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Abstract. The dramatic growth in the number and size of on-line information 
sources has fueled increasing research interest in the incremental subspace 
learning problem. In this paper, we propose an incremental supervised subspace 
learning algorithm, called Incremental Inter-class Scatter (IIS) algorithm. 
Unlike traditional batch learners, IIS learns from a stream of training data, not a 
set. IIS overcomes the inherent problem of some other incremental operations 
such as Incremental Principal Component Analysis (PCA) and Incremental 
Linear Discriminant Analysis (LDA). The experimental results on the synthetic 
datasets show that IIS performs as well as LDA and is more robust against 
noise. In addition, the experiments on the Reuters Corpus Volume 1 (RCV1) 
dataset show that IIS outperforms state-of-the-art Incremental Principal Com-
ponent Analysis (IPCA) algorithm, a related algorithm, and Information Gain in 
efficiency and effectiveness respectively. 

1   Introduction 

In the last decades, the emergence of the daily growth of databases on the Web classi-
fication or the face recognition has revived the old problem of incremental and on-line 
algorithm of subspace learning [5, 14]. Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA) are two most popular linear subspace learning 
algorithms [2, 6, 10-12, 18].  

PCA is an unsupervised subspace learning algorithm. It aims at finding out the 
geometrical structure of data set and projecting the data along the directions with 
maximal variances. However, it discards the class information which is significant for 
classification tasks. Through Singular Value Decomposition (SVD)[9], PCA can find 
an optimal subspace in the sense of least square reconstruction error. Its computa-
tional complexity is 3( )O m , where m is the minor value between the sample number 
and the data dimension. LDA is a supervised subspace learning algorithm. It searches 
for the projection axes on which the data points of different classes are far from each 
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other and at the same time where the data points of the same class are close to each 
other. Unlike PCA which encodes information in an orthogonal linear space, LDA 
encodes discriminating information in a linear separable space whose bases are not 
necessarily orthogonal.  

The original PCA is a batch algorithm, which means that the data must be given 
once altogether. However, this type of batch algorithms no longer satisfies the appli-
cations that the data are incrementally received from various data sources, such as 
online sensors [13]. Thus, an incremental method is highly desired to compute adap-
tive subspace for the data arriving sequentially. Incremental Principal Component 
Analysis (IPCA) [1, 16] are designed for such a purpose and have been studied for a 
long time. However, IPCA ignores the valuable class label information of the training 
data and the most representative features derived from IPCA may not be the most 
discriminant ones. The Incremental Support Vector Machine (ISVM) techniques have 
been developed fleetly. But most of them are approximate and require several passed 
through the data to reach convergence. Researchers [3, 4] have proposed incremental 
supervised learning based on neural network [4], but the algorithm convergence and 
stability still remain questionable.  

In this paper, we propose an incremental supervised subspace learning algorithm 
based on statistical efficiency by incrementally optimizing the Inter-class Scatter 
criterion, so-call IIS. It derives the online adaptive supervised subspace using data 
samples received sequentially and incrementally updates the eigenvectors of the inter-
class scatter matrix. IIS does not need to reconstruct the inter-class scatter matrix 
whenever it receives new sample data, thus it is very fast computationally. We also 
proved the convergence of the algorithm in this paper.  The experimental results on 
the synthetic datasets show that IIS can learn a subspace similar to but more robust 
than LDA; and the experimental results on a real text dataset, Reuters Corpus Volume 
1 (RCV1) [8], compared with IPCA and Information Gain (IG) demonstrate that IIS 
yields significantly better micro F1 and macro F1 than two baseline algorithms – 
IPCA and Information Gain (IG).  

The rest of the paper is organized as follows. We present the incremental subspace 
learning algorithm IIS and the proof of convergence in section 2. Then, we demon-
strate the experimental results on the synthetic datasets and the real word data, the 
Reuter Corpus Volume 1 in Section 3. We conclude our work in Section 4. 

2   Incremental Supervised Subspace Learning 

As Introduced above, IPCA ignores the class label information and the most represen-
tative features found by IPCA are not always the most discriminating features. This 
motivates us to design a supervised subspace learning algorithm that efficiently util-
izes the label information.  In this work, we consider the scenario to maximize the 
Inter-class scatter criterion that aims to make the class centers as far as possible.  

Denote the projection matrix from original space to the low dimensional space 
as d pW R ×∈ . In this work, we propose to incrementally maximize the Inter-class  
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scatter (IIS) criterion T
s bJ W S W= , where

1
( )( )

c
T

b i i i
i

S p m m m m
=

= − −∑ is the inter-class 

scatter matrix the same as in LDA. It is obvious that W is the first k leading eigenvec-
tors of the matrix bS  and the column vectors of W are orthogonal to each other.  

In the following subsections, we will present the details on how to incrementally 
derive the leading eigenvectors of bS ; then the convergence proof and algorithm 

summary are also presented.  

2.1   The First Eigenvector 
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Assume that a sample sequence is presented as{ ( )}
nl

x n , where n=1, 2…. The purpose 

of IIS is to maximize the Inter-class scatter criterion ( ) T
s bJ W W S W= . Here k is the 

dimension of transformed data, i.e. the final subspace dimension.  
The Inter-class scatter matrix of step n after learning from the first n samples can 

be written as below, 
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The general eigenvector form is Au uλ= , where u is eigenvector corresponding to 
the eigenvalue λ . By replacing the matrix A with the Inter-class scatter matrix at step 
we can obtain an approximate iterative eigenvector computation formulation with
v uλ= : 
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where ( ) ( ) ( )j ji m i m iΦ = − , ( )v n is the thn step estimation of v and ( )u n is the thn step 

estimation of u .  Once we obtain the estimate of v , eigenvector u  can be directly 
computed as /u v v= . Let ( )u i = ( 1) / ( 1)v i v i− − , we have the following incremental 

formulation:  
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i.e.         
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where ( ) ( ) ( 1) ( 1)T
j jn n v i v iα = Φ − −     , 1,2,...,j c= .         

For initialization, we set (0)v as the first sample. Through this way, the subspace di-
rections, i.e. the eigenvectors to be solved at time step n could be computed by the 
eigenvectors at time step n-1 and the new arrived data at time step n. 

2.2   Higher-Order Eigenvectors 

Notice that eigenvectors are orthogonal to each other. So, it helps to generate “obser-
vations” only in a complementary space for computation of the higher order eigenvec-
tors. To compute the ( 1)thj + eigenvector, we first subtract its projection on the esti-

mated thj eigenvector from the data, 

21( ) ( ) ( ( ) ( )) ( ) / ( )
n n n

j j j T j j j
l l lx n x n x n v n v n v n+ = −  

where 1 ( ) ( )
n nl lx n x n= . The same method is used to update ( )j

im n and 

( )jm n 1,2,...,i c= .Since ( )j
im n and ( )jm n are linear combination of ( )

i

j
lx i , where 

1,2,...,i n= , 1,2,...,j k= , and {1,2,..., }il C∈ , iΦ are linear combination of im and m , 

for convenience, we can only update Φ at each iteration step by 
21( ) ( ) ( ( ) ( )) ( ) / ( )

n n n

j j j T j j j
l l ln n n v n v n v n+Φ = Φ − Φ  

In this way, the time-consuming orthonormalization is avoided and the orthogonal-
ity is always enforced when the convergence is reached, although not exactly so at 
early stages.  

Through the projection procedure at each step, we can get the eigenvectors of 

bS one by one. It is much more efficient compared with the time-consuming orthonor 

malization process. 

2.3   Convergence Proof 

Lemma-2: Let ( ) ( )bA n S n= , bA S= , then for any large enough N 
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A n A
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Lemma-3: ( )v n is bounded with probability 1. 
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Theorem: Let *v be a locally asymptotically stable (in the sense of Liapunov) solu-
tion to the Ordinary Differential Equation bellow:  

( )
A

v I v
v

•
= −  

with domain of attraction *( )D v . If there is a compact set  *( )D vϕ ∈  such that the 

solution of the equation (**) below satisfies { ( ) } 1P v n ϕ∈ = , then ( )v n converges to 
*v almost surely. Note: 
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The convergence is a classical result from the theorems of stochastic approxi-
mation [7]. From the lemmas and theorem we can draw the conclusion of conver-
gence [20]. 

Table 1. Algorithm Summary 

 

2.4   Algorithm Summary 

Suppose that at Step n , ( )
nl

x n  is the input sample, which belongs to class nl , 

{1,2,..., }nl c∈ ,. ( )iN n  is the total sample number of class i . ( )im n is the mean of class  

i . ( )m n is the mean of all samples. K is the dimension of subspace to be found by our 
algorithm. Set ( ) ( ) ( )j ji m i m iΦ = − . The full algorithm is as table 1. The solution of step 

n is ( )jv n , 1,2,...,j K= . 

for 1,2,...n = , do the following steps, 
Update ( ), ( ), ( ), ( )i i iN n m n n m nΦ following the aforementioned steps; 
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End  
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2.5   Algorithm Property Analysis  

The time complexity of IIS to train N input samples is ( )NcdpO , where c is the num-

ber of classes, d is the dimension of the original data space, and p is the target dimen-
sion, which is linear with each factor. Furthermore, when handling each input sample, 
IIS only need to keep the learned eigen-space and several first-order statistics of the 
past samples, such as the mean and the counts. Hence, IIS is able to handle large scale 
and continuous data. 

IIS is also robust since IIS focuses on the mean of each class and all samples. That 
means that a little amount of mislabeled data could not affect the final solution. In 
fact, the robustness is determined by the criterion itself.  

3   Experimental Results 

We performed two sets of experiments. For intuition, in the first set of experi-
ments, we used synthetic data that follow the normal distribution to illustrate the 
subspaces learned by IIS, LDA, and PCA, along with performance in a noise data. 
Since the web documents are large scale text data, thus to demonstrate the per-
formance of our proposed algorithm on large scale text data, in the second set of 
experiments, we applied several dimension reduction methods on the Reuters 
Corpus Volume 1 (RCV1) dataset, and then compare the classification perform-
ance and the time cost. Reuters Corpus Volume 1 data set [8] contains over 
800,000 documents. Moreover, each document is represented by a vector with the 
dimension about 300,000. 

3.1   Synthetic Data 

We generated a 2-dimension data set of 2 classes. Each class consists of 50 samples 
by following normal distribution with means (0, 1) and (0,-2), respectively; and the 
covariance matrix of them are diag(1, 25) and diag(2, 25). Figure 1 shows a scatter 
plot of the data set, along with the 1-d subspace learned by IIS, LDA, and PCA,  
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Fig. 1. Subspaces learned by IIS, LDA, and PCA 
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represented by the straight line, the dash dotted line, and the broken line, respectively. 
We can see that IIS can outperform PCA and yield comparable performance to LDA 
for classification. 

To demonstrate the robustness of IIS against noise, we generated a 3-d data set of 3 
classes each of which consists of 200 samples that follows the normal distribution 
with means (0, 5, 5), (0, 5, 10), and (5, 5, 10) and the same covariance matrixes 
Diag(5, 5, 5), where we performed IIS and LDA to learn the 2-d eigenspaces. We 
randomly provided several abnormal samples, and then compared the correlation 
between the “noise” eigenvectors and the “original” eigenvectors of each algorithm. 
Since ' 2(1 ')v v v v− = − ⋅ , and 'v v= iff ' 1v v⋅ = , the correlation between two unit ei-

genvectors is represented by their inner product, and the larger the inner product is, 
the more robustness against noise. The results are shown in Table 2. 

Table 2. Correlation between the “noise” eigenvectors and the “original” eigenvector learned 
by IIS and LDA 

MISLABELED DATA PER CLASS 5 10 15 20 
1ST

 EIGENVECTOR OF IIS 1 0.9999 0.9970 0.9963 
2RD

  EIGENVECTOR OF IIS 1 0.9999 0.9990 0.9960 
1ST

 EIGENVECTOR OF LDA 0.9577 0.8043 0.7073 0.6296 
2RD

  EIGENVECTOR OF LDA 1 0.9992 0.9968 0.9958 

We can see from table 1 that IIS is more robust against noises than LDA. With 20 
mislabeled data (=10%) for each class, IIS can keep the inner product bigger than 
99.6%. The intuitive reason for LDA being sensitive to noise comes from that LDA 
processes the matrix 1

w bS S− . A small amount of mislabeled data can make wS change, 

and even very little change of wS  makes 1
wS −  change a lot. In other words, 1

w bS S− is 

very sensitive to the change of samples’ label, and therefore the eigenvectors of 
1

w bS S− are very sensitive to abnormal data. 
Though the IIS has good performance on the synthetic data, our motivation to de-

sign it is to reduce the dimension of very large scale web documents or other large 
scale data sets, we conduct it on the widely used large scale text data RCV1 to intro-
duce IIS.  

3.2   Real World Data 

To compare the effectiveness and efficiency of IIS to that of other subspace learning 
algorithms, we constructed classification experiments on the Reuters Corpus Volume 
1 (RCV1) data set [8] which contains over 800,000 documents. We choose the data 
samples with the highest four topic codes (CCAT, ECAT, GCAT, and MCAT) in the 
“Topic Codes” hierarchy, which contains 789,670 documents. Then we split them 
into 5 equal-sized subsets, and each time 4 of them are used as the training set and the  
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remaining ones are left as the test set. The experimental results reported in this paper 
are the average of the five runs. In these experiments, we use a single computer with 
Pentium(R) 4 CPU 2.80GHz, 1GB of RAM, Microsoft Windows XP Professional 
Version, to conduct the experiments. The coding language used by us is C++ 7.0. The 
most widely used performance measurement for text categorization problems are 
Precision, Recall and F1. Precision is a proportion which could be computed by the 
number of right categorized data over the number of all testing data. Recall is a pro-
portion which could be computed by the number of right categorized data over the 
number of all the assigned data. F1 is a common measure in text categorization that 
combines recall and precision. We use two different F1 measurements, i.e. micro F1 
and macro F1 in our paper. 

3.2.1   Experiment Setup 
The dimensionality reduction algorithms are applies in the following manner: 

 Apply the dimensionality reduction algorithm on a specific size of the training 
data to learn a subspace; 

 Transform all the training data to the subspace; 
 Train SVM by SMO [15]; 
 Transforming all the test data to the subspace; 
 Evaluate the classification performance, using F1 value, on the transformed 

test data. 

The dimension reduction algorithms applied are: 

 The proposed IIS generating a 3-d subspace. We applied IIS on the first 10, 
100, 1,000, 10,000, and 100,000 training data to study the convergence speed. 

 Information Gain (IG). This is a state-of-the-art text classification method 
[17]. In this paper, we applied IG on all training data to generate 3-d and 
500-d subspaces, denoted by IG3 and IG500, respectively. With the same 
dimension, IG3 performs as effective as ISBC; while IG500 will yields al-
most best classification performance, since SVM is insensitive to the number 
of feature [19]. 

 IPCA following the CCIPCA algorithm [16]. We also used IPCA to generate 
both 3-d and 500-d subspaces.  

3.2.2   Effectiveness of IIS 
The classification performances are summarized in Figure 2 and Figure 3. From these 
figures, we can infer that the eigenspace learned by IIS on 100 input samples is sig-
nificantly better than the ones learned by IPCA and IG3; and after learning 100,000 
input samples (<20%), IIS can generate a comparable eigenspace to the one generated 
by  IG500 in terms of classification performance. Hence, IIS is an effective subspace 
learning algorithm for classification tasks. On the other hand, we can see that IIS 
generated a near optimal eigenspace after just learning 10,000 samples. This indicates 
that in practice, the convergence speed of IIS is very fast.  
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The F1 value of each class is shown in Table 3. The inferior classification perform-
ance of ECAT is probably due to the uneven class distribution, as shown in Table 3. 
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Fig. 2. Micro-F1 after reducing dimension by several subspace learning algorithms 
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Fig. 3. Macro-F1 after reducing dimension by several subspace learning algorithms 

3.2.3   Efficiency of IIS 
The time spent of each algorithm in dimension reduction and classification training is 
reported in Table 4. We can see that the dimension reduction time of IIS is almost 
linear related to the number of input samples. Although the IG is faster than IIS, Its 
classification training time is much longer than that of IIS. The reason for IG500 
being near square time complexity of SVM; while the possible reason for IG3 is that 
the optimization process of SVM is  very slow if the margin between different classes 
is small which is unfortunately the case in the eigen-space of IG3. 



 An Incremental Subspace Learning Algorithm to Categorize Large Scale Text Data 61 

 

Table 3. F1 values of each class using different dimension reduction algorithms 

 CCAT ECAT GCAT MCAT 
IIS 3@10 0.596 0.117 0.443 0.192 
IIS 3@100 0.711 0.213 0.762 0.793 
IIS 3@1000 0.744 0.430 0.877 0.759 
IIS 3@10000 0.873 0.443 0.875 0.850 
IIS 3@100000 0.846 0.491 0.881 0.882 
IG 3@ALL 0.696 0 0.524 0.451 
IG 500@ALL 0.835 0.716 0.843 0.869 
IPCA 3@ALL 0.632 0 0.376 0 
IPCA 500@ALL 0.782 0.180 0.858 0.802 
# SAMPLES (*105) 3.74 1.18 2.35 2.00 

Table 4. Time costs (in seconds) of each dimension reduction algorithms 

 DIMENSION REDUCTION TIME CLASSIFICATION TRAINING TIME 

IIS 3@10 1.85 1,298 
IIS 3@100 17.1 11,061 
IIS 3@1000 177 6,474 
IIS 3@10000 2,288 7,560 
IIS 3@100000 26,884 3,343 
IG 3@ALL 136 52,605 
IG 500@ALL 137 312,887 
IPCA 3@ALL 28,960 25,374 
IPCA 

500@ALL 
3,763,296 9,327 

4   Conclusion and Future Works 

In this paper, we proposed an incremental supervised subspace learning algorithm, IIS, 
which is a challenging issue of computing dominating eigenvectors and eigenvalues 
from incrementally arriving sample stream without storing the knowing data in ad-
vance. This proposed IIS algorithm is fast in convergence rate, low in the computa-
tional complexity, efficient, effective and robust. Experimental results on synthetic 
dataset and real text dataset demonstrate that it outperforms IPCA on classification 
tasks. It can be theoretically proved that IIS can find out the same subspace as LDA 
does if every class is uniformly distributed in all directions. In real word applications, 
this assumption can not always be satisfied; therefore intra-class scatter matrix in LDA 
is also very important for classification tasks. In the future work, we plan to extend the 
incremental supervised learning to consider both the inter-class and intra-class scatter 
matrices and we are currently exploring these extensions in theory and practice. 
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