Activating Case-Based Reasoning with Active
Databases

Sheng Li and Qiang Yang

School of Computing Science, Simon Fraser University
Burnaby, BC Canada, V5A 1S6

Abstract. Many of today’s CBR systems are passive in nature: they
require human users to activate them manually and to provide informa-
tion about the incoming problem explicitly. In this paper, we present an
integrated system that combines CBR system with an active database
system. Active databases, with the support of active rules, can perform
event detecting, condition monitoring, and event handling (action execu-
tion) in an automatic manner. The combined ActiveCBR system consists
of two layers. In the lower layer, the active database is rule-driven; in the
higher layer, the result of action execution of active rules is transformed
into feature-value pairs required by the CBR subsystem. The layered
architecture separates case-based reasoning from complicated rule-based
reasoning, and improves the traditional passive CBR system with the
active property. This paper shows how to construct ActiveCBR system
and provides an analysis of the resulting system architecture.

1 Introduction

As an interactive process, case retrieval in most CBR systems has been based
mainly on a user-interaction model. In this model, a user provides all the infor-
mation necessary for the CBR system to draw a conclusion. This ‘passive’ nature
of interactive CBR requires the direct involvement of human users in order to
provide information about the incoming problem explicitly. This passive mode
has some obvious drawbacks. The manual operation on information collection
cannot handle massive amount of user data and real time events properly. The
manual operation on system activation limits the ability to perform reasoning in
timely fashion, especially in some emergent applications such as forest fire pro-
tection and coastal salvage in which the group profile of events and data trigger
the operation of a CBR system.

To solve these problems, we integrate an active database system with a CBR
system. An active database system is a database system that monitors situations
of interest, and when they occur, triggers an appropriate response in a timely
manner. An active rule in active databases extends the expert system rules with
the ability of autonomously responding to external events, e.g., the modifications
of data table such as INSERT, DELETE, and UPDATE. It generally follows the
Event-Condition-Action paradigm.

E. Blanzieri and L. Portinale (Eds.): EWCBR 2000, LNAI 1898, pp. 3-14, 2000.
© Springer-Verlag Berlin Heidelberg 2000

4 Sheng Li and Qiang Yang

on event # event detecting
if condition # condition monitoring
then action # action executing

An active database system can complement passive CBR systems in the
following aspects:

— The underlying database system is capable of handling massive amount of
user data, so after integrating with an active database system, CBR systems
need not handle raw data directly.

— The rule mechanism is capable of detecting external events, and transferring
the responses to CBR systems.

— Active database systems support complicated database query, so the statis-
tical result of the collection of user data can be obtained.

To combine the two technologies, we propose an ActiveCBR architecture that
builds a case-based reasoning subsystem on top of an active database, and real-
izes problem solving based on the data and events in a relational database. The
ActiveCBR system developed under this architecture consists of two layers. In
the lower layer, the ADB subsystem is rule-driven; in the higher-layer CB sub-
system, the result of action execution of active rules is transformed into feature-
value pairs required for the reasoning procedure. Connected by the rule engine in
an active database, we can perform problem solving on large data sources — rela-
tional databases. Furthermore, the reasoning procedure is performed reactively
in a real-time manner by responding to external events.

We can find many practical applications where the ActiveCBR system will
provide real-time support for many industrial applications. This is because in
many applications, the input data tend to repeat similar patterns from time to
time. For instance, in an active database system that monitors travel informa-
tion, when the season, economy and social factors recur, the interest in travel
plan is likely to display regularly repetitive patterns. This observation ensures
that it is reasonable to apply case-based reasoning in the problem solving in the
real-time active database environment. In this paper, we motivate our research
using a realistic Cable-TV diagnosis problem which we have applied our system
to. In this application, the Cable-TV symptoms tend to recur with repetitions in
season, user group and equipment. We show how to construct an ActiveCBR sys-
tem using an example.

2 ActiveCBR: Representation and Algorithms

2.1 Overview of Active Databases

Active database, as a database system with reactive behavior, has been the sub-
ject of extensive research recently. The knowledge model of an active database
system determines what can be said about active rules in the system. In con-
trast, the execution model indicates how a set of rules behaves at runtime. [7]
discuss different sources of event that describe the happening to be monitored.

Activating Case-Based Reasoning with Active Databases 5

The execution of the rules depends on the event-condition and condition-action
coupling modes, that can be immediate, deferred or detached [4]. The transition
granularity describes the relationship between events and the rule execution. It
can be tuple-oriented or set-oriented.

Termination is the key design principle for active rules. Due to the unex-
pected interactions between rules, termination is difficult to ensure even after
a careful design. Triggering graphs are used for reasoning rules about termina-
tion. A rule set is confluence when any triggering of rules produce a unique final
database state independent to the order of execution of the rules. A rule set
guarantees observable determinism when all visible actions performed by rules
are the same for any order of execution of the rules.

Chimera system [3] integrates an object-oriented data model, a declarative
query language, and an active rule language. It supports display, generalize, and
specialize events in addition to traditional create, delete, and modify primitives
to reflect object manipulation.

Generally, the rule execution in active database systems tends to be more
difficult to understand and maintain when supporting more facilities. Even in a
conservative-designed rule system like Starburst [2], the semantics of rule exe-
cution are still quite complex. Rule termination and rule confluence are difficult
to realize in a practical design of a large rule set. How to simplify the design
and analysis of active rule sets is an important topic in active database research.
With the ActiveCBR system, much of the user-level semantics are elevated to the
CBR level, whereas the efficient rule-triggering mechanism is left to the database
level. We will discuss this in detail in the next section.

2.2 Knowledge Representation in the ActiveCBR System

The representation of a case has various forms depending on different applica-
tions. In the ActiveCBR system, we define the case base as:

Definition 1. A case base in ActiveCBR system is combination of {C, F, I},
where C, F, and T are case space, feature space, and index space, respectively.

We describe the spaces {C, F, Z} in above definition as follow:

— The case space C = {¢™ |m = 1, ...,M} is the set of M case specifica-
tions. A specification of a case consists of Name, Description, Threshold,
and Solution.

— The feature space F = {(fn, vni) |n =1, ...,N; k=1, ..., K.}, is the set
of feature-value pairs, where N is the total number of features, and K, is
the number of possible values of feature f,,. In the case representation of the
ActiveCBR system, all the feature values are symbolic. For the features with
original numeric context, we transform them into discrete symbolic values.

6 Sheng Li and Qiang Yang

— The index space Z = {w(m,n, k) |m = 1,2,.,.M;n = 1,....,N; k =
1, ..., K,} is the set of feature-value weights. A weight is a real number
between 0 and 1'. Therefore, we can consider Z as such a relation:

R:CxF—[01]

Having the definition of the case base, we can represent a case by two parts:
the specification part from an element in C that describes the name, description,
threshold, and solution of the case; and the index part from all the elements in 7
that related to this case, which describe the similarity property of the case.

Threshold is introduced into the ActiveCBR system as a new field in case
specification. It represents the minimum score to which the case is detected at
runtime and should be fired accordingly. We will discuss the similarity and score
computation in the next subsection.

2

Examples An example case in AI-CBR’s travel agents domain® is shown in

Table 1.

Table 1. A sample case of the travel agents domain

Name TravelCase31
Description #245
Threshold 85
Solution Hotel Golden Coast, Attica
Feature Value Weight
JourneyCode 649 0
Price $1,000-2,499 80
HolidayType Recreation 35
NumOfPerson 1-2 70
Region Germany 75
Transportation | By plane 45
Duration 5-7 days 85
Season Summer 65
Accommodation| Luxury 70

The travel-agents’ case base is used to help travel agents to recommend hotel
destination for customers based on their individual interest and requirement.
The solution of each case is a hotel destination. The similarity property of the
example case is described by the nine feature-value-weight triples. Note that all
the feature values are symbolic. Some features, such as Price, Duration, and
NumOfPerson have original numeric values, but they have been transformed to
symbolic representation. In this case base, each feature has only one value with

! In the internal representation of the ActiveCBR system, the weight are converted to
integers between 0 and 100, and the threshold in case specifications is defined as an
integer between 0 and 100 as well.

2 The travel agents case base is downloaded from AI-CBR’s case-base archive.
(hitp://www.ai-cbr.org/cases.html)

Activating Case-Based Reasoning with Active Databases 7

a positive weight. Feature JourneyCode is used for indexing purpose only and
no positive weight is assigned. (We have omitted other feature-value pairs with
zero weight in the table.)

Another example case is from a cable TV domain used by a cable TV com-
pany (shown in Table 2). In this domain, a case can have multiple positive
weights for different values on a particular feature. For instance, both values
‘no picture’ and ‘reception’ of the feature ‘ProblemType’ are related to the case
‘Regional switch (LB) problem’, but the former has a higher possibility, so it is
assigned with a higher weight. We will further discuss the meaning and usage of
the feature weights in Section 3.

Table 2. A sample case of the cable TV domain

Name: Regional switch (LB) problem
Description: Low band regional switch is breakdown
Threshold: 78
Solution: Generate ticket for technician
Feature Value Weight
ProblemType| no picture 75
reception 65

VCR problem 0

Channels lower band 80
upper band 0

US channel 0

Duration recent 24 hrs 70
recent 1 week 45

not specified 0

Location particular 85
not specified 0

Rule Representation The representation of an active rule in the ADB subsystem
depends on its underlying RDBMS. Both Oracle and SQL Server use triggers
to perform the rule mechanism. A trigger in ADB subsystem is a special kind
of stored procedure that is executed automatically when the specified data-
modification occurs on the specific table. One trigger can contain one rule or
several rules raised by the same event. A rule can be an ECA rule with com-
plete event-condition-action semantics, or an E-A rule, in which the condition is
implicitly specified by the database query language in a trigger.

The creation of a trigger is shown in Table 3. In both contexts, the trigger-
event could be one of the three data manipulation operations, INSERT, UP-
DATE and DELETE.

An Ezxample Table ACBR-TRAVEL_DATA stores the user data of the travel
agent domain. The attributes of ACBR_-TRAVEL_DATA are one-to-one mapping

8 Sheng Li and Qiang Yang

Table 3. Trigger representation in SQL Server and Oracle

| SQL Server |

CREATE TRIGGER trigger-name|CREATE TRIGGER trigger-name
ON table-name BEFORE | AFTER trigger-event
FOR trigger-event ON table-name

[FOR EACH ROW

[WHEN (condition)]]
AS Transact-SQL block PL/SQL block

Oracle

to the features of the travel agent case base. The distinction between the two is
the raw data in user table can be either symbolic or numeric, e.g., attribute price
can be any positive real number, while the value of feature Price is generalized
and converted to symbolic value like high or over 8,000.

Consider an example rule: If the new record has price over USDS,000, set

the Price of FEATURE table to ‘high’. It can be represented as an SQL Server
trigger:

CREATE TRIGGER INSERT_-TGGR

ON ACBR_-TRAVEL_DATA FOR INSERT
AS

BEGIN
/* other rules */

IF (new.price > 8000)
UPDATE ACBR_-TRAVEL_FEATURE SET Price = ‘high’

/* other rules */
END

Note that multiple rules are generally stored in one trigger for the INSERT
event. In Oracle, it is possible to map one rule to one trigger:

CREATE TRIGGER PRICE_HIGH_TGGR
AFTER INSERT ON ACBR-TRAVEL_DATA
FOR EACH ROW WHEN (new.price > 8000)
BEGIN

UPDATE ACBR_-TRAVEL_FEATURE SET Price = ‘high’
END

3 Algorithms

Figure 1 depicts a high-level view of the two-layer ActiveCBR architecture.
Briefly, the procedures of case-based reasoning, such as case retrieval, case adap-

Activating Case-Based Reasoning with Active Databases 9

tation, and case maintenance, are performed in the higher CBR Layer; while
the lower Active Layer encapsulates the reactive functionality to monitor the
alterations of external data sources. The interaction between the two layers is
carried through the feature-value pairs that are accessible to both layers. In the
higher layer, feature-value pairs are used to describe the similarity between the

new problem and the retained cases; while in the lower layer, they reflect the
result of data alterations.

?ActiveCBR System

' CBR Layer
(CB Subsystem]
[ADB Subsystem j Active Layer

T

[Web Monitor Agenﬂ

Data Sources

Fig. 1. The ActiveCBR architecture

The algorithms in the two subsystems of the ActiveCBR systems are indepen-
dent. The Case Arthoring module in the CB subsystem and the Rule Definition
module in the ADB subsystem primarily work on system reconfiguration for
system flexibility. We will mainly, in this section, discuss the algorithms in Case
Firing module and Rule Execution module.

3.1 Algorithm in the CB Subsystem

Suppose we have M cases in the case base C = {c!,...,cM}. For the N fea-
tures fi,..., fn, let f™ denote the value of the n'* feature of the m!" case,
and f! denote the current input value of the n!”* feature. Now we have:

Case Firing Algorithm:

1. For each new case added at runtime, mark it as enabled;
2. Retrieve current feature values fl;
3. For each case ¢™ in C that is marked enabled:
(a) For each feature f,:
Calculate the similarity sim(f™, f1);
(b) Calculate the score of case ¢™;

10 Sheng Li and Qiang Yang

(¢) Mark ¢, as fired, if the score of ™ is greater than its threshold;
(d) Update the firing history log, if necessary;
4. Visualize case firing monitor.

CBR subsystem provides a user interface to add a new case and change the
enabled / disabled status of an existing case at runtime. Before the case retrieval
iteration, Step 1 of case firing algorithm examines whether a new case has been
added into case base, and if so, marks it as enabled. This operation maximizes
the system flexibility to perform real-time knowledge management.

Let s be the average number of possible values of each feature. The total
number of feature-value weights is:

|Z|=M=«Nxk (1)

Therefore, the complexity of above case-firing algorithm is O(M Nk), i.e., the
algorithm is linear in terms of number of cases, number of features, and average
number of values for each feature.

The linear algorithm can be improved if we have an appropriate approach
to cluster the cases [10]. If the clustering is effective, we can guarantee that
no case from different clusters can be fired simultaneously. Hence, we need not
traverse the whole case base in the case firing algorithm; alternatively, we need
just traverse along the clustering path until entering a cluster, and check the
firing condition with the cases in this cluster only. On the best case, we can
suppose the clustering is even and the search tree is balanced. If, on average,
each cluster contains A cases, we can improve the computation to:

O(A*log(%) * N % K) (2)

3.2 Algorithm in the ADB Subsystem

The algorithm in the ADB subsystem depends on the trigger property of the
underlying relational database. We implement the ActiveCBR system based on
two RDBMS: SQL Server and Oracle.

The rules in Oracle support two distinct granularities, row-level and
statement-level, corresponding to the instance-oriented semantics and the set-
oriented semantics, respectively. They also can be executed either before or after
the triggering operation. Thus, there are four possible combinations by combin-
ing the two granularities and the two evaluation times, i.e., before and after [9].
Besides the rules, database built-in integrity checking is also executed when a
database manipulation occurs.

The rule processing algorithm in Oracle is:

Oracle Rule Processing Algorithm:

1. Ezecute the statement-level before-rules;
2. For each row in the target table:
(a) Ezecute the row-level before-rules;

Activating Case-Based Reasoning with Active Databases 11

(b) Perform the modification of the row and row-level referential integrity
and assertion checking;

(c¢) Ezxecute the row-level after-rules;

3. Perform the statement-level referential integrity and assertion checking;
4. FExecute the statement-level after-rules.

4 Example of ActiveCBR System in Operation

In this section, we give a comprehensive example in the cable TV domain to
demonstrate how the ActiveCBR system works.

The user data is stored in data tables such as ACBR_-CABLE_DATA. The
content of ACBR_CABLE_DATA is modified at runtime, e.g., insertion when new
problem reported, updating when the problem solved later, and deletion when
record out-of-date. Consider that two new tuples with problem id (pid) 6742
and 6743 are inserted into ACBR_CABLE_DATA (marked with * in Table 4).
An INSERT event occurs accordingly.

Table 4. User data of cable TV domain

| pid |uid|active|type |channel| time |location|solved|
6732263 Y |No picture 6 10/05 19:06|Burnaby | N
6733 |546| Y |Reception all |10/13 12:51|N.Van Y
67341649 Y |VCR 15 10/17 21:34|N.Van N
67351032 Y |VCR n/a |10/19 02:25|Burnaby | N
6736 [382| N |Reception 50 |10/19 21:45|Burnaby | N
67371234 Y |Reception all |10/20 16:23|W.Van N
6738 |271| Y |Reception 9 10/20 20:42|Burnaby | N
6739|031 Y |No picture| 13 |10/20 22:19|Burnaby | N
6740 |740| Y |VCR 11 |10/20 22:43|UBC N
6741 1638 Y |VCR 28 10/20 23:19|SFU N
6742*|957| 'Y |Reception 3 10/20 23:32|Burnaby | N
6743*|271| 'Y |Reception 6 10/20 23:57|Burnaby | N

The preprocessing performs slicing and dicing operations on user data to
reduce the size of query table. For instance, in slicing operation, the tuples
with ‘N’ value of active attribute are excluded from further query; in dicing
operation, all the attributes that are not related to rule conditions such as pid
and solved are removed as well. A temporary table #USERDATA is created in
the preprocessing, and the number of tuples in #USERDATA is counted into
variable @num.

12 Sheng Li and Qiang Yang

SELECT type, channel, time, location
INTO #USERDATA /* user data after preprocessing */
FROM ACBR_CABLE_DATA
WHERE active = 1
SELECT @num = COUNT(*) /* number of tuples */
FROM #USERDATA

Next, rule conditions are evaluated upon the #USFRDATA table. In the
ActiveCBRsystem, the values of features of the higher level case base are updated
dynamically by the rule action from the lower level active database. For each
feature in the feature space, there are several active rules to be evaluated, but
only one of the conditions could be true, then the feature is set to a corresponding
value.

Consider the case in Table 2. For feature Duration, its value can be ‘recent 12
hrs’, ‘recent 8 days’, and ‘not specified’. The rule used to update feature Duration
to ‘recent 12 hrs’ can be described as:

on INSERT

if At least 1/3 of total tuples and at least 5 tuples
are reported within the last 12 hours.

then Update feature Duration with value ‘recent 12 hrs’.

The rule can be represented as a block of SQL statements in the INSERT
event trigger:

SELECT @npart = COUNT(*)
FROM #USERDATA
WHERE DATEDIFF (hour, time, GETDATE()) < 12
IF ((Qnpart « 3 > Qnum) AND (@Qnpart > 5))
BEGIN
UPDATE ACBR.CABLE_FEATURE
SET value = ‘recent 12 hrs’
WHERE feature = ‘Duration’
END

After all rules are executed, we have the runtime feature values as shown in
row Current Value in Table 5.

The result of similarity computation is listed in the last row in Table 5.
Accordingly, we can compute the score of this case. In the above example, the
result score is 96. Since it is greater than the threshold 78, the case Regional
switch (LB) problem is marked as ‘fired’.

Activating Case-Based Reasoning with Active Databases 13

Table 5. Runtime feature values and similarity computation of case Regional
switch (LB) problem

| |ProblemType| Channels | Duration |Location|

Current Value reception lower band|recent 12 hrs|particular
fa
Importance Weight 75 80 70 85
m
Feature Value Weight 65 80 70 85
w(n,m, fr)
similarity 0.87 1.00 1.00 1.00
sim(fa", fa)

The system will fire and visualize every case whose score exceeds its threshold
at runtime.

5 Conclusions and Future Work

This work is originally based on the need to improve traditional "passive’ case-
based reasoning system to have active property. The ‘active’ property has two
related meanings: first, the system should be capable of responding to an external
event. The response should be made in real-time fashion within a limit of time.

The contributions of this work are two-fold. The combined knowledge rep-
resentation in different level improves system performance by reducing the size
of rule set and the confliction between the rules by factoring out the two sets
of knowledge bases. Also, the combined system allows case-based reasoning to
apply to real-time database environment.

A prevailing trend of distributed computing demands a distributed architec-
ture for our ActiveCBR applications. Several models are under consideration,
such as using one CB subsystem via multiple ADB subsystems or multiple CB
subsystems being centralized with a predominant CB system. To complete dis-
tributed tasks effectively, the ActiveCBR system should be enhanced to have
capacity of integrating multiple-source information, performing inter-subsystem
communication, and avoiding possible information bottleneck.

Acknowledgment

We thank NSERC and IRIS for their support for this research.

References

1. A. Aamodt and E. Plaza. Foundational issues, methodological variations, and
system approaches. Artificial Intelligence Communications, 7(1):39-59, 1993.

14

10.
11.

12.

Sheng Li and Qiang Yang

A. Biliris. The performance of three database storage structures for managing large
objects. In ACM SIGMOD Conference on the Management of Data, San Diego,
CA; 1992. 5

S. Ceri, P. Fraternali, S. Paraboschi, and L. Branca. Active rule management in
Chimera. In Active Database Systems - Triggers and Rules For Advanced Database
Processing, pages 151-76. Morgan Kaufman, 1996. 5

O. Diaz and A. Jaime. EXACT: an extensible approach to active object-oriented
databases. VLDB Journal, 6(4):282-295, 1997. 5

O. Diaz, A. Jaime, N. W. Paton, and G. Qaimari. Supporting dynamic displays
using active rules. ACM SIGMOD Record, 23(1):21-26, 1994. 4

D. Gentner. Structure mapping: a theoretical framework for analogy. Cognitive
Science, 7:155-70, 1983.

J. L. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publisers, Inc., 1993.
D. B. Leake, A. Kinley, and D. Wilson. Learning to improve case adaptation
by introspective reasoning and CBR. In Proceedings of the First International
Conference on Case-Based Reasoning. Springer-Verlag, 1995.

K. Owens and S. Adams. Oracle 7 triggers: Mutating tables? Database Program-
ming and Design, 7(10):31-49, 1994. 10

J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986. 10
Y. Shoham. An overview of agent-oriented programming. In J. M. Bradshaw,
editor, Software Agents, pages 271-90. AAAI Press, 1997.

I. Watson and F. Marir. Case-based reasoning: A review. The Knowledge Engi-
neering Review, 9(4):355-81, 1994.

	Introduction
	 ActiveCBR: Representation and Algorithms
	Overview of Active Databases
	Knowledge Representation in the ActiveCBR System

	Algorithms
	Algorithm in the CB Subsystem
	Algorithm in the ADB Subsystem

	Example of ActiveCBR System in Operation
	Conclusions and Future Work
	References

