IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

513

Short Papers

Redundancy Detection in
Semistructured Case Bases

Kirsti Racine and Qiang Yang

Abstract—With the dramatic proliferation of case-based reasoning systems in
commercial applications, many case bases are now becoming legacy systems.
They represent a significant portion of an organization’s assets, but they are large
and difficult to maintain. One of the contributing factors is that these case bases
are often large and yet unstructured or semistructured; they are represented in
natural language text. Adding to the complexity is the fact that the case bases are
often authored and updated by different people from a variety of knowledge
sources, making it highly likely for a case base to contain redundant and
inconsistent knowledge. In this paper, we present methods and a system for
maintaining large and semistructured case bases. We focus on a difficult problem
in case base maintenance: redundancy detection. This problem is particularly
pervasive when one deals with a semistructured case base. We will discuss an
information-retrieval-based algorithm and an implemented system for solving this
problem. As the ability to contain the knowledge acquisition problem is of
paramount importance, our method allows one to express relevant domain
expertise for detecting redundancy naturally and effortlessly. Empirical evaluations
of the system demonstrate the effectiveness of the methods in several large
domains.

Index Terms—Data mining, knowledge and case base maintenance, knowledge
acquisition in expert systems.

<+
1 INTRODUCTION

CASE-BASED reasoning is a problem solving and knowledge reuse
technique that is gaining rapid industry acceptance and is
increasingly used in commercial and industrial applications [5].
To solve a problem, a case-based reasoner recalls previous
situations similar to the current one and adapts them to help solve
the current problem. The existing problem descriptions and
solutions, known as cases, are used to suggest a means of solving
the new problem, to warn the user of possible failures that have
been observed in the past, and to interpret the current situation. In
many practical application domains, this technique is more
effective in solving certain problems than rule-based expert system
approaches since it can store entire problem-solving cases for later
analysis, rather than asking the domain experts to encode their
knowledge in the form of rule-like languages. There are many
examples of successful case-based reasoning applications, most of
which are in help desk application domains. For instance,
COMPAQ applied a CBR system from Inference Corporation to a
help-desk system for suggesting repairs to printers [9]. Many more
examples can be found in the CBR literature [7], [6], [16].

A pervasive, yet relatively ignored, problem inherent in using
case-based reasoning is that of case base maintenance. A case base
is usually constructed over a long period of time, during which
cases that solve approximately the same range of problems are
entered by different case authors at different times. A case base

o K. Racine is with IBM Canada Lab., 12 concorde Pl., Suite 500, Toronto,
Ontario, M3C 3R8 Canada. E-mail: kracine@ca.ibm.com.

e Q. Yang is with the School of Computing Science, Simon Fraser
University, Burnaby BC V5A 156 Canada.
E-mail: qyang@cs.sfu.ca.

Manuscript received 30 Sept. 1997; revised 25 June 1998; accepted 22 Mar.
2000.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 105734.

1041-4347/01/$10.00 © 2001 IEEE

may be the result of the union of several different smaller case
bases, or the result of “scanning in” raw material from large
quantities of literature. Similarly, a company’s use for any given
case base may change with time. For example, the cases for fixing a
certain type of printer in an organization will become outdated
when the company acquires a fleet of new printers for replace-
ment. As the case base grows, errors within the case base become
increasingly difficult to detect. The result can be much redundancy
within a case base. These problems can potentially harm the
accuracy and the speed of a case-based reasoning system. All these
reasons contribute to the need to update and reorganize a case base
during its lifetime.

A case base maintainer must be responsible for several different
tasks. As time passes, cases may become redundant simply
because there are more powerful cases in the same case base. A
need then arises for identifying these cases and deciding whether
to eliminate them. Added to the problem of redundancy is the fact
that many legacy case bases consist of nonrelational, textual data.
How to efficiently maintain and update these semistructured case
bases remains an open issue.

In the past, researchers have attempted to address various
aspects of the case base maintenance problem. Aha [1] presents
several case-based learning (CBL) algorithms which are tolerant of
noise and irrelevant features. These algorithms classify the
attributes of cases in a case base. The concept description of a
training case can be used to predict attribute values in future cases,
thereby detecting anomalies and filling in missing information.
Other work in case-based learning include [12], [13], [14]. These
algorithms can be seen to focus on learning and organization at the
feature level. To provide maintenance support at the case level,
Smyth and Keane [15] suggest a competence preserving deletion
approach. Classifications are made according to two key concepts:
coverage and reachability. A heuristic order is provided to delete
cases according to the classification which promises to preserve the
competency of the case base. Similarly, in expert systems research,
researchers have developed frameworks for the detection of
possible anomalies or redundancy [4], [10]. Like the case-based
learning approaches, the researchers assume that the knowledge
base is well-structured in either relational or rule-based formats.

In contrast with the previous work, we will focus on case bases
that are semistructured. The cases in these case bases are described
in natural language text, separated by several fields. Given these
case bases, we tackle the problem case base maintenance with large
sizes. The maintainer is assumed to function in the life cycle of a
case base in an organization. Our main contribution consists of
three linked aspects of case base maintenance. First, we present a
method to normalize an unstructured case base using information
retrieval techniques. Second, we explore redundancy detection
algorithms that operate on semistructured case bases. These
algorithms allow a case base to stay compact and correct,
improving the efficiency and effectiveness of reasoning. Finally,
we validate the power of the theory in a prototype system and
show that the algorithms scale up very well with realistic, large
and semistructured case bases. In addition, we point out the limits
of our work and suggest future extensions.

1.1 Case Base Maintainer Design

Our approach to solving the maintenance problem for very large
legacy case bases is to integrate a maintenance system within a
case-based reasoning system. The system is used to automate time
consuming tasks in case base maintenance, as discussed in
Section 2. A block diagram of the system design for case authoring
is shown in Fig. 1.

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

Yes
| ROl |- - = [WARNING!

* No /(

New ¢

-
Case Yes L
Inconsistency | .~ >
Test No

Fig. 1. Block diagram of agent architecture for case authoring.

The current dominant metaphor in case-based reasoning in
terms of management is direct manipulation. That is, the user is
required to supervise all events and to initiate all tasks. We suggest
that the system should be designed to implement a complementary
style of interaction, called indirect management [8]. As such, we
will call our maintenance system an agent.

The indirect management approach mimics this interaction.
Therefore, it seems that indirect management is the most reason-
able type of management to apply to case base reasoning systems.
Due to the nature of the domains to which case-based reasoning is
applied, and the lack of domain models used in case-based
reasoning, a fully automated management system could not be
formally specified. Therefore, any actions that it performed may
harm, rather than enhance, the competence of the case-based
reasoner. An indirect management system, however, will still
allow the user ultimate control while automating time consuming
and difficult sections of the overall task.

In order to minimize the knowledge acquisition bottleneck, the
agent must allow unstructured cases to be processed, as well as
semistructured ones. The solution is an information retrieval-based
algorithm to parse the cases by mining key words and important
key word phrases from the unstructured text. These key words and
phrases will offer the basis on which subsequent modules can
operate.

The redundancy detection module will take an incoming case
from the information retrieval (I.R.) module and determine
whether it is redundant given the cases already existing in the
case base. The redundancy detection algorithm relies on the
successful completion of the information retrieval module in order
to correctly identify the key words and phrases in the incoming
case. The detected redundant cases will both be presented to the
user along with a system suggestion explaining why redundancy
was identified. The user can then choose to ignore the warning or
delete one of the cases. The inconsistency detection module will
use information from the inconsistency triggers and the cases and
determine possible consistency problems. In this paper, we will
focus on redundancy detection only.

In the next several sections, we will explain the algorithhm
design for each of the three main modules.

2 THE INFORMATION RETRIEVAL MODULE

We use information retrieval techniques to normalize the cases.
The purpose of applying this preprocessing module is to transform
an unstructured case to a structured one so that we can perform
subsequent algorithms for redundancy detection.

Information retrieval techniques have successfully been applied
to case bases in the legal domain [3] and to large databases [11].
The architecture of an information retrieval system is simple. Each
information retrieval system consists of a set of documents, a set of
queries, and a similarity mechanism to determine which docu-
ments satisfy a query. It is typically difficult to directly compare
two free-form text documents, so the similarity mechanism
converts both the query and the set of information items into a
standard format.

To illustrate design of the module, we will work through a cable
TV example taken from realistic equipment troubleshooting cases
at Rogers Cablesystems Ltd. Vancouver Call Center. In Appendix
A, we show more examples of cases from that domain. The
example is shown in Table 1.

2.1 General Algorithm
We describe the algorithm in the following steps:

Step 1. Removing the Stop Words. The first step in the
information retrieval algorithm is to remove the stop words.
Stop words are those words proven to be poor indexers, such as
“the” and “of.” These words do not add any meaning to the
case. Stop words typically comprise 40-60 percent of the words
within a document [11]. The application uses a general list of
stop words generated for the English language used by the
SMART system designed by Salton and McGill [11]. This list of
stop words can be edited by the user in order to specialize it for
a particular domain. For example, in a case-based reasoner
designed to diagnose printer problems, the user may want to
remove the words “printer” and “page” from consideration
during the key word extraction phrase.

After the stop words have been extracted, the case in Table 1
will contain the information shown in Table 2.

Step 2. Domain Thesaurus. This function collapses words using a
domain thesaurus. In this application, the thesaurus is used to
standardize terms. For example, “sega unit” and “sega player”
may both appear in a case-based reasoner designed to diagnose
cable failures. These can both be reduced to “sega player” in
order to facilitate string matching. The thesaurus can be edited
iteratively as users become more familiar with the domain
specific language. The user may choose not to use a thesaurus
at all.

Step 3. The Stemming Algorithm. The stemming algorithm
removes the suffixes and prefixes from each word in the case
base. Stemming is used to reduce the number of distinct terms
and to improve retrieval. There are a number of available
stemming algorithms varying from removing almost all
possible prefixes and suffixes to removing only those suffixes
that pluralize a word. A reduced stemmer can typically be used

TABLE 1
Example Case in the Cable Domain

cable system.

Case Name: no cable; black screen; tune local channel

Case Problem Description: This may be a problem with your TV or the

Case Solution: Once you have checked the electrical connections, tune
the TV set to channel 3 and disconnect the cable. If there is still no

reception, the problem is most likely in the TV set.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001 515

TABLE 2
Example of Removal of Stop Words

Case Name: no cable black screen tune local channel
Case Problem Description: problem tv or cable system
Case Solution: checked electrical connections tv set channel 3

disconnect cable still no reception problem tv set

in case-based reasoning as most cases are written in present
tense to reduce the amount of typing required by the case
author. However, if the case base is developed from existing
data sources, a full stemming algorithm may be required.

The advantage of using a stemming algorithm is to further
reduce the number of distinct words for consideration. A
stemming algorithm will reduce the words “hook,” “hooked,”
and “hooking” to the word “hook.” This should increase the
number of key words and phrases identified by the algorithm.

Step 4. The Inverted Index. After the preprocessing steps have
been completed, the application generates an inverted index for
the entire case base. The index is simply a listing of all terms
that still remain in the set of cases, their weight within each
document, and the document number in which they appear.
The weight of a term within a document is simply a measure of
the frequency that the term appears within that case. This
measure provides information regarding the statistical impor-
tance of a term. Inverted indices may also contain information
reflecting the position of the term within the case. However,
due to the fact that this application was developed to handle
large case bases, this information is not retained. The inverted
index may already be quite large.

Step 5. The Key Word Index. After the inverted index is created,
the next step in the algorithm is to build the key word index.
Using the inverted index, this function identifies significant
terms through statistical measures. Key words are those words
which appear frequently within a small set of cases and
infrequently across all other cases [2], [11]. This application uses
the inverse document frequency measure to identify key
words [11].

The key word, the weight of the key word within the file,
and all document numbers in which the key word appears are
retained in a key word index. The application retains all of the
documents’ numbers in order to facilitate redundancy detection
in later stages.

The key word file can be edited by the user after its creation.
The user may wish to add or delete some of the given key
words. If the user adds a key word, the system identifies in
which cases the new word appears and accordingly updates the
key word file. At run time, the user can specify the number of
key words to be identified and the minimum number of
documents in which they must appear. The user is provided
with the number of words and the number of cases within the
document to facilitate a decision on these particular thresholds.

Step 6. The Key Phrase Index. The application also identifies key
phrases using the inverted index. Phrases are groups of more
than one word which have high intercase cohesion [11]; if one
word appears in a case, then the other words have a very high
probability of also appearing. The phrases and their corre-
sponding weights are retained. Identified phrases must appear
in > T cases, where T is a standard or user-specified threshold.
Phrases can be more powerful than key words as they add
some context to the statistical approach to information retrieval.
To reduce the number of phrases identified by the algorithm
and to increase their relative importance, there is an additional
constraint that at least one word in the phrase must be a key
word.

3 THE REDUNDANCY DETECTION MODULE

Once a standard description or profile has been generated for each
case, redundancy and subsumption can be partially identified. The
redundancy detection module receives the cases from the
information retrieval module. These cases have been normalized:
The stop words have been removed, the terms have been stemmed,
the thesaurus has been applied, and the indices have been built.

3.1 Approximate Equivalence

An obvious instance of redundancy occurs when two cases have
identical string representations. The use of information retrieval
techniques to remove the stop words, stem each term, and reduce
synonyms can assist in increasing the similarities between cases.
However, it is still unlikely that two cases will have exactly the
same representation. A more interesting situation occurs when the
cases share similar case representations according to a fuzzy string
matching algorithm. The matching is done with emphasis on the
key words that the two cases share. If they are identified as
redundant, they are then presented to the user for further analysis.

We apply a trigram matching algorithm to identify key word
strings that are close to each other. Trigram matching is the pattern
matching algorithm used for query retrieval in CaseAdvisor@®
Problem Resolution [17]. The advantage of using this algorithm is
that it is a fuzzy matching algorithm. Anomalies such as spelling,
punctuation, and word order can be partially ignored by this
algorithm.

Essentially, this algorithm divides the strings to be compared
into trigrams (substrings of length three). If a trigram is found in
both strings, a hit is recorded. The resulting “score” is the
percentage of trigrams that existed in both strings given the total
number of trigrams in the longer string. Thus, this algorithm is
tolerant of spelling errors and word order. Using trigram matching
on S; =cable and S, = cabel, the comparison will result in a
nonempty match.

Although a drawback of using trigram matching is that cases
that are morphologically related will return high scores even if
they are not semantically related, part of the problem has already
been solved by the application of the thesaurus in the information
retrieval module.

3.2 Domain-Independent Subsumption Rules

Cases can also be redundant because they are subsumed by other
cases. In this situition, the subsumed cases can be removed from
the case base without affecting the overall competence of the case-
based reasoning system.

We adopt a uniform notation for representing a case. Let
Case = ((P), (S)) be a case. In the definition, P represents a set of
normalized key words or key phrases denoting a problem
description for the case. Each element p; of P represents a distinct
problem keyword or key phrase such as “screen black” in a
Cable TV troubleshooting case. S is the solution for the case; in the
Cable TV example, S might be “Call Sony at 1-800-... .” In general,
a solution S for a case is a sequence of steps such that, upon
complete execution of S, the problems described in P can be
solved.

We can now state our case-subsumption rule informally as
follows: Suppose we are given two cases: Case; = ((P;), (S1)) and
Casey = ((P,), (S2)). Case; subsumes Case, if Case; solves more
problems than Case, (P, is a superset of %) and the solution of
Case; requires fewer steps than that of Case,. In this situation, S, is

516 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

a subset of Sy.! If Case; subsumes Case,, we say that Case, is
redundant.

The subsumption rule suggests two different redundancy
algorithms. The first algorithm is designed to determine whether
an incoming case is redundant given the cases in the case base. The
second algorithm uses the entire case base as input and determines
if redundancy exists within the case base. For both algorithms, we
first apply a nearest neighbor algorithm to find out, for each case to
be tested for redundancy, the candidate set of cases which are
likely to be redundant. These cases can be found out using the
native nearest-neighbor algorithm associated with a case base
reasoning system. For a very large case base, this initial
preprocessing reduces the set of cases we have to consider.

For the first algorithm, R;, the worst case occurs when every
single case existing in the case base is involved within a
redundancy relationship with the incoming case. Let N be
||CaseBase|. The number of key word index checks is O(N) and
the number of redundancy detections is O(N). Therefore, the
overall complexity is 2(O(N)) = O(N).

The second algorithm R,, determining if redundancy exists at
all in the case base, has an added layer of complexity. The worst
case again exists when every single case is involved in a
redundancy relationship with all other cases. For each of the N
cases, R, calls R; as a subroutine. Thus, the overall complexity is
O(N) x O(N) = O(N?).

Both algorithms try to provide the user with an explanation as
to why the cases were identified as redundant. Often, the user does
not have enough domain knowledge to isolate dependencies
within cases. The two original cases are presented to the user along
with the key words that exist in both cases, highlighting the
similarities. If the two cases are considered candidates for merging,
a notice is sent to the user including the application’s suggestion.

Additionally, both algorithms rely on thresholds to determine
when keywords extracted from cases are approximately identical.
These thresholds are originally set by the application as default
values, but can be changed by the user for each particular domain.

3.2.1 Redundancy Removal

When deciding to delete subsumed cases, the case-maintainer
system should allow the user to view both cases and highlights the
unnecessary condition. As it is possible that Case; is an incorrect or
outdated case, the fact that it subsumes Case; does not mean that
Case should be summarily deleted from the case base. Rather than
simply deleting the cases identified as subsumed, the application
presents these cases to the user together with reasons why they are
believed subsumed. This is because a typical user of the
application may not be familiar enough with the domain to delete
the case that offers more information. Perhaps the extra premise
offers valuable information to the novice user that the case that
subsumes it does not.

3.3 Merging Cases

A redundancy identification module should also be able to detect
cases that are candidates for merging. For example, if two cases
offer the same solution but slightly different problem descriptions,
it is likely that the cases can be collapsed into one. Please note that
if the differences within the problem description field are not
considered significant by the application, then the system sugges-
tion will state that the cases are essentially equivalent and the user
may choose to keep either or both cases.

1. We have assumed that solution length is a measure of solution quality
in this section. In some domains, there are other measures of solution
quality, such as the cost of solution, etc. Also, it may be the case that a
solution is longer because it contains more explanatory data. Extensions of
our subsumption rules in these areas can be done; however, we will focus
on solution length here for simplicity.

TABLE 3
Detecting Redundancy in the Printer Repair Domain

Case 1
Problem Description: envelopes jam laser printer due to glue.
Case Solution: Normal envelopes and laser printers do not get along

well together. Problems include poor glue heat tolerance.

KEYWORDS : envelopes jam laser glue heat tolerance

Case 2

Problem Description: Paper continues jamming printer due to
sticky internals

Case Solution: Envelopes do not work very well with laser printers.

The high heat melts the glue.

KEYWORDS : jamming sticky envelopes laser heat glue

3.4 Relaxed Redundancy Detection Rules and
Implementation

To make practical use of the rules, their computation needs to be
relaxed. The relaxation is aimed at catering to the fact that the cases
may not be defined formally. Therefore, some margin of
approximation must be left when detecting redundancy.

Table 3 illustrates the necessary information to detect redun-
dancy, using an example from a printer-repair domain. Using the
key words that have been extracted from each case, the first step is
to determine the extent that the key words match. If Case 1 and
Case 2 share more than some threshold T of key words, the two
cases are considered further for redundancy. For example, in
Table 3, Case 1 and Case 2 share five (5) key words. Each case has
six (6) key words. Therefore, these cases share 83 percent of key
words. The application initially sets the redundancy threshold to
80 percent, so if this threshold is not modified by the user, then the
application will signal redundancy for these two cases.

This comparison of key words is facilitated by the key word
index developed in the information retrieval module. All of the
information is extracted from the index, rather than the cases
themselves, in order to make this process quicker. If two cases
“succeed” on the key word matching, a further check on the
redundancy rules is performed on the entire case content
(including descriptions and solutions) using fuzzy string match-
ing. After this step, if the two cases have been identified as possibly
redundant, both cases in their entirety are presented to the user,
who determines if there is in fact redundancy and, if so, which case
should be removed from the case base. The user is also offered the
option of further editing one or both cases to make the distinction
between them more apparent.

3.4.1 Related Work

Relating to the work by Smyth and Keane on competence-
preserving methods for managing a case base, the subsumption
rules defined above provide a significant operational advantage. In
Smyth and Keane’s work [15], all definitions of auxiliary,
spanning, and support cases are defined in terms of problem
coverage and reachability. These definitions have the problem of
computational inefficiency since to compute the coverage and
reachability of a case in terms of incoming problem queries is very
expensive. Our subsumption rules, on the other hand, provide a
problem-independent approach to finding redundant cases;
instead of computing coverage and reachability for each case
using all user problems, we compare the contents of the two cases
directly. This direct comparison enables us to deduce whether one
case makes another case redundant.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001 517

Time A
(seconds)

120
90
60

30

500 1000 2000 8000
Sheffield LISA Collection Census Data

Number of Cases
(Case Size Uniform)

Fig. 2. CPU time to apply information retrieval techniques.

4 EMPIRICAL TESTING

We have implemented the maintenance system in the framework
of the CaseAdvisor@ system developed by the Case Based
Reasoning Group at Simon Fraser University. CaseAdvisor@® is a
case-based reasoning system implemented at Simon Fraser
University.

Our tests are aimed at establishing the validity of our approach
to case base maintenance. We hope to confirm through the
experiments the following conjectures: First, The information
retrieval approach for processing unstructured or semistructured
cases is feasible for large case bases. Evidence supporting this
conclusion will be based on a comparison of CPU time and case
base sizes. Further experimentation was conducted to demonstrate
the accuracy of the key word and phrase extraction algorithms.
Second, the redundancy detection module is capable of detecting
most redundant cases when cases are derived from one source.
This will be shown through a controlled experiment where some
redundant cases are introduced by the experimenter. Results as to
the degree of these cases discovered by the agent will be used to
justify this claim. All tests reported below were conducted on a
Sun Sparc 5 workstation.

4.1 Testing the Information Retrieval Module

Testing was completed on large test files to illustrate how the
information retrieval module scales up. Fig. 2 demonstrates that
even the one-time cost of normalizing a case base is not that
expensive. The time displayed is the CPU time required to remove
the stop words from all of the cases, stem all of the terms, apply the
user defined thesaurus, to extract key words and phrases from the
cases, and to build the inverted file structure. The information
retrieval module was applied to a number of different case bases
containing different types of data. Each case was, on average,
0.3 kilobytes in size. The Sheffield LISA collection is a database of
abstracts and titles extracted from The Library and Information
Science Abstracts database from Sheffield University. The empiri-
cal testing proves that the information retrieval module can handle
cases of that size in a reasonable amount of time.

After testing the efficiency of the Information Retrieval Module,
it was necessary to test the efficacy. Key words and phrases can be
extracted from text files in a reasonable amount of time, but are
they useful? To test the accuracy of the key word and phrase
extraction procedures, the application was challenged by humans.
Given the same information and the same text file, the key words
and phrases that the subjects extracted were compared to those
extracted by the application. To test the importance of these words
and phrases, each one was used as a query to the case base
developed by the Case Based Reasoning Group at Simon Fraser
University for Roger’s Cablesystems Ltd. in Vancouver, British
Columbia, Canada.

%o

I
1
:
100 :
90 1
80 :
70 1
60 :
50 1
40 :
30 |
20 :
10 1

h Roger’s

Subjects
(* domain experts)

Fig. 3. Percentage of key words matching those found by Case Maintainer.

When applied to an actual case base designed to troubleshoot
Cable TV failures, the information retrieval module completed
processing in less than one second. There were ten (10) subjects
involved in this experiment. The text file was provided by Roger’s
Cable and contains 42 cases. On average, the subjects required
approximately twenty (20) minutes to extract key words from the
text file. All of the subjects had some knowledge of the cable domain,
but only three (3) considered themselves experts. Despite this range
of familiarity with the domain, the lists provided by the subjects
showed great overlap. Fig. 3 illustrates the similarities between the
key words generated by the subjects and the key words generated by
Case Maintainer. Similarities were measured by exact matches and
substring matches. As Case Maintainer performs term stemming,
the terms “channels” and “channel” are both represented as
“channel.” Therefore, if the subject included the word “channels,”
it was marked as a match. The final list of key words was extracted
from the case base developed at Roger’s Cable.

Clearly, the automatic generation of key words is successful in
the Cable TV domain. Without tweaking, the key words generated
by Case Maintainer matched 87 percent of the key words
generated by those familiar with the cable TV domain. The only
list with which Case Maintainer did not match at least 80 percent
of terms was a whopping 116 words provided by a subject with
limited domain expertise and computer experience.

4.2 Testing the Redundancy Detection Module

The redundancy module is responsible for testing an incoming
case for possible redundancy. Recall that the cases are first
normalized by the I.R. module. If there is no possible redundancy,
the case is simply added to the existing case base. If there is, the
case is presented to the user along with the case causing the
possible conflict. The user then determines which, if any, of the
cases should be deleted from the case base.

Fig. 4 demonstrates that the algorithm to detect redundancy is
efficient enough to be applied in a case authoring module. At the
time of this testing, the CaseAdvisor@ system could only output to
flat files. The ability to output to ODBC (Open Data Base
Connectivity) databases has recently been added to the system.
Further testing will be required to determine the processing time the
SQL (Standard Query Language) interface will add.

The average size of the case is also included in Fig. 4 to illustrate
that the relative performance of the redundancy module is
dependent on both the number of cases and the typical case size.
The case base with the largest number of cases, 8,192, only needs
approximately 0.25 seconds to check for redundancy due to the
relatively small size of the cases. The results presented show that
the redundancy module scales up to large case bases quite
efficiently. Again, the case base containing, on average, three (3)
kilobyte cases took the longest period of time to test for

518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 3, MAY/JUNE 2001

A = Cable Domain

B = Sheffield LISA Domain
C = Sheffield LISA Domain
D = Time Magazine (1963)
E = Adult Census Data

Time

(seconds) A Constant Case ! Varying Case
Size | Size
1.75 . D
|
1.50 :
1
1.00 C !
0.50 B '
|
025 |A l I -
- i m
42 500 2000 | 425 8192

(0.12kb)

(0.3kb) (0.3kb) (0.3kb) (3 kb)

Number of Cases
(Size of Cases (kb))

Fig. 4. CPU time to detect redundancy.

redundancy. However, the system still performed the redundancy
test in less than two seconds.

The next experiment involved using subjects to type in cases
from the cable domain. Five (5) subjects were required to input
cases and submit them to be added to the case base. Approxi-
mately 50 percent of required cases to be entered were, in fact,
redundant. The subject was not given any information regarding
which cases had already been entered into the system. Table 4
presents the results of this experiment.

Table 4 demonstrates the efficacy of the redundancy module.
Ninety-four percent of the redundant cases were correctly identified
by the application. Another encouraging statistic is that 83 percent of
all cases identified as redundant were in fact redundant. Out of the
210 cases entered, 97 were correctly identified as redundant, 20 were
falsely identified as redundant, six were falsely identified as not
redundant, and the remaining 87 cases were correctly classified as
not redundant. This means that 88 percent of the cases were
correctly classified. Using fuzzy string matching to determine
redundancy allows for false positives. The threshold for identifying
redundancy can be modified. However, this modification must be
made at the expense of increasing the number of redundant cases
that are not identified by the module. An additional area of
improvement is that all of the cases involved in this experiment were
derived from the same source. As part of future work, it would be
interesting to see how the above results generalize to cases authored
by different case authors at different times.

TABLE 4
Quality of the Redundancy Module

Identified Not Identified
Redundant 97 6 103
Not
Redundant 20 87 107

117 93

5 CONCLUSIONS AND FUTURE WORK

Case base management should be taken seriously by every
practitioner and researcher in the case-based reasoning area. Of
high importance is the issue of how to contain knowledge
acquisition costs while maintaining the case base. Our answer to
the question is a case base maintenance agent structure which can
retrieve important information from a case base and then use the
information to detect redundant cases. Our experiments strongly
indicate that the approach can be used to address practical
problems of large sizes.

One area of future work is exploring methods to dynamically
reorganize a case base. We plan to design a case base organization
agent in the future. The agent will also dynamically organize and
reorganize the case base in a hierarchical manner so as to maximize
usability. Cases that are required on a frequent basis will be quickly
accessible by the case-based reasoner. This organization is done
throughout the life time of the case base. As a case becomes more
infrequently used, its ranking within the case base will decline.

ACKNOWLEDGMENTS

We wish to thank David Aha, D. Edward Kim and Philip W.L.
Fong and Christina Carrick for valuable comments. The authors
are supported by grants from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), an Ebco/Epic NSERC
Industrial Chair Fund, BC Advanced Systems Institute, and
Canadian Cable Labs Fund.

REFERENCES

[1] D. Aha, “Case-Based Learning Algorithms,” Proc. 1991 DARPA Case-Based
Reasoning Workshop, vol. 1, pp. 147-158, 1991.

[2] W.B. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, 1992.

[3] D. Gelbart and J.C. Smith, “Towards Combining Automated Text Retrieval
and Case-Based Expert Legal Advice,” Law Technology J., vol. 1, pp. 19-24,
1992.

[4] H. Kaindl, “Verification and Validation of Knowledge-Based Systems
Using Semiformal Representation,” Proc. AAAI 96 Workshop Verification and
Validation of Knowledge-Based Systems, pp. 7-16, 1996.

[5]1 J. Kolodner, Case-Based Reasoning. San Mateo, Calif.: Morgan Kaufmann,
1993.

[6] J. Kolodner and R.L. Simpson, “The MEDIATOR: Analysis of an Early
Case-Based Problem Solver,” Cognitive Science, vol. 13, no. 4, pp. 507-549,
1989.

[71 D. Leake, Case-Based Reasoning—Expriences, Lessons and Future Directions.
AAAI Press/MIT Press, 1996.

[8] P. Maes, “Agents that Reduce Work and Information Overload,” Comm.
ACM, vol. 37, no. 7, pp. 31-41, 1994.

[9] T.Nguyen, M. Czerwinski, and D. Lee, “Compaq Quicksource—Providing
the Consumer with the Power of AI,” Al Magazine, 1993.

[10] A.D. Preece, “Towards a Methodology for Evaluating Expert Systems,”
Expert Systems, vol. 7, no. 4, pp. 215-233, 1990.

[11] G. Salton and M.J. McGill, Introduction to Modern Information Retrieval. New
York: McGraw Hill, 1983.

[12] J. Shavlik, “Finding Genes by Case-Based Reasoning in the Presence of
Noisy Case Boundaries,” Proc. 1991 DARPA Workshop Case-Based Reasoning,
vol. 1, pp. 291-303, 1991.

[13] H. Shimazu and Y. Takashima, “Detecting Discontinuities in Case-Bases,”
Proc. 13th Nat'l Conf. Aritifical Intelligence, vol. 1, pp. 690-695, 1996.

[14] E. Simoudis, “Using Case-Based Retrieval for Customer Technical
Support,” IEEE Expert, vol. 7, no. 5, pp. 7-13, 1992.

[15] B. Smyth and M. Keane, “Remembering to Forget: A Competence-
Preserving Case Deletion Policy for Case-Based Reasoning Systems,” Proc.
Int'l Joint Conf. Artificial Intelligence, vol. 1, pp. 377-382, 1995.

[16] I Watson, Applying Case-Based Reasoning: Techniques for Enterprise Systems.
Morgan Kaufmann, 1997.

[17] Q. Yang, E. Kim, and K. Racine, “Caseadvisor: Supporting Interactive
Problem Solving and Case Base Maintenance for Help Desk Applications,”
Proc. Int’l Joint Conf. Artificial Intelligence (IJCAI 97 Workshop on Practical
Applications of CBR), Aug. 1997.

> For further information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

