
In The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’01, August 26 - 29, 2001 San
Francisco, California, USA

Mining Web Logs for Prediction Models in WWW Caching
and Prefetching

Qiang Yang
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada V5A 1S6

qyang@cs.sfu.ca

Haining Henry Zhang
IBM E-business Innovation Center

Vancouver
Burnaby, BC, Canada V5G 4X3

haizhang@ca.ibm.com

Tianyi Li
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada V5A 1S6

tlie@cs.sfu.ca

ABSTRACT
Web caching and prefetching are well known strategies for
improving the performance of Internet systems. When combined
with web log mining, these strategies can decide to cache and
prefetch web documents with higher accuracy. In this paper, we
present an application of web log mining to obtain web-document
access patterns and use these patterns to extend the well-known
GDSF caching policies and prefetching policies. Using real web
logs, we show that this application of data mining can achieve
dramatic improvement to web-access performance.

Keywords
Web Log Mining, Application to Caching and Prefetching on the
WWW

1. INTRODUCTION
As the World Wide Web is growing at a very rapid rate,
researchers have designed various effective caching algorithms to
contain network traffic. The idea behind web caching is to
maintain a highly efficient but small set of retrieved results in a
cache, such that the system performance can be notably improved
since later user requests can be directly answered from the cache.
Another performance improvement strategy is to prefetch
documents that are highly likely to occur in the near future. Both
techniques have been studied in the literature extensively.

An important advantage of the WWW is that many web servers
keep a server access log of its users. These logs can be used to
train a prediction model for future document accesses. Based on
these models, we can obtain frequent access patterns in web logs
and mine association rules for path prediction. We then
incorporate our association-based prediction model into proxy
caching and prefetching algorithms to improve their performance.

This strategy works because of the availability of vast amounts of
data. We empirically show that this approach indeed improves
the system performance over existing algorithms dramatically!
The organization of the paper is as follows. In the next section,
we review the work in web caching and prefetching. In Section 3
we introduce the formal association rule based prediction models
and show how it integrates with the caching algorithms. Then, in
Section 4, we present our experimental results related to this new
model. In Section 5, we integrate prefetching into the caching
model, and conclude in Section 6.

2. PREVIOUS WORK IN PROXY
CACHING AND PREFETCHING
Web caching is an important technique for improving the
performance of WWW systems. Lying in the heart of caching
algorithms is the so-called “page replacement policy”, which
specifies conditions under which a new page will replace an
existing one. The basic idea behind most of these caching
algorithms is to rank objects according to a key value computed
by factors such as size, frequency and cost. When a replacement
is to be made, lower-ranked objects will be evicted from the
cache. The most successful replacement algorithm is GDSF[9]. It
computes the key value of a page p as K(p)= L+F(p)*C(p)/S(p),
where L is an inflation factor to avoid cache pollution, F(p) is the
past occurrence frequency of p, C(p) is the cost to fetch p and
S(p) is the size of p.
Researchers have also considered prefetching popular documents
in order to reduce perceivable network latency [7, 10 , 11, 12].
[10] discussed an integrated model of prefetching and caching in a
file system. In [11] Chinen and Yamaguchi prefetch the
referenced pages from hyperlinks embedded in the current object.
[12] improved this idea by also considering the frequency of
accesses of the hyperlinks.
We plan to use web-log mining to improve the performance of
web caching and prefetching systems. Web log mining is an
important part of web mining. It extracts useful knowledge from
large-scale web logs for application in other domains. The closest
work done previously is [5]. Pitkow and Pirolli studied the
pattern extraction techniques to predict the web surfer's path. Su
et al. [13] has built an n-gram model to predict future requests. In
data mining area, [2] has looked at sequential data mining for
transaction data, but they are not applied caching and prefetching.
Though they pointed out the possible application in web caching
and prefetching, no actual algorithm was designed for such a task.
In contrast, in this paper, we discuss an integrated model by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

In The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’01, August 26 - 29, 2001 San
Francisco, California, USA

combining association-based prediction, caching and prefetching
in a unified framework, and demonstrate that the resulting system
outperforms caching alone.

3. BUILDING ASSOCIATION-BASED
PREDICTION MODELS
In this section, we present our approach to establish an
association-based prediction model on a large-scale web log. Our
goal is to find out frequent access path patterns in order to extract
association rules that can be utilized to predict future requests.

3.1 Extracting Embedded Objects
HTML documents are the building blocks of the Web. They
define the linkage structure of web resources. HTML documents
also act as containers of other web objects, such as images, audio
and video files. These objects are usually displayed as part of
their owner HTML documents; hence, they are called embedded
objects. References to embedded objects are usually preceded by
their HTML container, therefore they are easy to be recognized
from a web log. They appear as a burst of requests from the same
client shortly after an HTML access. If an object is observed that
its references always come immediately after accesses to
particular HTML documents, these HTML documents can be
regarded as its containers.
Since there is no linkage information inside embedded objects,
they do not contribute to an access path. Therefore, we deal with
HTML documents and embedded objects differently. While
finding sequences in a session, we do not take embedded objects
into considerations. Instead, we just associate them to their
corresponding parent HTML document (which is the nearest
HTML document requested in the past). We perform
preprocessing to extract embedded objects and store them in an
Embedded Object Table (henceforward referred as EOT).

3.2 Mining Frequent Sequences
After the preprocessing, only HTML documents remain in a
request sequence. Every substring of length n is regarded as an n-
gram. Unlike the subsequences used in [2], we do not allow gaps
between adjacent symbols in our n-gram strings. These n-grams
are used as the left-hand-side (LHS) of the association rules. This
type of n-gram based association-rule encodes order and
adjacency information, and is a special case of the general
association rules in sequential data mining. The algorithm scans
through all substrings with length ranging from 1 to n in each user
session, accumulating the occurrence counts of distinct substrings,
and pruning substrings with support lower than a minimum
support θ. In our experiments, we set n = 4 and θ = 2.

3.3 Constructing Association Rules

Figure 1 shows a user session in a web log. The blocks represent
HTML documents and the ellipses stand for embedded objects.

The solid arrows indicate access paths and the value conf is the
conditional probability of transition from an n-gram to a next
document. The dotted arrows depict the embed/parent relationship
between an HTML file and its embedded objects. The value Pi on
the arrow is the probability that object Oi belongs to the
document. For illustration purpose, we draw embedded objects
only for document Sk. In our analysis of web logs, most Pi are
close one. Therefore, in subsequent discussions, we assume that
Pi =1.
From the graph, we know that once the frequent sequences have
been found, it is straightforward to generate N-gram prediction
rules. For each k-string S1S2...Sk (k >= 2), we can create a rule in
the follow format:

S1S2...Sk-1 → Sk (conf) (3.1)
The confidence conf, i.e. the conditional probability P(Sk|
S1S2...Sk-1), of this rule is expressed in terms of count of
sequences:

conf = count(S1S2...Sk) / count(S1S2...Sk-1) (3.2)
Furthermore, if Sk has embedded objects, for each object Oi
belonging to Sk, the following rules can be deducted immediately
from the EOT:

S1S2...Sk-1 → Oi (conf) (3.3)
Usually, the number of rules generated in this way is large.
Hence, to reduce the memory space to store the model, we do not
actually generate the rules by Equation (3.3); instead, we just put
the EOT in memory and extract rules dynamically. Besides, for
rules generated by Equation (3.1), we chop those with conf below
a threshold hc. Raising hc decreases the number of rules needed to
be stored. In our experiments, hc is set between 0 and 0.3 . By this
means, we reduce the number of rules and keep only the high
confidence ones.

3.4 Prediction Algorithm
The process of building a set of association rules and an EOT is
called training. Once the training is finished, we can apply these
rules to give predictions of future visits. Intuitively, for any
given observed sequence of URL’s, we choose a rule whose LHS
matches the sequence and has the longest length among all
applicable rules.

4. INCORPORATE ASSOCIATION RULES
INTO CACHING
In our method, association rule-based models are stored on the
Web server. When a request comes, the server matches its rules
and returns predictions as hints to proxy servers. The proxy server
then utilizes this information to determine its caching or
prefetching strategy. Server-hinted architecture has been studied
extensively and proven effective in the context of model-based
Web caching and prefetching [14, 15]. In our later discussion, we
assume that proxy servers can receive all the hints from the web
servers on an ad hoc basis. We also assume that the network
overhead of hint transmission is negligible to the transmission of
the actual web data.
In the previous section, we introduced GDSF algorithm [9], which
is one of the best caching replacement algorithms in terms of byte
hit rate and hit rate. Our predictive caching algorithm is an
extension and enhancement of the widespread GDSF by
incorporating a factor of predictive frequency.

Sk- Sk
…. S1 S2 S3

P1 P2 Pn

O1 …. O2 On

Figure 1. A sequence of requests

In The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’01, August 26 - 29, 2001 San
Francisco, California, USA

Normally, there simultaneously exist a number of sessions on a
web server. Based on their access sequences, our prediction
model can predict future requests for each particular session.
Different sessions will give different predictions to future objects.
Since our prediction of an object comes with a probability of its
arrival, we can combine these predictions to calculate the future
occurrence frequency of an object. Let Oi denote a web object on
the server, Sj be a session on a web server, Pi,j be the probability
predicted by a session Sj for object Oi. If Pi,j=0, it indicates that
object Oi is not predicted by session Sj. Let Wi be the future
frequency of requests to object Oi. If we assume all the sessions
on a web server are independent to each other, we can obtain the
following equation:

To illustrate Equation 4.1, we map two sessions in Figure 3. Each
of these sessions yields a set of predictions to web objects. Since
sessions are assumed independent to each other, we use Equation
4.1 to compute their Wi. For example, object O1 is predicted by
two sessions with a probability of 0.70 and 0.60, respectively.
From Equation 4.1, W1 = 1.3. This means that, probabilistically,
object O1 will be accessed 1.3 times in the near future.

Once the future access

predicted, we extend GD

 K(p)=L+(W(p)

We add W(p) and F(p) t
that the key value of a pa
occurrence frequency, bu
The more likely it occurs
will be. The rationale beh
some time in the reque
policy.
We have conducted a se
two data logs that we are
EPA (United States En
contains a day's worth of
server located at Research
from NASA Kennedy S

containing 17 days' worth of requests. Before experiments, we
removed uncacheable URLs from the access logs. A URL is
considered uncacheable when it contains dynamically generated
content such as CGI scripts. We also filtered out requests with
unsuccessful HTTP response code. In our experiments, we use
two quantitative measures to judge the quality of our extended
caching algorithm. Using test web log data, hit rate is defined as
the percentage of web requests, out of all web requests in the
testing data, that can be answered by the cache. Byte hit rate is
the percentage of bytes that are answered directly by documents
and objects in the cache, out of the total number of bytes that are
requested.
The results illustrating both hit rates and byte-hit rates are shown
in Figures 4 to 5. The algorithms under comparison are n-gram,
GDSF, GD-Size, LFUDA, and the LRU method [1]. Overall, the
n-gram-based algorithm outperforms the other algorithms using
all of the selected cache sizes. It is clear from the figures that the
performance gain is substantially larger when the n-gram
algorithm is applied on the NASA dataset. This observation can
be explained by considering the difference between the two
datasets. The EPA dataset is the web log data collected over a
period of 24 hours. We have used the first 12 hours of data for
training and the remaining data for evaluation. The users' access
pattern may vary dramatically between the two time periods and
thus decreasing the prediction accuracy. By comparison, 6 days of
the NASA log data are used for training while the remaining 7
days of data are used for evaluation. The users' access patterns are
much more stable over this extended period of time, making the
training data much more representative of the actual access

∑=
j

jii PW ,)1.4(

1

Figure 3 Predict
Predictions
patterns. This no doubt aids tremendously in prediction accuracy. O1: 0.70
O : 0.90 2

O : 0.30 3

O4: 0.11

5. INTEGRATED PREDICTIVE CACHING W =0.70+0.60 = 1.30 1

W =0.90+0.70 = 1.60 2
Session
AND PREFETCHING
W =0.30+0.20 = 0.50 3

W4 =0.11
W5 =0.42 O1: 0.60

O : 0.70 2

O : 0.20 3

O5: 0.42
We have shown that predictive caching improves system
performance in terms of hit rate and byte hit rate. These two
Session 2
frequency W(p) of

SF to incorporate the

 + F(p))*C(p)/S(p)

ogether in Equation
ge p is determined n
t also affected by it
 in the future, the gr
ind our extension is
st stream and adjus

ries of experimental
 able to obtain. In th
vironmental Protect
 all HTTP requests
 Triangle Park, NC.
pace Center WWW

ion of future frequen
Predicted frequency Wi
a page p can be

W(p):

(4.2)

4.2, which implies
ot only by its past

s future frequency.
eater the key value
that we look ahead
t the replacement

 comparisons with
e experiments, the
ion Agency) data
to the EPA WWW
 The NASA data is
 server in Florida

metrics implicitly reflect reduction of network latency. In this
section, we investigate an integrated caching and prefetching
model to further reduce the network latency perceived by users.
The motivation lies in two aspects. Firstly, from Figure 4 to 5, we
can see both the hit rate and byte hit rate are growing in a log-like
fashion as a function of the cache size. Our results are consistent
with those of other researchers [4, 16]. This suggests that hit rate
or byte hit rate does not increase as much as the cache size does,
especially when cache size is large. This fact naturally leads to
our thought to separate part of the cache memory (e.g. 10% of its
size) for prefetching. By this means, we can trade the minor hit
rate loss in caching with the greater reduction of network latency
in prefetching. Secondly, almost all prefetching methods require a
prediction model. Since we have already embodied an n-gram
model into predictive caching, this model can also serve
prefetching. Therefore, a uniform prediction model is the heart of
our integrated approach.

cy

In The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’01, August 26 - 29, 2001 San
Francisco, California, USA

Hit Ratio vs Cache Size (EPA)

10
20
30
40
50
60
70
80
90

0 0.5 1

Cache Size (%)

H
it

R
at

io
(%

)

GDSF

NGRAM

GDSize

LFUDA

LRU

.

Byte Hit Ratio vs Cache Size (EPA)

5
15
25
35
45
55
65
75

0 0.5 1

Cache Size (%)

B
yt

e
H

it
R

at
io

 %

NGRAM
GDSF
GDSize
LFUDA
LRU

Byte Hit Rate vs Cache Size (NASA)

0

10

20

30

40

50

0 0.002 0.004 0.006 0.008 0.01

Cache Size (%)

B
yt

e
H

it
R

at
e

%

NGRAM

GDSF

GDSize

LFUDA

LRU

Figure 5 Hit rate and byte hit rate comparison on
NASA data

In our approach, the original cache memory is partitioned into two
parts: cache-buffer and prefetch-buffer. A prefetching agent keeps
pre-loading the prefetch-buffer with documents predicted to have
the highest Wi. The prefetching stops when the prefetch-buffer is
full. The original caching system behaves as before on the
reduced cache-buffer except it also checks a hit in the prefetch-
buffer. If a hit occurs in the prefetch-buffer, the requested object
will be moved into the cache-buffer according to original
replacement algorithm. Of course, one potential drawback of
prefetching is that the network load may be increased. Therefore,
there is a need to balance the decrease in network latency and the
increase in network traffic. We next describe two experiments
that show that our integrated predictive caching and prefetching
model does not suffer much from the drawback.

Hit Rate vs Cache Size (NASA)

5

15

25

35

45

55

65

75

85

0 0.002 0.004 0.006 0.008 0.01

Cache Size (%)

H
it

R
at

e(
%

)

NGRAM
GDSF
GDSize
LFUDA
LRU

Figure 4 Hit rate and byte hit rate comparison on
EPA data

In our experiments, we again used the EPA and NASA web logs
to study the prefetching impact on caching. For fair comparison,
the cache memory in cache-alone system equals the total size of
cache-buffer and prefetch-buffer in the integrated system. We
assume that the pre-buffer has a size of 20% of the cache
memory. Two metrics are used to gauge the network latency and
increased network traffic:

Fractional Latency: The ratio between the observed latency with
a caching system and the observed latency without a caching
system.

Fractional Network Traffic: The ratio between the number of
bytes that are transmitted from web servers to the proxy and the
total number of bytes requested.
As can be seen from Figure 6(top), prefetching does reduce
network latency in all cache sizes. On EPA data, when cache size
is 1% of the dataset, fractional latency has been reduced from
25.6% to 19.7%. On NASA data, when cache size is 0.001% of
the dataset, fractional latency has been reduced from 56.4% to
50.9%. However, as can be seen from Figure 6(bottom), we pay a
price for the network traffic, whereby the prefetching algorithm
incurs an increase in network load. For example, in NASA
dataset, the fractional network traffic increases 6% when cache
size is 0.01%. It is therefore important to strike for a balance the

In The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’01, August 26 - 29, 2001 San
Francisco, California, USA

[2] R. Agrawal and R. Srikant. Minging Sequential Patterns.
Proc. Of Int’l Conference on Data Engineering, Taipei,
Taiwan, 1995

improvement in hit rates and the network traffic. From our result,
prefetching strategy better performs in a larger cache size while
relatively less additional network traffic incurs.

[3] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World
Wide Web. In IEEE Transactions on Knowledge and Data
Engineering, volume 11, pages 94-107, 1999.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we applied association rules minded from web logs
to improve the well-known GDSF algorithm. By integrating path-
based prediction caching and prefetching, it is possible to
dramatically improve both the hit rate and byte hit rate while
reducing the network latency. In the future, we would like to
extend our approach by taking into account other statistical
features such as the data transmission rates that can be observed
over the Internet.

[4] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, Dec. 1997.

[5] Pitkow J. and Pirolli P. Mining longest repeating
subsequences to predict www surfing. In Proceedings of the
1999 USENIX Annual Technical Conference, 1999.

[6] T. M. Kroeger and D. D. E. Long. Predicting future file-
system actions from prior events. In USENIX 96, San Diego,
Calif., Jan. 1996.

Fractional Latency Comparison

10

20

30

40

50

60

70

80

0 0.002 0.004 0.006 0.008 0.01

Cache size %

Fr
ac

tio
na

l l
at

en
cy

 (%
)

Ngram(NASA)

Ngram+Prefetch(N
ASA)
Ngram(EPA)

Ngram+Prefecth(E
PA)

[7] K. Chinen and S. Yamaguchi. An Interactive Prefetching
Proxy Server for Improvement of WWW Latency. In
Proceedings of the Seventh Annual Conference of the
Internet Society (INEt’97), Kuala Lumpur, June 1997.

[8] S. Schechter, M. Krishnan, and M.D. Smith. Using path
profiles to predict http requests. In Proceedings of the
Seventh International World Wide Web Conference
Brisbane, Australia., 1998.

[9] L. Cherkasova. Improving www proxies performance with
greedy-dual-size-frequency caching policy. In HP Technical
Report, Palo Alto, November 1998.

 [10] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A study of
integrated prefetching and caching strategies. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, May 1995.

Fractional Network Traffic

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

Cache size %

Fr
ac

tio
na

l N
et

w
or

k
Tr

af
fic

(%
)

Ngram (NASA)

Ngram+Prefetch
(NASA)
Ngram (EPA)

Ngram+Prefetch
(EPA)

[11] K. Chinen and S. Yamaguchi. An interactive prefetching
proxy server for improvement of www latency. In
Proceedings of the Seventh Annual Conference of the
Internet Society (INET ’97), Kuala Lumpur, Malaysia, June
1997.

[12] D. Duchamp. Prefetching hyperlinks. In Proceedings of the
Second USENIX Symposium on Internet Technologies and
Systems (USITS ’99), Boulder, CO, October 1999.

[13] Z. Su, Q. Yang, Y. Lu, and H. Zhang. Whatnext: A
prediction system for web requests using n-gram sequence
models. In Proceedings of the First International Conference
on Web Information System and Engineering Conference,
pages 200-207, Hong Kong, June 2000.

[14] V. Padmanabhan and J. Mogul. Using predictive prefetching

7.
We
Cou
Syst

8.
[1]
Figure 6 Fractional latency and fractional network
traffic comparison
to improve world of the Seventeenth International
Conference on very Large Database, pages 255-264,
September 1991. ACKNOWLEDGMENTS

thank Canadian Natural Sciences and Engineering Research
ncil (NSERC) and Institute for Robotics and Intelligence
ems (IRIS) for their support for this research.

[15] E. Cohen, B. Krishnamurthy, and J. Rexford. Evaluating
server-assisted cache replacement in the web. In Proceedings
of European Symposium on Algorithms, August 1998

[16] M. Arlitt, R. Friedrich, L. Cherkasova, J. Dilley, and T. Jin.
Evaluating content management techniques for web proxy
caches. In HP Technical report, Palo Alto, Apr. 1999.

REFERENCES
M. Arlitt, R. Friedrich L. Cherkasova, J. Dilley, and T. Jin.
Evaluating content management techniques for web proxy
caches. In HP Technical report, Palo Alto, Apr. 1999.

In The Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’01, August 26 - 29, 2001 San
Francisco, California, USA

	INTRODUCTION
	PREVIOUS WORK IN PROXY CACHING AND PREFETCHING
	BUILDING ASSOCIATION-BASED PREDICTION MODELS
	Extracting Embedded Objects
	Mining Frequent Sequences
	Constructing Association Rules
	Prediction Algorithm

	INCORPORATE ASSOCIATION RULES INTO CACHING
	INTEGRATED PREDICTIVE CACHING AND PREFETCHING
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

