;:‘ Journal of Intelligent Information Systems, 20:1, 11-30, 2003
uwer Academic Publishers. Manufactured in The Netherlands.
' 2002 Kl Academic Publishers. Manuf: d in The Netherland

A Data Cube Model for Prediction-Based
Web Prefetching

QIANG YANG qyang@cs.ust.hk
Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong

JOSHUA ZHEXUE HUANG jhuang @eti.hku.hk
E-Business Technology Institute, The University of Hong Kong, Hong Kong

MICHAEL NG* mng @maths.hku.hk
Department of Mathematics, The University of Hong Kong, Hong Kong

Abstract. Reducing the web latency is one of the primary concerns of Internet research. Web caching and web
prefetching are two effective techniques to latency reduction. A primary method for intelligent prefetching is to
rank potential web documents based on prediction models that are trained on the past web server and proxy server
log data, and to prefetch the highly ranked objects. For this method to work well, the prediction model must be
updated constantly, and different queries must be answered efficiently. In this paper we present a data-cube model
to represent Web access sessions for data mining for supporting the prediction model construction. The cube
model organizes session data into three dimensions. With the data cube in place, we apply efficient data mining
algorithms for clustering and correlation analysis. As a result of the analysis, the web page clusters can then be used
to guide the prefetching system. In this paper, we propose an integrated web-caching and web-prefetching model,
where the issues of prefetching aggressiveness, replacement policy and increased network traffic are addressed
together in an integrated framework. The core of our integrated solution is a prediction model based on statistical
correlation between web objects. This model can be frequently updated by querying the data cube of web server
logs. This integrated data cube and prediction based prefetching framework represents a first such effort in our
knowledge.

Keywords: data cube, data mining, clustering, transition probability matrices, web prefetching

1. Introduction

An important performance issue on the World Wide Web (WWW) is web latency, which
can be measured as the difference between the time when a user sends a request and when
he/she receives the response. Web latency is particularly important to Internet surfers and
e-business web sites. A major method to reduce web latency is web prefetching. Compared
with web caching (Cao and Irani, 1997), prefetching goes one step further by anticipating
users’ future requests and pre-loading the anticipated objects into a cache. When a user
eventually requests the anticipated objects, they are available in the cache. In the past, several
prefetching approaches have been proposed (Duchamp, 1999; Markatos and Chironaki,

*To whom all correspondence should be addressed.

12 YANG, HUANG AND NG

1998; Palpanas and Mendelzon, 1999). The general idea of prefetching is to request web
objects that are highly likely to occur in the near future. Such systems often rely on a
prediction model based on statistical correlation between web objects. These models are
trained on previous web log data. Thus, prediction model construction is at the core of
prefetching algorithms.

The web is a constantly changing environment, where new web log data is available
at any instant in time. In such a fast changing environment, it is important to have the
ability to support complex queries on large web logs in a multidimensional manner. In
this paper, we introduce a cube model for representing sessions to effectively support dif-
ferent mining tasks. The cube model organizes session data into three dimensions. The
Component dimension represents a session as a set of ordered components {ci, ¢z, ., ¢},
in which each component c; indexes the /th visited page in the session. Each compo-
nent is associated with a set of attributes describing the page indexed by it. The at-
tributes associated with each component are defined in the Attribute dimension of the
cube model. Depending on the analysis requirements, different attributes can be defined
in the Attribute dimension such as Page ID, Page Category and View Time spent at a
page. The Session dimension indexes individual sessions. The details of the cube model
are given in the next section. In comparison with other representation methods mentioned
in Kimball and Merx (2000) and Zaiane et al. (1998), the cube model has the following
advantages:

1. It represents sessions in a regular data structure to which many existing data mining
algorithms can be applied.

2. It maintains the order of the page sequences.

3. It can easily include more page attributes for different analysis purposes.

Simple operations can be defined to extract necessary data from the model for different
mining operations and produce reports for summary statistics and frequency counts of
page visits. Therefore, the model can be used as an efficient and flexible base for Web
mining.

With the data cube in place, we can then apply efficient data mining algorithms for
clustering and correlation analysis. As a result of the analysis, the web page clusters can
then be used to guide the prefetching system. In this work, we prefetch those web documents
that are “close” to a user-requested document in a cluster model. These pages are managed
by an integrated caching and prefetching system. Our system is an integrated data-cube
mining and model-based web-prefetching system. It represents a novel integration of data
mining research and network research.

This paper is organized as follows. In Section 2 we describe the cube model and some basic
operations. In Section 3 we discuss the basis of the clustering algorithms for clustering web
log data. Transition probability matrices are introduced to depict the correlation between
web objects and used to cluster categorical data sequences arising from web log data. In
Section 4 we describe our model based prefetching algorithm. In Section 5 we first show
our clustering results of some real Web log files using the two clustering algorithms. Then
we present experiment results on latency reduction. Finally, we draw some conclusions and
present our future work in Section 6.

DATA CUBE MODEL 13

2. A cube model to represent user sessions
2.1. Session identification

We consider a Web log as a relation table T that is defined by a set of attributes A =
{A1, Ay, ..., Ay} Usual attributes include Host, Ident, Authuser, Time, Request, Status,
Bytes, Referrer, Agent and Cookie. Assume that transactions generated by different users
are identified by a subset of attributes S C A. Let U be a set of useridsand F: S — U a
function that maps each unique combination of values of Stoauserid of U.Let A, ¢ S be
the Time attribute. We first perform the following two operations on 7':

1. Use F to derive a new user ID attribute Ay in T'.
2. Sort T on Ay and A;.

T is transformed to T’ after the two operations. Let A(#;) be the value of attribute Ay in
the Ith transaction of 7’. We then identify sessions according to the following definition:

Definition 1. A session s is an ordered set of transactions in 7’ which satisfy Ay (¢;.1) =
Ay(ty)and A, (t;+1) — A((t;) < T where t;41, t; € s and 7 is a given time threshold (usually
30 minutes).

Host IP address or Domain Name is often used in § to identify users (Shahabi et al., 2000;
Spiliopoulou and Faulstich, 1998) but host IP address alone can result in ambiguity in user
identification caused by firewalls and proxy servers. More attributes such as Referrer and
Agent can be used to resolve this problem (Cooley et al., 1999).

2.2. The cube model

Conceptually, a session defined in Definition 1 is a set of ordered pages viewed in one visit
by the same visitor. We define the number of viewed pages in a session as the length of the
session. Each page identified by its URL is described by many attributes, including

e Page ID;

Page_Category: A classification of pages in a Web site based on the context of the page
contents;

Total Time: The total time spent at a page;

Time: The time spent at a page in a session;

Overall_Frequency: The total number of hits at a page;

Session_Frequency: The number of hits at a page in a session.

The values of these attributes can be computed from particular Web log files. A particular
page in a session is characterized by its attribute values while the set of ordered particular
pages characterizes a session.

Let Pnax be the length of the longest session in a given Web log file. For any session with
alength P < Pn,.x, we define the pages of the session between P + 1 and Py« as missing

14 YANG, HUANG AND NG

pages identified with the missing value “-”. As such, we can consider that all sessions in a
given Web log file have the same length.

Given the above considerations, we define a cube model for representing sessions as
follows:

Definition 2. A cube model is a four tuple (S, C, A, V) where S, C, A are the sets of
indices for three dimensions (Session, Component, Attribute) in which

1. S indexes all identified sessions sy, 52, ..., S,
2. C consists of Ppax ordered indices cy, ¢, ., ¢p,,, identifying the order of components
for all sessions,

3. A indexes a set of attributes, A, As, ..., A, each describing a property of sessions’
components,
4. Vis a bag of values of all attributes A, A,, ..., A,

Figure 1 (left) illustrates the cube model. The order of session components is very im-
portant in the cube model while the orders of dimensions S and A are irrelevant. Each index
aj € A is associated with a pair (AftributeName, DataType). In this figure, we assume that
sessions are sorted on the value of Length(s;) where function Length(s;) returns the real
length of session s;.

Definition 3. Let F be a mapping from (S, C, A) to V that performs the following basic
operations on the cube model:

1. F(s,c,a)=vwheres € S,ce C,ae Aandv €V,
2. F(sk, ., a;) = V4 Where V;,_, is session s; represented by attribute a;,

S}

cl | c2 | ¢3

Figure 1. The cube model (left) and some operations (right).

DATA CUBE MODEL 15

3. F(,.,a;) =V, where V,, is a p x n matrix,
4. F(.,[ci, citz], a;) returns a z X n matrix which represents a set of partial sessions.

Definition 4. Let “|” be a cancatenation operator. F(sy, ., a;)| F(Skt1, ., a;) attaches
session s to session si.

With these basic operators defined on the cube model, data preparation for different
analysis tasks can be greatly simplified. For example, we can use F(., ., a;) to take a slice
for cluster analysis (figure 1 (right)) and use F(sg, ., a;) to obtain a particular session
described by a particular attribute for prediction (figure 1 (right)).

Aggregation operations can also be defined on each dimension of the cube model.
For example, sessions can be aggregated to clusters of different levels through clustering
operations. Page values can be aggregated to categories using a classification scheme.

The Component dimension presents an important characteristic of the cube model. In
this dimension, the visit order of the pages in a session is maintained. Because it uses
component positions as variables instead of page ids as taken by others (Nasraoui et al.,
1999), it provides a regular and flexible matrix representation of page sequences which can
be easily analyzed by existing data mining algorithms such as clustering and sequential
association analysis.

The Attribute dimension allows the components of sessions to hold more information.
For example, we can easily include time spent in each page in cluster analysis. From the
these attributes, traditional Web log summary statistics such as the top pages by hits and
spending time can be easily obtained.

3. Data mining: Clustering categorical sessions

The data mining technique used in this approach is clustering. The prediction models for
prefetching are built from historical web access data. We use F(., ., a;) function to extract
a session matrix from the cube model and then use clustering algorithms to cluster sessions
into clusters from which prefetching prediction models can be built. The clusters in this
sense are used to guide the prefetching system. We prefetch those web documents that are
“close” to a user-requested document in a cluster model. The cluster model tries to discover
the statistical correlation between web objects using web access patterns data-mined from
a web log. In the following subsection, transition probability matrices are used to depict the
correlation between web objects.

3.1. Transition probability matrices

We consider that a sequence of pages visited in a user session was generated by a “Markov
process” of a finite number of states, (see Taha, 1991). The next page (state) to visit depends
on the current (state) only. Let n be the number of different pages. The user is said to be
in the state i(i = 1,2, ...,n) if his current page is G;(i = 1,2,...,n). Let Q;; be the
probability of visiting page G ;, when the current page is G;, i.e., the one-step transition
probability. Q;; can be estimated by using the information of the sequence. Suppose the

16 YANG, HUANG AND NG

transition probability matrix Q is known for a given user and Y,, is the probability row
vector of the user’s state at his mth visit. We have

Ym+l = YmQ and Ym+1 = YOQm

In theory the distribution of the transition frequency of the pages in the sequence (assuming

the length of the sequence is much longer than the number of states) should be consistent

with the steady state probability distribution Y. This provides a method for verifying our

assumptions. This Markovian approach can be illustrated by the following examples.
Consider the two sequences with three (n = 3) possible pages to visit:

P = G1G2G3 G2G2G3 G3G2G3 G1GLG3
[N " S — A ————

1 11 i v
@2 = G2G2G3 G1G2G3 G]G2G3 G3G2G3 .
————— e — o

1 1 v ur

The sequence @, is obtained by interchanging the subsequences I and /I and also the
subsequences /II and IV in the sequence ®;. Let NV(®;) (k =1, 2) be the 3 x 3 one-step
transition frequency matrix with the i jth entry [NV(®;)];; being the number of transitions
from page G; to page G; in the sequence ®;. Therefore we have

0 2 0 0 2 0
NY@H)=10 1 4 and ND(@)=]0 1 4
1 21 2 1 1

The one-step transition probability matrix can be obtained from the transition frequency
matrix by dividing the entries of each row by its corresponding row sum. Denote the
transition probability matrix of NV(®;) by QV(d;), we have

o O
o O

0V(®)) = 0V (@y) =

D= =
Bl— s O
Bl— Q=
Bl—wls O

IS
1=

One possible way to compare (distance) these two sequences is to consider the Frobenius
norm of the difference of their transition probability matrices, i.e., || @V (®) — QD (®,)| .
where

IBllF =

DATA CUBE MODEL 17

Table 1. Distances between sequences based on transition probability.

10D (1) — OD(@y)||p = \/g = 0.354
”Q(l)(q;.l) _ Q(l)(q)})HF =/ % =0.632
1D @) — QV(@)1 = /278 = 0.954

If we have a sequence ®3 = G| G,G3G,G,G3 which is the first half of the sequence @,
then we have

01 0 01 0
NY@3) =10 1 2| and QV(@3)=|0 1 2
01 0 01 0

The Frobenius norm of the difference of two transition probability matrices also works for
two sequences of differenet length. The distances under the one-step transition probability
matrix approach are given in Table 1. Since the sequence @, is obtained by interchanging
the subsequences in @, it is clear that the distance is small. We also note that ®; is exactly
a part of @, the distance between @3 and ®; is less than that between @3 and P,.

3.2. Clustering

We note that if we slice from the cube model only the Page variable in the Attribute
dimension, we obtain a matrix which contains sessions described in categorical values. We
remark that we can also slice more variables such as Page ID and Time and form a session
matrix of mixture data types. In this case, we can employ the k-prototypes algorithm (Huang,
1998) that is designed for mixture data types. In this paper we focus on categorical sessions.
Below we introduce clustering algorithms for categorical data sequences based on transition
probability matrices.

Our clustering algorithm is a variant of the k-means algorithm for clustering categorical
data sequences. It has made the following modifications to the k-means algorithm: (i) using
the Frobenius norm of the difference of two transition probability matrices as a dissimilarity
measure for two categorical sequences, and (ii) replacing the means of clusters with the
mean probability matrix, to minimize the following objective function

k n
JW.2)=>" willZi — Qil} M
I=1 i=1
subject to

k
Zw1i=1, forl <i<n and w; €{0,1}, forl <l <k,
=1

18 YANG, HUANG AND NG

where Q; is the transition probability matrix of the ith sequence, k(<n) is a number of
clusters, W = [wy;] is a k-by-n real matrix,

Z=121,2,,...,7Z;) e R™,

and m is the number of web objects. Here Z; contains the mean probability matrix for pages
that belong to the /th cluster. In particular, if the sequences ®; and &, are in the same
cluster, ®; and ®, are highly correlated and the mean transition probabilities for the related
pages of the sequences in this cluster can be obtained from Z. In Section 4, we will use this
mean matrix to calculate the Pre-GDSF prefetching objects.

Minimization of J in (1) with the constraints forms a class of constrained nonlinear
optimization problems whose solution is unknown. The usual method towards optimization
of J in (1) is to use partial optimization for Z and W. In this method we first fix Z and find
necessary conditions on W to minimize F. Then we fix W and minimize F with respect to
Z. This process is formalized in the k-means type algorithm.

3.2.1. The k-means type algorithm.

1. Choose an initial point ZV e R™k.

Determine W such that J(W,Z") is minimized. Set r=1.
2. Determine ZU*D such that J(W®, Z(+D) is minimized.

If JW®,Z0+D)y = J(W®, Z®), then stop; otherwise goto step 3.
3. Determine WUtV guch that J(WUHD, Z¢+D) is minimized.

If J(WEED, z0+HDy = J(w®, Zt+D) | then stop;

otherwise set t =7+ 1 and goto Step 2.

The matrices Z and W can be calculated according to the following two methods. Let W
be fixed, we can determine Z* by

Yo wi Qi
er‘l:lwli ’

Let ZU+D be fixed, ie., Z; I = 1,2, ..., k) are given, we can find W+ by:

Z = 1<l <k

v — L, ifZ— Qillr = 1Zn — Qillr V1 <h <k,
= 0, otherwise.

for1 <l <k, 1<i<n. The W® and Z® are updated by the above methods in each
iteration. It can be shown that the above methods guarantee the convergence of the algorithm.

4. Web caching and prefetching

Now we turn our attention to the application of the cube model and data mining to web
prefetching. Below, we first survey the previous work in this area and then describe the
ideas behind our prediction based prefetching algorithm Pre-GDSF.

DATA CUBE MODEL 19

4.1. Performance metrics in caching and prefetching

Two widely used performance metrics are the hit rate and byte hit rate. The hit rate is the
ratio of the number of requests that reach the proxy cache and the total number of requests.
The byte-hit rate is the ratio of the number of bytes that reach the proxy cache and the
total number of bytes requested. In fact, the hit rate and byte-hit rate work in somewhat
opposite ways. It is very difficult for one strategy to achieve the best performance for both
metrics (Cao and Irani, 1997). Web latency is a more comprehensive metric than both the
hit rate and byte hit rate. In our study, we use fractional latency to measure the effectiveness
of a caching and prefetching system. We define fractional network traffic to measure the
increased network load as follows.

Definition 5. Fractional latency is the ratio between the observed latency with a caching
or prefetching system and the observed latency without any caching or prefetching system.

Definition 6. Fractional network traffic is the ratio between the number of bytes that are
transmitted from web servers to the proxy and the total number of bytes requested.

Obviously, the lower the fractional latency and the fractional network traffic, the better
the performance. For example, a fractional latency of 30% achieved by a caching system
means the caching system saves 70% of the latency.

4.2. GDSF caching algorithm

In the past, a number of web caching algorithms have been proposed. The Least-Recently-
Used (LRU) algorithm replaces the object that was requested least recently. It works well
for CPU caches and virtual memory systems. However, in web caching area, it does not
perform well compared to some more advanced algorithms, because it considers only the
temporal locality of requests (Cao and Irani, 1997; Williams et al., 1996). Least-Frequently-
Used (LFU) replaces the object that has been accessed for the least number of times. It tries
to keep more popular web objects and evict rarely used ones. A drawback of this policy is
that some objects might build high frequency count and never be accessed again.

So far, the most popular caching algorithms are GD-Size and GDSF. The Greedy-Dual-
Size (GD-Size) caching algorithm was proposed by Cao and Irani (1997). The algorithm
assigns a key value to each object in the cache, so that the object with the lowest key value is
replaced. When an object p is requested, GD-Size algorithm computes its key value K(p)
as follows:

K(p)=L+C(p)/S(p)

where C(p) is the cost to bring object p into the cache; S(p) is the object size; L is an
inflation factor that starts at O and is updated to the key value of the last replaced object. If
an object is accessed again, its key value is updated using the new L value. Thus, recently
accessed objects have larger key values than those ones that have not been accessed for a

20 YANG, HUANG AND NG

long time. In 1998, Cherkasova enhanced GD-Size algorithm by incorporating a frequency
count in the computation of key values (Cherkasova, 1998). The algorithm is called Greedy-
Dual-Size-Frequency (GDSF) algorithm. The key value of object p is computed as follows:

K(p)=L+ F(p)*C(p)/S(p)

where F(p) is the access count of object p. When p is initially retrieved to the cache, its
frequency F(p) is set to 1. If p is hit in the cache, its frequency is updated to F(p) =
F(p) + 1. Variations of GD-Size algorithm and GDSF algorithm are distinguished by cost
functions. Cao and Irani (1997) suggested that when cost function is defined as C(p) = 1,
the algorithm achieves best latency reduction. The algorithms with C(p) =1 are denoted
as GD-Size(1) and GDSF(1) respectively.

4.3. Predictive prefetching

In the past, several prefetching approaches have been proposed. In 1998, Markatos et al.
proposed a top-10 approach for prefetching (Markatos and Chironaki, 1998). Their gen-
eral idea is to maintain a list of the top 10 popular objects for each web server, so that
clients or proxy servers can prefetch these popular objects without significantly increasing
network traffic. In 1999, Duchamp proposed a hyperlink based web prefetching approach
(Duchamp, 1999). The general idea is to prefetch web objects hyper-linked to the current
web page. In this approach, web servers aggregate reference information and then disperse
the aggregated reference information piggybacked on GET responses to all clients. This
information indicates how often the hyper-linked pages have been previously accessed in
relation to the embedding page. Based on the knowledge on which hyper-links are generally
popular, clients initiate prefetching of the hyper-links. Palpanas and Mendelzon proposed
a compression-based partial-match model to drive prefetching (Palpanas and Mendelzon,
1999). Their study demonstrated the effectiveness of prefetching, especially when prefetch-
ing is deployed in browsers with limited cache sizes. However, their experiment only focused
on an unrealistically small prefetching buffer size, and did not address the interaction be-
tween web caching and web prefetching. It was not clear how prefetching can be used to
improve the performance of web caching.

Unlike the previous approaches, we use the web page correlation information obtained
from data cube mining (clustering). The application of data mining (clustering) algorithms
on the data cubes described in the last section provides important information on how
strong two web pages co-occur. This mean transition probability can be read directly off the
transition probability matrix for pages that belong to the same cluster. If two pages do not
belong to the same cluster then they are not correlated. Otherwise, if a page A is requested
by a user, then a page B should be prefetched if the transition probability matrix value of
(A, B) cell in the matrix is no less than the given threshold. Therefore, our basic idea is to
prefetch web objects that are highly correlated to a currently requested object.

To control the increased network traffic, a cut-off threshold value is defined on the
minimum probability value, so that the prefetching algorithm only fetches the objects whose
probabilities are above or equal to the cut-off value. The cut-off value can be viewed as

DATA CUBE MODEL 21

an accuracy control or an aggressiveness control. The higher the cut-off value, the more
precise the prediction, and the less aggressive the prefetching.

Given the prediction model, the cached objects and prefetched objects are stored in the
same caching buffer. The integrated model can fetch an object in response to a cache miss,
or prefetch an object before it is requested based on a prediction. When an object is fetched
into the cache, the prediction information based on this object is also stored, so that when
the object is hit again, the server needs not consult the original web server to retrieve the
prediction information. An integrated system makes the following decisions:

e When to prefetch and which object should be prefetched?
e Which object in the cache should be replaced when there is not enough space in the
cache?

To handle these problems, we set a “cap” for the size of prefetched objects that have not been
hit, so that the prefetching agent suspends prefetching operation when the space needed by
the prefetched objects reaches the limit. In our experiments, we set the “cap” as 30% of
the cache size, which we have found through preliminary tests to be good breaking point;
future work could test the precise optimal point of such space breakdown. The replacement
policy treats the prefetched objects and the on-demand fetched objects equally. When an
object is prefetched into the cache, its frequency is set to 1. The frequency count is updated
only after the object is actually requested. The replacement policy of Pre-GDSF is the same
as that of GDSF, except that it replaces the object with the lowest key value that is not
predicted in the prediction queue. Thus, Pre- GDSF saves the objects that will be requested
in the near future from being evicted from the cache. The Pre-GDSF algorithm is presented
in figure 2.

5. Experimental results
5.1. Trace driven simulation

We use web logs to simulate proxy traces. Our approach is justified by the fact that the web
trace and proxy trace demonstrate similar access characteristics, such as Zipf distribution
of request popularity (Almeida et al., 1996; Bestavros et al., 1995; Glassman, 1994) and
temporal locality (Almeida et al., 1996; Arlitt and Williamson, 1996; Cao and Irani, 1997).
Since web objects from a particular web site only occupy a small portion of proxy cache,
we set the cache size to a percentage of the total size of the distinct objects from the web
server.

Two web logs are used in this study. One is from a U.S. Environmental Protection
Agency (EPA)’s web server located at Research Triangle Park, NC. This web log contains
all the HTTP requests for a full day. The log was collected from 23:53:25 on Tuesday,
August 29 1995 to 23:53:07 on Wednesday, August 30 1995, a total of 24 hours. In total,
there were 47,748 requests. The timestamps have 1-second precision. The other is from
a NASA Kennedy Space Center’s web server in Florida. This web log contains all the
HTTP requests for ten days. The log was collected from 00:00:00 July 1, 1995 to 23:59:59

22 YANG, HUANG AND NG

Initialize L = 0;Q = §
Procedure Model-based Prefetch
begin
Let {v,¢r} be the current request
Q = Q + {{uy, ts;, te;) }, where (u;, ts;,te;) is prediction based on v, and
where ts; is the start time and ts, the end time of a time window
if (v in the cache)
update F(v)
K(v) = L+ F{v) * C(v)/S(v)
else
load(v)
remove all (u;,ts;,te;) from Q, where u; = v and ts; < tr < te;
end
end
Procedure Prefetch
begin
while (space taken by prefetched objects < 30% of cache)
for all (Uj,tSj,t€j> €Q
begin
if (te; > now) remove (uj,ts;,te;)
load(u;)
remove (u;,ts;,te;) from @
remove all {u;,ts;, te;) from @, where u; = u; and ts; < ts; < te;
end
end
Procedure load(p)
begin
while (no enough space in cache for p)
begin
let L = min{K{g;)), for all g; in cache and ¢; ¢ @
evict ¢ such that K(g) =L

end

load p into cache

Fp)=1

;f(p) =L+ F(p)=C(p)/S(p)

Figure 2. Pre-GDSF algorithm.

July 11, 1995. In this 10-day period, there were 719,514 requests. The timestamps also
have 1-second resolution. Since there is no information identifying file modifications, we
simply assume the web objects are not changed during the period when the web logs are
recorded. Furthermore, we do not consider the impact of uncacheable responses. We reduce
the logs by removing the uncacheable requests, such as POST requests or URLs that contain
sub-strings such as “?” or “cgi”. The summary of the cleaned web logs is listed in figure 3.

5.2. Results on clustering

To use the clustering algorithm in Section 3 to cluster a data set, the first task is to spec-
ify a k, the number of clusters to create. However, k is generally unknown for real data

DATA CUBE MODEL 23

Traces EPA NASA

Total Requests 47,748 719,514
Cacheable Requests 33,637 639,917
Sessions 2,946 57,525

Trace Size 237,101,186 14,114,855,065
Average Request Size 7,049 22,057

Distinct URLs 3,765 3,573

Size of Distinct Objects 79,648,129 159,039,462

Figure 3. Summary of web logs.

set. We tested for different values of k. After generating the clusters, we need to iden-
tify which clusters are likely to present highly correlated web logs. Because the num-
ber of clusters is quite large, individual investigation of every cluster became difficult.
We selected the average distance of objects to the cluster center, i.e., the mean of the
transition probability matrix of the cluster, as a measure for potential effective and use-
ful clusters because the average distance implies the compactness of a cluster which is
one of the important factors in cluster validation (Jain and Dubes, 1988). We expect
that highly correlated web pages exist in compact clusters which have small average
distances. We also looked at the size of clusters, i.e., the number of sessions in a clus-
ter. A reasonable size of clusters can represent the significance of highly correlated web
pages.

Here we give an example of the cluster we found in the EPA data set with session
lengths between 16 and 20. We plotted in figure 4 all clusters against their average distance
of objects to the cluster center (the mean transition frequency matrix of the cluster) and
the number of objects in each cluster. The cluster ® in figure 4 was analyzed. We find
that there is a clear similarity among these sessions in the cluster. Next we study the
mean transition probability matrix of this cluster. Figure 5 (left) shows the mean transition
probability matrix of this cluster. There are 107 pages involved in this cluster. We found
that the mean transition probability matrix is very sparse and there are only 186 nonzero
entries. For the mean transition probability matrix of this cluster, we found that a set of web

pages
C ={22,37,54,70,71,77, 83, 84, 86, 87, 96, 104, 106}

is closed, i.e., no web page outside this set C can be reached from any web page in C. If
in the transition probability matrix all rows and all columns corresponding to web pages
outside this closed set C are removed, there remains transition probability matrix Q for
which the corresponding Markov chain is irreducible (i.e., there exists no closed set other
than the set of all web pages or every web page can be reached from every other web
pages). The four steps transition probability (the probability from the state i to the state j
after four transitions) matrix is shown as in figure 5 (right). We see that the matrix is dense
and all the entries are nonzero except for the probabilities related to the closed set C. Using

24 YANG, HUANG AND NG

30 T T T T T

n
(6]
§Xx%

3
X
¥
X
X

number of objects in a cluster
= o
T T
% x
% X
X X
! X
. .

4
average distance between objects and the center

Figure 4. Distribution of numbers of objects and average distances within clusters for the data set EPA16-20.

30| -

sl
sof
ol = =
700 -

80

Q0
100}

0o 20 20 60 80 100 0 20 40 60 80 100
nz =186 nz = 9588

Figure 5. Left: The mean transition probability matrix. Right: The four steps transition probability matrix.

the transition probability matrix Q, a stationary (or invariant) probability distribution of
web pages can be computed. We show these probability distribution in figure 6. We found
that the probabilities of visiting the other 94 web pages (not the web pages in C) in the
cluster are about the same.

DATA CUBE MODEL 25

0.014

X
0.012] x « x o X X X E

0.008 - B

probability
X

o
o
o
<2}
T
.

0.004 - B

0.002 -]

0 20 40 60 80 100 120
page number

Figure 6. Stationary probability distribution for each web page.

5.3. Latency computation

A proxy server is usually located at the edge of a local area network (LAN) and acts as an
intermediary between the clients and the web servers. This model naturally partitions the
latency observed by the user into two components: the internal latency, which is caused by
the network and the computers within the organization’s bound, and the external latency,
which is caused by the network and web servers outside the organization’s bound. Since
most of LANs are orders of magnitude faster than the Internet, the internal latency is usually
much smaller than external latency (Wooster and Abrams, 1997). In the experiments, we
ignore the internal latency and only consider the external latency.

In Padmanabhan and Mogul (1996). the data-pipe between the proxy and the server
is modeled using linear regression. Retrieving an object of size s is assumed to incur a
connection time and a transmission time, yielding a total time of

by + 5 * by

where by is the connection time and b; the per-byte transmission rate. In their study, they
accumulated proxy logs recording the latency observed by the proxy and the sizes of the
requested objects. From the set of n data points, {(/;, s;)}, where /; is the latency, the
parameters of the linear regression can be computed as

oyl = Y si by — Yicili = b1y s
- n n 2 -
”Z;:r‘;z - (Zi:lsi) "

Their experiment on a host located in University of California, Berkeley suggests the
values of the parameters as by = 1.13 seconds and b; = 5.36 x 1073 seconds/byte

b

26 YANG, HUANG AND NG

(Padmanabhan and Mogul, 1996). In our simulation, we adopt these values to compute
the latency. However, a similar experiment can be conducted to estimate by and by, for any
practical applications of our model.

5.4. Results on latency reduction

We use 50% of the sessions in each web log to find the clusters along with the probability
matrices and the other 50% of the sessions to evaluate Pre-GDSF algorithm. In particular,
we set the cost of each object to 1 and set the prefetching cut-off values to 0.6, 0.5, 0.3
and 0.1 separately. The algorithms are denoted as Pre-0.6, Pre-0.5, Pre-0.3 and Pre-0.1
respectively. To stabilize the status of the cache, we use 1/4 of the training sessions to warm
up the cache. We conduct the experiments with different cache sizes, specifically, 0.5%, 1%,
2.5%, 5% and 10% of the total size of the distinct web objects. The results in terms of hit
rate, byte hit rate, fractional latency and fractional network traffic are shown in figures 7—-10.
It can be seen that Pre-GDSF outperforms GDSF for all cache sizes in terms of hit rate,
byte hit rate and latency reduction. For EPA data in figure 7, Pre-0.5 improves hit rate
from 56% to 65.5% and byte hit rate from 16.5% to 23%, when the cache size is 0.5%. On
NASA data, Pre-0.3 improves hit rate from 67.5% to 75.3% and byte hit rate from 24.1%
to 34.7%, when the cache size is 1%. Our results show Pre-GDSF can improve latency
with only modest increase in network load. For EPA data, Pre-0.6 reduces latency by 4.8%
(from 52.3% to 47.5%), while increasing network traffic by 2.7% when cache size is 0.5%.
For NASA data, Pre-0.5 reduces latency by 6.7% (from 54.7% to 48%), while increasing
network traffic by 5.8% when cache size is 1%. More importantly, a prefetching system can
reduce latency more than a non-prefetching system given the same increase in the available
bandwidth, because the connection time is one of the dominating factors of the latency.

Hit rate vs. cache size Byte hit rate vs. cache size
il
50 3
o g 4‘% a5 ()
E g 40 ——Pre-0.6
0 g <ok - -Pre-05
e 5030 —¥—Pre-0.3
- o —¥—Pre-0.1
5 . / ——
- g
ey
10
50 1 i 1 1 | 0 ! ! 1 1 |
02 4 6 8 10 0 2 4 6 8 10
Cache size (%) Cache size (%)

Figure 7. Comparison of hit rate and byte hit rate (EPA).

DATA CUBE MODEL 27

Byte hit rate vs. cache size
Hit rate vs. cache size

80
100
’ %
% &
g
~ S 50
E 80 3 ..
g ; 10
g =
= 70] JU
Tz %
<290
60
10
50 L 1 I- 1 0 1 L L L
vz 4 6 & W 0 2 4 6 8 10
Cache size (%) Cache size (%)

Figure 8. Comparison of hit rate and byte hit rate (NASA).

Fractional latency vs. Fractional network traffic
ache si vs. cache size
cacne slze 220%
s %
- g ——(DSF(1)
o 3% —8—Pre-(.6
; i <o dees Pre-(. 5
= - —%—Pre-0.3
3 £< —%—Pre-0.1
< &
2 z H
[4]
<
90 1 1 I 1 i A% | 1 1 |
0 2 4 6 8 10 02 4 6 8 10
Cache size (%) Cache size (%)

Figure 9. Comparison of fractional latency and fractional network traffic (EPA). The curve of Pre-0.6 is very
close to that of GDSF.

Figures 9 and 10 show the tradeoff between latency reduction and increased network
load. From these figures, we can see more aggressive prefetching algorithms achieve better
latency reduction while increasing more network traffic, except for Pre-0.1. This is because
Pre-0.1 is too aggressive. It prefetches too many future objects, thus causing too many

28 YANG, HUANG AND NG

Fractional latency vs. Fractional network traffic
cache size vs. cache size
0
% 160%
o & 1408 |
5 E \ —+—GDS?(1)
< 50 5 120 —4—Pre-0,6
» _.C i \1\ ks Pres(. §
5 1 5 100% —Pre-0. 3
g 1 .E ‘\\ \ ——Pre-(, |
- 2 80% i&%\d\‘\\\j—k
g ¥ g om \
20 1 g 40 \1
s
'y 1 L L "
10 .

0 2 4 6 8 10
Cache size (%) Cache size (%)

Figure 10. Comparison of fractional latency and fractional network traffic (NASA). The curve of Pre-0.6 is very
close to that of GDSF.

wastes and forcing too many frequently accessed objects out of the cache. It verifies that
too aggressive prefetching is harmful to the performance.

We also observe that prefetching system is more effective for smaller cache than larger
ones. On EPA data, Pre-0.6 reduces latency by 4.8% (from 52.3% to 47.5%), with cache
size of 0.5%, while it reduces latency by only 1.8% (from 28.1% to 26.3%), with cache
size of 10%. For NASA data, Pre-0.5 reduces latency by 7.4% (from 62.4% to 55%), with
cache size of 0.5%, while it reduces latency by only 2.9% (from 22.3% to 19.4%), with
cache size of 10%. To explain why this happens, we show the number of prefetches made
by Pre-0.5 on NASA data in figure 11.

Number of prefetches vs. cache size
(Pre-0.5)

30000 |

25000

20000 Evaste

15000 Ohit
10000

5000 | H
0 L L 1 L E

0.5 1 2.0 5 10
Cache Size (%)
188,500 predictions nade

of prefetches

Figure 11. Number of prefetches versus cache size (NASA). Hit is the number of prefetched documents that are
requested by the user, and waste is the number of prefetched documents that are not requested by the user.

DATA CUBE MODEL 29

In figure 11, Pre-0.5 makes totally about 188,500 predictions. When the cache size is
0.5%, 26,790 of the 188,500 predictions (about 14%) result in prefetching, while the others
hit the objects already in the cache. When the cache size is 10%, only 4,876 of the 188,500
predictions (about 2.6%) result in prefetching. This is because larger caches hold more
access objects, especially frequently happened ones. Once loaded into the cache, they are
more likely to stay in the cache due to the effect of replacement policy. In that case, even
though the predictions are correct, they do not result in prefetch. The fact that prefetching
benefits small cache is particularly important for proxy servers. Because proxy caches
contain web objects from many web sites, the portion of the cache used for each web site
is relatively small.

6. Conclusions

We have made two linked contributions in this paper. First, we have presented a cube model
to represent Web access sessions. This model is different from other cube approaches
(Kimball and Merx, 2000; Zaiane et al., 1998) in that it explicitly identifies the Web access
sessions, maintains the order of session’s components (or Web pages) and uses multiple
attributes to describe the Web pages visited in sessions. The three dimensional cube structure
simplifies the representation of sequential session data and allows different data analyses
to be easily conducted, such as summary statistical analysis, clustering and sequential
association analysis. Second, we have applied our clustering results using the data cube
model to the problem of integrated web caching and prefetching. Because the statistical
results are stored in the data cubes, by applying the clustering algorithm to transition
probability matrices we are able to efficiently obtain the correlation probabilities between
web pages. This information is then used to power a prefetching engine. Experimental results
show that the resultant system outperforms web systems that are based on caching alone.

In our future work we will conduct further cluster analysis on sessions with more attributes
such as time and category, and use such information for prefetching. For example, if two
sessions have a similar set of pages, whether the time spent on each would make them
different. If we consolidate Web pages into categories with a classification scheme, what
kind of cluster patterns would result? How are the cluster patterns related to the topology
of the Web site? Can these patterns be used to improve the Web site structure? How can
the Web topology be used as constraints in the clustering algorithm? All these interesting
questions need further studies to answer. Moreover, in this paper, we only use one-step
transition probability matrix to cluster sessions. We plan to conduct a detailed clustering
analysis using multi-step transition probability matrices (i.e., the next web page to visit
depends on the current and the previous pages) to cluster sessions. We expect higher order
Markov model will give us a better prediction model.

Acknowledgment

We thank Michael Zhang for part of the implementation and discussion. We thank Hong
Kong University of Science and Technology, the University of Hong Kong and Simon Fraser
University for their support.

30 YANG, HUANG AND NG

References

Almeida, V., Bestavros, A., Crovella, M., and Oliveira, A. (1996). Characterizing Reference Locality in the WWW.
In Proceedings of the International Conference in Parallel and Distributed Information Systems, Miami Beach,
FL, pp. 92-103.

Arlitt, M. and Williamson, C. (1996). Web Server Workload Characterization: The Search for Invariants. In
Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems.

Bestavros, A., Cunha, C., and Crovella, M. (1995). Characteristics of WWW Client-Based Traces. Technical
Report, Boston University.

Cao, P. and Irani, S. (1997). Cost-Aware WWW Proxy Caching Algorithms. In USENIX Symposium on Internet
Technologies and Systems, Monterey, CA.

Cherkasova, L. (1998). Improving WWW Proxies Performance with Greedy-Dual-Size-Frequency Caching Policy.
In HP Technical Report, Palo Alto.

Cooley, R., Mobasher, B., and Srivastava, J. (1999). Data Preparation for Mining World Wide Web Browsing
Patterns. Knowledge and Information Systems, 1(1), 1-27.

Duchamp, D. (1999). Prefetching Hyperlinks. In Proceedings of the Second USENIX Symposium on Internet
Technologies and Systems, Boulder, CO.

Glassman, S. (1994). A Caching Relay for the World Wide Web. In The first International World Wide Web
Conferencing, Geneva, Switzerland.

Huang, Z. (1998). Extensions to the k-means Algorithm for Clustering Large Data Sets with Categorical Values.
Data Mining and Knowledge Discovery, 2(3), 283-304.

Jain, A.K. and Dubes, R.C. (1988). Algorithms for Clustering Data. Prentice Hall.

Kimball, R. and Merx, R. (2000). The Data Webhouse Toolkit—Building Web-Enabled Data Warehouse. Wiley
Computer Publishing.

Markatos, E. and Chironaki, C. (1998). A Top 10 Approach for Prefetching the Web. In Proceedings of INET’98
Conference, Geneva, Switzerland.

Nasraoui, O., Frigui, H., Joshi, A., and Krishnapuram, R. (1999). Mining Web Access Logs Using Relational
Competitive Fuzzy Clustering. In Proceedings of the Eight International Fuzzy Systems Association Congress.

Padmanabhan, V. and Mogul, J. (1996). Using Predictive Prefetching to Improve World Wide Web Latency.
Computer Communication Review, 26(3), 22-36.

Palpanas, T. and Mendelzon, A. (1999). Web Prefetching Using Partial Match Prediction. Web Caching Workshop,
San Diego, CA.

Shahabi, C., Faisal, A., Kashani, E.B., and Faruque, J. (2000). INSITE: A Tool for Real-Time Knowledge Discovery
from Users Web Navigation. In Proceedings of VLDB2000, Cairo, Egypt.

Spiliopoulou, M. and Faulstich, L.C. (1998). WUM: A Web Utilization Miner. In EDBT Workshop WebDB98,
Valencia, Spain, Springer.

Taha, T. (1991). Operations Research, 3rd edn., Collier Macmillan, N.Y., USA.

Williams, S., Abrams, M., Standridge, C., Abdulla, G., and Fox, E. (1996). Removal Policies in Network Caches
for World Wide Web Documents. In Proceedings of ACM SIGCOMM, Stanford, CA, pp. 293-305.

Wooster, R. and Abrams, M. (1997). Proxy Caching that Estimates Page Load Delays. In Proceedings of the Sixth
International World Wide Web Conference, Santa Clara, CA, pp. 325-334.

Zaiane, O.R., Xin, M., and Han, J. (1998). Discovering Web Access Patterns and Trends by Applying OLAP and
Data Mining Technology on Web Logs. In Proceedings of Advances in Digital Libraries Conference (ADL’9S),
Santa Barbara, CA, pp. 19-29.

