
same percentage of loops, etc...) regardless of size. The test programs used as sou
are automatically generated in the following way. An instance (or instances, dependir

Stmt Id Line Statement

(ADTQ1-4 100 (DECL ARRAY A CHAR 99))
(ADTQ1-B 200 (ZERO IDX))

(ADTQ1-C 300 (WHILE RESULT))

(ADTQ1-D 310 (BEGIN BLOCK1))

(ADTQ1-G 400 (ASSIGN A IDX ELEMB))

(ADTQ1-I 500 (INCREMENT IDX))

(ADTQ1-E 600 (END BLOCK1))

(ADTQ1-F 700 (ASSIGN A IDX ELEM))

(ADTQ1-H 800 (NOT-EQUALS ELEM NULL RESULT))

Figure 13 Instance ofjuilici-t1 plan.

PROGRAM UNDERSTANDING 169

Table 3 Program statement type distribution.

Statement type Frequency Percentage
While 1/22 45
Zero 1/22 45
For 1/22 45
Block 2/22 9.0
Increment 2/22 9.0
Not-Equals 2/22 9.0
Print 2/22 9.0
Assign 3/22 135
Decl 4/22 18.0
Check 4/22 18.0

on the experiment) of the program plan template is generated, and program stateme
are added randomly according to a pre-determined distribution of program statemen
This distribution is derived directly from a cross-sectional study of student C program:
undertaken by Quilici (1994).

The experiments described here are based upon a distribution shown in Table 3. This d
tribution is derived directly from a cross-sectional study of student C programs undertake
by Quilici (1994). In (Woods, 1996) we examine the effect on MAP-CSP of utilizing differ-
ent distributions. When a variable was to be generated, it was generated with the followir
type distribution: array type (1/7), simple int (2/7), char (2/7), real (1/7), and boolean (1/7)
If an array was generated, it was instantiated according to this type distribution: int (2/6)
char (2/6), real (1/6) and boolean (1/6).

7.3. Problem instances

Experiments with a given search strategy are performed based on the results of 10 MA
CSP problem instances at each legacy source sample size. These 10 problem instar
are generated according to the distribution described. Problem instances are created
follows: a particular program plan instance is generated from the template, including a
assignment of line numbers for the instance according to the separation specified in tl
template. Legacy source statements are now generated according to the given distril
tion until a legacy program of appropriate size is generated. The statements are giv
line numbers randomly within the range from zero to the maximum line number spec
ified in the template instance plus one hundred lines. Certain statement types (such
Loop with a correspondindBegin and End) require more than a single line in their
generation. If a conflict occurs in which a new generated line number is already in use
a simple stepping algorithm selects the next available line number. If this algorithm
hits the end of the allowed line range, the range is extended by one hundred addition
lines.

170 WOODS AND YANG

Stmt Id Line Statement

(lsit-gen5| (0 88) (ASSIGN FIRSTINT FIRSTINT))

(ADTQ1-4 (1 100) (DECL ARRAY &4 CHAR 99))

(lsit-geni5| (2 144) (NOT-EQUALS FIRSTINT |var-name13| FIRSTBOOLEAN))
(ADTQ1-B (3 200) (ZERO IDX))

(Isit-gent| (4 289) (CHECK FIRSTINT FIRSTCHAR))

(1sit-gen14i (5 297) (ASSIGN |var-name7| |var-name7]))

(ADTQ1-C (6 300) (WHILE RESULT))

(ADTQ1-D (7 310) (BEGIN BLOCK1))

(lsit~-gen3| (8 362) (ASSIGN FIRSTARRAYI FIRSTINT FIRSTINT))
(ADTQ1-G (9 400) (ASSIGN A IDX ELEMB))

(ADTQ1-I (10 500) (INCREMENT IDX))

(|sit-gens| (11 574) (DECL INT |var-name7|))

(Isit-gen2] (12 584) (ASSIGN FIRSTARRAYB FIRSTINT FIRSTBOOLEAN))
(ADTQ1-E (13 600) (END BLOCK1))

(1sit-genoO| (14 632) (CHECK FIRSTCHAR FIRSTREAL))

(|sit-gen8! (15 682) (FOR |var-namel3| 14 7))
(lvegin-sidi1| (16 683) (BEGIN |block10]))

(lend-sid12]| (17 685) (END |blocki0l))

(lother-sid9| (18 686) (ASSIGN FIRSTARRAYI |var-namei3| |var-namel3|))

(ADTQ1-F (19 700) (ASSIGN A IDX ELEM))
(lsit-gen4| (20 765) (CHECK FIRSTINT FIRSTINT))
(ADTQ1-H (21 800) (NOT-EQUALS ELEM NULL RESULT))

Figure 14 Instance ofjuilici-t1 plan with 10 inserted statements.

As an example, utilizing the “Standard” distribution, a generated “program” containing
one instance of thquilici-tl program plan together with 10 generated source statements
is given in figure 14. The template-related components may be identified in this (an
subsequent) figures through the statement labels prefixed with “ADT”. The initial templat
instance has 9 related component lines, and the remaining 12 added lines arise as a re
of the insertion of a for-loop statement with 3 associated lines. Experiments of a particule
size are generated at intervals of 50 legacy lines typically (although not in all cases). |
such a case, the 10 examples at (say) size 250 would be graphed according to the aver
size of the 10 examples keeping in mind that each example has a slight variation dependi
on how many multiple-line insertions are made.

7.4. Experimental results

Inthis section we presenta small sample of alarger range of experiments reported in (Woot
1996) which are intended to show the feasibility of the MAP-CSP representation and relate
solution algorithms in relatively large (several thousand lines) problem instances.

The experimental results depicted here are based upon algorithms for constraint satisf:
tion described earlier. The solution algorithms referenced in the following figures include
combinations of the following algorithms:

1. Standard BackTracking (BT, see Section 4.2).
2. Arc consistency propagation (AC-3, see Section 4.1).
3. Forward Checking with Dynamic Rearrangement (FCDR, see Section 4.2).

This list is not intended to be a complete set of solution strategies to constraint satisfactic
strategies. Rather, these approaches represent a range of strategies that together are ca

PROGRAM UNDERSTANDING 171

of capturing an initial subset of the heuristic strategies undertaken by previous progral
understanding researchers.

7.4.1. Detailed individual results

Single template instancesThe following examples contain a single template instance in
each generated legacy example. All of these examples are generated using the “Stande
Quilici distribution and make reference to identifying instances ofgqihiéici-t1 program

plan template. The results are graphed showing a 95% confidence interval over the
sampled sources. All of these experimental instances were generated such that the inse
template was not destroyed, that is, the template was identified successfully in each case
addition, for these examples no false solutions were identified. Atthe end otibhregptete
searches, one may conclude that no other instance possibly exists that satisfies the temp
constraint set.

1. Simple backtrackingith no advance variable order, figure 15. The experiment was ter-
minated for legacy examples exceeding 400 lines. In fact, several individual cases faile
to complete atotal search of the given example in less than 20 cpu minutes, our arbitra
boundary. In particular, at 250 there was 1 failure, at 300 (1), at 350 (2) and at 400 (3]

2. Simple backtrackingvith advance variable ordering, figure 16. This experiment shows
a rapidly increasing number of constraint checks as source example size increases.

750000 T T T T T T T T T T T T T T T

BT no adv, dist] ——
700000 | - 95% Confidence Interval H—i

650000 [1
600000 | T 1
550000 T 1
500000 E
450000 | | E
400000 1

350000 E

Constraint checks

300000 | J
250000 |- 1
200000 |- {

150000 B

100000 - E
1
50000 [B
0 1 I 1 I 1 1 1 I I I L 1 L L

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Program statements

Figure 15 Standard BackTrack (95% conf. interval).

172 WOODS AND YANG

400000 T T T T T T T T T T T T T T T

BT adv, dist] —
375000 95% Confidence Interval +Ho—i |

350000 [1
325000 | 1
300000 [b
275000 1
250000 1
225000 b
200000 1
175000 1

Constraint checks

150000 [b
125000 b
100000 1
75000 b
50000 r b
25000 1

0 1 L 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Program statements

Figure 16 BackTrack, variable order (95% conf. interval).

particular, 25000 constraints are checked with an example size of approximately 72
source lines. Simple backtracking displays an extremely large variance between exat
ples at the same source size. For instance, at 200 source insertions, one of the 10 ce
required more than 500000 constraint checks to solve, while another at the same si
required only 3400. For purposes of comparison between constraint checks with CP
time, it should be noted that the datapoint of approximately 950 source lines correspon
to slightly more than 100 CPU seconds on a shared SPARCserver 1000 running Alleg
Common Lisp.

3. AC-3 with forward checking and dynamic rearrangemwiih advance variable order-
ing, figure 18. For this experiment, the 25000 constraint check limit is surpassed &
approximately 1200 source lines.

4. Forward checking and dynamic rearrangemeiith advance variable ordering, figure 17.
This standard CSP solution strategy has typically performed well on a wide range c
problems. The FCDR strategy essentially propagates constraints between each sec
assignment to a depth of one “look-ahead” variable. This experiment results in the chec
ing of only 5274 constraints at 1500 source lines. A similar example for FCDR shown ir
figure 21 shows a result of 25000 constraint checks for an example source size of mo
than 3000 source lines. For purposes of comparison between constraint checks w
CPU time, it should be noted that the last datapoint of approximately 1500 source line
corresponds to about 27 CPU seconds on a shared SPARCserver 1000 running Allec
Common Lisp.

PROGRAM UNDERSTANDING 173

10000 T T T T T T T T T T T T T T T

FCDR adv, dist 1 ——
95% Confidence Interval Ho—
9000 1

8000 1

6000

5000

Constraint checks

3000

2000

1000

0 1 Il 1 1 Il 1 1 1 1 1 Il L 1 1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Program statements

Figure 17. Forward checking, DR (95% conf. interval).

100000 T T T T T T T T T T T T T T T
AC3 + FCDR adv, dist | —
95% Confidence Interval +o—
90000 q
80000 1
70000 1

60000 B

Constraint checks
é‘
T
1

40000

30000

20000

10000 [

1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Program statements

Figure 18 AC-3 with FCDR (95% conf. interval).

174 WOODS AND YANG

50000 ™ T T T T T T T T
] MAP-CSP : FCDR adv —<—
MAP-CSP : FCDR adv (2 solution) -+~
45000 MAP-CSP : Simple BackTrack adv -8-- 1
i MAP-CSP : Simple BackTrack -
AC3 + FCDR adv -4~
40000 4
35000 | 2 i
i o 4
2 30000 | ; « 1
g f / /
= H K i
ot i / {
£ 25000 [A 4
g B &
Z i 3 !
S i ; 7
O 20000 ; / 1
X A
ol &7
15000 | H - 4
H @ /x’
H A T
10000 | L T 1
1 Il

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Program statements

Figure 19 A range of strategies (medians graphed).

5. Figure 19 graphs the median of the previous examples in a unified chart to show tt
relative performances. Note one line is extended for FCDR with advance variable ol
dering (two solutions) so as to demonstrate the relative rate of increase for that heuristi
Figure 21 indicates how this particular heuristic scales in much larger examples.

6. Figure 20 demonstrates the relative utility of estimating effort through constraint check
as opposed to CPU time. In particular, we chart time or®lais and constraint checks
on theY axis. We notice that initial overhead matters, however, only as a constant facto
The results are taken from the experiments utilizing FCDR (advance ordering) with th
Standard template and Standard code distribution.

7.4.2. Comparative results. The examples shown in the previous paragraphs for single
template identification were conducted only up to a maximum of about 1500 legacy line:
Figure 21 shows the same (median) results charted in figure 19 for a variety of seart
strategies, with the extension that the FCDR with advance variable ordering (median) tes
have been extended to almost 6000 lines of code.

We wish to demonstrate that the MAP-CSP representation and algorithm is capable
providing all-instance results in moderately sized program slices. An efficient MAP-CSF
algorithm could make the execution of the larger PU-CSP algorithm more feasible. I
addition, the MAP-CSP algorithm for template matching could potentially be stand-alone
as a tool for assisting in the identification of legacy source portions that may be replace
with existing source library objects.

PROGRAM UNDERSTANDING

Constraint Checks

Figure 20 FCDR addv.

Constraint checks

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

110000

100000

90000

80000

70000

60000

50000

40000

30000

20000

FCDR adv: CPU vs Constraint Checks ——

4 6 8 10 12 14 16 18 20 22 24 26 28 30
CPU Time in Seconds

constraints vs time, standard distribution.

T

T

T

o MAP-CSP : FCDR adv —o—
MAP-CSP : FCDR adv (2 solution) -+-- |

MAP-CSP : Simple BackTrack adv -8--

MAP-CSP : Simple BackTrack -
AC3 +FCDR adv -4 |

1 1 1 1 ! 1

1000 1500 2000

2500
Program statements

3000 3500 4000 4500 5000 5500

Figure 21 Extended results: strategy range.

175

6000

176 WOODS AND YANG

Several observations can be made from our test results:

e Standard Backtracking exhibited very unstable performance in examples of the san
size. As hoped, more intelligent strategies behaved in a more stable manner. Forwe
Checking was considerably more stable, and the applications using AC-3 in advanc
of search exhibited very small variance across test cases of similar size. Stability is ¢
important factor in any application that may be used as part of an online or interactiv
tool. In addition, Standard Backtracking was unable to complete in less than 600 CP
seconds for source instances exceeding 500 program statements.

e Forlegacy source examples of up to approximately 600 lines of code, the FCDR strategi
located all instances of the example program plan template in less than approximate
5 seconds of CPU time. In examples of up to 1500 lines of code, all instances wer
identified in approximately 35 seconds. In such prototyped (Lisp) near-real-time circum
stances it would appear that a tool could be fashioned that could be called up to run
a background process supporting an expert working with some reasonably sized lega
code.

Itis also clear the ratio of constraints evaluated to program statements is growing rapid
for our “standard distribution”. This is problematic, but there are several reasons to rema
optimistic. One is that our “simulated locality constraints” are much looser thastiine
tural constraintssuch as control-flow and data-flow constraints found in real programs. We
therefore predict that this curve will flatten significantly when experiments are undertakeni
future work using programs that preserve the structural properties of real-world program
This is because tighter constraints should reduce the size of the domain value sets, lead
to a speedier solution to the CSP and fewer constraints to evaluate. It is an open questi
however, just how much it will flatten and how much that will slow the rate of growth of
the number of constraints evaluated.

The other reason to expect even better scalability using CSP is that, even if real-wor!
structural constraints do not prevent the currently modeled plan recognition algorithm fror
going exponential, it appears from our curves that instances of individual plans can kb
recognized in programs in the 5,000 statement range in a reasonable amount of time. F
instance, the 60,000 or so constraints we need to evaluate takes less than 25 seconds c
on a shared SPARCserver 1000 workstation. While 5000 statements is small compared
the sizes of real-world programs, it is within an order of magnitude of the size of module:
in real-world programs or modules that have been created from legacy systems using ser
automatic techniques (Newcomb and Markosian, 1993). Other reverse and re-engineers
toolsets such aRigi (Muller et al., 1994) may be appropriately utilized in this process of
source segmentation.

7.5. Context of this work

This section has explored some scalability issues for a constraint-based approach to par
explanation using plan recognition. This, however, is only one part of the overall prograr
understanding problem. Program understanding is often viewed as a three-step process

PROGRAM UNDERSTANDING 177

Parsing: Turning the program into an annotated AST using standard parsing and flov
analysis techniques.

Canonicalization: Simplifying this internal representation to minimize the number of dif-
ferent plans that must be in the library. A simple example is transforming all relationa
expressions so that they involve only the greater than operator and not the less than.

Plan recognition: Recognizing instances of each plan in a library of program plans.

This section has focused on preliminary experiments intending to support the scalabili
of one part of the plan recognition process: determining whether a given program plan
present based on the existence of the constrained plan components in the internal reg
sentation of the program. There are other aspects to this problem, that we have not \
addressed, including how to decide which plans to try to locate within a given program, an
in which order to try those plans. Section 5 introduced these integrative issues, and Woo
(1996) expands them in detail.

Our experiments have severalimportantimplications. One isthatit may well be necessa
to have a modularization step that precedes the plan recognition process, where this s
breaks the program into pieces of whatever size the program understanding algorithm c
comfortably handle before the combinatorics become problematic. In fact, this is precise
the point of the PU-CSP stage for integrating these partial solution stages. Some wo
on semi-automatic modularization of COBOL program has already been done that h:
demonstrated that large COBOL programs can be broken into modules of 25,000 or :
statements (Newcomb and Markosian, 1993). This is only a factor of 5 larger that th
point that the CSP approach can comfortably handle, which makes it appear worthwhi
to determine whether those techniques can be extended to break programs down into e
smaller modules.

In addition, even if we successfully recognize plans at the module level, there also nee
to be a mechanism for combining this modular understanding that needs to follow the ple
recognition process. It is an open question how we accomplish this task to come up wil
an understanding for a program as a whole, especially if the library is incomplete and w
have only partial understanding of what a module does.

Finally, our success in using CSPs in the local or MAP-CSP understanding proces
suggests that perhaps they can be applied to other related tasks, such as selecting plar
recognize, or as part of the canonicalization process. However, it is an open and interesti
research question how to do so.

7.6. Looking ahead

Our results may be thought of as some initial, overdue, data points in a progress report
the state of the art of program understanding. In particular, the specific amount of wor
done by the CSP recognition algorithm can be reduced, perhaps significantly, by movir
to real control-flow and data-flow constraints, an experiment we are intending to set up |
a future extension to this work. This may well mean that significantly larger programs cal
be successfully understood. In addition, the relative amount of work done by the algorithr
may increase rapidly as we move toward exploring larger and larger plans, rather the

178 WOODS AND YANG

slowly as it had with our first few plans. This may mean that there is a practical uppe
bound on the size of individual plans that can be efficiently recognized in a program o
a particular size. If our initial empirical results hold up, they suggest that automatically
modularizing large programs and combining modular understanding are several importa
areas of future research. Our PU-CSP model addresses integration of these modulari:
partial explanations.

Our hope is that this work will spur others working in the area of program plan recognitior
to do one of two things: either map their understanding algorithms into the CSP framewor
so that others may easily compare their performance with our CSP approach, or to provi
data on the performance of their program understanding algorithms as programs grow
size. This step is crucial to move beyond the understanding of “toy” programs and into th
world of being a useful aid in the re-engineering of real legacy systems.

8. Conclusions

In this paper we have constructed a general representation of the program understand
task as a constraint satisfaction problem. Two versions of the task are identified: one
to find all instances of a given program plan template in a source code, and the other is
construct or verify an explanation of the source code in terms of a program plan library. |
addition, we have modeled various search heuristics for program understanding as instan
of a generic CSP search algorithm. We believe that the algorithm subsumes the previou:
proposed methods for the same problem, and can be systematically studied on a spectr
of heuristics.

We have also implemented the all-instances template matching problem, MAP-CSP at
demonstrated that MAP-CSP can be solved for problems of non-trivial size using intelliger
backtracking and constraint propagation within a reasonably stable and reasonably sh
time period. MAP-CSP has potential application both as a stand-alone tool for legacy coc
reduction and as a key component within the program understanding task.

We summarize some of the advantages of our approach below.

Scalability. Our empirical results demonstrated that the MAP-CSP problem can be scale
up for legacy code of moderate sizes—6000 lines of generated code in some cases. T
efficiency gain is achieved by viewing the recognition problem as constraint satisfaction, an
applying known constraint satisfaction algorithms. This focus-range is rapidly approachin
that achieved in automatic-modularization effortsin COBOL programs. In our experiments
we haven't utilized the full range of constraints inherent in a program source code, suc
as those derived from program parsing, a technique employed by Kozaczynski and Nir
(1994) and Wills (1992). More extensive consideration is given to the specific use of thes
constraints in (Woods, 1996), and is a part of our continuing research. We expect tt
empirical results to improve further with use of these constraints.

Usability. We envision our system as one part of a programmer’s assistant toolset. Th
basis of such a toolset would undoubtedly be a visual reverse/re-engineering platform su
as suggested by Wléer's Rigi. For the MAP-CSP problem, a programmer could use the

PROGRAM UNDERSTANDING 179

system to identify abstract program plans in legacy fragments of as many as 1000 lines
code in near-real-time, and can apply the system in batch-mode to much larger program

We have been involved in cooperation with a main telecommunications provider to in
vestigate the applicability of this approach to extremely large source code in the telephor
domain. Achieving partial automatic recognition of even 5% of the code in terms of existing
software libraries would greatly benefit software maintainers.

In other work (Woods, 1996) we report on the implementation of a hierarchical searcl
algorithm for PU-CSP. We expect to see similar effective results from constraining the searc
with hierarchical plan knowledge, particularly when this algorithm is fully integrated with
the MAP-CSP solutions.

Acknowledgments

We thank Alex Quilici and Jim Ning for their insight and comments and Grant Weddell for
many helpful discussions. This research has been carried out with the support of the Natu
Sciences and Engineering Research Council of Canada and the Information Technolo
Research Centre (ITRC).

Notes

1. REFINE is a trademark of Reasoning Systems.
2. These and other intelligent backtracking algorithms are described in detail by Nadel (1989).

References

Carberry, S. 1988. Modeling the user’s plans and g&dsnputational Linguisticsl4(3):23-37.

Carberry, S. 1990. Incorporating defaultinferences into plan recogrition. of the 8th AAANol. 1, pp. 471-478.

Cooper, M.C. 1989. An optimal k-consistency algoritthrtificial Intelligence 41:89-95.

Freuder, E.C. 1982. A sufficient condition of backtrack-free seaairnal of the ACM29(1):23-32.

Haralick, R.M. and Elliott, G.L. 1980. Increasing tree-search efficiency for constraint satisfaction problems
Artificial Intelligence 14:263-313.

Holte, R., Mkadmi, T., Zimmer, R., and MacDonald, A. 1995. Speeding up problem-solving by abstraction: A
graph-oriented approach. Technical report TR-95-07, University of Ottawa.

Kautz, H. and Allen, J. 1986. Generalized plan recognitinoc. of the Fifth National Conference on Atrtificial
Intelligence Philadelphia, Pennsylvania, pp. 32-37.

Kazman, R. and Burth, M. 1997. Assessing architectural complexity. WRg://www.cgl.uwaterloo.
ca/ ~rnkazman/assessing.ps.

Kontogiannis, K., DeMori, R., Bernstein, R., and Merlo, M. 1994. Localization of design concepts in legacy
systemsProc. of the Int. Conf. on Software Maintenanpp. 414—423.

Kontogiannis, K., Galler, M., and DeMori, R. 1995. Detecting code similarity using pattéfmking Notes of
the Third Workshop on Al and Software Engineering: Breaking the Toy Mold (ASPESS8—73.

Kozaczynski, W. and Ning, J.Q. 1994. Automated program understanding by concept recodnitmmated
Software Engineeringl:61-78.

Kumar, V. 1992. Algorithms for constraint-satisfaction probleAisMagazine pp. 32—44.

Mackworth, A.K. 1977. Consistency in networks of relatioAsificial Intelligence 8:99-118.

Mackworth, A., Mulder, J., and Havens, W. 1985. Hierarchial arc consistency: Exploiting structured domains ir
constraint satisfaction problenSomputational Intelligencel:188—126.

180 WOODS AND YANG

Minton, S. 1990. Quantitative results concerning the utility of explanation-based lea#ntifigial Intelligence
42:363-391.

Mohr, R. and Henderson, T.C. 1986. Arc and path consistency revisitgficial Intelligence 28:225-233.

Muller, H., Tilley, M., Orgun, M.A., Corrie, B., and Madhaviji, N. 1992. A reverse engineering environment based
on spatial and visual software interconnection modutesc. of the Fifth ACM SIGSOFT Symp. on Software
Development Environments (SIGSOFT 92EM Software Engineering Notes, pp. 88—98.

Muller, H., Orgun, M.A,, Tilley, S.R., and Uhl, J.S. 1993. A reverse engineering approach to subsytem structur
identification.Journal of Software Maintenancg(4):181-204.

Muller,H., Wong, K., and Tilley, S.R. 1994. Understanding software systems using reverse engineering technoloc
Proc. of the Colloquim on Object Orientation in Databases and Software Engine@png8—98.

Nadel, B.A. 1989. Constraint satisfaction algorith@smputational Intelligence5:188-224.

Newcomb, P. and Markosian, L. 1993. Automating the modularization of large COBOL programs: Application of
an enabling technology for re-engineerifgoc. of the Working Conf. on Reverse Engineerpyy 222—230.

Quilici, A. 1994. A memory-based approach to recognizing programming p@orsmunications of the ACM
37(5):84-93.

Quilici, A. 1995. Toward practical automated program understaniagking Notes of the Third Workshop on
Al and Software Engineering: Breaking the Toy Mold (AISE-85Fonjunction with the Fourteenth Int'l Joint
Conference on Artificial Intelligence.

Quilici, A. and Chin, D. 1994. A cooperative program understanding environfResd. of the Ninth Knowledge-
Based Software Engineering Cariflonterey, CA, pp. 125-132.

Quiilici, A. and Chin, D. 1995. DECODE: A cooperative environment for reverse-engineering legacy software
Proc. of the Second Working Conf. on Reverse-Enginegpingl56—165. IEEE Computer Society Press.

Quilici, A. and Woods, S. 1997. Toward a constraint-satisfaction framework for evaluating program-understandin
algorithms.Journal of Automated Software Engineer,ii3g4):271-289.

Quiilici, A., Woods, S., and Zhang, Y. 1997a. Some new experiements in program plan recoghimrof the
Fourth Working Conf. on Reverse-EngineeritlgEE Computer Society Press.

Quilici, A., Yang, Q., and Woods, S. 1997b. Applying plan recognition algorithms to program understanding.
URL: http://spectra.eng.hawaii.edu/ ~sgwoods/Sub/AuSE-prpu-paper.html , submitted for
publication.

Rich, C.and Waters, R.C. 1988. The programmer’s apprentice: Aresearch ovéEE&LZomput.21(11):10-25.

Rich, C. and Waters, R.C. 1990he Programmer’s Apprenticdddison-Wesley: Reading, MA.

Rugaber, S., Stirewalt, K., and Wills, L. 1995. The interleaving problem in program understaRdingof the
Second Working Conf. on Reverse-Engineerlt@62 Los Vaqueros Circle, Los Alamitos CA 90720-1264,
IEEE Computer Society Press, pp. 166-175.

Tsang, E. 199Foundations of Constraint Satisfactid®d-28 Oval Road, London England, NW1 7DX: Academic
Press Limited.

van Beek, P., Cohen, R., and Schmidt, K. 1993. From plan critiquing to clarification dialogue for cooperative
response generatioBomputational Intelligenced(3).

van Deursen, A., Woods, S., and Quilici, A. 1997. Program plan recognition for year 2000Romts of the
Fourth Working Conf. on Reverse-EngineeritlsEE Computer Society Press.

Van Hentenryck, P., Deville, Y., and Teng, C.-M. 1992. A generic arc-consistency algorithm and its specialization:
Artificial Intelligence 57:291-321.

Wills, L.M. 1990. Automated program recognition: A feasibility demonstrawatificial Intelligence 45(2):113—

172.

Wills, L.M. 1992. Automated Program Recognition by Graph Parsing. Ph.D. thesis, MIT.

Woods, S. 1993. A method of interactive recognition of spatially defined model deployment templates usin
abstractionProc. of the Knowledge Based Systems and Robotics WorkSlbwprnment of Canada, pp. 665—
675.

Woods, S. 1996. A Method of Program Understanding, Using Constraint Satisfaction for Software Revers
Engineering. Ph.D. thesis, University of Waterloo.

Woods, S., Quilici, A., and Yang, Q. 1995. Program understanding: A constraint satisfaction modeling frameworl
understanding as plan recognition. Technical Report CS 95-52, University of Waterloo, Department of Comput
Science.

PROGRAM UNDERSTANDING 181

Woods, S. and Yang, Q. 1995a. Constraint-based plan recognition in legacyWeéoidéng Notes of the Third
Workshop on Al and Software Engineering: Breaking the Toy Mold (AISE)

Woods, S. and Yang, Q. 1995b. Program understanding as constraint satisfiorof the IEEE Seventh Int.
Workshop on Computer-Aided Software Engineering (CASEE Computer Society Press, pp. 318-327. Also
appears in th@roc. of the 1995 Second Working Conf. on Reverse Engineering (WCRE)

Woods, S. and Quilici, A. 1996a. A constraint-satisfaction framework for evaluating program-understandin
algorithms.Proc. of the 4th IEEE Workshop on Program Comprehension (WPCB@8)in, Germany.

Woods, S. and Quilici, A. 1996b. Some experiments toward understanding how program plan recognition alg
rithms scaleProc. of the Third Working Conf. on Reverse-Engineering

Woods, S. and Yang, Q. 1996a. Approaching the program understanding problem: Analysis and a heuris!
solution.Proc. of the 18th Int. Conf. on Software EngineeriliEE Computer Society Press, Berlin, Germany.

Woods, S. and Yang, Q. 1996b. Approaching the program understanding problem: Analysis and a heurisi
solution.Proc. of the 18th Int. Conf. on Software EngineeriliEE Computer Society Press, Berlin, Germany.

Woods, S., Quilici, A., and Yang, Q. 199Constraint-based Design Recovery for Software Reengineering: Theory
and ExperimentKluwer Academic Publishers, University of Hawaii at Manoa (USA), Simon Fraser University
(Canada). URLhttp://www.wkap.com/

Yang, Q. 1990. Formalizing planning knowledge for hierarchical planr@mmputational Intelligences.

Yang, Q. 1992. A theory of conflict resolution in plannirgtificial Intelligence 58(1-3):361-392. Special Issue
on Constraint-directed Reasoning.

Zhang, Y. 1997. Scalability Experiments in Applying Constraint-Based Program Understanding Algorithms tc
Real-World Programs. Masters thesis, Department of Electrical Engineering, University of Hawaii, Manoa.

