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Abstract. Association rules are traditionally designed to capture statistical relationship among itemsets in a given database. To
additionally capture the quantitative association knowledge, Korn et.al. recently propose a paradigm named Ratio Rules [6] for
quantifiable data mining. However, their approach is mainly based on Principle Component Analysis (PCA), and as a result,
it cannot guarantee that the ratio coefficients are non-negative. This may lead to serious problems in the rules’ application.
In this paper, we propose a new method, called Principal Sparse Non-negative Matrix Factorization (PSNMF), for learning
the associations between itemsets in the form of Ratio Rules. In addition, we provide a support measurement to weigh the
importance of each rule for the entire dataset. Experiments on several datasets illustrate that the proposed method performs
well for discovering latent associations between itemsets in large datasets.
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1. Introduction

Association rules are one of the major representations in expressing the knowledge discovered from
large databases. The problem of association rules mining (ARM) in large transactional databases is
introduced in [1,5], and the basic idea is to discover some important and interesting associations among
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the itemsets such that the presence of some items in a transaction will imply the presence of other items
in the same transaction. The form of such an association is as follows:

{bread,milk} => butter (80%)

The above form means that customers who buy “bread” and “milk” are likely to buy butter with
80% confidence. Inspired by the work in [1], several fast algorithms based on the level-wise Apriori
framework [2,15] and partitioning [10] are proposed to remedy the performance bottleneck of Apriori. In
addition, several novel mining techniques, such as parallel algorithms [11,21], uncertain algorithms [4,
12] and other techniques [9,13,19], also receive much attention lately.

Most of the prevalent approaches assume that the transactions only carry Boolean information and
ignore the valuable knowledge inherent in the quantities of the items. To find association rules, the
Boolean approaches assume that all we need to know is whether an item is contained in a transaction.
Thus, Boolean association rules have the advantages that they are easy to interpret. However, the major
drawback is that a given data matrix V (with e.g. amounts spent per customer per product) has to be
converted to a binary matrix by treating non-zero amounts as plain “1”s. This approach simplifies the
data mining algorithms, but tends to lose lots of valuable information.

In fact, since the quantities of the items in many datasets contain valuable information for us, it is
necessary to provide a definition of association rules when the datasets contain quantitative attributes.
Several efficient algorithms for mining quantitative association rules have been proposed in the past [3,
17]. A notable algorithm is the work [6], where they provided a stronger set of rules as Ratio Rules. A
rule under that framework is expressed in the following form:

bread : milk : butter = a : b : c
(a, b, c are arbitrary numerical values)

This rule states that for each a amount spent on bread, a customer normally spends a b amount on
milk and a c amount on butter. Given such a definition, Ratio Rules allow quantitative information to
be expressed in many practical applications, including forecasting such as “if a customer spends $a on
bread, how much will s/he spend on butter?”, and “what-if” scenarios such as “we expect the demand
for bread, how much butter should we stock up on?”.

Principal Component Analysis (PCA) is often used in data mining applications to discover the eigen-
vectors of a dataset. Ratio Rules [6] can represent the quantitative associations between items as the
principal eigen-vectorsof a data matrix, where the valuesa, b and c in the example above correspond to the
projections of the eigen-vectors in the space defined by bread, milk and butter. Because PCA factorization
requires only the orthogonality in matrix factorization, the ratio coefficients of rules (elements of eigen-
vectors) can be either positive or negative. An example of Ratio Rules containing a negative value
is

Shoe : Coat : Hat = 1 : −2 : −5

Obviously, this rule loses the intuitive appeal of associations between items when containing negative
values, because a customer’s spending should always be positive (there is no consideration of profit
here). In this paper, we present a method to address this problem.

Our method amounts to a novel application of Non-negative Matrix Factorization (NMF) [7]. Like
PCA, the NMF is aimed at learning latent components; unlike PCA, the NMF imposes the non-negativity
constraints in the matrix factorization to ensure that all principle components are positive. However, we
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cannot directly apply NMF for our purpose. We observe that although all the coefficients of the latent
components learned by NMF are non-negative, it is still difficult to explain that these latent components
represent the latent associations between items in a quantifiable dataset. Therefore, we need to provide
a bridge to bring NMF closer to association rules.

In this work, we propose a novel method called Principal Sparse Non-Negative Matrix Factorization
(PSNMF), which adds the sparsity constraints in the standard NMF [7]. Furthermore, we extend the
definition of Ratio Rules with all the ratio coefficients constrained to be non-negative. An example of
such Ratio Rules according to this definition is:

bread : milk : butter = 1 : 2 : 5

This rule implies that the customer who spends $ 1 on bread tends to buy $ 2 of milk and $ 5 of butter.
We will illustrate that the Ratio Rules by PSNMF can also support a variety of important tasks such as
forecasting and answering “what-if” scenarios.

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 describes
the problem and the intuition behind the Ratio Rules. Section 4 introduces our new algorithm (PSNMF)
and contrasts it with PCA. Section 5 presents the experimental results. Section 6 concludes the paper.
The convergence of the PSNMF learning procedure is given in Appendix.

2. Related work

2.1. Association rules

Association rules algorithms find rules of the form X ⇒ Y where X and Y are the disjoint sets of the
items. The data used in the notable Apriori algorithms [1] are market basket data that are naturally binary
(two-valued) referred as Boolean. Either an item has been purchased by a customer and is in his/her
market basket, indicated by a value of 1 (true), or it has not, indicated by a value of 0 (false). Although
finding association rules in two-valued categorical data has been well investigated, problems occur when
trying to find these types of the rules in data with pure numeric (quantitative) or mixed numeric and
categorical (qualitative) values. Srikant et al. extend the traditional definition to include quantitative
data, and propose quantitative association rules in [17]. A notable algorithm is the work [6], where they
provide a stronger set of rules as Ratio Rules. The following lists some simple examples for these types
of association rules:

Boolean association rules [16,20]:

{bread,milk} => butter (80%)

Quantitative association rules [17]:

〈bread : [2 − 5]〉 => 〈butter : [1 − 2]〉
Ratio Rules [6]:

bread : milk : butter = a : b : c
(a, b, c is arbitrary value.)

In the Ratio Rules listed above,a, b and c are used to denote the relative coefficients of the corresponding
items, that is, the association among such items can be represented as a : b : c. The method in [6] is
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based on the Principal Component Analysis (PCA), where each Ratio Rule corresponds to an eigen-vector
found by the PCA. Because PCA factorization requires only the orthogonality in matrix factorization,
the ratio coefficients of the rules can be of arbitrary numerical values. Obviously it is not interpretable
in the context of association rules.

2.2. Approaches for matrix factorization

Motivated by the method [6], we extend the definition of Ratio Rules to learn hidden associations
in transaction sets based on Principal Sparse Non-negative Matrix Factorization. In fact, the PSNMF
algorithm is presented based on Non-negative Matrix Factorization (NMF). We will introduce the Non-
negative Matrix Factorization in detail in the following sections. Here, let’s briefly review some other
prevalent approaches in matrix factorization first.

2.2.1. Latent Semantic Analysis (LSA)
A classic algorithm arising from linear algebra, LSA decomposes the matrix in three matrices by a

truncated Singular Value Decomposition (SVD)

A ∼= USV T

where A ∈ R
m×n, U ∈ R

m×r, S ∈ R
r×r and V ∈ R

r×n. The operation performs the optimal least-
square projection of the original space onto a space of the reduced dimensionality R. The subspace
representation has been empirically shown to capture to some degree the semantic relationships across
terms in corpus. LSA has been extensively used in text analysis, and more recently to improve retrieval
of multimedia news documents [22]. Unfortunately, LSA lacks a clear probabilistic interpretation [18].
Therefore, PLSA [18] is provided as a probabilistic version of LSA which focuses on good estimation
of all the parameters using the EM algorithm.

2.2.2. Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA), also called Fisher Discriminant Analysis (FDA), is proposed

to pursue a low dimensional subspace that can best discriminate the samples from different classes.
Suppose W ∈ R

d×p is the linear projection matrix, LDA aims to maximize the so-called Fisher criterion:

J(W ) ∈ ∣∣W TSbW
∣∣/∣∣W TSwW

∣∣
where

Sb =
c∑

i=1

pi(mi − m)(mi − m)T , Sw =
c∑

i=1

piE(ui − m)(ui − m)T

is called inter-class scatter matrix and intra-class scatter matrix, respectively, where c is the number of
classes, m is the mean of all the samples, mi is the mean of the samples belonging to class i, and p i is the
prior probability for a sample belonging to class i. The projection matrix W can be obtained by solving
the following generalized eigen-vectors decomposition problem:

Sbw = λSww

There are at most c− 1 nonzero eigen-values, so the upper bound of p is c− 1; and at least d + c data
samples are required to make it possible that Sw is not singular. These constrains limit the application of
LDA. Furthermore, it is difficult for LDA to handle large size datasets when the dimension of the feature
space is high.
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2.2.3. Independent Component Analysis (ICA)
The problem of Independent Component Analysis (ICA) has been studied by many authors in recent

years, and in the simplest form of ICA, it is assumed that we have a sequence of observations {x k} with
each observation vector x generated according to:

x = As

where s = (s1, . . . , sn)T is a vector of real independent random variable (the sources), A is a nonsingular
n× n real mixing matrix. The task in ICA is to identify A using the assumption of independence of the
sis and hence, to construct an immixing matrix B = RA−1 giving y = Bx = BAs = Rs, where R is a
matrix which permutes and scales the sources. Typically, we assume that the sources have unit variance,
with any scaling factor being absorbed into the mixing matrix A, so y will be a permutation of s with
just a sign ambiguity.

Common methods for ICA involve higher order cumulates such as kurtosis or the use of autocorrelation
differences between the sources. The observations x are often assumed to be zero-mean, or transformed
to be so, and are commonly prewhitened by a matrix V satisfying z = V x so that E{zzT } = I before
an optimization algorithm is applied to z.

3. Problem definition

The problem that we tackle is as follows. Given a large set of N customers and M products organized
in an N × M matrix V where each row corresponds to a customer transaction (e.g., market basket
databases), and the entity vij gives the dollar amount spent by customers on the products. The goal is to
find all Ratio Rules of the form:

v1 : v2 : v3 : . . . : vM (vi � 0)

The above form means that there are some latent components, which represent the non-negative
associations between the items of the dataset V . That is, customers who buy the items will spend
v1, v2, . . . respectively on each itemset with sufficient frequency.

Figure 1(a) lists a large set of N customers and M(M = 2) products organized in a N × M matrix
V . Each row vector of the matrix can be thought of as an M-dimensional point. Figure 1 (b) lists such
2-points distribution in the graphical form. Here we assume that the dataset is made up of two clusters.
Each cluster corresponds to a latent component that implies the association between items in the dataset.
Given this set of N points, our goal is to capture the latent components, which represent the associations
between items. We list two Ratio Rules discovered by PCA [6] in Fig. 2(a), where one contains negative
values:

bread : butter = −0.77 : 0.64

According to the above definition of Ratio Rules, the negative association between items (“bread” and
“butter”) does not make sense. However, the PCA does not prevent this from happening. Furthermore,
the Ratio Rules which tend to represent the associations between items often do not give the latent
associations behind the distribution of these points. In Fig. 1(b), it is obvious that Ratio Rules found by
PCA deviate the latent associations between items.

In fact, from Fig. 1(b) we find that the latent associations are not mutually orthogonal, while the
method by PCA imposes the orthogonality constraint on these Ratio Rules. Therefore, Ratio Rules
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   (a)                                                   (b)   

 bread ($) butter ($) 

T1
2.50 4.39 

T2 3.91 8.44 

T3 3.99 11.56 

T4 3.65 8.20 

T5 4.99 15.58 

T6 4.64 14.05 

T7 6.92 24.69 

T8 2.75 4.08 

T9 6.14 3.67 

…  … … 

Tn  4.36 2.55 

Fig. 1. Data matrix with 2-dimension in table form (a) and its counterpart in graphical form (b).

found by PCA cannot reflect the latent associations among the items correctly. Compared to Fig. 2(a),
(b) illustrates the Ratio Rules captured by our proposed PSNMF in this work. Surprisingly, every rule
can be treated as an association between items in the two clusters respectively. Furthermore, our method
that is based PSNMF guarantees that all the values of Ratio Rules are positive. For example:

bread : butter = 0.21 : 0.79

bread : butter = 0.64 : 0.36

From Fig. 2(b), we can find that the customers of one cluster mainly depend on the first rule where their
relative spending amounts between bread and butter are closely to the ratio (0.21:0.79). Furthermore,
customers of another cluster are related by the ratio (0.64:0.36). In addition, in this work, a support
measurement is designed to illustrate the importance of each rule for the entire dataset.

4. Principal sparse non-negative matrix factorization

Let a set of N M-dimension training records be given as a M × N matrix V , with each column
consisting of the M non-negative attribute values of records. Denote a set of P � M basis components
by a M × P matrix W , where each record can be represented as a linear combination of the basis
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(a)                                          (b)  

Fig. 2. Latent associations identified by PCA (a) and PSNMF (b).

components using the approximate factorization:

V ≈ WH (1)

where H is a P × N matrix, and the entities of H are the coefficients of the corresponding basis
components. Korn et al. [6] apply the Principal Component Analysis (PCA) in matrix factorization.
PCA factorization requires that the basis components which are the columns of W to be orthogonal
and the rows of H to be mutually orthogonal. PCA imposes no other constraints than the orthogonality
constraint, and hence, it allows the entries of W and H to be either positive or negative. In representing the
associations between items, anomalies such as the following can happen, which is clearly not desirable:
bread : butter = 1 : −2.

4.1. Non-negative matrix factorization (NMF)

NMF [7,8] is a method to obtain a representation of data using non-negativity constraints. As we will
see, these constraints lead to a part based representation because they allow only additive, not subtractive,
combinations of the original data [8]. Given an initial database expressed by a matrix V , where each
column is an M-dimensional non-negative vector of the original database, it is possible to find two new
matrices (W and H) in order to approximate the original matrix Vi,µ ≈ (WH)i,µ=

∑p
j=1 Wi,jHj,µ. The

dimensions of the factorized matrices W and H are M × P and P × N respectively, and usually, P is
chosen so that (M + N)P < MN . Each column of the matrix W contains a basis vector while each
column of the matrix H contains the weights needed to approximate the corresponding column in V
using the basis from W In the PCA context, each column of the matrix W represents an eigen-vector
and the factorized matrix of H represent the eigen-projections. In contrast to PCA, NMF does not
allow negative entries in the factorized matrices W and H permitting the combination of multiple basis
components to represent an object.

In order to estimate the factorization matrices, an objective function has to be defined by using the
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I-divergence of V from Y

D(V ||Y ) =
∑
i,j

(
vij log

vij

yij
− vij + yij

)
(2)

As the measurement of fitness for factorizing V into WH
∆= Y = [Yij ], a NMF factorization is defined

as

min
W,H

D(V ‖WH )
(3)

s.t W,H � 0,
∑

i

wij = 1 ∀j

where W,H � 0 means that all entries of W and H are non-negative. The above optimization can be
done by using multiplicative update rules [7].

4.2. Sparse non-negative matrix factorization (SNMF)

Although NMF is successful in Matrix Factorization, the NMF model as defined by the constrained
minimization of Eq. (2) does not impose the sparse constraints. Therefore, it can hardly yield a
factorization, which reveals local sparse features in the dataset V . We wish to find a decomposition
in which the latent components are sparse, implying that the projection coefficients over all training
records have probability densities which are highly peaked at zero and have heavy tails. This basically
means that any given training records can be represented using only a few significantly non-zero latent
coefficients. Related sparse coding is proposed in the work of [14] for matrix factorization.

Inspired by the original NMF and sparse coding, the aim of this work is to propose a new algorithm
we call Sparse Non-negative Matrix Factorization (SNMF), which imposes the sparse and non-negative
constraints. Considering the sparse constraint,we require that any given record should be represented with
only a few significantly non-zero latent coefficients. Consequently, we can impose the sparse constraint
by
∑

j ‖lj‖1 = min, which ‖lj‖1 is the 1-normal of the projection of the j-th record. Therefore, we put
forward the following constrained divergence as the objective function for SNMF:

D(V ||Y ) =
∑
i,j

(
vij log

vij

yij
− vij + yij

)
+λ
∑

j

‖lj‖1

(4)
where lj = (h1j , h2j , h3j , . . . , hpj)T denotes the column of H.

where WH
∆= Y = [Yij],because all the coefficients are non-negative, we can simplify the 1-normal

expression with: ‖lj‖1 =
∑p

k=1 ‖hkj‖ =
∑p

k=1 hkj . In addition, parameter λ is obtained by experience
and is generally assumed a non-negative positive constant. As we know, when λ is set with zero, we
find formula Eq. (4) is essentially the objective function of Non-negative Matrix Factorization, and the
factorization procedure is only constrained by the non-negative characteristic. With the increasing of λ,
the effects of sparse constraints will get stronger and the accuracy will decrease. In this work, according
to our experiments, we set the value of λ with 1. As the measurement of fitness for factorizing V into

WH
∆= Y = [Yij], a SNMF factorization is defined as:

min
W,H

D(V ‖WH )
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s.t ∀i, j : Wij � 0,Hij � 0, and ∀i ‖wi‖1 = 1 (5)

where wi denotes the i : th column of W.

Since we have chosen a linear activation penalty (i.e. minimum the 1-norm of the column of H) to
measure sparseness, as for the objective function Eq. (5), a sparse solution to the above-constrained
minimization can be found by using the following update rules:

hkl = hkl

∑
i

vil
wik∑

k (wikhkl)

/(∑
i
wik + λ

)
(6)

wkl = wkl

∑
j

vkj
hlj∑

l wklhlj

/∑
j
hlj (7)

Note that the solution to minimizing the criterion function is not unique. If W and H are the solutions,
then, WD, HD−1 will also form a set of solutions for any positive diagonal matrix D. To make the
solution unique, we further require that the 1-normal of the column vector in matrix W is one. When
normalizing matrix W , matrix H needs to be adjusted accordingly, so that WH does not change.

wkl = wkl

/∑
k
wkl (8)

hkl = hkl

∑
k
wkl (9)

It is proved that the objective function is non-increasing under the above iterative updating rules and
that the convergence of the iteration is guaranteed (see Appendix).

4.3. Principal SNMF

When the dataset V is decomposed with W and H , the column vectors of W make up a new basis
components space, and each column value of H represents the corresponding projection on the new
basis component space. The non-negative restriction on these coefficients results in the additive nature
of NMF. In other words, every row coefficient of H is the affection fact of a corresponding column
basis for whole dataset V . As a whole, the sum of every row vector of H represents the importance
of corresponding base for the whole dataset V . Therefore, we define a support measurement after
normalizing every column of H:

hkl = hkl

/∑
k
hkl (10)

Definition. For every rule (column vector) of W , we define a support measurement:

support(wi) =
∑

j

hij

/∑
ij

hij (11)

where rule(wi) denotes the column of W

support(wi) ∈ [0, 1], and
∑

i

support(wi) = 1
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Fig. 3. Synthetic dataset with two clusters.

Consequently, we can measure the importance of each rule for the entire dataset by their support
values. The more value of support implies the more importance of such rule for the entire dataset.

In order to select the principal k rules as Ratio Rules to denote the associations between items in the
dataset, firstly, we rank the whole rules in descending by the support value of each rule. And then, retain
the first kprincipal rules as Ratio Rules because they are more important than the other rules for the entire
dataset. About the selection of k value, a simple method is taken such as:

min
k

(∑k
i=1 support(wi)∑M
i=1 support(wi)

> threshold

)
(12)

From the above form Eq. (12), the Ratio Rules are obtained effectively according that the sum of k
support values of Ratio Rules cover threshold (i.e. 90%) of the grand total support values.

5. Experiments

Experiments are performed on some datasets (synthetic and real datasets) to illustrate that our proposed
method is effective in mining Ratio Rules between items on quantitative matrix. In addition, it is also
proven that our Ratio Rules can work on the binary matrix.

5.1. Ratio rules on quantitative matrix

At the beginning of this section, we will illustrate the different characteristics of the PSNMF and PCA
by two experimental results.

5.1.1. Synthetic dataset
We have applied both the PSNMF and the PCA to a dataset consisting of two clusters, which contains

25 Gaussian distribution points on x-y plane (the model parameters are set with µ = [3, 5], δ = [1, 1.2;
1.2, 2]) and 50 points on y-z plane. (Fig. 3) (Generated with parameters µ = [3, 5], δ = [2, 1.6; 1.6, 2]).

5.1.2. Ratio rules on PSNMF
Table 1 lists all the rules (columns of W ) and the corresponding support values. According to

the support measurement, we rank these rules: RR1 > RR2 > RR3. Since support(w1) +
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Table 1
Rules based on PSNMF

PSNMF RR1 RR2 RR3

(X) 0.000 0.696 0.020
(Y) 0.493 0.304 0.980
(Z) 0.507 0.000 0.000
Sum(wi) 49.88 21.636 3.488
Support(wi) 0.665 0.289 0.046

Table 2
Rules based on PCA

PCA RR1 RR2

X) −0.518 0.720
(Y) −0.765 −0.148
(Z) −0.383 −0.678

(a) In PSNMF Subspace (b) In PCA Subspace 

20�

10�

0�

-10�

-20
-20 -10 0 10 20

R
R
2

Fig. 4. Data projection in PSNMF and PCA subspaces.

support(w2)= 0.9535 > 90% , we can obtain the following Ratio Rules:

rule1 :: X : Y : Z => 0 : 0.493 : 0.507 (0.6650)
rule2 :: X : Y : Z => 0.696 : 0.304 : 0 (0.2885)
where X, Y,Z represent the items (columns of matrix)

In addition, Fig. 4(a) indicates all the data projection in PSNMF subspace possess sparse property.
That is, every record can be well represented with only a few significantly non-zero latent coefficients.
For example, 2/3 records (the cluster with distribution on y-z plain) mostly depend on rule1 and others
on rule2 respectively. Therefore, the corresponding support value (0.665) of rule1 is consistent with
intuition.

5.1.3. Ratio rules on PCA
According to the method by PCA, we retain two corresponding eigen-vectors as Ratio Rules in

Table 2. From Table 2, we find some entities of the Ratio Rule contain negative values which lack
intuition to explain the associations between such items. Furthermore, no measurement is given to rank
the importance of Ratio Rules for the entire dataset, thus we can not partition these Ratio Rules which
is more important for the entire dataset. In addition, from Fig. 4(b), the projection of dataset on PCA
space does not have the sparsity features, which are the features of PSNMF instead.
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Table 3
Ratio Rules by PSNMF from NBA

field RR1 RR2 RR3

Games 0.450
Minute 0.013
Points Per Game 0.010
Rebound Per Game 0.117
Assists per Game 0.206
Steals 0.220
Block Shots
Total Rebound
Fouls 0.263
Field Goals
3 Points

Table 4
Ratio Rules by PCA from NBA

field RR1 RR2 RR3

Games −0.586
Minute 0.280 0.332
Points Per Game 0.389
Rebound Per Game −0.374
Assists per Game 0.167
Steals 0.229
Block Shots
Total Rebound
Fouls − 0.320
Field Goals
3 Points

5.1.4. Real Dataset: NBA (459 × 11)
The dataset comes from basketball statistics from the 1997–1998 seasons and is made up of 459

records/players, and each record owns 11 attributes values such as Minutes, Point per Game, Assist
per Game, etc. The reason why we select this dataset is that it can give an intuitive meaning of such
latent associations. Table 3 presents the first three Ratio Rules (RR1, RR2, RR3) by PSNMF. Based
on a general knowledge of basketball and through examination of these rules, we conjecture the RR 1

represent the agility of a player, which gives the ratio of Assists per Game and Steals, is 0.206:0.220 ≈
1:1. It means that the average player who possess one time of assist per game will be also steal the ball
one time. RR2 shows the number of rebounds per game is correlated with Fouls times in a 0.117:0.263≈
1:2.25 ratio, and this Ratio Rule can be interpreted with: an average player who makes better in rebound
usually are easy to make more fouls per game. In this case, traditional methods can not give such ratio
information behind the dataset. In additional, we list the results according to the method by PCA and
finding some entities of Ratio Rule contain negative values (such as RR2) in the Table 4. Obviously,
it lacks intuition to explain the association that a player who adds 0.28 minute play time will obtain
(− 0.374) rebound per game and (− 0.320) times of fouls.

5.2. Ratio rules on boolean matrix

Experiments on a Boolean dataset are performed to show that our proposed algorithm can also work
well in the traditional dataset. First, we run our approach on binary data (e.g., market basket), the goal is
to see if Ratio Rules could distinguish between three different groups of items where the groups are food
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Table 5
Binary matrix of market basket (a) and its first three Ratio Rules (b)

Bread Milk Butter Tire Bulb Oil Shirt Pants field RR1 RR2 RR3

Fesco 1 1 1 0 0 0 0 0 Bread 0.330 0.000 0.000
Cookie 1 1 1 0 0 0 0 0 Milk 0.331 0.001 0.001
Tom 1 1 1 0 0 0 0 0 Butter 0.333 0.002 0.007
John 0 0 0 1 1 1 0 0 Tire 0.000 0.328 0.000
Tayor 0 0 0 1 1 1 0 0 Bulb 0.002 0.335 0.013
Stan 0 0 0 1 1 1 0 0 Oil 0.001 0.331 0.000
Lee 0 0 0 0 0 0 1 1 Shirt 0.001 0.003 0.492
Seung 0 0 0 0 0 0 1 1 Pants 0.000 0.000 0.487
Noise 0 1 0 0 1 0 0 1 Support 49.8(%) 30.1(%) 20.1(%)

(a) (b)

Fig. 5. Size of ratio rules.

(Bread, Milk, Butter), automotive (Tire, Bulb, Oil), and clothes (Shirt, Pant). Most of the matrix rows
represented transactions involving items from one and only one group. In other words, given any pair of
rows, all the items are either from exactly the same group or from two mutually disjoint groups. The rest
of the rows were ‘noise’, which is generated by randomly selecting items across separate groups, and it
is possible that representatives from several groups could be chosen. This matrix format is illustrated
in Table 5(a). Table 5(b) shows the Ratio Rules for this type of matrix with 420 rows and with the 8
attributes listed above. The rows comprise of 47.8% from the first group, 28.6% from the second group,
19% from the third group and 4.8% noise, and the ratio of these three groups is 5:3:2. The dominate
values of each rule vector are highlighted. As we will see, such three Ratio Rules are essentially:
RR1 : Bread : Milk : Butter = 1:1:1, RR2 : T ire : Bulb : Oil = 1:1:1 and RR3 : Shirt : Pants =
1:1 It is surprising that their corresponding support value is closed to 5:3:2. In this case, the Ratio Rules
are able to identify almost perfectly the three groups despite the presence of noise. RR1 represents the
“food” group, RR2 the “ automotive” group, and RR3 the “clothes” group.

Another experiment is implemented on the synthetic dataset named “Sync” which is obtained with
a commonly adopted dataset generator available from IBM Almaden2.1 The dataset consists of 10000

1“Sync” Dataset is available at www.almaden.ibm.com/cs/quest/syndata.html.
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Table 6
Characteristics of dataset “Syn”

Transaction Items Max tran size Average size Min tran size
10000 300 18 6 1

Fig. 6. Support of ratio rules.

records and 300 attributes. Table 6 lists the structure of such data. In this experiment, since most item
values in each transact are zero, we find most ratio coefficients of Ratio Rules are also zero. We define
a ratio itemset with the set of some non-zero entities of the rules, and the size of each itemset is listed
in Fig. 5 and we find most of the sizes of each rule are very shorter than the entire item size 300 which
means our rules own sparisity characteristics. Furthermore, we can measure the importance of each rule
for the entire dataset by ranking the support value of these rules (Fig. 6). As we know, the higher the
score of support represent the more importance than others. Therefore, according to (12), we can set a
threshold to 90%, and then obtain k = 220 rules whose support values are higher than others as Ratio
Rules which represent the latent associations within the dataset.

6. Conclusions

In essential, one contribution in this work is that we propose a novel method, called Principal Sparse
Non-negative Matrix Factorization (PSNMF) for learning sparse non-negative components in matrix
factorization. This work aims to learn latent components with sparse features, which are called Ratio
Rules to express the quantifiable associations between itemsets. In addition, a support measurement
is designed for weighting the importance of each rule for the entire dataset. Experimental results
illustrate that our Ratio Rules are more suited for representing latent quantifiable associations between
items effectively. Finally, although our approach is essentially a special case of non-negative matrix
factorization, we believe that the proposed constraints are of significance in learning hidden components
inherent in the non-negative data.
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Appendix

Section A

To prove the convergence of the leaning algorithm (6)–(7), an auxiliary function G(H,Z ′) is given
for objective function L(Z) with the properties that G(Z,Z ′) � L(Z)) and G(Z,Z) = L(Z), we will
show that the multiplicative update rule corresponds to setting, at each iteration, the new state vector to
the values that minimize the auxiliary function:

Z(t+1) = arg min
z

G(Z,Zt) (13)

Then the objective function L(Z) is non-increasing when Z is updated using Eq. (13), because of

L(Z(t+1)) � G(Z(t+1), Zt) � G(Zt, Zt) = L(Zt)

Updating H: with W fixed, H is updated by minimizing L(H) = D(V ‖WH ). An auxiliary function
is constructed for L(H) as:

G(H,H ′) =
∑
i,j

vij log vij−
∑
i,j,k

vij

wikh
′
kj∑

k wikh
′
kj

(
log (wikhkj) − log

wikh
′
kj∑

k wikh
′
kj

)
+

∑
i,j

yij −
∑
i,j

vij + λ
∑
i,j

hij

Since the entries of W are non-negative, it is easy to verify
∑

j ‖lj‖1 =
∑

i,j hij , therefore, it
is not difficult to testify G(H,H) = L(H). The following proves G(H,H ′) � L(H). Because
log(

∑
k wikhkj) is a convex function, the following holds for all i, j and

∑
k µijk = 1

− log(
∑

k
wikhkj) � −

(∑
k
µijk log

wikhkj

µijk

)(
where µijk =

wikh
′
kj∑

k wikh
′
kj

)
Then

− log
(∑

k
wikhkj

)
� −

∑
k

wikh
′
kj∑

k wikh
′
kj

(
log wikhkj − log

wikh
′
kj∑

k wikh
′
kj

)

Thus, G(H,H ′) � L(H).
To minimize L(H), we update H by

H(t+1) = arg min
H

G(H,Ht)

This minimum is easily found by taking ∂G(H,H′)
∂hkl

= 0 for all k, l

∂G(H,H ′)
∂hkl

= −
∑

i
vi.l

wikh
′
kj∑

k wikh
′
kj

1
hkl

+
∑

i
bi.k + λ = 0
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Solving for H , this gives

hkl = h′
kl

∑
i

vil
wik∑

k

(
wikh

′
kl

)/(∑
i
wik + λ

)
which is the desired updated H .

Updating W : with H fixed, W is updated by minimizing L(W ) = D(V ‖WH ). The auxiliary
function for L(W ) is:

G(W,W ′) =
∑
i,j

vij log vij−
∑
i,j,k

vij

w′
ik

hkj∑
k w′

ik
hkj

(
log (wikhkj) − log

w′
ik

hkj∑
k w′

ik
hkj

)
+

∑
i,j

yij −
∑
i,j

vij + λ
∑
i,j

hij

It is easily to prove G(W,W ) = L(W ) and G(W,W ′) � L(W ). Likewise, by taking ∂G(W,W ′)
∂wkl

= 0,
we can get:

wkl = w′
kl

∑
j

vkj
hlj∑

k w′
klhlj

/∑
j
hlj

Section B

In the above section, we have illustrated that the objective function is non-increasing under the above
iterative updating rules (6)–(7). As we know, the development of the PSNMF algorithm also introduces
normalization where all of the basis vectors in W are of unit length with respect to the one-norm. In this
section, we will prove that such normalization applied in PSNMF does not lose the monotonicity of the
two updates.

Theorem: Given a Non-negative Matrix Factorization Ṽ = WH introduced by the objection function
Θ, for any vector norm N = ‖.‖, the basis vector W may be normalized to have columns of unit length
in N without losing the monotone convergence of the generating objective function Θ.

Proof: First define a diagonal matrix N whose elements are the norms of each of r columns of the
basis factor W :

N =

⎡⎢⎢⎢⎢⎢⎢⎣
‖w1‖ 0 ... ... ... ... 0

0 ‖w2‖ 0 ... ... ... 0
... ... ... ... ... ... ...
0 0 ... ‖wi‖
... ... .. ... ... ... ...
0 0 ... ... ... 0 ‖wr‖

.

⎤⎥⎥⎥⎥⎥⎥⎦
Our strategy is to multiply N and its inverse N−1 = diag

(
1

‖w1‖ ,
1

‖w2‖ , . . . ,
1

‖wr‖
)

, between the factors

in each iteration of the PSNMF algorithm induced by Θ. Then:

Ṽ = WH = WN−1NH = Ŵ Ĥ (14)
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where

Ŵ =

⎡⎢⎢⎣
...

...
...

w1
‖w1‖

w2
‖w2‖ ... wr

‖wr‖
...

...

⎤⎥⎥⎦
so that Ŵ now contains columns of unit length in N and Ĥ is scaled appropriately (by N ).In applying
this normalization, we do not lose the equality in Eq. (14).Therefore, we conclude that the normalized
factorization Ŵ Ĥ obtained from any factorization WH results in monotonicity of Θ maintains this
monotonicity.

This theorem shows explicitly that the theoretical error of Ṽ is not affected by the normalization
process. For the implementation of the algorithm, the above proof allows us to enforce a specified norm
without requiring more operations for each iteration. We therefore benefit from the computational ease of
enforcing the “natural” one-norm (L1) in the W update before applying N −1N to the final factorization.


