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Abstract

We present a novel approach for clustering sequences of
multi-dimensional trajectory data obtained from a sensor
network. The sensory time-series data present new chal-
lenges to data mining, including uneven sequence lengths,
multi-dimensionality and high levels of noise. We adopt a
principled approach, by first transforming all the data into
an equal-length vector form while keeping as much tempo-
ral information as we can, and then applying dimensionality
and noise reduction techniques such as spectral clustering
to the transformed data. Experimental evaluation on syn-
thetic and real data shows that our proposed approach out-
performs standard model-based clustering algorithms for
time series data.

1 Introduction

Clustering is a fundamental and widely used technique in
machine learning and data mining areas. Traditional clus-
tering algorithms typically assume that data are represented
by feature vectors of equal lengths and low dimensionality,
and contain little noise. Using traditional approaches, such
data are normally handled either by model-based methods
or similarity-based methods [6]. However, as pointed out
by [7], in many real-world applications, the dynamic char-
acteristics of an environment often evolve over time, and as
such, produce data that are of multi-dimensionality, contain
noise and are of uneven lengths. A typical example is a sen-
sor network, which has gained a great amount of interest
in recent years. In a sensor network, a moving object may
receive sequences of signals, whose values are stochastic in
nature; that is, they may change significantly depending on
the relative distance between the moving object and a set of
sensors in the wireless environment. In such a situation, it is
highly desirable to have a method that can produce accurate

clusters even when the data are non-traditional.

In this paper, we address the problem of clustering
temporal sequences into different groups. Consider a
data set C consisting of N temporal sequences, C =
{Y1, Y2, . . . , YN}. Each sequence Y is a multivariate time
series containing T measurements from a set of sensors
such that Y = {Ot|1 ≤ t ≤ T}. The observations Ot

are potentially multi-dimensional signal vectors containing
stochastic values measured from each sensor at a given time
point t. Our ultimate goal is to automatically partition a set
of N temporal sequences C = {Y1, Y2, . . . , YN} into K
clusters such that the inter-cluster similarity is small and
intra-cluster similarity is large. However, a key question is:
when |Ot| is very large and Ot contains lots of noise, and
when |Yi| are all of different lengths, how can we obtain the
clusters of high quality?

Clustering multi-dimensional sensory time series is in-
herently more complex than clustering traditional data that
are of fixed dimensions and contain little noise. First, tem-
poral sequences may be of different lengths, making it dif-
ficult to embed them into a metric space and use a distance
measure such as the Euclidean distance to determine the
similarity matrix. For sensory data obtained from a trajec-
tory in a sensor network, the sequences obtained at different
times may be of different lengths. Second, the data obtained
by sensors at different time points are stochastic in nature,
making it very difficult to apply straightforward similarity
measures. Moreover, each sequence may consist of varying
amounts of temporal information. Therefore, it is highly
desirable to design an effective transformation method to
extract important temporal information from the sequences
while reducing the noise and dimensionality of the data.

In this paper, we propose a novel clustering algorithm to
deal with the above-mentioned problems. Inspired by the
work of [15], we first devise an affinity similarity matrix
between the observation sequences. Our similarity matrix
is obtained by modeling each sequence as a hidden Markov
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model (HMM), so that the log-likelihood of each sequence
given each model can be computed. These probability mea-
sures are then used to construct a uniform-length feature-
vector to capture the temporal information from each se-
quence, regardless of its length. We contend and experi-
mentally verify that this transformation step indeed captures
the needed global temporal information, even when the data
are sequences of vectors.

Our second innovation is reducing the noise and dimen-
sionality at the same time. After the first step, each time
series is modeled as an HMM. This representation allows
us to construct an affinity similarity matrix for all the se-
quences. We then apply spectral methods [10, 11] on the
similarity matrix for noise and dimensionality reduction.
Specifically, a spectral clustering algorithm uses significant
eigenvectors of the affinity matrix to map the original sam-
ples into a lower dimensional subspace. These vectors are
then clustered by standard clustering algorithms in the Eu-
clidean space. Through performing eigendecomposition, a
spectral analysis algorithm helps reduce the uncertainty of
the similarity matrix. This enhances the quality of subse-
quent clustering. We demonstrate the effectiveness of the
two-phase approach through tests on synthetic and real data.
The real data are obtained from a wireless local-area net-
work (WLAN) environment, which consist of a number of
access points (APs) that are used to track a client’s move-
ment trajectories. We show that our proposed algorithm can
produce very good clustering results in this uncertain envi-
ronment.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous work related to clustering algo-
rithms. Section 3 briefly reviews HMMs and the algorithms
used to train HMMs from the observation data. Section 4
describes our proposed algorithm for clustering temporal
sequences. Section 5 presents the results of experiments
using both synthetic and real data. Section 6 concludes the
paper and discusses future work.

2 Related Work

Over the years, temporal-sequence clustering has at-
tracted much attention in research and practice, because
many problems that range from stock-market analysis, se-
curity monitoring, to gene analysis involve time-series clus-
tering. In general, clustering can be classified into two
broad categories [2]: model-based approaches [1, 5, 15] and
similarity-based approaches [4, 13].

For similarity-based approaches, the main task is to de-
fine pairwise distances between all the sequences and then
apply distance-based clustering algorithms. For example,
Eisen et al. [4] adopt correlation coefficients to define the
similarity among gene expression data from different time-
course experiments. Agglomerative hierarchical clustering

is then applied to find clusters of genes with similar pat-
terns of expression. Oates et al. [13] use Dynamic Time
Warping (DTW) to measure the similarities between multi-
variate experiences of mobile robots. For complex problem
domains, similarity-based approaches encounter great diffi-
culty in how to define effective similarity measures. This
definition, which is difficult to obtain, can affect the cluster-
ing quality to a large extent.

Model-based approaches rely on an analytical model for
each cluster where the objective is to find the best mod-
els to fit the observation sequences. Examples of mod-
els include regression models [5], ARMA models[16] and
HMMs [1, 3, 9, 15]. Among these models, HMMs have
attracted increasing attention over the last decade. Smyth
[15] presents a probabilistic model-based approach to clus-
tering sequences using HMMs. This approach first devises
a pairwise distance matrix between observation sequences
by computing a symmetrized similarity. This similarity is
obtained by training an HMM for each sequence, so that
the log-likelihood of each sequence, given each model, can
be computed. This information is then used to cluster the
sequences into K groups using a hierarchical clustering al-
gorithm. After that, one HMM is trained for each cluster;
the resulting K models are then merged into a “compos-
ite” global HMM. This initial estimate is further refined
using the EM algorithm. As a result, a global HMM for
modeling all the sequences is obtained. In [9], the model-
based HMM clustering problem is addressed by focusing on
the model selection issue, i.e., searching for the best HMM
topology and finding the most likely number of clusters. In
[12], the clustering result obtained using DTW as a sim-
ilarity metric is used to provide an estimate of K and to
yield an initial partitioning of the data. While model-based
approaches provide a general probabilistic framework for
clustering temporal sequences, the quality of clustering de-
pends critically on the initial conditions. In addition, since
an HMM assumes that the observations are independent,
the EM algorithm used to train the mixture model cannot
achieve a good resolution when a large amount of noise ap-
pears in consecutive observations.

Our work is also closely related to spectral clustering,
a new clustering algorithm that has emerged over the past
few years and has been successfully applied to the problem
of image segmentation [10, 11]. These methods use sig-
nificant eigenvectors constructed from a pairwise similarity
matrix between pixels and then group the pixels into im-
ages in a spectral domain. However, most spectral methods
assume the number of clusters K to be known in advance,
whereas the estimation of the optimal number of clusters
has not been well studied. In this paper, we apply spec-
tral clustering techniques to help remove the noise in the
temporal data and to automatically determine the number
of clusters for the problem domain.
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3 Modeling Temporal Features with HMMs

Our objective is to cluster multi-dimensional time series
data that originate from tracking a moving object in a sensor
network. These sequential data are different in sequence
lengths and vary greatly in values due to a high level of
uncertainty. Therefore, how to model these data for better
similarity measures is a challenging issue.

Our observation is that, since such data are generated by
a hidden mechanism associated with an underlying mov-
ing object, it is desirable to model such data using a gen-
erative model-based method. Among others, HMMs have
been demonstrated empirically to be capable of modeling
such generative processes in a wide variety of real-world
applications that include speech recognition [14] and ges-
ture recognition [1]. Therefore, we adopt HMMs to model
the temporal sequences for our solution.

An HMM is a non-deterministic stochastic finite state
automata. The basic structure of an HMM consists of a
connected set of states, each of which emits an observable
output. A first-order continuous HMM with Gaussian ob-
servation density is formally defined by:

1. A set of Q states, S = {S1, S2, . . . , SQ}.

2. The initial state probability distribution π = {πi},
where πi = P (q1 = Si), 1 ≤ i ≤ Q.

3. The state transition probability distribution A = {aij},
where aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ Q.

4. The observation probability density is bj(Ot) =∑M
m=1 cjmN (Ot;μjm,Σjm), 1 ≤ j ≤ Q, where Ot

is the observation vector being modeled, cjm is the
mixture coefficient for the mth Gaussian mixture in
the state j, and N is a Gaussian density with the mean
vector μjm and the covariance matrix Σjm for the mth

mixture component in the state j.

Above, Ot and qt indicate the observation and state at
time t, respectively. The parameters of a continuous HMM
can be represented in the following compact form

λ = {π,A, μ,Σ}. (1)

Let Y be an observation sequence, and let λ be the pa-
rameters of an HMM. The following are the main tasks of
an HMM learning algorithm [14]:

1. Compute the probability of the observation sequence
given the model, i.e., P (Y |λ) (the forward-backward
algorithm).

2. Find an optimal sequence of states that maximizes the
probability of the observation sequence Y (the Viterbi
algorithm).

3. Learn the parameters λ that maximize the probability
of the observation sequence P (Y |λ) (the Baum-Welch
algorithm).

Using the HMMs, each sequence can now be modeled
as a set of model parameters. However, it is unreliable to
measure the sequence similarities by directly using these
parameters. We tackle this problem using spectral cluster-
ing in the next section.

4 The Proposed Clustering Algorithm

In this section, we present our approach to the problem
of clustering temporal sequences, which is referred to as
the HMM-Spectral algorithm in this paper. Figure 1 shows
the flow diagram of our proposed HMM-Spectral algorithm.
Given a set of temporal sequences {Y1, Y2, . . . , YN}, we
first construct an affinity similarity matrix S from all the
sequences. A spectral clustering algorithm is then applied to
the affinity matrix to group these sequences into K clusters,
where K can be automatically determined from the data. In
the following, we discuss these two major steps in detail.
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Figure 1. Flow diagram of our HMM-Spectral
algorithm

4.1 Constructing Similarity Matrix

To construct the similarity matrix, we fit N Q-state
HMMs, one for each individual sequence Yi, 1 ≤ i ≤ N ,
by using the Baum-Welch algorithm [14]. These HMMs
can be initialized in a default manner: we first set the transi-
tion matrices to be uniform; we then set the means and vari-
ances from clusters learned through a k-means algorithm.
For each fitted model with parameters λi, we calculate the
log-likelihood of each of the N sequences given the model
parameters λi. The log-likelihood value for each pair of
sequence and HMM is computed as follows:

L(Yj ;λi) = log P (Yj |λi), 1 ≤ i, j ≤ N. (2)

This is done by applying the standard forward-backward al-
gorithm [14]. We can thus obtain a log-likelihood distance
matrix L. This distance matrix is clearly not symmetric. In-
stead, we define the distance between two sequences Yi and
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Yj using the mutual fitness measure as follows:

d(Yi, Yj) = |L(Yi;λi) + L(Yj ;λj)

−L(Yj ;λi) − L(Yi;λj)|, (3)

which represents the cross-fitness of two sequences to the
models. In this equation, the terms L(Yi;λi) and L(Yj ;λj)
indicate the likelihood of the sequences given their own fit-
ted models. The cross terms L(Yj ;λi) and L(Yi;λj) in-
dicate the likelihood of a sequence generated by the fitted
model of another sequence. On the one hand, if two se-
quences are identical, the cross terms would have maximum
values. Thus Equation 3 would be equal to zero. On the
other hand, if two sequences are different, their likelihood
of being generated from other models would be small. Thus
the distance between them would be large. In this way, we
can transform the temporal sequences into a set of new fea-
ture vectors in the “log-likelihood space”.

The motivation behind the above transformation is as fol-
lows. The hypothesis is that all the sequences are generated
by K models. Thus, when we fit models to an individual se-
quence, we might get noisy estimates of model parameters
but the parameters should be clustered in some manner into
K groups based on their true values. Clustering directly
in the parameter space would be inappropriate because the
distance between parameters is hard to define; however, the
log-likelihoods provide a natural way to define pairwise dis-
tances between sequences. The distance matrix of Equation
(3) is taken as input to the subsequent clustering process.

We construct an affinity matrix S from the distance mea-
sure. Each element sij of the matrix reflects the similarity
of the corresponding sequences i and j. The similarity ma-
trix is defined as follows:

sij =

{
exp

(
−d(i,j)

2σ2

)
for i �= j,

0 for i = j,
(4)

where d(i, j) is the distance between the sequences i and j.
Clearly, the similarity matrix S is a symmetric and affinity
matrix because sij = sji ≥ 0 for any pair of sequences
i and j where i �= j. Here, the scaling parameter σ con-
trols how fast sij falls off with the distance between i and j.
While this parameter is usually pre-specified, Ng et al. [11]
proposed a method of choosing σ automatically, which we
adopt in this paper.

4.2 Applying Spectral Clustering to Remove
Noise

After the similarity matrix is constructed, we apply spec-
tral clustering methods to partition the sequences into K
clusters; we discuss how to obtain the appropriate value for
K in Section 4.3. Given an N × N affinity matrix S, each
element sij can be viewed as the similarity between the vec-
tors vi and vj . For an undirected graph G with vertices vi

and edges sij , where 1 ≤ i, j ≤ N , the matrix S is consid-
ered as an adjacency matrix for G. Let di =

∑
j∈V sij be

the degree of vertex vi, and let D be a diagonal matrix with
di being its diagonal element. We can obtain a normalized
stochastic matrix:

M = SD−1, D = diag(d1, . . . , dN ), (5)

where the sum of each row is one. Based on the definition
of a Markov chain, mij represents the transition probability
of moving from vi to vj . In practice, we consider a matrix

L = D−1/2MD1/2 = D−1/2SD−1/2, (6)

where L is symmetric and stable in eigendecomposition
[11]. Then, the symmetric matrix L can be decomposed
into the following form:

L = XΛXT , (7)

where X = [x1, x2, . . . , xN ] is a matrix by stacking the
eigenvectors of L in columns; Λ = diag(λ1, . . . , λN ) is a
diagonal matrix with the nonnegative singular eigenvalues
in descending order along the diagonal, that is, λ1 ≥ λ2 ≥
. . . ≥ λN ≥ 0. These eigenvalues represent the impor-
tance of the corresponding eigenvectors. Since the top K
eigenvectors, K ≤ N , can capture a significant amount of
information on the original samples, we can map the origi-
nal samples into the K dimensional vectors in the spectral
domain and then apply the standard clustering algorithms
based on Euclidean distance.

The spectral clustering algorithm we apply is similar to
the one proposed in [11]. Given the number of clusters K,
the algorithm works as follows:

Spectral Clustering (See Figure 1)

(1) Find K principal eigenvectors x1, x2, . . . , xK , corre-
sponding to the K largest eigenvalues of L, and form
a matrix P = [xi, x2, . . . , xK ] ∈ R

K by stacking the
eigenvectors in columns.

(2) Normalize the rows of the matrix P so that they have
unit Euclidean norm.

(3) Treating each row of P as a point in R
K , cluster them

into K clusters via the k-means clustering algorithm.

(4) Assign the original sample vi to cluster j if and only if
the row i of the matrix P is assigned to cluster j.

4.3 Estimating the Number of Clusters

The main assumption of the above clustering algorithm
is that the number of clusters K needs to be pre-specified.
To estimate the number of clusters, an appropriate criterion
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is required to measure the quality of the resultant clusters.
For a specific number of clusters J , we compute a correla-
tion matrix QJ = PJP

′

J when the normalized matrix PJ is
obtained after step (2) of the Spectral Clustering algorithm.
Each element qij of the matrix QJ represents the similarity
between the vectors vi and vj . The closer to one qij is, the
more similar two vectors vi and vj are in the spectral do-
main. Therefore, based on the matrix QJ , we can compute
a quality score αJ using the clustering result as follows:

αJ =

J∑
c=1

1

Nc

∑
i,j∈Zc

qij , (8)

where Zc is the set of sequences included in the cluster c,
and Nc is the number of sequences in Zc. This quality score
would have a higher value if the sequences in each cluster
are more similar. Therefore, the number of clusters can be
automatically determined by evaluating the local maximum
value of this quality score.

In summary, our proposed algorithm works as follows:
given a maximum number of clusters Kmax, for J =
1, 2, . . . ,Kmax, iterate the steps of Spectral Clustering
from (1) to (4). Find the optimal number of clusters K∗

such that the corresponding quality score αK∗ is maxi-
mized. With this iterative algorithm, we can automatically
group all the sequences into K∗ clusters.

5 Experimental Evaluation

In order to evaluate the performance of our proposed
algorithm, experiments were carried out on both synthetic
data and real data from a wireless LAN environment. For
comparison, four different clustering approaches were used
as the baselines. The first one is referred to as K-Means
(Loglik). This algorithm differs from our HMM-spectral al-
gorithm in that, after the similarity matrix S is built, a stan-
dard k-means algorithm rather than a spectral algorithm is
applied for clustering. This baseline is used to test the abil-
ity of our algorithm in reducing noise and dimensionality.
The other three approaches are used to test the sensitivity
of our algorithm against different initialization procedures
used to train a mixture of HMMs for clustering when the
EM algorithm is applied. The first one uses a random ini-
tialization, which is called MHMMs (Random). The second
one trains a mixture model using a clustering-based initial-
ization in “log-likelihood space” as given in [15]. In this
approach, after computing the log-likelihood distance ma-
trix L, the authors computed a different similarity matrix

S′(Yi, Yj) =
1

2
(L(Yj ;λi) + L(Yi;λj)). (9)

Then a k-means algorithm is used to cluster the sequences
into K groups which are subsequently used to initialize the

mixture of HMMs. We call this method EHMMs (Loglik).
The third algorithm is called EHMMs (DTW), which ini-
tializes the mixture of HMMs based on the clustering results
using a DTW-based similarity measure [13].

In summary, we compare the performance of five cluster-
ing algorithms: (1) K-Means (Loglik), (2) EHMMs (Ran-
dom), (3) EHMMs (Loglik), (4) EHMMs (DTW), and (5)
HMM-Spectral (our proposed algorithm). In the following,
we first introduce the criterion used to evaluate the clus-
tering results in Section 5.1. Based on this criterion, we
compare the performance of the five algorithms on synthetic
data in Section 5.2. We then demonstrate the effectiveness
of our HMM-Spectral clustering algorithm on real data col-
lected from a wireless LAN environment in Section 5.3.

5.1 Evaluation Criterion

The criterion used for testing the validity of the cluster-
ing algorithms is the F-measure, which combines the con-
cept of recall and precision measures in information re-
trieval area [8]. Specifically, for each actual cluster i, we
first compute the recall and precision measures of all the
detected clusters j. The definitions of recall and precision
are given as Recall(i, j) = nij/ni and Precision(i, j) =
nij/nj , where ni is the number of sequences belonging to
cluster i, nj is the number of sequences belonging to cluster
j, and nij is the number of sequences in cluster i that are
correctly identified in cluster j. Based on the recall and the
precision measures, the F-measure of two clusters i and j is
defined as

F (i, j) =
2 × Recall(i, j) × Precision(i, j)

Recall(i, j) + Precesion(i, j)
. (10)

The overall F-measure of the final clustering result is
computed as a weighted sum over all the values of F (i, j),
which is defined as follows:

F =
∑

i

ni

n
max

j
{F (i, j)}, (11)

where n is the total number of sequences. For a particular
cluster i, the max operation is taken over all the detected
clusters j. In the following, we use F-measure to evaluate
the performance of clustering.

5.2 Experiments on Synthetic Data

In this experiment, 80 sequences of an average length
of 180 ranging from 150 to 200 are generated from a 2-
component HMM mixture (40 sequences from each compo-
nent). Each observation consists of a one-dimensional value
(in the next section, we extend to multi-dimensional vec-
tor sequences). Both HMMs are modeled with two states,
which use a one-dimensional Gaussian observation density
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for generating observations in each state. Similar to [1], we
model the amount of noise by varying the amount of over-
lap between the generative models and by varying the mean
separation between the Gaussian densities of the two states.
The variations are similar for both HMMs. Specifically, the
transition matrices for two HMMs are as follows:

A1 =

(
0.7 0.3
0.4 0.6

)
, A2 =

(
0.3 0.7
0.6 0.4

)
.

We kept the variances of the Gaussian densities for two
states as σ2

1 = σ2
2 = 1, and the mean of the first state

as μ1 = 0. Then we varied the mean of the second state
μ2 in a range from 1 to 3. This corresponds to a change
in the mean separation Δμ

σ2 between the two Gaussian den-
sities. This clustering task is non-trivial both because the
data have exactly the same marginal statistics if the tempo-
ral information is removed from the sequences, and because
the Markov dynamics governed by A1 and A2 are relatively
similar for each HMM.
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Figure 2. Comparison of clustering algo-
rithms vs. Mean separation between the ob-
servation Gaussian densities

For each value of Δμ
σ2 , the five clustering algorithms were

applied to the generated sequences with 20 trials. Figure 2
shows the clustering results with respect to different val-
ues of the mean separation between two Gaussian densities.
Each value plotted in this figure corresponds to the overall
F-measure averaged over 20 trials. We can see from the fig-
ure that, as the mean separation between the two Gaussian
densities in the two states decreases, that is, when the noise
level increases, the overall performance of all the clustering
algorithms decreases. This occurs because, when the mean
separation becomes smaller, the two Gaussian densities be-
come more indistinguishable from each other and thus more
noise is involved in the observations. Consequently, the
clustering task becomes more difficult.

Let us look into Figure 2 in detail. First, when the mean
separation is small, our HMM-Spectral algorithm signifi-
cantly outperforms the K-Means (Loglik) algorithm. This

indicates that, by performing eigendecomposition, HMM-
Spectral can reduce the uncertainty of the similarity ma-
trix, which enhances the quality of the similarity-based
clustering. Second, our HMM-Spectral algorithm consis-
tently outperforms the other three EM-based clustering al-
gorithms. EHMMs (Random) gives the poorest clustering
result because the convergence of the EM algorithm is af-
fected by the random initialization to a large extent. By
applying better initialization methods, EHMMs (Loglik)
and EHMMs (DTW) improve the performance of EHMMs
(Random), whereas their performance is roughly compara-
ble. In summary, our HMM-Spectral algorithm performs
the best among the five clustering algorithms.

We performed another set of experiments to evaluate the
sensitivity of the five clustering algorithms to the observa-
tion noise. In this experiment, we kept the means of two
Gaussian densities as μ1 = 0 and μ2 = 1.5, and kept the
variances as σ2

1 = 1 and σ2
2 = 1.5. We set the transition

matrices A1 and A2 for each HMM to be uniform. Since
the observations in temporal sequences are not usually in-
dependent, we added Gaussian noise to the observations,
whereby we set the mean μ′ = 0 and σ′2 to vary from 0.1
to 0.9. For each setting, we also generated 80 sequences of
average length 200 from the 2-component HMM mixture.
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Figure 3. Comparison of clustering algo-
rithms vs. Variance of Gaussian noise

Figure 3 shows the clustering results with respect to dif-
ferent values of the variance σ′2 of the Gaussian noise. As
we can see from the figure, the three EHMM algorithms
performed poorly when the Gaussian noise is added into
the consecutive observations. Since HMMs assume that the
observations are independent of each other over time, the
three model-based algorithms cannot accurately estimate
the parameters of the mixture model. In contrast, K-Means
(Loglik) and HMM-Spectral performed better in the case
of Gaussian noise. However, when more noise is involved
in the observations, our HMM-Spectral algorithm outper-
forms K-Means (Loglik) because it can effectively reduce
the noise through spectral clustering.
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5.3 Experiments on Real Sensory Trajectory Data

In this experiment, we clustered the signal sequences
obtained from a moving object’s trajectory data in a wire-
less LAN environment as shown in Figure 4. This environ-
ment is the office area of the Computer Science Department
at the Hong Kong University of Science and Technology.
This area is equipped with an IEEE 802.11b wireless net-
work in the 2.4 GHz frequency bandwidth. A user’s activ-
ities are carried out in the three main areas (Office, Room1
and Room2), three entrances and seven hallways. The two
rooms provide facilities for printing services and holding
seminars. In the figure, four access points (APs) are marked
with double solid circles, each of which is identified by its
unique Media Access Control (MAC) address.

Environmnt Settting

Entrance 1

Entrance 2

Entrance 3

HW1HW3

HW5 HW4

HW2

HW6

HW7

Office

Room2

 Room1

Areas: Office, Room1 and Room2
Entrances: Entrance 1 ~ 3
HWs: HallWay 1 ~ 7
APs: Access Points as indicated by
                   double concrete circles

AP4

AP3

AP2 AP1

Figure 4. The layout of office area

While a user with a mobile device performs different ac-
tivities in this environment, the mobile device can period-
ically record signal-strength measurements from the APs.
For illustration, an observation o =< (AP1 : −81)(AP2 :
−77)(AP3 : −64)(AP4 : −41) > is a signal vector where
each element consists of the MAC address of an AP and
the corresponding signal-strength value. Accordingly, the
observed sequence on users’ behavior is represented as a
sequence of signal-strength measurements recording their
movements in the environment. These sequences contain
lots of noise due to the multi-path fading effect in signal
propagation, and are of different lengths.

Using the device driver and API that we have devel-
oped, we collected 180 sequences of a professor’s 6 dif-
ferent activities in this office area. These activities in-
clude “Entrance1-to-Office”, “Office-to-Room2”, “Office-
to-Entrance2”, “Office-to-Entrance3”, and “Entrace2-to-
Room1”. The number of sequences for each activity is 30.
In total, 25 APs can be detected: four are distributed within
this area; the others are distributed in adjacent areas on the
same or different floors. In our experiment, we chose six
APs because their signals occurred frequently and their av-
erage signal-strength values are the strongest. Therefore,
each sequence is a 6-dimensional time series. The average

length of sequences is 122, ranging from 80 to 140 (within
sequence lengths between 80-100, 101-120, 121-140, the
mean lengths are 92.34, 116.08, 128.79, respectively, and
the variances are 12.3, 4.7, 26.3, respectively). For evalua-
tion purpose, we manually labeled each sequence by its cor-
responding intended activity. These labels serve as ground
truth for evaluating the clustering results in terms of the F-
measure, as well as for evaluating the automatically deter-
mined number of clusters against the number of different
user activities. The task of performing clustering on this
data set is difficult because signal-strength measurements
are extremely noisy and uncertain in an indoor environment.
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Figure 5. Comparison of clustering algo-
rithms on real sensory trajectory data
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Figure 6. Clustering quality score α vs. Num-
ber of clusters

We applied the five clustering algorithms to this data set.
The clustering results are summarized in Figure 5. Each
value of F-measure plotted in the figure is also the average
of 20 trials. We can see from the figure that our HMM-
Spectral algorithm performs the best on this real data set.
Compared with the K-Means (Loglik) algorithm, the per-
formance of HMM-Spectral is much better. This shows that
HMM-Spectral is effective in reducing the uncertainty in-
volved in the similarity matrix used for further clustering.
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HMM-Spectral also outperforms the other three EHMMs
algorithms because the EM-based algorithms can be easily
trapped in a local minimum when lots of noise exists.

Experiments were also carried out to test the ability
of our HMM-Spectral algorithm to determine the optimal
number of clusters. Figure 6 shows different values of the
quality score α by varying the number of clusters. As we
can see from the figure, the maximum value of α is achieved
when the number of clusters is equal to six, which is the
same as our ground truth from the human labeled data set.

6 Conclusions and Future Work

In this paper, we investigated the problem of cluster-
ing variable length, noisy and multi-dimensional time series
data. These data are abound in tracking and monitoring ap-
plications in a sensor network. We argued that traditional
clustering algorithms have difficulty in dealing with these
data due to the simplicity of their assumptions. We intro-
duced the HMM-based mixture models for transforming the
time series data into equal length vectors, which are in turn
used to produce an affinity similarity matrix. We then ex-
plored how to apply spectral clustering on this matrix to fur-
ther remove noise and obtain the final clusters. Our experi-
mental results on both synthetic and real data demonstrated
that our proposed HMM-Spectral algorithm is both robust
and accurate for noisy data clustering.

In the future, we plan to apply other types of generative
models to replace the HMM model. For example, we might
apply a linear dynamic model for this purpose. In addition,
we plan to test the utility of other clustering algorithms to
replace the k-means algorithm in the HMM-Spectral algo-
rithm on the projected eigenspace to find the best combina-
tion of algorithms for different types of time series data.
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