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Abstract. In a call center, service agents with different capabilities are
available for solving incoming customer problems at any time. To supply
quick response and better problem solution to customers, it is neces-
sary to schedule customer problems to appropriate service agents effi-
ciently. We developed SANet, a service agent network for call center,
which integrates multiple service agents including both software agents
and human agents, and employs a broker to schedule customer problems
to service agents for better solutions according to their changing capa-
bilities and availability. This paper describes the real-time scheduling
method in SANet as well as its architecture. There are two phases in our
scheduling method. One is problem-type learning. The broker is trained
to learn the problem types and hence can decide the type of incoming
problems automatically. The other is the scheduling algorithm based on
problem types, capabilities and availability of service agents. We high-
light an application in which we apply SANet to a call center problem
for a cable-TV company. Finally, we support our claims via experimental
results and discuss related works.

1 Introduction

Our research is motivated by a realistic problem in call center environments. To
solve customers’ problems, many telecommunications companies, such as Cable-
TV and telephone companies, maintain large call centers that are aimed at
providing real-time solutions to their customers. In a Cable-TV call center en-
vironment, for example, a customer may phone in to ask about a solution to
his fuzzy-picture problem. A human agent is selected for answering the question
and interactively diagnoses the source of the problem. In this environment, the
human agent’s expertise is distributed and changing. They are not always avail-
able either due to time shifts, or changing interests and training. A solution is
to create a number of software agents which can provide subsets of the expertise
that human agents can provide, and cater to customers through a network of
human and software agents. From the agent research point of view, a call center
is a multi-agent system which includes customer service agents and an agent



who schedules customer problems to service agents. Using agent development
techniques, we have developed SANet — a service agent network for call cen-
ter automation. SANet integrates both human and software service agents in
providing customer service in real time, and employs a broker to schedule cus-
tomer problems to service agents for better solutions according to the nature of
the input problems as well as the changing capabilities and availability of ser-
vice agents on the network. This paper mainly describes how SANet schedules
the incoming customer problems to appropriate service agents, which includes
a problem-type learning method and a problem scheduling algorithm based on
the problem types, the capabilities and availability of service agents. As we will
see, SANet is a flexible network on which service agents can be added or deleted
at any time and their capabilities to solve problems can be tracked and utilized.

In this paper, we first describe the architecture of SANet. Then we present
the problem-type learning method and the problem scheduling algorithm. Also
we present an application in which we simulate a call center environment of a
cable-TV company. Finally, we demonstrate through the experimental results
that the proposed architecture and algorithms can provide high-quality service
in real time.

2 The SANet Architecture
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Fig. 1. The architecture of SANet

Figure 1 shows the architecture of SANet. There are two kinds of service agents
on SANet. One is the software agent. A software agent is capable of solving one



or more types of problems, and is associated with a solution database or case
base. The other is the live agent. A live agent can be a human agent who is
an expert in one or some specific areas. It may also be an integrated system
of a human agent and a software agent. In this case, software agents act as a
decision-support assistant to help human solve problems. Obviously, different
service agents have different problem-solving capabilities. Their availability also
change with time. Because problems in a call center environment may come in
many manners, through telephone, fax, letter, e-mail etc. The formalizer agent
transforms an unstructured incoming problem into a structure problem format
using a set of attribute/value pairs. Any service agent or formalizer can be eas-
ily added to or deleted from the network by sending a registrar agent to the
broker agent. The registrar is a mobile agent which carries information about
the added/deleted agent, such as its most current capability, to the broker. The
broker is an important agent on SANet, which is responsible for selecting the
appropriate agents to solve problems according to the problem type, and ca-
pabilities and availability of the agents. The broker is trained to learn problem
types and hence can decide the type of a given problem automatically. There are
some subbrokers in the broker agent. Each subbroker corresponds to one type
of problem and is created or deleted by the broker agent. Figure 2 shows the
architecture of the broker agent.

A formalized problem

Attribute / Value pairs
Leaming Weights
Method
Problem types
Scheduling Subbrokers
Algorithm

Selected agent

Fig. 2. The architecture of the broker agent

Each subbroker maintains a table of availability and capabilities of the agents
which can solve the corresponding problem types. The broker maintains a table
showing the correspondence between problem types and the subbrokers, a list of
registered agents and a list of registered formalizers. When a formalized problem
comes 1n, the broker has two steps to select an agent for this problem:

Step 1: decide the problem type using the result of problem type learning and
then pass the problem to the corresponding subbroker.



Step 2: the subbroker selects an appropriate agent for the problem by using a
scheduling algorithm.

In the next subsection, we discuss the learning method and the scheduling
algorithm in details.

As soon as an agent receives a problem, it sends a “not available” message to
the broker and then the broker can inform both the monitor and the subbroker.
After an agent finishes working on a problem, it updates the quality of solving
this type of problem by the following quality updating formula:

s 100q(t) + q(p)
‘) =011

where ¢(t) € [0,1] is the average quality of solving the problems of type ¢
before solving the problem p, ¢/(t) € [0, 1] is the average quality after solving p
and ¢(p) € [0, 1] is the quality of solving p. One simple way to decide ¢(p) is:

() = 1, if pis solved;
7\p) = 0, if pis not solved.

Another way is to ask the user to provide a feedback ranking score on the quality
of the solution provided by the agent.

An important feature of our SANet system is its ability to continuously
update the capabilities and availability of different agents in real time. After a
problem is solved, the solution and the quality at this time are added to the
problem package. Then the agent sends back the problem package and the new
quality to the subbroker, along with an “available” message to the broker. When
a subbroker receives an availability changing message of an agent, it updates
its availability table. When a subbroker receives a problem with a new quality
returning from an agent, it updates its capability table. If the problem was
not solved, then the subbroker delivers it again. Otherwise, the subbroker sends
it back to the broker and the broker then relays it to the user through the
corresponding formalizer. The monitor agent monitors the system performance
and shows the changing capabilities and availability of service agents on real
time.

3 Matching Problems with Software Agents Through
Learning

In order to pass a given problem to an appropriate subbroker, the broker has
to decide what type the problem is of. We can relay this task to the outside
end users, but this will impose an extra requirement that an end user have to
know the problem type a prior:. This will not only burden the users but also,
more importantly, force a user to choose a problem type when in fact the user
may not know exactly what the problem type is. Furthermore, the situation is
made more complex by the dynamic nature of the capabilities and availability



of the distributed agents. Obviously, we wish to alleviate such a burden, making
automatic the decision-making process of problem types in the broker agent.

As discussed before, after a problem is input, the formalizer will convert it
into a standard representation form — a set of attribute/value pairs. Essen-
tially, the broker will decide the problem type based on these attribute/value
pairs. Therefore, we can view the relationship between attribute/value pairs and
problem types as that shown in Figure 2. From the figure, it can be seen that
each problem type is connected to a set of attribute/value pairs. We say that
these attribute/value pairs decide this problem type. They distinguish a prob-
lem type from another. However, in real applications, not all attribute/value
pairs have equal importance in this decision-making process. We thus consider
assigning different weights to the connections between attribute/value pairs and
problem types.

In [16], a learning model is applied to a network which is very similar to the
one shown in Figure 2. The learning model aims to track its users’ preferences
dynamically, such that whenever the users’ preferences change, the changes will
be captured by the learning model and reflected in the following usage session.
In our broker agent, we have the goal of learning problem types in the broker
agent, given the attribute/value pairs. With the two-level architecture as shown
above, the learning algorithm is a variation of the perception learning algorithm.

In particular, the training process of a problem type in the broker can be
described as follows. After an input problem is formalized into a set of at-
tribute/value pairs, these pairs will be fed into the network shown in Figure 2.
The ranking scores for individual problem types will be computed. During the
training, an expert critiques whether the highest-ranking problem type is the
correct one. This will, in turn, be taken by the learning policy to update the
relevant weights. In our broker agent, the training process is off-line assisted by
domain experts. Our experiments show that after learning, the broker agent will
choose, on behave of the user, the most appropriate problem type to be sent to
the corresponding subbroker.

For the sake of simplicity, we do not discuss the learning model in detail
here. Interested readers are referred to [16]. In Section 6, we will discuss the
experiments we have conducted in order to demonstrate that the learning model
fulfills our desired goal.

4 SANet’s Agent Scheduling Algorithm

This section describes SANet’s scheduling method for the subbroker to deliver
problems to agents. The problems a subbroker may receive can be divided into
three kinds:

new-problem A new-problem is one delivered from the broker.

problem-with-solution A problem-with-solution is one returned from an agent
which solved the problem.

problem-without-solution A problem-without-solution is one returned by an
agent which did not solve the problem.



Besides the capability table, the subbroker also maintains a problem queue.
Each problem which can not be sent to any agent at current time will be put
into the queue for future delivery. To select an agent to solve the problem, we
define a capability function for each problem type.

Definition 1 The capability function for a problem type t is denoted by c(a) =
ci(a,q(a),t(a)), where a is an agent which is capable to solve the problems of type
t, q(a) € [0,1] is the quality for this agent to solve the problems, and t(a) € [0, o0]
is the solving time. Let o be a user-defined factor. For agents a and a,

1. If q(a) > q(a’) and t(a) < t(a'), then c(a) > c(a’).
2. Ifq( ) > q(a’) and t( ) > t(a"), then
if (g(a) — q(a’))a > (t(a) — t(a’)) then c(a) > c(a’) else c(a) < c(a’).
3. Ifq( ) < q(a") and a) > t(a’), then c(a) < c(a’).
4. If q(a) < q(a’) and t(a) < t(a’), then
if (q(a') — q(a))a > (i(a’) — t(a)) then c(a) < c(a’) else c(a) > c(a’).

a acts like a weight to make |g(a) — q(a’)| and [t(a) — ¢(a’)| comparable. For
example, it can be defined as o = max{(¢(a) — t(a’)}.

We now describe the problem scheduling algorithm. We assume that we are
given N problems, each associated with a problem type ¢ = 1,..., K. There
are M agents A;. We allow a problem to be of multiple types; in that case we
assign a problem to a subbroker based on one of the types selected by the broker.
Similarly, agents can have overlapping capabilities that are also changing with
time. Also assume that there are N; agents initially available to problem of type
i, where each agent j has a capability defined by a value ¢;; which is a real
number between zero and one. We wish is to assign problems Py to agents A;
such that the total sum of the capability value is maximized.

We adopt a greedy algorithm, extended to handle concurrent agent-based
problem solving. The greedy scheduling method is shown as follows:

Algorithm SANet Scheduling Algorithm

Input: M agents {A;,l=1,..., M}, K problem types, Agent capabilities where
agent A; has capability {¢;,i = 1,..., K}, N problems P;; where the problem
is the j** problem of type i, and a number N which is the maximum time a
problem is allowed to be returned by agents without solution.

Output: An assignment of Agent A; to Problem Fj;.

1. Partition problems F;; into K typed groups, one for each sub-broker B;;
2. concurrently for each B; i := 1 to K do

3. Set a queue of problems @; sorted by come-in time;

4. loop until @; is empty do



5. for every problem F;; in the queue @);, do
6. if all agents have looked at P;;, then
give it to a designated human agent.
else
Let S;; be the set of available agents which haven’t worked on Fj;;
7. Let Pj,, be the first problem in @; with non-empty Sim,
and n be the time F;,, is already returned by agents without solution.
8. find an agent A; with maximal capability from suggested agents
in S;m, if any; otherwise, find A; with maximal capability in S;p,;
then send P;,, to Ay
9. if A; is not available and n < N, then
return P;,, to B; without working on it.
else
A; must work on P,y
update capability for A; for problem type ;
update and return the problem package to B;;

This algorithm is designed to have the following two properties. First, we
can ensure that no problem will wait forever before it is solved by an available
agent. This is ensured in step 9 of the algorithm, which commits a problem
to an agent. Second, we claim that this greedy algorithm returns solutions with
good quality and solving time. We verify this point experimentally in the next
section.

5 SANet in a Cable-TV Call Center Environment

We have applied SANet to a simulated call-center environment of a local cable-
TV company. In this application, a software service agent is a case-based reason-
ing (CBR) system that can answer typical questions or frequently asked ques-
tions automatically by retrieving the most similar case in the case base. A live
agent is a staff in the call center with an assistant CBR system. At this point,
the system can solve 16 types of problems. Each problem type has one to ten
cases in one or more case bases. To input a problem, the user has to answer some
questions. The question list is:

Q1 What’s the problem type?

Q2 Which channels have the problems?

Q3 Is the account an active cable account?

Q4 Is the problem affecting more than 1 outlet?
Q5 What does the picture on the screen look like?
Q6 Is the customer in an affected area?

These questions are optional to answer. If the user answered question 1,
which means the user knows the problem type, then the broker just passes this
problem to the corresponding subbroker. Otherwise, the broker has to decide the



problem type. In other words, the user has two choices — let the problem type
be decided by himself or the broker. For instance, the user may have answered
question 1, 2 and 3. Then the formalizer creates a problem package such as the
following:

Problem ID 111
Description the set of q/a pairs
Solution Null

Suggested Agents ¢
Agent/Time List @

The set of q/a pairs is:

Ql  Poor reception
Q2  Channels 2 to 6
Q3 Yes

If the problem is sent to a live agent, the solution part may be filled by a
staff who solved this problem. If it is routed to a CBR agent, a CBR system will
then solve this problem and the solution part is filled by the most similar case
in the case base. In this case, when the problem returns to the user, the solution
part looks like the following:

Case Name  Poor reception low band

Q1 Poor reception

Q2 Channels 2 to 6

Description ~ Channels 2 to 6 have poor reception
Solution Sometimes caused by a loose connection.

1. Check channel outage note pad;

2. Check for a possible loose connection;
3. Try unplug power cord for television;
4. Try hook cable direct to Television;

Also, the agent/time list will be filled. This list provides all agents which
have worked on this problem and the solving time. The quality of solution can
then be provided by the end customer based on his or her satisfaction with the
solution. This feedback value is used to update the capability matrix for each
agent. According to the solution quality, the end customer can also feedback a
evaluation value of the problem-type decision to the broker to adjust the learning
result of problem types.

This application system was developed by using Java JDK 1.1.6 and ASDK
V1.0.3 (IBM’s aglets software development kit).

6 Experiments

This section describes the experiments we have conducted and discusses the ex-
periment results. We have done two kinds of experiments. One is for the problem-
type learning in broker and the other is for the performance of SANet.



6.1 Experiment for the Problem-Type Learning

We introduce a learning model into our broker agent with the hope that it would
automatically choose the most appropriate problem type on behalf the user. In
the following we demonstrate our experiments with the learning model.

The learning process is off-line and mainly occurs in the broker agent. We
create 20 problem types with each type being associated maximally with 20
attributes. In the experiment, on average each attribute can have 2 to 5 values.
Accordingly, we also create a set of 100 user queries or problems represented by
attribute/value pairs. The ranking of a problem type is between 0.0 and 1.0.

We feed these queries one by one into the learning model in the broker agent.
The learning model then computes the rankings for the problem types and com-
pares them with the desired ones specified by the queries. If there 1s a discrepancy
between the computed ranking and desired ranking of a problem type, the learn-
ing process will be triggered and the corresponding weights will be updated. In
the experiment, the learning process takes five rounds. Therefore, there is a total
of 500 learning data points.

In Figure 3, we show the average error convergence chart for all the 100
queries after five learning rounds, where the X-axis represents the learning pro-
cess which is composed of 500 learning data points while the Y-axis represents
the average error among the 100 problem types in all the queries after each
learning data point is learned. The error is defined as the absolute distance be-
tween the computed ranking and desired ranking of a problem type in individual
queries. It can be seen that along the learning process, the average error for all
the problem types tends to approximate zero and will be stabilized at learning
rounds 4 and 5. We also see that because of the interactions among different
queries, the learning error could not be zero no matter how long the learning
process undertakes.
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6.2 Experiment for the Performance of SANet

We have also conducted experiments to verify the performance of SANet. The
application domain of the experiment is the call center of a cable TV company, as
described above. In our experiment, we have 10 software agents which are CBR
systems. Each software agent is associated with a case base in which there are 5
to 33 cases and 1 to 16 problem types. The solving time is set to [n./300] seconds
where n. is the number of cases in the case base. We set different qualities to
the agents for the experiment. Setting 1 sets higher qualities to the agents with
lower solving time. Setting 2 sets lower qualities to the agents with lower solving
time. Setting 3 is a mixture of Settings 1 and 2. Table 1 shows the different
settings of our experiment. For each problem type, there are four agents which
are able to solve this type of problems.

Table 1. Settings of experiments

A Case Type Solving Quality
gent Number Number Time S1 Sy S3
Aq 5 5 0.01 1.0 0.1 0.1
Az 6 2 0.02 0.9 0.2 1.0
As 6 2 0.02 0.8 0.3 0.2
Ay 6 6 0.02 0.7 0.4 0.9
Asg 10 1 0.03 0.6 0.5 0.3
Ae 11 7 0.03 0.5 0.6 0.8
Az 16 7 0.05 0.4 0.7 0.4
Asg 18 10 0.06 0.3 0.8 0.7
Ag 21 8 0.07 0.2 09 0.5
Ao 33 16 0.11 0.1 1.0 0.6

S; refers to Setting (1 =1, 2, 3)

Initially, 100 random problems are created for the experiment. Then we send
some of them to the broker 100 times. Each time, the first n problems are sent
to the broker, where n varies from 1 to 100. For each problem, we calculate the
solving time which begins at the time it is sent to the broker and ends at the time
it is returned with the solution. When a problem is solved, we get the quality
of the agent which solved this problem. Then, for n problems, we calculate the
average solving time and the average quality. Figures 4 and 5 show the results.

These results highlight the following three main headlines.

— The system is stable for different settings.
In our experiment, we used three different and typical settings as described
above. We got very close results for these settings.

— The average solving time is nearly linear with the problem size.
We observe that when the solving time of each agent for any problem is the
same, the average solving time is linear to the problem number. Compared
to this case, our result for the average solving time is reasonable.
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— The average solving quality is high and remains stable when the number of
problems increases.
These results show even when we have a large number of problems, the higher
average solving quality can still be obtained.

7 Related work

Our system is closely related to information gathering systems in which there
is usually an information broker. In such systems, the information broker is to
gather information and find solutions from heterogeneous resources on a network
of resources. Currently, many of them have been developed or are under develop-
ment. Among them are BIG [9], Disco [15], Garlic [13], HERMES [1], InfoSleuth
[12], Infomaster [6], Information Manifold [11,10], SIMS [2,3], TSIMMIS [4,7].
These systems take a user query and translate it into sub-queries that can be
executed by various information agents attached to information sources. Most
of them mainly focus on the integration of different knowledge representations.
Therefore they do not take scheduling problem and the availability and the ca-
pabilities of resources or agents as main issues. But in our application domain,
scheduling is an important problem because the primary concern in a a call
center is to provide high quality service at a low service cost. The other major



difference from information gathering systems is that, in our SANet system, a
mechanism is designed so that after solving each problem, the quality and avail-
ability of the agent are updated and used by the broker to assign problems to
agents in a better way.

Our work is also closely related to scheduling problems. In the past, schedul-
ing has been widely studied by researchers [5, 8,14, 17]. The problem is to sched-
ule jobs to processors under certain constraints. A novelty in our work is the
assumption that processor capability and availability are a function of time.

8 Conclusions and Future Work

This paper describes SANet — a service agent network designed for call center
automation. We have focused on its scheduling method for customer problems.
Our contributions are mainly the following:

— Availability and capabilities of service agents are considered.

— The capability of each agent to solve a type of problem is maintained by the
broker agent. In SANet, the broker can learn and use the newest capabilities
to select appropriate agents for the customer problems.

— As a network, the agents can be easily added and deleted at any time. This
makes the network very flexible and easy to be maintained. The broker
scheduling algorithm maintains the overall competency of the network by
intelligently choosing the right software agents for a problem.

In our future work, we are considering to add a manager agent to manage
the agents on the network. For example, if all agents on the network are very
busy and many problems are still coming in, then the management agent should
add some appropriate agents automatically. Some other efficient task-scheduling
methods need to be studied and compared. Also, decomposing a problem into
some sub-problems and then integrating the solutions returned by agents are
left as our future work.
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