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Abstract. The process of understanding a source code in a high-level programming language involves complex
computation. Given a piece of legacy code and a library of program plan templates, understanding the code
corresponds to building mappings from parts of the source code to particular program plans. These mappings
could be used to assist an expert inreverse engineeringlegacy code, to facilitatesoftware reuse, or to assist
in the translationof the source into another programming language. In this paper we present a model of pro-
gram understanding using constraint satisfaction. Within this model we intelligently compose a partial global
picture of the source program code by transforming knowledge about the problem domain and the program itself
into sets of constraints. We then systematically study different search algorithms and empirically evaluate their
performance. One advantage of the constraint satisfaction model is its generality; many previous attempts in
program understanding could now be cast under the same spectrum of heuristics, and thus be readily compared.
Another advantage is the improvement in search efficiency using various heuristic techniques in constraint satis-
faction.
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1. Foreword

Three years have passed since the inception of the idea of applying constraint-based repre-
sentation and techniques (CSP) to program understanding and design pattern recovery. The
original idea was conceived by Steven Woods and Qiang Yang at the University of Waterloo
in late 1994. The original aim of the work was two-fold: to provide a unifying framework
for different approaches in program understanding so they can be compared, and to employ
the heuristic power of well-known CSP algorithms. Since then, several different work
threads have succeeded in extending the representational power and heuristic adequacy of
this approach.

This article is an extended summary of the original concepts and ideas that spun the
initial research direction. Originally written in 1995, this paper has spawned a number of
follow-up publications, which have appeared prior to the appearance of this paper:

• Woods and Yang (1996a) present an examination of the complexity of the program
understanding task and a discussion of how the various problem aspects contribute to
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problem complexity. The paper suggests the likely success of using a constraint-based
control of search as a means of mediating this complexity in practice.

• Quilici and Woods (1997) provide careful modeling of the heuristic approach of a specific
earlier program understanding system (DECODE) using a CSP framework. The primary
results of this work were to show how the constraint-approach was capable of good
scaling results in comparison to previous approaches, and to suggest how the constraint
model can be adapted to exploit the heuristics developed in previous methodologies.

• Woods and Quilici (1996b) expand upon the CSP model’s initial promising scaling re-
sults and present new benchmarks for legacy code size and plan size for the program
understanding task.

• Woods’ Ph.D. dissertation (1996) from the University of Waterloo, presents a compre-
hensive view of the CSP modeling technique and empirical results. In addition, a detailed
argument is presented as to how a constraint-based model can be structured to effectively
support the human-centered process of program understanding. In this work, the hierar-
chical nature of both plans and the understanding process is woven into the fabric of a
new hierarchical algorithm for constraint satisfaction.

• Kazman and Burth (1997) explore the application of constraint-based program under-
standing techniques to the recovery of architectural patterns. The intent of this architecture
recovery was to assist in the assessment of a legacy system’s overall architectural com-
plexity in response to potential system re-engineering or re-structuring. The plan and
architecture recovery paradigms are very similar in problem representation—each ex-
ploiting both program constraints (structure) and architecture pattern constraints (knowl-
edge) to reduce the computational expense of locating patterns in large source examples.

• Quilici et al. (1997b) investigate the similarities and differences between the Artificial
Intelligence technologies and approaches to plan recognition in general with the more
specific task of recognizing program plans and understanding legacy systems. This work
demonstrated that the treatment of program understanding as plan recognition is too sim-
plistic and that traditional AI search algorithms for plan recognition are not applicable, as
is, to program understanding. In particular, it was shown that the program understanding
task differs significantly from the typical general plan recognition task along several key
dimensions, and the program understanding task has particular properties that make it
particularly amenable to constraint satisfaction techniques. In addition, it was shown that
augmenting AI plan recognition algorithms with these techniques can lead to effective
solutions for the program understanding problem.

• Yongjun Zhang’s masters thesis (1997) at the University of Hawaii, describes an extension
of the original constraint-based algorithms and an implementation of Woods’ (1996) to
accommodate constraints extracted from structural program analysis—including data-
flow and control-flow constraint annotations of abstract syntax trees.

• Quilici et al. (1997a) present new empirical evidence showing how the process of rec-
ognizing program plan templates in software can be greatly assisted through the use of
strong constraints obtained through structural program analysis before searching for plan
instances.
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• van Deursen et al. (1997) outline how the constraint-based concept recovery process
can be adapted to assist in the remediation of Year-2000 (Y2K) source code problems.
The Year 2000 experiences of one of the authors is combined with the concept recovery
experiences of the others to provide a new perspective on how Y2K toolsets could be
extended.

• Woods et al. (1997) is a mature, carefully restructured review of the interpretation of
program understanding as a process of constraint-based concept recovery. This book
brings together the entire range of material published by the authors between 1995 and
1997 in a single, comprehensive framework.

This work has been conducted with the intent of modeling program understanding al-
gorithms and heuristics in such a way as to allow the research community to build upon
previous work in an incremental fashion—ultimately arriving at a clear view of how concept
recovery technology can integrate effectively and efficiently into larger reverse engineering
toolsets. We believe that the move in the research community to assemble libraries of
programming patterns or templates in large, shareable libraries is another necessary step in
the direction of producing tools which can approach real-world application quality.

2. Introduction

Humans are particularly adept at successfully interpreting explicit representations of knowl-
edge created by other intelligent agents. A shared understanding of the terms of reference
and subject material provides a basis for this interpretation. In software engineering, ex-
perts often apply such skill to the task ofprogram understanding. As shown in figure 1,
it is possible to conceptualize an expert’s understanding of a given source program as a
successful construction of amappingbetween the expert’s store of relevant knowledge and
the structures and components inherent in the source code. The expert or agent can use this
mapping to infer the source program’s high-level goals. This mapping essentially raises
the level of abstraction of the understanding of the source from the level of actual code
to the more abstract level of the existing representation (or language of expression) of the
domain knowledge. This abstract understanding may be exploited as part of the process of:
(1) translating the program into the source code of another programming language, (2) rec-
ognizing errors in the legacy code and assisting in debugging the code at the more abstract
level, and (3) replacing understood code portions with generic application code or calls to
other code libraries. We know that in many real-world circumstances, a reduction in the
size of an existing source code library by only a small percentage can result in a substantial
reduction of the maintenance cost. Consequently, the creation of even a partial mapping
between existing domain knowledge and a particular legacy source can be a valuable tool
for maintenance or re-writing engineers.

In Artificial Intelligence research, the problem of program understanding has been ap-
proached indirectly from the perspective of plan recognition (Kautz and Allen, 1986;
Carberry, 1988; van Beek et al., 1993). In much of this work, existing human knowl-
edge in a particular domain is represented as hierarchies of plans that describe relevant
actions and goals. Given such a plan hierarchy, and example of which is shown in figure 1,
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Figure 1. Conceptualizing source with expert knowledge.

plus an observation of another agent’s plan, a plan-recognizer would typically construct
a mapping from input plan fragments to the leaf nodes of the knowledge-base and infer
upwards toward a goal. To disambiguate among alternative goals, the mapping processes
may employ knowledge about the temporal relations between parts of the plan. These plan
recognition programs have been applied mostly totoy domains(such as the cooking do-
main), involving small knowledge bases and a small search space. The plan recognition and
program understanding approaches have been compared in some depth elsewhere (Woods
et al., 1995).

Recently, researchers have adopted a more direct approach to program understanding.
In this direction, an explicit library of programming plan templates and concepts is con-
structed, and various top-down and bottom-up search strategies are utilized to implement
the mapping process. Notable examples are Quilici (1994), Kozaczynski and Ning (1994),
Rich and Waters (1990) and Wills (1990, 1992). To some extent, all are aimed at improving
the effectiveness of the mapping process through heuristic knowledge. The basis for such
heuristic approaches has been the assumed intractability of the complete understanding
problem in general. In (Woods and Yang, 1996b), not only is program understanding shown
to be NP-hard, but also the intuitively easier problem of locating partial local understandings.

In figure 2 a subset of expert knowledge about a particular application domain is repre-
sented in a fragment of a hierarchical library of program templates. One possible mapping
is shown between a plan template from the library and a specific legacy source fragment,
in this case a single source statement. The existence of such a mapping essentiallyexplains



P1: KCU

Automated Software Engineering KL544-01-Woods January 19, 1998 13:8

PROGRAM UNDERSTANDING 151

Figure 2. Conceptualizing source with a plan library.

the presence of the low-level source statement at a higher level of abstraction, in this case
as an instance of the plan templatecopy-characterspecified in the library.

Much of the previous program understanding work has failed to demonstrate heuristic
adequacy in even partially generating “understanding” of large problems. Specifically, many
recognition algorithms presented may be viewed as collections of heuristic tricks. This
construction makes it difficult for one to perform a systematic analysis of different search
methods within a particular approach, or to understand how the addition or deletion of
certain types of domain-specific knowledge may affect performance. We are unaware of
concrete examples or experiments which might suggest that these approaches might scale
up for specific uses in large sources. One exception might be Wills (1992) who presents
empirical results which seem promising in identifying partial mappings of reasonably sized
legacy sources to a library of program plans.

The work presented in this paper is part of the initial phase of work focused on demon-
strating that an effective approach to partial program understanding is possible with large
legacy code examples. Specifically, we intend to clearly categorize the circumstance in
which this use is possible, and the preconditions which must first be met in terms of rep-
resentation and application of domain knowledge. We present a generalized representation
of program understanding as aConstraint Satisfaction Problem(CSP) (Mackworth, 1977).
For a given legacy source code, the program components (explained later) are variables in
the CSP. The domain values are the known program plans that mayexplaineach compo-
nent. The CSP constraints are eitherknowledge constraintswhich describe how program
plans may fit together to form larger plans, orstructural constraintswhich describe how
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program components are structurally related. We refer to the program understanding CSP
as PU-CSP.

In addition, we present and empirically evaluate a mapping algorithm (as part of the PU-
CSP), also formulated as a CSP, which provides the ability to locate all instances of a specific
general programming plan template, and to map the plan’s structure to actual source program
components. We refer to this mapping CSP as MAP-CSP. Some earlier works also attempt to
define and recognize abstract concepts as part of program understanding (Kozaczynski and
Ning, 1994; Wills, 1992). For a given program plan template (explained later), the different
parts of the template are the variables in the MAP-CSP. The various syntactically known
pieces of the source code correspond to domain values for each variable. The constraints
among the different parts of the program plan are constraints in the MAP-CSP.

There are at least two advantages in our constraint-based approach. The first is its
generality; most of the previous recognition methods and heuristics can now be unified
under the constraint-based view. Another advantage is an increased ability to address
heuristic adequacy, or scalability; by casting program understanding as a CSP, the pre-
viously known constraint propagation and search algorithms could be easily adapted. We
may now perform a systematic study of different search heuristics, including both top-down
and bottom-up as well as many other hybrids, in order to discover their applicability to a
particular source code.

The rest of this paper is organized as follows. Section 3 outlines the program under-
standing problem including an illustrative example and reference to previous approaches.
Section 4 provides an introduction to our representational model, constraint satisfaction and
delineates the two primary sub problems in program understanding. Section 5 describes
how the larger sub problem of explaining source block interrelationships (PU-CSP) is mod-
eled using constraints. Section 6 details how the sub problem of identifying individual
source code template instances (MAP-CSP) may be modeled. Section 7 presents empirical
results from experiments with MAP-CSP. Section 8 presents our conclusions and indicates
our current research directions.

3. The program understanding problem

3.1. An illustrative example

Consider the C program outlined on the left-hand side of figure 3. This example program
contains declarations, initializations and an embedded print loop foreachof three strings.
As an illustration, strings are treated as a primitive data type by the programmer, with no
shared functionality for printing.

To understand this program, one might use as a basis a library of program plans as shown
in figure 4 which represents previously compiled knowledge about program composition
within a particular domain. Table 1 shows a program plan for the Abstract Data Type (ADT)
or classString which is part of this library of plans. Once a mapping is constructed between
the source and compiled knowledge, one could translate the redundant source code to one
with a single inclusion of the ADT, as shown in the C++ code on the right-hand side of
figure 3.
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Table 1. Example abstract data type.

Class String {
char localStr [MAXSIZE];

String( char∗ inStr )
{

for (int j=0; inStr[j]; j++)
localStr[j] = inStr[j]; }

printString()
{

for (int j=0; localStr[j]; j++)
printf(“%S”,localStr[j]); } }

Figure 3. C legacy code mapped as String ADT instance to C++ code.

Figure 4. String ADT within a hierarchical program plan library.
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Given the legacy source code on the left side of figure 3, we would like tounderstand
or explainsome portions of the source program within the known context of the program
plans such as represented by theString ADT. Successful identification could result in
the replacement of much redundant source code with a single inclusion of the ADT. The
C++ code shown at the right of figure 3 is obtained with replacement of C source with
references toString ADT functionality. This understanding process might be executed in
two steps. First, one identifies all instances of a particular abstract program plan in a source
code. We refer to this problem as theMAP-CSPproblem. Second, one relates some set of
identified plan blocks (or program slices) to conform to the hierarchical structure in a given
program-plan knowledge base. The latter we refer to as thePU-CSPproblem.

We identify two important benefits of locating mappings between a programming plan
library and an existing source or legacy code. First, the resulting replacement of legacy
code with ADT instances can result in substantial reduction in code. This size savings can
reduce the amount of effort required for subsequent code understanding or maintenance
by programmers. Second, the mapping between source and library plan can be used as a
building block in attempting to understand and translate the legacy code. The intent of this
work is two-fold. We describe how various types of individual mappings can be identified
efficiently, and we outline how this mapping process may be integrated into the larger task
of program understanding.

3.2. Quilici’s memory-based method (Decode)

Quilici’s method is representative of other earlier work in this area, including work by
Kozaczynski and Ning (1994). This approach (Quilici, 1994, 1995; Quilici and Chin, 1994,
1995) is based on a construction of an explicit library of programming plan templates,
complete with an indexing ability, which can quickly associate a particular instance of
recognized source code with program plan templates in the knowledge base. Furthermore,
a combination of top-down and bottom-up search strategies is utilized to implement the
matching process. With this system Quilici demonstrated how simple C programs could be
translated to C++ programs.

Program plans (such as embedded in ADTs) are organized hierarchically in a library as
shown in figure 4. Legacy source code in the form of an abstract syntax tree is mapped to
the plan library through the use of indices, which are pointers from the source code to parts
of the plan library. Index tests indicate when tospecializeor to infer the existence of other
plans according to a set of conditions. As an example of specialization, consider figure 4
in which the program planinitialize-string is specialized tobuiltin-char*-copy when a
direct string assignment is observed in the source code. An example of an inference test
is also shown in figure 4, where the existence ofloop-initialize-string is inferred when an
instance ofloop-through-character-array is “near” a related instance ofcopy-character
in the source code.

Given a source code and a program plan, Quilici describes an approach to understand-
ing the legacy source based on a search in the plan library. Search behavesbottom-up
when existing index tests indicate possible higher-level explanation plans for a particular
lower-level component in the library. Quilici observes that people only make bottom-up
inferences in particular “well-known” circumstances, and consequently limits the number
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of upward explanations by inferring only those specified by explicit indexes. On the other
hand, search behavestop-downwhen low-level components are indexed and subsequently
matched based on some hypothesized high-level plans. Quilici’s algorithm attempts to spe-
cialize any matched plan as much as possible according to predefined specialization tests,
and directs search for low-level plans based on high-level hypothesized plans. This approach
marks one of the first cognitively motivated attempts to program understanding using a hier-
archical library of program plans. There are, however, a number of shortcomings. First, the
lack of a general mathematical model of the indexing and search process makes it unclear
as to how one should coordinate the top-down and bottom-up search. Second, Quilici’s
algorithm depends on a number of heuristics, such as specializing a plan as much as pos-
sible. It is not clear how these heuristics integrate or how they scale-up when the problem
size increases. Finally, Quilici makes a substantial effort in capturing actual programmer’s
methodologies as heuristic enhancements to search control, but presents no empirical results.

While studying this work, it occurred to us that the program understanding problem
could be broken down into a number of choice points. Examples of these choices include:
(1) choosing among candidate unexplained components, (2) choosing among multiple ini-
tial plan assignments for a component, (3) choosing among several plans whose existence is
implied top-down, and (4) choosing a particular index or specialization test from a candidate
set. The existence and interactions of these decisions are buried in Quilici’s presentation, but
are very important in addressing the efficiency of the search problem. In the next section, we
explore how to represent and exploit these choice points using a simple and elegant math-
ematical model known asconstraint satisfaction. A more detailed treatment of Quilici’s
approach in terms of constraint satisfaction (known as Memory-CSP) is provided in (Quilici
and Woods, 1997; Woods and Quilici, 1996a) and elaborated further in (Woods, 1996).

3.3. Wills’ graph parsing method

Wills outlined an approach to recognition in which stereotypical program or data structures
known asclichés are represented as a type of graph grammar (Rich and Waters, 1990;
Wills, 1990, 1992). A source program is translated into an intermediate representation
as a flow graph. These flow graphs are parsed to identify all possible derivations of the
flow graph based on the knownclichés. These derivations each represent a possiblepartial
interpretation of the source program or mapping to the library of clich´es. Wills notes that
although the parsing problem is NP-complete in general, experience suggests that attribute
constraint checking significantly prunes the search space. Wills evaluates the effectiveness
of such an approach empirically for two medium-size source code examples.

Wills’ work differs from our approach in at least three important ways: (1) clich´e and pro-
gram representation, (2) library knowledge representation and exploitation during search,
and (3) method of integrating clich´e instances in the larger understanding problem.

3.4. Other related work

Kozaczynski and Ning (1994) describe a method of automatically recognizing abstract
concepts in source code given a library of concepts and rules for how to recognize the
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higher-level concepts in lower-level language constructs, essentially controlling the concept
search in a top-down fashion. M¨uller et al. (1992, 1993, 1994) are involved in the construc-
tion of Rigi, a system for analyzing software systems which includes visual representations
of data and control flow structures in code allowing the identification of subsystems and
hierarchies of structure in code. Kontogiannis has built an abstract pattern matching tool
using the REFINE1 code analyzer (Kontogiannis et al., 1994, 1995). This approach attempts
to identify probable matches using Markov models.

Rich and Waters (1988, 1990) headed the Programmer’s Apprentice project which fo-
cused on the development of a demonstration system (Knowledge-Based Editor in Emacs
or KBEmacs) with the ability to assist a programmer in analyzing, creating, changing, spec-
ifying and verifying software systems. In addition, Rich and Waters (1990, pp. 171–188)
describe a clich´e recognizer Recognize based in KBEmacs. Rugaber, Stirewalt, Wills and
others are part of an effort in reverse engineering being conducted at the Georgia Institute
of Technology. Rugaber et al.’s recent work (1995) describes one major research area in
program understanding known as interleaving in which program plans intertwine.

4. An introduction to constraint satisfaction

Constraint satisfaction problems (CSPs) (Mackworth, 1977; Kumar, 1992; Tsang, 1993)
provide a simple and yet powerful framework for solving a large variety of AI problems. The
technique has been successfully applied to machine vision, belief maintenance, scheduling,
and planning, as well as many design tasks. For a successful application of this technique
to knowledge-based planning, see (Yang, 1992).

A constraint satisfaction problem can be formulated abstractly as three components:

1. a set ofvariables, Xi , i = 1, 2, . . . , n,
2. for each variableXi a set of values{vi 1, vi 2, . . . , vik}. Each set is called adomain for

the corresponding variable, denoted asDom(Xi ),
3. a collection ofconstraints that defines the permissible subsets of values to variables.

The goal of a CSP is to find one (or all) assignment of values to the variables such that no
constraints are violated. Each assignment,{xi = vi j i , i = 1, 2, . . . , n}, is called asolution
to the CSP.

As an example of a CSP, consider a map-coloring problem, where the variables are
regionsRi , i = 1, 2, . . . , n that are to be colored (see figure 5). In a final solution every
region must be assigned a color such that no two adjacent regions share the same color. A
domain for a variable is the set of alternative colors that a region can be painted with. For
example, a domain forA might be{Green, Red, Blue}. A constraint exists between every
pair of adjacent variables, which states that the pair cannot be assigned the same color.
Between adjacent regionsA andB, for example, there is a constraintA 6= B. A solution
to the problem is a set of colors, one for each region, that satisfies the constraints.

Let Vars = {X, Y, . . . , Z} be a set of variables. A constraint onVars is essentially a
relation on the domains of the variables inVars . If a constraint relate only two variables
then it is called abinary constraint . A CSP is binary if all constraints are binary. For any
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Figure 5. A map coloring problem.

two variablesX andY, we sayX = u andY = v is consistentif all binary constraints
betweenX andY are satisfied by this assignment.

A variety of techniques have been developed for solving CSPs. They can be classified
as localconsistency-based methods, globalbacktrack-based methodsor local-search meth-
ods. Local-search methods (Minton, 1990) is a kind of greedy algorithm which is gaining
popularity. We do not review this method here, but we do intend for our CSP modeling to
be general enough to include local-search as a reasoning method.

4.1. Local consistency methods

Local consistency methods follow the theme ofpreprocessing. That is, before a more costly
method is used, a consistency-based method could be applied to simplify a CSP and remove
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Figure 6. Map-coloring CSP.

any obviously incompatible values. Often these methods yield tremendous headway toward
eventually solving the problem.

Let X andY be two variables. If a domain valueA of X is inconsistentwith all values of
Y, thenA cannot be part of a final solution to the CSP. This is because in any final solution
S, any assignment toX must satisfy all constraints in the CSP. SinceX = A violates at least
one constraint in all possible solutions,A can be removed from the domain ofX without
affecting any solution.

If for a pair of variables(X, Y), for every value ofX there is a correspondingconsistent
value ofY, then we say(X, Y) is arc-consistent. By the above argument, enforcing arc-
consistency by removing values from variable domains does not affect the final solution.
The process of making every pair of variables arc-consistent is calledarc-consistency.

4.2. Backtrack-based algorithms

Arc-consistency algorithms only work on pairs of variables, and as such can only handle
binary constraints and cannot always guarantee a final solution to a CSP. A more thorough
method for solving a CSP is backtracking, where a depth-first search is performed on a
search tree formed by the variables in the CSP. A thorough examination of these techniques
can be found in (Nadel, 1989; Kumar, 1992). During a backtracking search, each variable
instantiation is interpreted as extending the current understanding of a legacy program one
step further.
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Table 2. Generic CSP search algorithm.

Generic CSP Search
V : variables in a CSP,Dom(X): the domain values ofX.

1. [Initialization] for each variableXi ∈ V , find the set of domain values forXi ;

2. [Initial Constraint Propagation] ReduceDom(X) by constraint propagation.
Solution= NULL

3. [Variable Selection]Select and remove a variableX from V

4. [Value Selection]Select and remove a value ofX from Dom(X).
The value must be consistent with all assignments in Solution.

5. [In-search Propagation]Apply a subset of constraints toV .

6. [Backtrack Point Selection]Backtrack if anyDom(X) in V becomes empty.

7. [Solution Evaluation] If V is empty, exit with Solution (if all-solution, continue);
else, goto Step 4.

Figure 7. A search tree for a backtrack-based algorithm.

A backtracking algorithm instantiates the variables one at a time in a depth-first manner.
It backtracks when the constraints accumulated so far signal inconsistency. In figure 7
we show this process. First, variables are ordered in a certain sequence. Different orders
of variables might entail different search efficiency, and heuristics for good ordering of
variables are calledvariable-ordering heuristics. Similarly, for each variable, the values
are tried out one at a time, and the heuristics for a good ordering of values are called
value-ordering heuristics.

Using the CSP representation, we can also consider a more systematic study of different
search algorithms. Figure 2 provides a general backtracking algorithm for solving a CSP. In
this algorithm, we have a number of hooks where we could place different search heuristics.
They correspond to heuristics for ordering variables and constraints, as well as heuristics
for deciding the amount of constraint propagation.

There are several choice points which both individually and in combination affect the
resulting search performance. These choice points are explained as follows:
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1. Initialization and initial constraint propagationis the determination of variables and
domain values before the search starts. This can be viewed as a special type of local-
ized constraint propagation algorithm, but one that is directed according to pre-defined
domain knowledge. The determination of the setV and of Dom(X) controls how
much work is done in advance. This reduction could also be performed as an in-search
propagation at Step 6 of the Generic CSP algorithm.

2. Constraint propagationis the reduction of domains locally or globally within the CSP
problem graph. Existing algorithms include AC-3 (Mackworth, 1977), AC-4 (Mohr and
Henderson, 1986), AC-5 (van Hentenryck et al., 1992), and other variations (Freuder,
1982; Cooper, 1989).

3. Variable selectionis the determination of which component variable should be chosen
next for instantiation during search. The decision may be based on domain independent
measures, such as the size of a variable’s domain; on information specific to the instance
and domain plan library, such as frequency of occurrence of particular plan templates in
the variable domain set, or on some combination of these types of information.

4. Domain value selectionis the determination of a particular plan explanation, taken from
the plan library, to assign to the component variable. Typically this selection should be
made to most effectively limit the remaining variable ranges, that is, to be the most context
limiting. In terms of our plan library this means a plan that is asspecificas possible.

5. In-search propagationis the reduction (as for Step 2) of the remaining uninstantiated
variable domains according to some constraint propagation algorithm. Problem char-
acteristics such as variable domains that exceed some average or absolute bounds are
potential signals that constraint propagation may be useful before continuing search. In
(Nadel, 1989) the advantages of exploiting various algorithms for achieving a limited
degree of partial consistency amongst variable sets are examined.

6. BackTrack point selectionis the determination, after it has become evident that no pos-
sible solution exists along a particular variable-instantiation path, of which instantiation
to retract. Intelligent backtracking approaches such as BackJumping and BackMarking2

attempt to determine the origin of the conflict that caused the failure, and to BackTrack
as far up the search tree as possible to avoid a repeated failure of the same condition.

7. Solution evaluationdetermines whether or not a particular solution is satisfactory. In
a cooperative interactive approach to program understanding, it is at this point that an
expert might interact and evaluate a particular partial solution for adequacy. Similarly,
if there exists particular measures of adequacy orsoft, preferentialconstraints that may
have been relaxed during search, such measures may be applied here. A complete strat-
egy identifiesall possible solutions, however, it is possible to identify only some set
number or even one solution.

There are in addition several other ways to improve the search efficiency. One method
is to employ the particular hierarchical structure of the plan library, and using ahierar-
chical constraint satisfaction algorithm(Mackworth et al., 1985). In this approach, the
plan library represents plans at varying levels of abstraction. A set of low-level program
components which have been mapped to the program library may be grouped according
to their functional relationships and form a higher-level component. This component (or
variable) may now be explained by a more abstract plan (or domain value) according to
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both the structural constraints imposed in source structure and the knowledge constraints
present in the program plan library. We plan to pursue this type of constraint application
more completely in future work.

Another way of improving the search efficiency is to use the MAP-CSP version of the
algorithm as a subroutine of the PU-CSP algorithm. This could be done at the beginning
of the generic search algorithm, in Step 1. By performing a MAP-CSP for severalkeyplan
templates in the library up front, it may be possible to reduce the total number of domain
values for each variable through constraint applications. In terms of search, this could result
in an substantial amount of savings, and consequently, improved performance.

In the generic search algorithm, a set of choice points are presented in the new context of
CSP solving. In the next section of this paper we discuss and evaluate several selection vari-
ations for recognition of one particular template in sets of generated source code examples.
We examine variations that include applying AC-3 as Step 1 combined with BackTracking
and also another more intelligent search algorithm known as Forward Checking (Haralick
and Elliott, 1980), which performs a limited amount of in-search propagation at Step 6.
In addition, the intelligent search algorithm dynamically rearranges the order of variables
during search according to the size of the variable domains, selecting the shortest first.

The order in which constraints are applied can also dramatically affect search. Constraint
ordering or selection would occur at Step 6. In particular, it is advantageous to apply
constraints that are inexpensive computationally and that (potentially) prune a large number
of domain values. In a particular domain it may be possible to determine or estimate such
relative benefits either from past empirical results or through analysis of the domain structure
itself. For instance, the property that program template features tend to be foundspatially
near each other can be exploited through heuristics that limit the range of search for related
components. The effectiveness of such abstraction heuristics has been reported elsewhere
(Holte et al., 1995; Woods, 1993).

4.3. Program understanding as CSP

We view the entire program understanding problem as a constraint satisfaction problem. In
this model, a long program code is first divided into blocks, where each block is a set of
closely related source code. The program understanding problem is to identify the top-level
function of each of these program blocks, so that not only the inter-relationships between
the blocks are explained, but also the constraints specified by a program library on the
program plans are respected. A key problem, then, is to assign one plan component to each
block, subject to a set of constraints. This problem we call theprogram-understanding
CSP, or PU-CSP.

The number of program plan components that one could assign to each block could be
enormous. To be practical, it is crucial to first reduce the number of explanations for each
block as much as possible. This process could be helped by a related constraint satisfaction
problem, one that we will explain in detail in Section 6: the problem of finding all instances
of a given program plan or pattern in the entire source code. This problem we call the
MAP-CSP problem.

Below, we explain both problems in detail.
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5. Program understanding CSP: PU-CSP

PU-CSP is formed in the following way. Suppose that an initial decomposition or slicing
of the source code is given. Each block of source code corresponds to avariablein the PU-
CSP. TheVariable domainscorrespond to all possible explanations of an individual source
code block. As an example, consider the legacy code program statements of figure 3 as the
blocks. We take each block as a PU-CSP variable which ranges over all possible program
plans of corresponding statement type, such as “declaration”, “assignment”, “print”, etc.
in the plan library of figure 4.

5.1. The modeling process

A Program Understanding CSP (PU-CSP) is formulated via four distinct steps shown in
figure 8. First, the legacy source is pre-processed creating a set of artifacts that describe some
precise interrelationships in the source regarding data flow relationships between functional
blocks, control flow among the functional blocks, and the creation of an abstract syntax
tree in an intermediate abstract language via parsing of the source. Second, the source code
is partitioned according to existing program slicing methodologies into spatially localized
blocks of code which are known to exhibit functional relationships among one another, and
cohesive properties within one’s boundaries. Third, a skeleton CSP is formulated consisting
of one variable for each identified source block, and constraints between these variables are
derived from the intermediate representation level artifacts. Each variable ‘typed’ via the

Figure 8. PU-CSP formulation; CSP graph exploded in figure 9.
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Figure 9. PU-CSP graph.

addition of reflexive constraints on the variable which describe properties of the block such
askindsof input or output. Finally, each CSP variable is compared against the templates
in the program plan library, with any templates which potentially match a variable with
regards to input and output typing are composed as the domains of that variable.

Figure 9 shows an example formulated PU-CSP in which the domains of each variable are
shown as instances identified in the program template hierarchy. During discussion of the
PU-CSP we will discuss two distinct types of constraints:structural constraintsdepicted
in figure 9 as the inter-variable constraints, which are exactly those constraints derived
from the intermediate source representation and which describe how program components
are structurally related, andknowledge constraints, depicted in the figure as the compo-
sitional and specialization constraints in the program template hierarchy, which describe
how program plans or templates may fit together to form larger (more abstract) plans in this
domain.
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Figure 10. Library knowledge constraints.

The program template hierarchy is composed of hierarchically related plan templates (for
a formalization of hierarchical planning knowledge base, see (Yang, 1990)). A template
plan may be broken down into several sub-plans, in which case this is recorded as an
And relationship between the sub-plans and the parent plan. Further, any required structure
between the sub-plans such as necessary ordering, data flows between the sub-plans or
control-flow between the sub-plans is recorded with theAnd relationship. Similarly, a
template plan may be a specialization of another plan (or one of many such specializations),
and in this case the constraints that constitute the specialization such as restriction of variable
type or a particular restriction of data or control flow is recorded with theOr relationship.
Figure 10 shows a simpleAnd example in whichTemplate A is composed of two subplans
A1 andA2 whereA1 provides the data flowr which A2 requires, and a simpleOr example
in whichTemplate A may be specialized by either of the plansB1, which also exportsn in
addition to the primary exports ofB or B2, which exportsp.

5.2. More on constraints

In a PU-CSP, the constraints among variables are of two types:

• Structuralconstraints are determined from the legacy code. They include such things as
scope or called/calling relations, precedence relations, or shared information relations
between component blocks. For instance, in the legacy source in figure 3, theprint
statements appear within the scope offor statements,declarationsprecede their initial
assignment, and print statements act upon array positions indexed by correspondingfor
statement indexes.

• Knowledgeconstraints are independent of the legacy code. They are program plans re-
stricted in their relationship by the AND/OR structure given in the plan library. AND
constraints are for composing program plans into higher level plans, and OR’s are for
specializing an abstract plan in one of several ways. Assigning one program plan as an
explanation of a particular PU-CSP variable thus constrains consistent assignments of
other component variables.
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As an example of a knowledge constraint mandated from the library structure, if a
variable corresponding to program componentA = “string 1” in figure 3 were instantiated
to program planbuiltin-char*-copy as shown in figure 4, then it is consistent to assign
the lastfor-loop variable an explanation ofprint-string , where the strings are the same.

A solution to the PU-CSP is an assignment to each variable by one program plan compo-
nent in the plan library, such that no structural constraint from the source code, or knowledge
constraint from the plan library is violated.

Representing program understanding as PU-CSP provides a convenient framework for in-
terpreting Quilici’s index tests as constraint applications as part of search strategies typically
used for solving CSPs. Specialization tests are specific instances of knowledge constraints
that may be used to systematically reduce the range of domain variables in a hierarchical
CSP. Inference tests identify “related” program plan templates according to earlier compo-
nent instantiation, and can be interpreted as a special kind of variable-ordering heuristic.

6. Program template matching as CSP: MAP-CSP

We have seen how PU-CSP resolves integration of “local” explanations of source code
blocks. We represent the process of matching particular abstract program plans to our
legacy source as the MAP-CSP. We view MAP-CSP as an integral part of the more ambitious
understanding task. Successful matches “locally explain” certain program blocks, and these
local solutions can then be exploited to restrict the larger PU-CSP.

A MAP-CSP or program template matching problem can be stated as follows: given
a plan template with a number of elements and constraints among the elements, find all
instances of the template in a source code. As an example, consider finding all instances
of an abstract data type in a C program. Figure 11 is aString ADT plan template taken
from a plan library. The ADT is described in terms of five features describing various key
components of a string class. In addition, there are constraints among the different parts as
well, such as the one that requires one component to go before another.

We could model this problem as a CSP. For the given plan template (or ADT), each
feature is a variable in our MAP-CSP. Thedomain rangeconsists of all possible source
program statements. Variables here can have attributes such as (print , for ) that may be seen
asconstraintson allowable assignment of program statements (values) to template features
(variables). Otherconstraintsare on the sharing of information among variables, and on
the order in which template features or variable are expected to appear in legacy source.

A solution to the MAP-CSP consists of the set of all assignments of plan template
features by source code statements, where each assignment must satisfy all constraints.
As an example, consider the ADT of Table 1. When represented as a plan template as in
figure 11, the variables of the MAP-CSP are:Xi , i = 1, . . . , 5. Initially the domain for
each variable ranges through all source statements in figure 3. The constraints are as shown
in the figure. The solution to this problem corresponds to the three alternative consistent
assignments to the variables, one for each character stringA, B andC, respectively. Thus,
the solution to a MAP-CSP provides a mapping thatexplainsthe matched source statements
as parts of an instance of the abstract program plan or ADT.



P1: KCU

Automated Software Engineering KL544-01-Woods January 19, 1998 13:8

166 WOODS AND YANG

Figure 11. TheString ADT in MAP-CSP.

7. Empirical results of MAP-CSP

In this section we present and discuss experiments which were intended to show the initial
feasibility of the MAP-CSP representation and related algorithms in addressing the partial
program understanding problem. For the purposes of this paper, this section is intended
to provide the reader with an initial view of our experimental results. In subsequent work
(Woods, 1996) we present extended results and description.

The format of the remainder of this section is as follows. First, we describe the program
templates which will be instantiated in generated source data. Second, we explain how the
modeled source data is generated for each set of experiments, and where the model for the
data is obtained. Finally, we describe the results of identifying template instances utilizing
several common algorithms for solving constraint problems.

While our ongoing research effort is directed towards the eventual demonstration of feasi-
bility of both PU-CSP and MAP-CSP techniques in the domain of large commercial source



P1: KCU

Automated Software Engineering KL544-01-Woods January 19, 1998 13:8

PROGRAM UNDERSTANDING 167

libraries and legacy sources, that is not the focus of the experiments outlined in this chapter.
Rather, we are interested in determining whether, with a minimum ofstructuralconstraint
information, it is possible to utilize the CSP algorithm for MAP-CSP template recognition
as input sources increase in size. For example, if the combinatorics of recognition stopped
at 100 lines of code it would be necessary to reconsider this approach. However, if it is
possible to scale to code on the order of a thousand lines, it is conceivable that MAP-CSP
may be seen as a model or prototype of an integral sub-component of a future understanding
toolset. In the future, such a model can be extended to take advantage of further structural
source constraint information.

7.1. Program plan templates

Figure 12 shows an internal representation of our earlier example plan. This preserves
the basic component and constraint representation, although the specific constraints vary
from those used in the original systems. In particular, we approximate control and data-
flow constraints using locality and containment constraints. In addition, we require a
same-name-p constraint to capture the notion that a variable appeared in multiple places
represents the same underlying entity, a notion that is implicit inDecode’s representation

Figure 12. CSP-based internal representation for plans.
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for plans. The component set elements consist of a general-component label, a general-
component type, and component-identify constraint information (i.e., component q1-c has
type “While”, signifying that the template requires a loop component whose access is
controlled by the boolean value “Result A”).

Thequilici-t1 (figure 12) program plan template is derived directly from theTRAVERSE-
STRINGprogram plan utilized by Quilici (1994), and which we describe in detail in (Woods,
1996). The results described in this paper will refer to experiments which locate instances
of the quilici-t1 template in source data. In (Woods, 1996) additional experiments are
reported involving both smaller/simpler and larger/more complex templates.

The MAP-CSP template version of thequilici-t1 template is composed of 9 primary
components and 20 constraints.

Our experiments are concerned with all-instance template identification in large generated
source instances. One primary concern (which we address in this paper) is how the relative
size of the given source affects recognition performance. Another concern (addressed in
(Woods, 1996)), is how the relative size of a program plan template (in terms of components
and constraints) will affect the empirical performance of MAP-CSP.

7.2. Generated example sources

We have described one particular program plan template that we will be utilizing the MAP-
CSP algorithm to search for in generated legacy examples. Before describing the process
of legacy generation that we adopt, an obvious question is: “what does an instance of these
program plans look like?”. In answer to this question, figure 13 presents a sample program
fragment instance of thequilici-t1 plan.

Our prime interest is the performance comparison of different approaches to program
understanding in terms of the size of the programs being understood. In particular, our focus
is on comparing the amount of effort expended (and consequently, time) in recognizingall
instances of a single plan template as the source program is increased in size. To keep the
focus on scale issues alone, our desire was to have programs of varying sizes available
where those programs have the same relative distribution of different program entities (the
same percentage of loops, etc...) regardless of size. The test programs used as sources
are automatically generated in the following way. An instance (or instances, depending

Figure 13. Instance ofquilici-t1 plan.
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Table 3. Program statement type distribution.

Statement type Frequency Percentage

While 1/22 4.5

Zero 1/22 4.5

For 1/22 4.5

Block 2/22 9.0

Increment 2/22 9.0

Not-Equals 2/22 9.0

Print 2/22 9.0

Assign 3/22 13.5

Decl 4/22 18.0

Check 4/22 18.0

on the experiment) of the program plan template is generated, and program statements
are added randomly according to a pre-determined distribution of program statements.
This distribution is derived directly from a cross-sectional study of student C programs
undertaken by Quilici (1994).

The experiments described here are based upon a distribution shown in Table 3. This dis-
tribution is derived directly from a cross-sectional study of student C programs undertaken
by Quilici (1994). In (Woods, 1996) we examine the effect on MAP-CSP of utilizing differ-
ent distributions. When a variable was to be generated, it was generated with the following
type distribution: array type (1/7), simple int (2/7), char (2/7), real (1/7), and boolean (1/7).
If an array was generated, it was instantiated according to this type distribution: int (2/6),
char (2/6), real (1/6) and boolean (1/6).

7.3. Problem instances

Experiments with a given search strategy are performed based on the results of 10 MAP-
CSP problem instances at each legacy source sample size. These 10 problem instances
are generated according to the distribution described. Problem instances are created as
follows: a particular program plan instance is generated from the template, including an
assignment of line numbers for the instance according to the separation specified in the
template. Legacy source statements are now generated according to the given distribu-
tion until a legacy program of appropriate size is generated. The statements are given
line numbers randomly within the range from zero to the maximum line number spec-
ified in the template instance plus one hundred lines. Certain statement types (such as
Loop with a correspondingBegin and End) require more than a single line in their
generation. If a conflict occurs in which a new generated line number is already in use,
a simple stepping algorithm selects the next available line number. If this algorithm
hits the end of the allowed line range, the range is extended by one hundred additional
lines.
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Figure 14. Instance ofquilici-t1 plan with 10 inserted statements.

As an example, utilizing the “Standard” distribution, a generated “program” containing
one instance of thequilici-t1 program plan together with 10 generated source statements
is given in figure 14. The template-related components may be identified in this (and
subsequent) figures through the statement labels prefixed with “ADT”. The initial template
instance has 9 related component lines, and the remaining 12 added lines arise as a result
of the insertion of a for-loop statement with 3 associated lines. Experiments of a particular
size are generated at intervals of 50 legacy lines typically (although not in all cases). In
such a case, the 10 examples at (say) size 250 would be graphed according to the average
size of the 10 examples keeping in mind that each example has a slight variation depending
on how many multiple-line insertions are made.

7.4. Experimental results

In this section we present a small sample of a larger range of experiments reported in (Woods,
1996) which are intended to show the feasibility of the MAP-CSP representation and related
solution algorithms in relatively large (several thousand lines) problem instances.

The experimental results depicted here are based upon algorithms for constraint satisfac-
tion described earlier. The solution algorithms referenced in the following figures include
combinations of the following algorithms:

1. Standard BackTracking (BT, see Section 4.2).
2. Arc consistency propagation (AC-3, see Section 4.1).
3. Forward Checking with Dynamic Rearrangement (FCDR, see Section 4.2).

This list is not intended to be a complete set of solution strategies to constraint satisfaction
strategies. Rather, these approaches represent a range of strategies that together are capable
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of capturing an initial subset of the heuristic strategies undertaken by previous program
understanding researchers.

7.4.1. Detailed individual results

Single template instances.The following examples contain a single template instance in
each generated legacy example. All of these examples are generated using the “Standard”
Quilici distribution and make reference to identifying instances of thequilici-t1 program
plan template. The results are graphed showing a 95% confidence interval over the 10
sampled sources. All of these experimental instances were generated such that the inserted
template was not destroyed, that is, the template was identified successfully in each case. In
addition, for these examples no false solutions were identified. At the end of thesecomplete
searches, one may conclude that no other instance possibly exists that satisfies the template
constraint set.

1. Simple backtrackingwith no advance variable order, figure 15. The experiment was ter-
minated for legacy examples exceeding 400 lines. In fact, several individual cases failed
to complete a total search of the given example in less than 20 cpu minutes, our arbitrary
boundary. In particular, at 250 there was 1 failure, at 300 (1), at 350 (2) and at 400 (3).

2. Simple backtrackingwith advance variable ordering, figure 16. This experiment shows
a rapidly increasing number of constraint checks as source example size increases. In

Figure 15. Standard BackTrack (95% conf. interval).



P1: KCU

Automated Software Engineering KL544-01-Woods January 19, 1998 13:8

172 WOODS AND YANG

Figure 16. BackTrack, variable order (95% conf. interval).

particular, 25000 constraints are checked with an example size of approximately 725
source lines. Simple backtracking displays an extremely large variance between exam-
ples at the same source size. For instance, at 200 source insertions, one of the 10 cases
required more than 500000 constraint checks to solve, while another at the same size
required only 3400. For purposes of comparison between constraint checks with CPU
time, it should be noted that the datapoint of approximately 950 source lines corresponds
to slightly more than 100 CPU seconds on a shared SPARCserver 1000 running Allegro
Common Lisp.

3. AC-3 with forward checking and dynamic rearrangementwith advance variable order-
ing, figure 18. For this experiment, the 25000 constraint check limit is surpassed at
approximately 1200 source lines.

4. Forward checking and dynamic rearrangementwith advance variable ordering, figure 17.
This standard CSP solution strategy has typically performed well on a wide range of
problems. The FCDR strategy essentially propagates constraints between each search
assignment to a depth of one “look-ahead” variable. This experiment results in the check-
ing of only 5274 constraints at 1500 source lines. A similar example for FCDR shown in
figure 21 shows a result of 25000 constraint checks for an example source size of more
than 3000 source lines. For purposes of comparison between constraint checks with
CPU time, it should be noted that the last datapoint of approximately 1500 source lines
corresponds to about 27 CPU seconds on a shared SPARCserver 1000 running Allegro
Common Lisp.
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Figure 17. Forward checking, DR (95% conf. interval).

Figure 18. AC-3 with FCDR (95% conf. interval).



P1: KCU

Automated Software Engineering KL544-01-Woods January 19, 1998 13:8

174 WOODS AND YANG

Figure 19. A range of strategies (medians graphed).

5. Figure 19 graphs the median of the previous examples in a unified chart to show the
relative performances. Note one line is extended for FCDR with advance variable or-
dering (two solutions) so as to demonstrate the relative rate of increase for that heuristic.
Figure 21 indicates how this particular heuristic scales in much larger examples.

6. Figure 20 demonstrates the relative utility of estimating effort through constraint checks
as opposed to CPU time. In particular, we chart time on theX axis and constraint checks
on theY axis. We notice that initial overhead matters, however, only as a constant factor.
The results are taken from the experiments utilizing FCDR (advance ordering) with the
Standard template and Standard code distribution.

7.4.2. Comparative results.The examples shown in the previous paragraphs for single
template identification were conducted only up to a maximum of about 1500 legacy lines.
Figure 21 shows the same (median) results charted in figure 19 for a variety of search
strategies, with the extension that the FCDR with advance variable ordering (median) tests
have been extended to almost 6000 lines of code.

We wish to demonstrate that the MAP-CSP representation and algorithm is capable of
providing all-instance results in moderately sized program slices. An efficient MAP-CSP
algorithm could make the execution of the larger PU-CSP algorithm more feasible. In
addition, the MAP-CSP algorithm for template matching could potentially be stand-alone
as a tool for assisting in the identification of legacy source portions that may be replaced
with existing source library objects.
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Figure 20. FCDR addv. constraints vs time, standard distribution.

Figure 21. Extended results: strategy range.
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Several observations can be made from our test results:

• Standard Backtracking exhibited very unstable performance in examples of the same
size. As hoped, more intelligent strategies behaved in a more stable manner. Forward
Checking was considerably more stable, and the applications using AC-3 in advance
of search exhibited very small variance across test cases of similar size. Stability is an
important factor in any application that may be used as part of an online or interactive
tool. In addition, Standard Backtracking was unable to complete in less than 600 CPU
seconds for source instances exceeding 500 program statements.

• For legacy source examples of up to approximately 600 lines of code, the FCDR strategies
located all instances of the example program plan template in less than approximately
5 seconds of CPU time. In examples of up to 1500 lines of code, all instances were
identified in approximately 35 seconds. In such prototyped (Lisp) near-real-time circum-
stances it would appear that a tool could be fashioned that could be called up to run as
a background process supporting an expert working with some reasonably sized legacy
code.

It is also clear the ratio of constraints evaluated to program statements is growing rapidly
for our “standard distribution”. This is problematic, but there are several reasons to remain
optimistic. One is that our “simulated locality constraints” are much looser than thestruc-
tural constraintssuch as control-flow and data-flow constraints found in real programs. We
therefore predict that this curve will flatten significantly when experiments are undertaken in
future work using programs that preserve the structural properties of real-world programs.
This is because tighter constraints should reduce the size of the domain value sets, leading
to a speedier solution to the CSP and fewer constraints to evaluate. It is an open question,
however, just how much it will flatten and how much that will slow the rate of growth of
the number of constraints evaluated.

The other reason to expect even better scalability using CSP is that, even if real-world
structural constraints do not prevent the currently modeled plan recognition algorithm from
going exponential, it appears from our curves that instances of individual plans can be
recognized in programs in the 5,000 statement range in a reasonable amount of time. For
instance, the 60,000 or so constraints we need to evaluate takes less than 25 seconds or so
on a shared SPARCserver 1000 workstation. While 5000 statements is small compared to
the sizes of real-world programs, it is within an order of magnitude of the size of modules
in real-world programs or modules that have been created from legacy systems using semi-
automatic techniques (Newcomb and Markosian, 1993). Other reverse and re-engineering
toolsets such asRigi (Müller et al., 1994) may be appropriately utilized in this process of
source segmentation.

7.5. Context of this work

This section has explored some scalability issues for a constraint-based approach to partial
explanation using plan recognition. This, however, is only one part of the overall program
understanding problem. Program understanding is often viewed as a three-step process:
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Parsing: Turning the program into an annotated AST using standard parsing and flow
analysis techniques.

Canonicalization: Simplifying this internal representation to minimize the number of dif-
ferent plans that must be in the library. A simple example is transforming all relational
expressions so that they involve only the greater than operator and not the less than.

Plan recognition: Recognizing instances of each plan in a library of program plans.

This section has focused on preliminary experiments intending to support the scalability
of one part of the plan recognition process: determining whether a given program plan is
present based on the existence of the constrained plan components in the internal repre-
sentation of the program. There are other aspects to this problem, that we have not yet
addressed, including how to decide which plans to try to locate within a given program, and
in which order to try those plans. Section 5 introduced these integrative issues, and Woods
(1996) expands them in detail.

Our experiments have several important implications. One is that it may well be necessary
to have a modularization step that precedes the plan recognition process, where this step
breaks the program into pieces of whatever size the program understanding algorithm can
comfortably handle before the combinatorics become problematic. In fact, this is precisely
the point of the PU-CSP stage for integrating these partial solution stages. Some work
on semi-automatic modularization of COBOL program has already been done that has
demonstrated that large COBOL programs can be broken into modules of 25,000 or so
statements (Newcomb and Markosian, 1993). This is only a factor of 5 larger that the
point that the CSP approach can comfortably handle, which makes it appear worthwhile
to determine whether those techniques can be extended to break programs down into even
smaller modules.

In addition, even if we successfully recognize plans at the module level, there also needs
to be a mechanism for combining this modular understanding that needs to follow the plan
recognition process. It is an open question how we accomplish this task to come up with
an understanding for a program as a whole, especially if the library is incomplete and we
have only partial understanding of what a module does.

Finally, our success in using CSPs in the local or MAP-CSP understanding process
suggests that perhaps they can be applied to other related tasks, such as selecting plans to
recognize, or as part of the canonicalization process. However, it is an open and interesting
research question how to do so.

7.6. Looking ahead

Our results may be thought of as some initial, overdue, data points in a progress report on
the state of the art of program understanding. In particular, the specific amount of work
done by the CSP recognition algorithm can be reduced, perhaps significantly, by moving
to real control-flow and data-flow constraints, an experiment we are intending to set up in
a future extension to this work. This may well mean that significantly larger programs can
be successfully understood. In addition, the relative amount of work done by the algorithm
may increase rapidly as we move toward exploring larger and larger plans, rather than
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slowly as it had with our first few plans. This may mean that there is a practical upper
bound on the size of individual plans that can be efficiently recognized in a program of
a particular size. If our initial empirical results hold up, they suggest that automatically
modularizing large programs and combining modular understanding are several important
areas of future research. Our PU-CSP model addresses integration of these modularized
partial explanations.

Our hope is that this work will spur others working in the area of program plan recognition
to do one of two things: either map their understanding algorithms into the CSP framework
so that others may easily compare their performance with our CSP approach, or to provide
data on the performance of their program understanding algorithms as programs grow in
size. This step is crucial to move beyond the understanding of “toy” programs and into the
world of being a useful aid in the re-engineering of real legacy systems.

8. Conclusions

In this paper we have constructed a general representation of the program understanding
task as a constraint satisfaction problem. Two versions of the task are identified: one is
to find all instances of a given program plan template in a source code, and the other is to
construct or verify an explanation of the source code in terms of a program plan library. In
addition, we have modeled various search heuristics for program understanding as instances
of a generic CSP search algorithm. We believe that the algorithm subsumes the previously
proposed methods for the same problem, and can be systematically studied on a spectrum
of heuristics.

We have also implemented the all-instances template matching problem, MAP-CSP and
demonstrated that MAP-CSP can be solved for problems of non-trivial size using intelligent
backtracking and constraint propagation within a reasonably stable and reasonably short
time period. MAP-CSP has potential application both as a stand-alone tool for legacy code
reduction and as a key component within the program understanding task.

We summarize some of the advantages of our approach below.

Scalability. Our empirical results demonstrated that the MAP-CSP problem can be scaled
up for legacy code of moderate sizes—6000 lines of generated code in some cases. This
efficiency gain is achieved by viewing the recognition problem as constraint satisfaction, and
applying known constraint satisfaction algorithms. This focus-range is rapidly approaching
that achieved in automatic-modularization efforts in COBOL programs. In our experiments,
we haven’t utilized the full range of constraints inherent in a program source code, such
as those derived from program parsing, a technique employed by Kozaczynski and Ning
(1994) and Wills (1992). More extensive consideration is given to the specific use of these
constraints in (Woods, 1996), and is a part of our continuing research. We expect the
empirical results to improve further with use of these constraints.

Usability. We envision our system as one part of a programmer’s assistant toolset. The
basis of such a toolset would undoubtedly be a visual reverse/re-engineering platform such
as suggested by M¨uller’s Rigi. For the MAP-CSP problem, a programmer could use the
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system to identify abstract program plans in legacy fragments of as many as 1000 lines of
code in near-real-time, and can apply the system in batch-mode to much larger programs.

We have been involved in cooperation with a main telecommunications provider to in-
vestigate the applicability of this approach to extremely large source code in the telephony
domain. Achieving partial automatic recognition of even 5% of the code in terms of existing
software libraries would greatly benefit software maintainers.

In other work (Woods, 1996) we report on the implementation of a hierarchical search
algorithm for PU-CSP. We expect to see similar effective results from constraining the search
with hierarchical plan knowledge, particularly when this algorithm is fully integrated with
the MAP-CSP solutions.
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Notes

1. REFINE is a trademark of Reasoning Systems.
2. These and other intelligent backtracking algorithms are described in detail by Nadel (1989).
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