
J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 365 – 376, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Simple Test Strategies for Cost-Sensitive Decision Trees

Shengli Sheng1, Charles X. Ling1, and Qiang Yang2

1 Department of Computer Science, The University of Western Ontario
London, Ontario N6A 5B7, Canada

{cling, ssheng}@csd.uwo.ca
2 Department of Computer Science, Hong Kong UST, Hong Kong

qyang@cs.ust.hk

Abstract. We study cost-sensitive learning of decision trees that incorporate
both test costs and misclassification costs. In particular, we first propose a lazy
decision tree learning that minimizes the total cost of tests and
misclassifications. Then assuming test examples may contain unknown
attributes whose values can be obtained at a cost (the test cost), we design
several novel test strategies which attempt to minimize the total cost of tests and
misclassifications for each test example. We empirically evaluate our tree-
building and various test strategies, and show that they are very effective. Our
results can be readily applied to real-world diagnosis tasks, such as medical
diagnosis where doctors must try to determine what tests (e.g., blood tests)
should be ordered for a patient to minimize the total cost of tests and
misclassifications (misdiagnosis). A case study on heart disease is given
throughout the paper.

1 Introduction

In many real-world machine learning applications, minimizing misclassification error
is often not the ultimate goal, as “errors” can cost differently. This type of learning is
called cost-sensitive learning. Turney [13] surveys a wide range of costs in cost-
sensitive learning, among which two types of costs are singled out as most important:
misclassification costs and test costs. For example, in a binary classification task, the
costs of false positive (FP) and false negative (FN) are often very different. In
addition, attributes may have costs (test costs) when acquiring values. The goal of
learning is to minimize the total cost of misclassifications and tests.

 Tasks involving both misclassification and test costs are abundant in real-world
applications. For example, when building a model for medical diagnosis from the
training data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and
the cost of misclassifications (errors in the diagnosis). Further, when a doctor sees a
new patient (a test example), tests are normally ordered, at a cost to the patient or the
insurance company, to better diagnose or predict the disease of the patient (i.e.,
reducing the misclassification cost). Doctors must balance the trade-off between
potential misclassification costs and test costs to determinate which tests should be
ordered, and at what order, to reduce the expected total cost. A case study on heart
disease is given in the paper.

366 S. Sheng, C.X. Ling, and Q. Yang

In this paper, we propose a lazy-tree learning that improves on a previous decision
tree algorithm that minimizes the total cost of misclassifications and tests. We then
describe several novel “test strategies” to determine what tests should be performed,
and at what order, for attributes with unknown values in test examples such that the
total expected cost is minimum. Extensive experiments have been conducted to show
the effectiveness of our tree building and test strategies compared to previous
methods.

2 Review of Previous Work

Cost-sensitive learning has received an extensive attention in recent years. Much
work has been done in considering non-uniform misclassification costs (alone), such
as [4, 5, 7]. Those works can often used to solve the problem of learning with very
imbalanced datasets [3]. Some previous work, such as [11], considers the test cost
alone without incorporating misclassification cost. As pointed out by [13] it is
obviously an oversight. A few previous works consider both misclassification and
test costs, and they are reviewed below.

In [14], the cost-sensitive learning problem is cast as a Markov Decision Process
(MDP). They adopt an optimal search strategy, which may incur a high
computational cost. In contrast, we adopt the local search similar to C4.5 [10], which
is very efficient. Lizotte et al. [9] study the theoretical aspects of active learning with
test costs using naïve Bayes classifiers. Turney [12] presents a system called ICET,
which uses a genetic algorithm to build a decision tree to minimize the cost of tests
and misclassifications. Our algorithm again is expected to be more efficient than
Turney’s genetic algorithm.

Ling et al. [8] propose a new decision tree learning algorithm that uses minimum
total cost of tests and misclassifications as the attribute split criterion. However, a
single tree is built for all test examples. The information of some known attributes in
a test example is ignored if they do not appear in the path through which the test
example goes down the tree to a leaf, and their test strategies are very simple. In this
paper, we propose a lazy-tree learning to minimize the total cost of misclassifications
and tests. But it can make use of the known attributes in each test example to reduce
the total cost. We also propose an improved attribute selection criterion to split the
training data. In addition, we propose several novel and sophisticated test strategies
for obtaining missing attribute values when classifying new test examples that, as far
as we know, have not been published previously.

Chai et al. [1] propose a naïve Bayes based algorithm, called CSNB, which
searches for minimal total cost of tests and misclassifications. Our test strategies
utilize the tree structure while naïve Bayes does not. Experiments show that our tree-
based test strategies outperform CSNB in most situations (see experimental
comparisons later in the paper).

3 Lazy Decision Trees for Minimum Total Cost

We assume that we are given a set of training data (with possible missing attribute
values), the misclassification costs (FP and FN), and test costs for each attribute.

 Simple Test Strategies for Cost-Sensitive Decision Trees 367

Instead of building a single decision tree for all test examples [8], we propose a lazy-
tree approach to utilize as much information in the known attributes as possible. More
specifically, given a test example with known and unknown attributes, we first
reassign the test cost of the known attributes to be 0 while the cost of the unknown
attributes remains unchanged. For example, suppose that there are 3 attributes and
their costs are $30, $40, and $60 respectively. If in a test example, the second attribute
value is unknown (obtain by testing), then the new test costs would be reset to $0, $40,
and $0 respectively. Then a tree is built using the split criterion that minimizes the
total cost of tests and misclassifications. Clearly our method builds different trees for
test examples with different sets of unknown attributes. As our lazy-tree learning
approach utilizes as much information in the known attributes as possible, we expect it
will reduce the total cost in testing significantly. The rationale is that attributes with
the zero test cost are more likely to be chosen early during the tree building process.
When a test example is classified by this specific tree, it is less likely to be stopped by
unknown attributes near the top of the decision tree. This tends to reduce the total test
cost, and thus the total cost, as shown later in the experiments.

Another improvement we made over [8] is that we use the expected total
misclassification cost when selecting an attribute for splitting. This gives a more
accurate choice for attribute selection. That is, an attribute may be selected as a root
node of a decision tree if the sum of the test cost and the expected misclassification
costs of all branches is minimum among other attributes, and is less than that of the
root. For a subset of examples with tp positive examples and tn negative examples, if
CP = tp×TP + tn×FP is the total misclassification cost of being a positive leaf, and CN
= tn× TN + tp×FN is the total misclassification cost of being a negative leaf, then the
probability of being positive is estimated by the relative cost of CP and CN; the smaller
the cost, the larger the probability (as minimum cost is sought). Thus, the probability

of being positive is:
NP

N

NP

P

CC

C

CC

C

+
=

+
−1 . The expected misclassification

cost of being positive is: P
NP

N
P C

CC

C
E ×

+
= . Similarly, the probability of being

a negative leaf is
NP

P

CC

C

+
; and the expected misclassification cost of being

negative is: N
NP

P
N C

CC

C
E ×

+
= . Therefore, without splitting, the expected total

misclassification cost of a given set of examples

is:
NP

NP
NP CC

CC
EEE

+
××=+= 2

. If an attribute A has l branches, then the

expected total misclassification cost after splitting on A is:

ii

ii

NP

NP
l

i
A CC

CC
E

+
×

×= ∑
=1

2 . Thus, (E – EA –TC) is the expected cost reduction

368 S. Sheng, C.X. Ling, and Q. Yang

splitting on A, where TC is the total test cost for all examples on A. it is easy to find
out which attribute has the smallest expected total cost (the sum of the test cost and
the expected misclassification cost), and if it is smaller than the one without split (if
so, it is worth to split). With the expected total misclassification cost described above
as the splitting criterion, the lazy-tree learning algorithm is shown as follows.

One weakness of our method is higher computational cost associated with lazy
learning. However, our tree-building process has the same time complexity as C4.5,
so it is quite efficient. In addition, lazy trees for the same set of unknown attributes
are the same. Trees frequently used can be stored in memory for the speed trade-off.

4 A Case Study on Heart Disease

We apply our lazy decision tree learning on a real dataset, the Heart Disease, with
known test costs. The dataset was used in the cost-sensitive genetic algorithm by
[12]. The learning problem is to predict the coronary artery disease from the 13 non-
invasive tests on patients. The class label 0 or negative class indicates a less than 50%
of artery narrowing, and 1 indicates more than 50%. The costs of the 13 non-invasive
tests are in Canadian dollars, and were obtained from the Ontario Health Insurance
Program's fee schedule [12]. These individual tests and their costs are: age ($1), sex
($1), cp (chest pain type, $1), trestbps (resting blood pressure, $1), chol (serum

LazyTree(Examples, Attributes, TestCosts, testExample)
1. For each attribute

a. If its value is known in testExample, its test cost is assigned as 0
2. call CSDT(Examples, Attributes, TestCostsUpdated) to build a cost-sensitive

decision tree

CSDT(Examples, Attributes, TestCosts)
1. Create a root node for the tree
2. If all examples are positive, return the single-node tree, with label = +
3. If all examples are negative, return the single-node tree, with label = -
4. If attributes is empty, return the single-node tree, with label assigned according to

min (EP, EN)
5. Otherwise Begin

a. If maximum cost reduction < 0 return the single-node tree, with label
assigned according to min (EP, EN)

b. A is an attribute which produces maximum cost reduction among all the
remaining attributes

c. Assign the attribute A as the tree root
d. For each possible value vi of the attribute A

i. Add a new branch below root, corresponding to the test A=vi
ii. Segment the training examples into each branch Example_vi

iii. If no examples in a branch, add a leaf node in this branch, with label
assigned according to min (EP, EN)

iv. Else add a subtree below this branch, CSDT(examples_vi, Attributes-A,
TestCosts)

6. End
7. Return root

 Simple Test Strategies for Cost-Sensitive Decision Trees 369

cholesterol in mg/dl, $7.27), fbs (fasting blood sugar, $5.20), restecg (resting
electrocardiography results, $15.50), thalach (maximum heart rate achieved,
$102.90), exang (exercise induced angina, $87.30), oldpeak (ST depression induced
by exercise, $87.30), slope (slope of the peak exercise ST segment, $87.30), ca
(number of major vessels colored by fluoroscopy, $100.90), and thal ($102.90). Tests
such as thalach, exang, oldpeak, and slope are electrocardiography results when the
patient runs on a treadmill, and are usually performed as a group. Tests done in a
group may be discounted in costs, but this is not considered in this paper (see future
work). However, no information about misclassification costs was given. After
consulting a researcher in the Heart-Failure Research Group in the local medical
school, a positive prediction normally entails a more expensive and invasive test, the
angiographic test, to be performed, which accurately measures the percentage of
artery narrowing. A negative prediction may prompt doctors to prescribe medicines,
but the angiographic test may still be ordered if other diseases (such as diabetes)
exist. An angiographic test costs about $600. Thus, it seems reasonable to assign false
positive and false negative to be $600 and $1000 respectively.

Fig. 1. Lazy tree for the test case with missing values for all attributes

Assuming in a new test example all attribute values are missing (as seeing a
completely new patient), the original test costs given above are used directly for the
tree building. The numerical attributes in datasets are discretized into integers (1,
2, …) using the minimal entropy method of [6]. We apply our lazy decision tree
learning for this test case, and obtain a decision tree shown in Figure 1.

We can see that often less expensive tests are used in the top part of the tree. For
example, cp is selected as the root of the tree, sex and fbs are in the second level of
the tree. But slope and thal, expensive tests, are also selected in the second level,
since they have higher merit to reduce the total cost. That is, the splitting criterion
selects tests according to their relative merit of reducing the total cost. When this tree
is presented to the Heart-Failure researcher, he thinks that the tree is reasonable in
predicting artery narrowing. Note that it is not feasible for us to compare our results

1

2

2

3211

11 1

2

2 2

1

2 3

41

2

3

1 2

thal
($102.9)

fbs
($5.2)

restecg
($15.5)

sex
($1)

chol
($7.27)

0

cp
($1)

0

slope
($87.3)

restecg
($15.5)

age
($1)

thal
($102.9)

1 0 1 1

1 0 01 1

1 10 0
21

370 S. Sheng, C.X. Ling, and Q. Yang

on this dataset with [12] and other previous work using the same dataset, as they have
very different settings. Here we present this case to show intuitively how our lazy-
tree building algorithm and test strategies (to be discussed next) work.

5 Two Categories of Test Strategies

We define two categories of test strategies: Sequential Test and Single Batch Test.
For a given test example with unknown attributes, the Sequential Test can request
only one test at a time, and wait for the test result to decide which attribute to be
tested next, or if a final prediction is made. The Single Batch Test, on the other hand,
can request one set (batch) of one or many tests to be done simultaneously before a
final prediction is made.

The related test strategies have many corresponding applications in the real world.
In medical diagnoses, for example, doctors normally order one set of tests (at a cost)
to be done at once. This is the case of the Single Batch Test. If doctors only order one
test at a time (this can happen if tests are very expensive and/or risky), this is the case
of the Sequential Test. In the next two subsections the two types of test strategies will
be discussed in great details.

5.1 Lazy-Trees Optimal Sequential Test (LazyOST)

Recall that Sequential Test allows one test to be performed (at a cost) each time
before the next test is determined, until a final prediction is made. Ling et al. [8]
described a simple strategy called Optimal Sequential Test (or OST in short) that
directly utilizes the decision tree built to guide the sequence of tests to be performed
in the following way: when the test example is classified by the tree, and is stopped
by an attribute whose value is unknown, a test of that attribute is made at a cost. This
process continues until the test case reaches a leaf of the tree. According to the leaf
reached, a prediction is made, which may incur a misclassification cost if the
prediction is wrong. Clearly the time complexity of OST is only linear to the depth of
the tree.

One weakness with this approach is that it uses the same tree for all testing
examples. In this work, we have proposed a lazy decision-tree learning algorithm
(Section 3) that builds a different tree for each test example. We apply the same test
process above in the lazy tree, and call it Lazy-tree Optimal Sequential Test
(LazyOST). Note that this approach is “optimal” by the nature of the decision tree
built to minimize the total cost; that is, subtrees are built because there is a cost
reduction in the training data. Therefore, the tree’s suggestions for tests will also
result in minimum total cost. (Note the terms such as “optimal” and “minimum”
used in this paper do not mean in the absolute and global sense. As in C4.5, the tree
building algorithm and test strategies use heuristics which are only locally optimal).

Note that it is not obvious that this lazy-tree Optimal Sequential (LazyOST) Test
should always produce a small total cost compared to the single-tree OST. This is
because in both approaches, the test costs of the known attributes do not count
during the classifying of a test example. However, when we build decision tree

 Simple Test Strategies for Cost-Sensitive Decision Trees 371

specifically for a test example, the tree minimizes the total cost without counting
the known attributes in the training data. This would produce a smaller total cost
for that test example. In contrast, in the single tree approach, only one tree is built
for all test examples, and specific information about known and unknown attributes
in each test example is not utilized. In Section 4.1.2 we will compare LazyOST and
OST on ten real-world datasets to see which one is better in terms of having a
smaller total cost.

Case Study on Heart Disease Continued. Continuing on the heart-disease example,
we next choose a test example with most attribute values known from the dataset, as
the known values serve as the test results. The discretized attribute values for this test
case are: age=1, sex=2, cp=3, trestbps=1, chol=1, fbs=1, restecg=1, thalach=1,
exang=2, oldpeak=2, slope=1, ca=?, thal=2, and class=0 (a negative case). We apply
LazyOST on the tree in Figure 1. Again assuming all values are unknown, LazyOST
requests the sequence of tests as: cp (=3), fbs (=1), thal (=2), and restecg (=1), with a
total test cost of $124.60. The prediction of the tree is 0 (correct), thus the
misclassification cost is 0. Therefore, the total cost for this test case is $124.60.

Comparing Sequential Test Strategies. To compare various sequential test
strategies, we choose 10 real-world datasets, listed in Table 1, from the UCI Machine
Learning Repository [1]. These datasets are chosen because they are binary class,
have at least some discrete attributes, and have a good number of examples. Each
dataset is split into two parts: the training set (60%) and the test set (40%). Unlike the
case study of heart disease, the detailed test costs of these datasets are unknown. To
make the comparison possible, we simply choose randomly the test costs of all
attributes to be some values between 0 and 100. This is reasonable because we
compare the relative performance of all test strategies under the same chosen costs.
The misclassification cost is set to 200/600 (200 for false positive and 600 for false
negative). For test examples, a certain ratio of attributes (0.2, 0.4, 0.6, 0.8, and 1) are
randomly selected and marked as unknown to simulate test cases with various
degrees of missing values. Three Sequential Test strategies, OST [8], LazyOST (our
work), and CSNB [2] are compared. We repeat this process 25 times, and the average
total costs for the 10 datasets are plotted in Figure 2.

Table 1. Datasets used in the experiments

 No. of
Attributes

No. of
Examples

Class dist.
(N/P)

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac-toe 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118

372 S. Sheng, C.X. Ling, and Q. Yang

40

60

80

100

0.2 0.4 0.6 0.8 1
Ratio of Unknow n Attributes

T
o

ta
l C

o
st

CSNB OST LazyOST

Fig. 2. Comparing our new Sequential Test strategy LazyOST with CSNB and OST

We can make several interesting conclusions. First, we can see clearly that
LazyOST outperforms OST on all 10 datasets under every unknown attribute ratio,
except 1. When all attributes are unknown, the eager and lazy tree learners produce
the same tree. Second, the difference between OST and LazyOST is larger at a lower
ratio of unknown attributes compared to a higher ratio. This is because when the ratio
is low, most attributes are known, and LazyOST takes advantages of these known
attributes for individual test examples while OST does not. This confirms our early
expectation that our new lazy trees learning algorithm produces a tree with smaller
total costs compared to the previous single tree approach. Last, we also see that the
CSNB [2] performs better than OST when the ratio of unknown attributes is less than
0.7 (confirming results in [2]), since CSNB has a lower misclassification cost than
OST with lower ratios of unknown attributes. However, LazyOST performs best
among the three strategies when the ratio of unknown attributes is greater than 0.3.

5.2 Single Batch Tests

The Sequential Test Strategies discussed in the previous section have to wait for the
result of each test to determine which test will be the next one. Waiting not only
agonizes the patient in medical diagnosis, it may also be life threatening if the disease
is not diagnosed and treated promptly. Thus doctors normally order one set (batch) of
tests to be done at once. This is the case of the Single Batch Test. Note that results of
the tests in the batch can only be obtained simultaneously after the batch is
determined.

In [8] a very simple heuristic is described. The basic idea is that when a test
example is classified by a minimum-cost tree and is stopped by the first attribute
whose value is unknown in the test case, all unknown attributes under and including
this first attribute would be tested, as a single batch. Clearly, this strategy would have
exactly the same misclassification cost as the Optimal Sequential Test, but the total
test cost is higher as extra tests are performed. We call this strategy Naïve Single
Batch (NSB).

We propose two new and more sophisticated Single Batch Test strategies, and
discuss their strengths and weaknesses. We will show experimentally that they are
better than the Naïve Single Batch and the single batch based on naïve Bayes [2].

Greedy Single Batch (GSB). The rationale behind GSB is to find the most likely leaf
(the most typical case) that the test example may fall into, and collect the tests on the

 Simple Test Strategies for Cost-Sensitive Decision Trees 373

path to this leaf for the batch test (to “confirm” the case). More specifically, it first
locates all “reachable” leaves under the first unknown attribute (let us call it u) when
the test example is classified by the tree. Reachable leaves are the leaves that can be
possibly reached from u given the values of known attributes and all possible values
of the unknown attributes under u. Then a reachable leaf with the maximum number
of training examples is located, and the unknown attributes on the path from u to this
leaf are collected as the batch of tests to be performed.

Intuitively this strategy reduces the total test cost than the Naïve Single Batch as
only a subset of the tests is performed. However, it may increase the misclassification
costs compared to the Optimal Sequential Test, as the greedy “guesses” may not be
correct, in which case the test example will not reach a leaf, and must be classified by
an internal node in the decision tree, which is usually less accurate than a leaf node.
This will incur a higher misclassification cost.

Optimal Single Batch (OSB). The Optimal Single Batch (OSB) seeks a set of tests
to be performed such that the sum of the test costs and expected misclassification cost
after those tests are done is optimal (minimal). Intuitively, it finds the expected cost
reduction for each unknown attribute (test), and adds a test to the batch if the cost
reduction is positive and maximum (among other tests). More specifically, when a
test example is classified by the tree, and is stopped by the first unknown attribute u
in the tree, the total expected cost misc(u) can be calculated. At this point, misc(u) is
simply the expected misclassification cost of u, and there is no test cost. If u is tested
at a cost C, then the test example is split according to the percentage of training
examples that belong to different attribute values, and is duplicated and distributed
into different branches of the tree (as we do not know u’s value since this is a batch
test), until it reaches some leaves, or is stopped by other unknown attributes. For each
such reachable leaf or unknown attribute, the expected cost can be calculated again,
and the weighted misclassification cost can be obtained (let us call it S). The sum of
C and S is then the expected cost if u is tested, and the difference between misc(u)
and C+S is the cost reduction E(u) if u is tested. If such a cost reduction is positive,
then u is put into the batch of tests. Then from the current set of reachable unknown
attributes, a node with the maximum positive cost reduction is chosen, and it is added
into the current batch of tests. This process is continued until the maximum cost
reduction is no longer greater than 0, or there is no reachable unknown attributes (all
unknown attributes under u are in the batch, reducing to Naïve Single Batch). The
batch of tests is then discovered. The pseudo-code of OSB is shown here.

In the pseudo-code, misc(.) is the expected misclassification cost of a node, c(.) is
the test cost of an attribute, R(.) is all reachable unknown nodes and leaves under a
node, and p(.) is the probability (estimated by ratios in the training data) that a node is
reached. Therefore, the formula E(i) in the pseudo-code calculates the cost difference
between no test at i (so only misclassification cost at i) and after testing i (the test cost
plus the weighted sum of misclassification costs of reachable nodes under i). That is,
E(i) is the expected cost reduction if i is tested. Then the node t with the maximum
cost reduction is found, and if such reduction is positive, t should be tested in the
batch. Thus, t is removed from L and added into the batch list B, and all reachable
unknown nodes or leaves of t, represented by the function r(t), is added into L for

374 S. Sheng, C.X. Ling, and Q. Yang

further consideration. This process continues until there is no positive cost reduction
or there is no unknown nodes to be considered (i.e., L is empty). The time complexity
is linear to the size of the tree, as each node is considered only once.

Comparing the two new single batch strategies, Greedy Single Batch (GSB) is
simple and intuitive; it finds the most likely situation (leaf) and requests tests to
“confirm” it. The time complexity is linear to the depth of the tree. It works well if
there is a reachable leaf with a large number of training examples. The time
complexity of the Optimal Single Batch (OSB) is linear to the size of the tree, but it is
expected to have a smaller total cost than GSB. Both GSB and OSB may suggest
tests that may be wasted, and test examples may not fall into a leaf.

Case Study on Heart Disease Continued. We apply GSB and OSB on the same test
case as in Section 4.1.1 with the decision tree in Figure 1. The GSB suggests the
(single) batch of (cp, and thal), while the OSB suggests the single batch of (cp, sex,
slope, fbs, thal, age, chol, and restecg) to be tested. With both GSB and OSB, the test
case does not go into a leaf, and some tests are wasted. The test cost is $103.9 for
GSB and $221.17 for OSB, while the misclassification costs are 0 for both GSB and
OSB. Thus, the total cost for the test case is $103.9 and $221.17 for GSB and OSB
respectively. Note that we cannot conclude here GSB is better than OSB as this is
only for a test case.

Comparing Single Batch Test Strategies. We use the same experiment procedure
on the same 10 datasets to compare various Single Batch Test strategies including
CSNB-SB [2]. The misclassification costs are set to 2000/6000. These costs are set to
larger values so the trees will be larger to show more clearly the effect of batch tests.
The total costs for the 10 datasets are compared and the average total costs for the 10
datasets are plotted in Figure 3.

From Figure 3 we can clearly see that Optimal Single Batch (OSB) performs the
best among other single batch test strategies. When the ratio of missing attributes is
relatively small (0.2), the three tree-based single batch test strategies are similar, as
very few attributes would need to be tested. When the ratio of missing attributes
increases, the differences become more evident, especially between Naïve Single
Batch and Greedy Single Batch. All the tree-based single batch strategies perform

L = empty /* list of reachable and unknown attributes */
B = empty /* the batch of tests */
u = the first unknown attribute when classifying a test case
Add u into L
Loop
For each i ∈ L, calculate E(i):

 E(i)= misc(i) – [c(i) +∑ ×))(())((iRmisciRp]

 E(t) = max E(i) /* t has the maximum cost reduction */
If E(t) > 0 then add t into B, delete t from L, add r(t) into L
 else exit Loop /* No positive cost reduction */
Until L is empty
Output B as the batch of tests

 Simple Test Strategies for Cost-Sensitive Decision Trees 375

better than the single batch with naïve Bayes. The reason is that the structure of the
decision tree is utilized when deciding the single batch, while naïve Bayes has no
such structure to rely on.

350

450

550

650

750

850

0.2 0.4 0.6 0.8 1
Ratio of Unknown Attributes

T
o

ta
l C

o
st

CSNB-SB NSB GSB OSB

Fig. 3. Comparing our new Single Batch Test strategies GSB and OSB CSNB-SB and NSB

6 Conclusions and Future Work

In this paper, we present a lazy decision tree learning algorithm to minimize the total
cost of misclassifications and tests. We then design two categories of test strategies:
Sequential Test and Single Batch Test, to determine which unknown attributes should
be tested, and in what order, to minimize the total cost of tests and misclassifications.
We evaluate the performance (in terms of the total cost) empirically, compared to
previous methods using a single decision tree and naïve Bayes. The results show that
the new test strategies, Lazy-tree Optimal Sequential Test, and Optimal Single Batch,
work best in the corresponding categories. The time complexity of these new test
strategies is linear to the tree depth or the tree size, making them efficient for testing a
large number of test cases. These strategies can be readily applied to large datasets in
the real world. A detailed case study on heart disease is given in the paper.

In our future work we plan to continue to work with medical doctors to apply our
algorithms to medical data with real costs. We also plan to consider discounts when
groups of tests are ordered at the same time, and to incorporate other types of costs in
our decision tree learning and test strategies.

References

1. Blake, C.L., and Merz, C.J. 1998. UCI Repository of machine learning databases
(website). Irvine, CA: University of California.

2. Chai, X., Deng, L., Yang, Q., and Ling,C.X.. 2004. Test-Cost Sensitive Naïve Bayesian
Classification. In Proceedings of the Fourth IEEE International Conference on Data
Mining. Brighton, UK : IEEE Computer Society Press.

3. Chawla,N.V., Japkowicz, N., and Kolcz, A. eds. 2004. Special Issue on Learning from
Imbalanced Datasets. SIGKDD, 6(1): ACM Press.

376 S. Sheng, C.X. Ling, and Q. Yang

4. Domingos, P. 1999. MetaCost: A General Method for Making Classifiers Cost-Sensitive.
In Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, 155-164. San Diego, CA: ACM Press.

5. Elkan, C. 2001. The Foundations of Cost-Sensitive Learning. In Proceedings of the
Seventeenth International Joint Conference of Artificial Intelligence, 973-978. Seattle,
Washington: Morgan Kaufmann.

6. Fayyad, U.M., and Irani, K.B. 1993. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, 1022-1027. France: Morgan Kaufmann.

7. Ting, K.M. 1998. Inducing Cost-Sensitive Trees via Instance Weighting. In Proceedings
of the Second European Symposium on Principles of Data Mining and Knowledge
Discovery, 23-26. Springer-Verlag.

8. Ling, C.X., Yang, Q., Wang, J., and Zhang, S. 2004. Decision Trees with Minimal Costs.
In Proceedings of the Twenty-First International Conference on Machine Learning, Banff,
Alberta: Morgan Kaufmann.

9. Lizotte, D., Madani, O., and Greiner R. 2003. Budgeted Learning of Naïve-Bayes
Classifiers. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence. Acapulco, Mexico: Morgan Kaufmann.

10. Quinlan, J.R. eds. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
11. Tan, M. 1993. Cost-sensitive learning of classification knowledge and its applications in

robotics. Machine Learning Journal, 13:7-33.
12. Turney, P.D. 1995. Cost-Sensitive Classification: Empirical Evaluation of a Hybrid

Genetic Decision Tree Induction Algorithm. Journal of Artificial Intelligence Research
2:369-409.

13. Turney, P.D. 2000. Types of cost in inductive concept learning. In Proceedings of the
Workshop on Cost-Sensitive Learning at the Seventeenth International Conference on
Machine Learning, Stanford University, California.

14. Zubek, V.B., and Dietterich, T. 2002. Pruning improves heuristic search for cost-sensitive
learning. In Proceedings of the Nineteenth International Conference of Machine Learning,
27-35, Sydney, Australia: Morgan Kaufmann.

	Introduction
	Review of Previous Work
	Lazy Decision Trees for Minimum Total Cost
	A Case Study on Heart Disease
	Two Categories of Test Strategies
	Lazy-Trees Optimal Sequential Test (LazyOST)
	Single Batch Tests

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

