Mining the Customer’s Up-To-Moment
Preferences for E-Commerce Recommendation

Yi-Dong Shen!, Qiang Yang? Zhong Zhang®, and Hongjun Lu?

! Lab. of Comp. Sci., Institute of Software, Chinese Academy of Sciences, China
ydshen@ios.ac.cn
2 Hong Kong University of Science and Technology, Hong Kong, China
{qyang, luhj}@cs.ust.hk
3 School of Computing Science, Simon Fraser University, Burnaby, Canada
zzhang@cs.sfu.ca

Abstract. Most existing data mining approaches to e-commerce recom-
mendation are past data model-based in the sense that they first build
a preference model from a past dataset and then apply the model to
current customer situations. Such approaches are not suitable for appli-
cations where fresh data should be collected instantly since it reflects
changes to customer preferences over some products. This paper targets
those e-commerce environments in which knowledge of customer pref-
erences may change frequently. But due to the very large size of past
datasets the preference models cannot be updated instantly in response
to the changes. We present an approach to making real time online rec-
ommendations based on an up-to-moment dataset which includes not
only a gigantic past dataset but the most recent data that may be col-
lected just moments ago.

1 Introduction

E-commerce recommendation is aimed at suggesting products to customers and
providing consumers with information to help them decide which products to
purchase. Several approaches have been applied to making such recommenda-
tions, such as nearest-neighbor collaborative filtering algorithms [7], Bayesian
networks [4], classifiers [3], and association rules [9]. Observe that most existing
recommendation approaches are past data model-based in the sense that they
walk through the following process:

Historical Data = Preference Model = Preferences = Recommendation.

That is, they first build a preference model from a set of historical transaction
data. Then they measure customer preferences over a set of products based on
the model. The preferences establish a partial order on the products. Therefore,
recommendation is made by choosing products with top preferences. For exam-
ple, Bayesian approach builds its model — a Bayesian network, by learning the
prior and posterior probabilities of products from the given dataset. Then, given
a customer’s current shopping information, the customer’s preferences over some

products are derived by computing the posterior probabilities of these products.
Similarly, the association-rule approach takes a set of association rules as its
model. An association rule [1] is of the form p1,...,pm — po (%, %), which, in
the context of super-marketing, may mean that there would be ¢% possibility
that a customer who has bought products py, ..., p;, Will buy the product po. Let
M be a preference model and {py, ..., pm } be the set of products in a customer’s
current shopping cart. pg is a candidate product for recommendation to the cus-
tomer if M has an association rule of the form py, ..., pm — po (%, c%). po will
be recommended to the customer if the confidence ¢% is among the top of all
candidate products.

Apparently, the bottleneck of past data model-based approaches is in the
development of their models. In many e-commerce applications, the historical
dataset would be very large and it may take a long time to build a model from it.
This suggests that the model needs to be built off-line (or in batch). As a result,
such approaches are suitable only for applications where knowledge of customer
preferences is relatively stable.

However, in many e-commerce applications the business patterns may change
frequently. In such situations, new precious data should be collected instantly
since it reflects changes (increase or decrease) to customer preferences over some
products. Since past data model-based approaches are unable to catch up with
such frequent changes, their models may not fully cover the up-to-moment sta-
tus of the business, and therefore applying them alone would lower down the
recommendation accuracy.

The above discussion suggests that methods of making use of up-to-moment
(not just up-to-date) data need to be developed for e-commerce recommendation.
Such methods should keep abreast of the up-to-moment changes to customer
preferences. This motivates the research of this paper.

1.1 Problem Statement

The problem can be generally stated as follows. Let SMyqs: be a model built
from the data which was collected between time points tyo and ¢; as depicted
below. Assume that no updated model is available until time ¢ and that there
would be a certain amount of fresh data available during the period ty — #;.
Suppose a customer logs into the system for online shopping and asks for product
recommendation at time ¢; (t; < t; < t2). For convenience, the data collected
between to and t; is called past data, whereas the data collected between t; and
t; is called recent data. We are then asked to design a system that can make real
time online recommendations based on the up-to-moment data which includes
both the past and recent data. By “real time” we mean a response time with
which customers can tolerate during online shopping (e.g., a few seconds).

~
up—to—moment

Here are the characteristics and challenges of the problem: (1) The past data
would be massive, say Megs or Gigs of records, so that it cannot be directly used
in real time. A model needs to be built off-line (or in batch) from the data. Model
building is quite time-consuming, though applying a model to make recommen-
dations can be done in real time. (2) The volume of the recent data is much
smaller than that of the past data, possibly in the hundreds of orders. For ex-
ample, in our super-store data mining project, the past dataset always contains
at least three months of past transaction data whereas the recent dataset only
contains the data of the current day. The recent data was most recently gener-
ated and includes some data that was collected just moments ago. (3) Thus we
are faced with the following challenge in applying the up-to-moment data. The
dataset is so huge that we cannot apply it to make online real time recommenda-
tions unless a model is built from it off-line or in batch in advance. However, in
reality the time between the most recent data being collected and the customer
requesting a recommendation may be very short (possibly less than one second),
so it is impossible for us to prepare such a model in advance or build it instantly.
Thus it appears that we are in a dilemma situation. Effectively resolving such a
dilemma then presents a challenging task.

1.2 Owur Solution

In its most general case, this problem seems too difficult to be tractable. Our
study shows, however, that it could be effectively handled when some practical
constraints are applied. We choose association rules as our preference model.
Since the population of the recent data within the up-to-moment data is much
smaller than that of the past data, statistically the recent data can only bring
minor changes (increase or decrease) to the past preferences. In other words,
the recent data can only play a role of small adjustments to the customer’s past
preferences in response to the recent minor changes. This implies that the large
majority of the supporting records of any up-to-moment frequent pattern may
come from the past data. Therefore, in this paper we restrict ourselves to these
situations where any up-to-moment frequent pattern occurs in at least one record
of the past data.

The key idea of our approach stems from the following important observa-
tion: A few patterns that do not frequently occur in the past data may become
frequent in the up-to-moment data, whereas a few other patterns that frequently
occur in the past data may not be frequent in the up-to-moment data. However,
due to the rather small population of the recent data within the up-to-moment
data, the preferences of all such inversable patterns in the past data must be
close to the minimum preference that is required for recommendation.

Based on the above observation, we introduce a concept of expanded past pref-
erence models, as opposed to the standard preference models [1]. An expanded
past preference model is built off-line from the past data and contains not only
standard association rules but also a few expanded association rules that repre-
sent those patterns that are less frequent in the past data but quite likely to be
frequent in the up-to-moment data. Then, given the customer’s current shopping

information, we apply a criterion, called Combination Law, to derive the cus-
tomer’s up-to-moment preferences directly from the expanded past model and
the recent data. Let SM,;,, denote a standard preference model built from the
up-to-moment data. We will prove that applying our approach will generate the
same recommendations to the customer as S My, does, though we do not need
to build SMy;,, at all.

1.3 Related Work

For typical recommendation approaches and applications, see the 1997 special
issue of the Communications of the ACM [10] and a recent special issue of Data
Mining and Knowledge Discovery [8]. In particular, Shafer et al. [11] made an
elegant survey on major existing systems and approaches to e-commerce rec-
ommendation. To the best of our knowledge, however, there is no report in
the literature on how to use the up-to-moment data to make real time recom-
mendations. Most existing approaches are past data model-based, which make
recommendations by first building a (standard) past preference model off-line
against a previously prepared training dataset and then applying the model to
current customer situations. The model is updated periodically. As a typical ex-
ample, the SmartPad system developed at IBM makes recommendations using
a model of association rules [9]. The model is built on the past eight weeks of
data from Safeway Stores and is updated weekly or quarterly to reflect seasonal
differences.

Our work focuses on doing interactive and online preference mining (in real
time). So it is essentially different from the incremental update of association
rules, a topic that addresses how to efficiently update a (standard) past prefer-
ence model that was built from an old dataset (DB) based on an incremental
dataset (db) [2,5,6,12]. Existing incremental updating algorithms make use of
some knowledge of an old model to build a new model from DB U db. Although
applying these algorithms to update a model is faster than building a new model
from scratch, it is still quite time-consuming since scanning the old dataset can-
not be avoided. When DB is massive, such update cannot be completed online
in real time. Moreover, if we applied an incremental updating procedure to mine
the up-to-moment preferences, we would have to update the model every time
a new record is added to the dataset, which is quite unrealistic in real online
processing.

2 System Architecture

We assume readers are familiar with association rule mining, especially with the
widely used Apriori algorithm [1]. A dataset DS is a set of records each of which
is of the form {p1,...,pm}. We use |DS| to denote the total number of records
in DS and count({p1,...,pm}, DS) to denote the number of records in DS that
contain all the items pi,...,pm. A (standard) preference model built from DS
consists of a set of association rules. A set of items, {p1,...,pm}, is a frequent

pattern in DS if its support s% = countUip ’fggl"pm}’DS) > ms%, where ms% is

a pre-specified parameter called minimum support. Let {p1, ..., pm } be a frequent
pattern. For each i <m, p1,...,Di—1,Dit1, -, Pm — Di (8%, c%) is an association
rule in the preference model if ¢<% > mc%, where mc% is another pre-specified
parameter called minimum confidence, and ¢% is the confidence of the rule given
by ¢% = Count(i;?ﬁ(;’j i’;;;f’ﬁ’}.’.?gl}, psy- We will frequently use three terms: past,
recent and up-to-moment. Let x be one of them. Here is some of the notation
used throughout this paper. ms%: the minimum support; mc%: the minimum
confidence; DS;: an x dataset; SM,: a standard z preference model built from
DS, with ms% and mc%; and EM,,s: an expanded past preference model built
from DSpqse with ms% and mc%.

The architecture of our recommendation system is shown in Figure 1. The
system works on two datasets: the past dataset DSp,s: that stores the past data,
and the recent dataset DSy¢cent that stores the recent data. DSy, is much larger
than DS,ccent, possibly in the hundreds of orders. The up-to-moment dataset
DSytm = DSpast U DSpecent- Since DSpqs is gigantic, the system builds off-
line or in batch an expanded past preference model from it (see Definition 1 in
the following section). Then, given a customer’s current shopping information,*
the customer’s up-to-moment preferences are computed online by combining the
knowledge about the customer’s past preferences that is derived from the ex-
panded past model EM,,; and the knowledge about his/her recent preferences
that is derived from DSpecent- When a customer finishes shopping by logging
out the system, a new record built from the products in the customer’s shopping
cart is added to DSyecens immediately. Since we only keep most recent data in
DS, ccent, the “old” data in DSpecent will be moved to DSpqs from time to time.
Moreover, when DS, gets too big, some data will be removed. All such data
transfers are monitored by the Database management facility.

3 Building an Expanded Past Model

Our goal is to compute the customer’s up-to-moment preferences without build-
ing an up-to-moment preference model. To this end, we need to build a so-called
expanded past preference model EMyqq¢ from DSpq4¢. Two factors are consid-
ered in developing such an expanded model: completeness and efficiency. EMp,s;
is complete if for any standard association rule X — Y (5%, ¢%) that is derivable
from DSytm, there is an expanded association rule X — Y (s'%, ¢ %) in EMpgst.
One might consider defining EMp,,: as a standard preference model which is
built from DSpes by setting the minimums ms% = 0 and mc% = 0. Although
doing so can guarantee the completeness, it is definitely too inefficient, if not
impossible, because of the nature of the association mining problem [1]. The
efficiency factor then requires that both the number of rules in EM,,,; and the
time to build EMp,s be as close as possible to those of SMp,s — the standard

4 It may contain the customer’s profile as well as the products in his current shopping
cart. To simplify our presentation, we omit the profile.

Expanded
r‘il es_/ EMpast

Compute the
up-to-moment

preferences

******* Shopping
Cart

Customer Selected
logs out products
Customer Customer selects
~ " logsin = products
Recomm:
products

Recommended products

Interactive and online

Fig. 1. A recommendation system based on the up-to-moment data.

past preference model built from DSp,s¢ with the pre-specified minimums. In
particular, EMpqs: is said to be scalable if the larger the past dataset DSpqs: is,
the closer EMpqst is to SMpqse w.r.t. the number of their rules and the running
time.

In order to get high efficiency while guaranteeing the completeness, we in-
troduce a new parameter, Nz, called one day’s mazimum. Intuitively, N oz
represents the one day’s maximum sales of a single product, which can be ob-
tained from past experience. More formally, let P be the set of all products,
then at any time we have Npq, > maz{count({p}, DSrecent)|lp € P}. It is
based on this new parameter that our expanded model is defined. In the sequel,
both N4z and the two minimums ms% > 0 and mc% > 0 are supposed to be
provided by the e-commerce manager.

Definition 1. Anexpanded past preference model EMyqs¢ of DSpqst consists of

all expanded association rules defined as follows: (1) {p1,...,pm} is an expanded
) yoresPm },DSpast) F Nimaz
frequent pattern if count({p1, ..., pm }, DSpast) > 0 and Count({pTDsisj-i-Nia:H

> ms%. (2) Let {p1,....,pm} be an expanded frequent pattern. For each i < m,

D1y s Die1,Pit1s -y Pm — Di (s%,c%) is an expanded association rule if
count({p1,...,Pm},DSpast) +Nmaz > count({p1,....,pm },DSpast)
mc% where s% =
count({pl,...,p,-_l,p,-+1,...(,{pm},DSpisi)—i-Nm()m = % % [DSpast]
_ count({p1,...,pm },DSpast
and %o = count({p1,..-,pi—1,Pi+1,---sPm },DSpast) *

Note that the support s% and confidence ¢% of an expanded association
rule are the same as those defined for a standard association rule. However,
due to the inclusion of Npqz, the thresholds for an expanded frequent pattern
or an expanded association rule are a little lower than the two pre-specified
minimums. This allows EMp,.s to catch those patterns/association rules that

are unable to be included in SMp,s; but may possibly appear in SMym,. We
have the following.

Theorem 1. EM,, is complete.

The following theorem shows that any standard association rule in SMpqs¢
is an expanded association rule in EM,,s.

Theorem 2. SMpast C EMpgst.

The following result assures us that the expanded association rules can be
derived using standard association mining methods such as Apriori.

Theorem 3. Any sub-pattern of an expanded frequent pattern is an expanded
frequent pattern.

Before moving to the next section, we briefly answer the question readers
may pose about how to keep N, to be the maximum count in DS,¢cepns. This
can be realized simply by treating DS,ecen: in batches. If at time ¢; there is a
product in DS,ccen: Whose sales are about to reach the maximum N, (10%
below N4 in our project. The exact measure depends on applications), we
add the data of DSyecent to the past dataset DSpes: and build in batch a new
expanded past preference model from DSp,s: in advance. As a result, when it
happens that the sales of an item in DS,ecent exceed Npqz, the new expanded
past model must be available, which covers the past data collected up to time ;.
Thus the new expanded past model EMq4:, together with a new recent dataset
DS,ecent that consists of the data collected from ¢; up to the current moment,
is used to compute the customer’s up-to-moment preferences.

4 Computing the Up-To-Moment Preferences

Let SC = {p1,...,pm} be the set of products in a customer’s current shopping
cart. We make online product recommendations for the customer by computing
his up-to-moment preferences over those products related to SC. That is, we
derive from EMyqs¢ and DSpecent all rules of DSy of the form py,...,pym —
p (8%,c%) with s% > ms% and ¢% > mc%. This is done via the three steps
summarized in the following table.

Given SC = {p1, ..., pm }-

Step 1: Derive Rpqs (rules about the customer’s past preferences) from EMpgst.

Step 2: Derive Ry ecent (rules about the customer’s recent preferences) and
countp, —pm from DSpccent based on Rpes; (see Algorithm 1).

Step 3: Combine Rpqs¢ and Ryecent to obtain PLyy, (the customer’s
up-to-moment preferences; see Algorithm 2).

The first step is to extract from E M, the knowledge about the customer’s
past preferences over those products related to SC. We search EM,,q,: to obtain

the set Rpqs¢ of rules of the form pi,...,pm — p (s%,c%). By Theorem 1, all
rules of DSy, related to SC are in Rpq4:. The second step is to extract from
DS, ecent the knowledge about the customer’s recent preferences related to SC.
By Theorem 1, it is unnecessary to derive from DS, ..o all rules with a left-
hand side py, ..., pm; it suffices to derive only the set R,ccen: Of rules each of
which is of the form py,...,pm — p (52%,c2%) such that there is a rule of
the form py1,...,pm — p (51%,¢1%) in Rpes. Such new rules reflect changes to
the customer’s past preferences over those products related to SC. Here is an
algorithm.

Algorithm 1 Extracting rules about the customer’s recent preferences.
Input: SC, DSrecent and Rpgst.
Output: Rrecent and county, —p,.. = count(SC, DSyecent)-

Procedure:

1. Ryecent = @;

2. Head = {p|p1,--;pm = p (51%,¢1%) is in Rpgst};

3. Select all records containing pi, ..., pp, into TEM P from DS,ccent;
4. for each product p € Head do begin

5. Compute count, = count({p}, TEM P);

6. if count, > 0 then do begin

7. 8% = hgmt % 100%; 2% = rrggrer * 100%;

8. Add the following rule to Ryecent: P1y - Pm — P(82%, c2%)

9. end
10. end
11. Return Ryecent and count,, _p,. with county, _p, = |[TEMP|.

Although both the support and confidence of a rule are computed in Algo-
rithm 1 (see line 7), neither the minimum support nor the minimum confidence
is used because we are not ready to remove any rules at this stage. We will do
it next in conjunction with those rules about the past preferences.

Theorem 4 (Combination Law). SMy, has a rulepy, ...,pm — p (83%, c3%)
if and only if one of the following holds: (1) There are two rules p1,...,pm —

p (51%,¢1%) in Rpast and pr,...,pm — D (52%,¢2%) in Rrecent- Then s3% =

51%*|DSpast|+52%%|DSrecent| > ms% and C3% — 81%*|DSpast|+852%%|DSrecent| >
[DSutm] - 751*“):1’“” +countp; —p,, -

$1%*|DSpast]

mc%. (2) Only Rpqast has a rule py,...,pm — p (1%, ¢1%). Then s3% = Fokom

> ms% and c3% = 51%x|DSpas| > mc%.

51+ DSpast]
———r tcountp, —pp,

Theorem 4 is quite significant. It allows us to derive the customer’s up-
to-moment preferences directly from R,,s¢ and Rpecent, without building any
up-to-moment preference model. In the following algorithm, by CL(i) we refer
to the i-th case of the Combination Law (i = 1 or 2).

Algorithm 2 Deriving the customer’s up-to-moment preferences.
Input: Rpgst, Rrecents |DSpast|s |DSrecent|s |DSutml, countp, —p,., ms% and mc%.

Output: an up-to-moment preference list, PLyp,.

Procedure:

1. PLygm = @;

2. while (R,,s # 0) do begin

3. Remove from Ry, a rule py, ..., pm — p (51%,c1%);
4. if Ryecent has a rule pr,...,pm — 0 (82%,c2%) then
5. Compute s3% and ¢3% by applying CL(1);

6. else Compute s3% and ¢3% by applying CL(2);

7. if s3 > ms and ¢35 > mc then

8. PLyt = PLygn U {p (3%, c3%)}

9. end

10. Return PL,;,, which is sorted by confidence.

Algorithm 2 computes the customer’s up-to-moment preferences based on
the Combination Law. In particular, it computes the up-to-moment preferences
by applying the recent preferences to adjusting the past preferences. Let PP =
p (81%,c1%) be a past preference item; i.e. Rpqst has a rule pi,...pm — p
(81%, c1%). There may be three cases. First, both s1 and ¢; are sufficiently high
to survive any recent changes, so that the product p is guaranteed to be included
in the up-to-moment preference list PLy¢,,. Second, PP is positively marginal
in the sense that s; or ¢; is just a little higher than ms or mec. In this situation,
the recent changes may invalidate the past preference by lowering it down below
either of the two minimums so that the product p is excluded from PL.;y,.
The third case is that PP is negatively marginal; i.e. either s; or ¢; is a little
lower than ms or mec. In this case, the past preference may be lifted above the
minimums by the recent changes so that the product p is included in PLp,.

Theorem 5. Algorithm 2 is correct in the sense that for any customer’s current
shopping cart SC = {p1,...,Dm}, SMuytm has a rule p1,....,pm = 0 (s3%,c3%) if
and only if p (s3%,c3%) € PLytm,.

5 Experimental Evaluation

The correctness of our approach is guaranteed by Theorem 5. We now show
its efficiency by empirical experiments. Our experiments were conducted on a
Pentium IIT 600 MHz PC with 512M memory. We applied the Apriori algorithm
to mine association rules with the minimums ms% = mc% = 1%.

Our dataset for the experiments came from a retail store. The dataset con-
sists of eight weeks of daily transaction data. To facilitate our experiments, we
fixed a past dataset DSpqs¢ that consists of 687571 records. We then collected
five recent datasets DS (4415 records), DS? (5830 records), DS?

recent recent recent
(7245 records), DS2,..,.; (8660 records), and DS3,..,.; (10077 records) at five

consecutive sampling times T1,...,T5. As a result, we got five up-to-moment

datasets DSL,,DS3, with DS%, = DSp,s UDS:

ecent*
Since DSyecent is small, computing the recent preferences (the second step

of our approach) takes very little time because it is accomplished simply by

counting the frequency of each single product in DSyecent (see Algorithm 1).
It takes even less time to extract the past preferences from EMp,s (the first
step) and do the combination of the past and recent preferences (the third step;
see Algorithm 2). Experiments for such claims were conducted by simulating
a customer’s shopping process in which we assumed that a customer asked for
product recommendation at the times T3, Ts, ... and T}, respectively.

At time T7 the customer’s shopping cart was empty. Our system computed
the up-to-moment preferences and made a recommendation. The customer se-
lected a product from our recommendation and then asked for more at time
Ts. The process then went to the next cycle. For each T; we recorded the re-
sponse time for the period of the customer presenting the request and the system
sending back the recommendation. Figure 2 shows the response time of our ap-
proach in contrast to the response time of the brutal-force approach that directly
applies Apriori to derive the up-to-moment preferences. Clearly, using our ap-
proach takes a very short response time (1.38 seconds on average), while using
the brutal-force approach spends 86.7 seconds on average.

120
—_ —&— The Brutal-Force Approach
£ 100 7 —8— Our Approach
(]
E 80 90.59 92.61
F goos 8351 8.7
8 60 -
c
2 40
o
© 207 1.02 36 1.53
. 1.51 1. . 1.51
ol 1g 1y 19 asy |
T1 T2 T3 T4 TS5

Sampling Time

Fig. 2. The response time at five consecutive sampling times.

The above experiments demonstrate that the customer’s up-to-moment pref-
erences can be derived in real time by performing the three steps of our approach,
provided that the expanded past model is prepared in advance. We now show
the efficiency of building an expanded model EM,,,; as compared to building a
standard past model SM,,,5:. As we mentioned before, this can be measured by
showing how close the two models are w.r.t. the number of their rules and the
time to build them. In order to see the scalability of our approach, we built from
DSpes: five datasets as past datasets, with DS; (269K records) consisting of the
data of the first three weeks, DS, (372K records) of the first four weeks, ..., and
DS; (690K records) of the seven weeks. Moreover, by randomly picking up ten
days among the seven weeks and counting the sales of each single item in each
selected day, we got the number 1217 for the one day’s maximum parameter

Nmaz-

The comparison of the running time and the number of rules is depicted in
Figures 3 and 4, respectively. We see that it does not take much more time to
build an expanded past model EM;ast from DS; than to build a standard past
model SM; ., from DS; (see Figure 3), and that although EM], ., is about two
times bigger than SM, ., EM?,, is very close to SMJ, ., (see Figure 4). This
shows our approach is efficient and has very good scalability. That is, the bigger

the past dataset is, the closer the expanded model is to the standard model.

130
0 99.7 109.1
Py | .
£ 100
= 98.7
2 701 58.9
‘€ 66.2
g] 56.3
n:,f 40 —&— Standard Model
36.4 —— Expanded Model
10

DS1 DS2 DS3 Ds4 DS5
Data Sets

Fig. 3. Comparison of the running time of building an expanded and a standard past
preference model.

9000
—&— Standard Model
7000 - 8450 —#— Expanded Model
7685
5340
6177 4979
5000 1

Number of Rules

3000 guec 4211 3840 gg55 3860

1000
DS1 DS2 DS3 DS4 DS5

Data Sets

Fig. 4. Comparison of the number of rules of an expanded and a standard past pref-
erence model.

6 Conclusions

We have developed an approach to making online e-commerce recommendations
based on the up-to-moment data. A key concept of this approach is an expanded

past preference model from which the customer’s up-to-moment preferences can
be derived in real time without the necessity to build an up-to-moment model.
Our approach is suitable for applications where knowledge of customer prefer-
ences may change frequently but due to the huge size of past datasets the prefer-
ence models cannot be updated instantly in response to the changes. Therefore,
it is an enhancement to existing past data model-based approaches which are
suitable only for applications where customer preferences are relatively stable.

Acknowledgment

The authors thank the anonymous referees for their helpful comments. Yi-Dong
Shen is supported in part by Chinese National Natural Science Foundation,
Trans-Century Training Program Foundation for the Talents by the Chinese
Ministry of Education, and Foundations from Chinese Academy of Sciences.
Qiang Yang thanks NSERC, IRIS-IIT program and Hong Kong RGC for their
support.

References

1. R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In VLDB,
pages 487-499, 1994.

2. Y. Aumann, R. Feldman, O. Lipsttat, and B. H. Manilla. An efficient algorithm for
association generation in dynamic databases. Journal of Intelligent Information
Systems, 12:61-73, 1999.

3. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: using social
and content-based information in recommendation. In Proceedings of the National
Conference on Artificial Intelligence, pages 714-720, 1998.

4. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, pages 43-52, 1998.

5. D. Cheung, J. Han, V. Ng, , and C. Wong. Maintenance of discovered association
rules in large databases: an incremental updating technique. In Proc. of 12th Intl.
Conf. on Data Engineering, pages 106-114, 1996.

6. C. Hidber. Online association rule mining. In SIGMOD, pages 145-156, 1999.

7. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative filtering. In ACM SIGIR, pages 230-237, 1999.

8. R. Kohavi and F. Provost. Applications of data mining to electronic commerce.
Journal of Data Mining and Knowledge Discovery, 5:5-10, 2001.

9. R. Lawrence, G. Almasi, V. Kotlyar, M. Viveros, and S. Duri. Personalization of
supermarket product recommendations. Journal of Data Mining and Knowledge
Discovery, 5:11-32, 2001.

10. P. Resnick and H. Varian. Recommender systems. Communications of the ACM,
40:56-58, 1997.

11. J. Schafer, J. Konstan, and J. Riedl. Electronic commerce recommender applica-
tions. Journal of Data Mining and Knowledge Discovery, 5:115-152, 2001.

12. S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm for
the incremental updation of association rules in large databases. In KDD, pages
263-266, 1997.

