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Abstract 
 

Subspace learning approaches aim to discover 

important statistical distribution on lower dimensions for 

high dimensional data. Methods such as Principal 

Component Analysis (PCA) do not make use of the class 

information, and Linear Discriminant Analysis (LDA) 

could not be performed efficiently in a scalable way. In 

this paper, we propose a novel highly scalable supervised 

subspace learning algorithm called as Supervised 

Kampong Measure (SKM). It assigns data points as close 

as possible to their corresponding class mean, 

simultaneously assigns data points to be as far as possible 

from the other class means in the transformed lower 

dimensional subspace. Theoretical derivation shows that 

our algorithm is not limited by the number of classes or 

the singularity problem faced by LDA.  Furthermore, our 

algorithm can be executed in an incremental manner in 

which learning is done in an online fashion as data 

streams are received. Experimental results on several 

datasets, including a very large text data set RCV1, show 

the outstanding performance of our proposed algorithm 

on classification problems as compared to PCA,  LDA 

and a popular feature selection  approach, Information 

Gain (IG).  

 

1. Introduction 
 

In the last decade, machine learning and data mining 

research has witnessed a growing interest in subspace 

learning [7] and its applications, such as Web document 

classification [11], face recognition [16] and data 

clustering [1, 12]. Among various subspace learning 

approaches, linear algorithms are of great interesting due 

to their efficiency and effectiveness. Principal Component 

Analysis (PCA) [2, 13] and Linear Discriminant Analysis 

(LDA) [4] are two of the most widely used traditional 

linear subspace learning algorithms.  

Principal Component Analysis (PCA), which is an 

unsupervised algorithm, aims at finding out the 

geometrical structure of the data set and projecting the 

data along the directions with maximal variances. 

However, it discards the class information which is 

significant for classification tasks. Linear Discriminant 

Analysis (LDA), which is a supervised algorithm also 

called as Fisher Discriminant Analysis (FDA), is a 

traditional supervised subspace learning algorithm. It 

searches for the projection on which the data points of 

different classes are far from each other and, at the same 

time, the data points of the same class are close to each 

other. Nevertheless, the available subspace dimension in 

LDA is limited by the number of classes, and the 

singularity problem limits the application of LDA [10].   

On the other hand, both classical PCA and LDA are 

batch algorithms, which mean that the training data must 

be available in advance. As a result, they cannot satisfy 

the requirements of online applications on data stream [3, 

6, 14]. Furthermore, when the dimensionality of the 

features is high, the computational complexity and the 

storage requirement grow dramatically. Thus in this paper 

we propose a novel algorithm which can satisfy: (1), it is 

supervised which is more suitable to classification 

problems than the common used unsupervised one, PCA; 

(2), it has no calculation limitations such as the class 

number limitation and singularity problem faced by LDA, 

in addition it can give the same or better performance than 

LDA for real classification tasks; (3), the computational 

complexity is lower than the traditional matrix 

decomposition based algorithms PCA and LDA; (4), it 

can deal with data streams in a scalable way. 

We name the novel proposed supervised subspace 

learning approach with incremental learning as Supervised 

Kampong Measure (SKM). Note SKM is just a name 

which has no physical meaning. Intuitively in the history 

of human being, to avoid hurts of animals, the residents of 

the same remote antiquity Kampong always live together 

as close as possible, on the other hand, to avoid war and 

get enough food, the residents of different kampongs 

always live as far as possible. Similar to the custom of 

kampong residents, we design SKM aim at assigning data 

points as close as possible to their corresponding class 

means, and simultaneously, assigning data points as far as 

possible to the other class means in the low dimensional 

subspace. 

As compared to the classical LDA, the optimization of 

our proposed measure does not depend on the number of 
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training data’s classes; and it has no singularity problem. 

Moreover, it outperforms PCA in classification problems 

since PCA discards the valuable class information. Our 

experimental results on various data sets show that this 

algorithm is effective for classification problems 

compared to PCA or LDA. Particularly, experiments 

performed on Reuters Corpus Volume 1 (RCV1) [8], 

whose dimension is about 300’000 and the samples 

number is more than 800’000, demonstrate the scalable 

property of SKM on a very large scale dataset. We take 

unsupervised PCA as a baseline of SKM on the large 

scale data. In addition, based on the comparative study of 

[17], supervised IG is the best one among several feature 

selection algorithms for text categorization problems. 

Thus we also utilize IG as baseline of SKM. Since it is 

very hard to perform LDA on such a large dataset, we 

only conduct LDA on general datasets. This large scale 

experiment shows that the F1 value of our algorithm in a 

3-dimensional subspace could outperform PCA and IG in 

even 500-dimensional subspaces. 

The rest of this paper is organized as follows. In 

Section 2, we introduce some necessary background 

knowledge on subspace learning, such as the PCA and 

LDA algorithms. In Section 3, we will give the formal 

problem statement. Following that, we present the 

derivation of our proposed approach and its incremental 

learning algorithm in Section 4. In Section 5, we 

demonstrate the experimental results on the synthetic 

datasets and the real data. Conclusion of this paper is 

given in Section 6. Some detailed proof could be found in 

the appendix. 
 

2. Background Knowledge 
 

Linear subspace learning approaches are widely used 

in real tasks such as Web document classification and face 

recognition nowadays. It aims at finding a projection 

matrix which could efficiently project the data from the 

original high-dimensional feature space to a much lower 

dimensional representation under a particular criterion. 

Different criterion will yield different subspace learning 

algorithm with different properties. Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) 

are two most widely used linear subspace learning 

approaches. 

 

2.1. Principal Component Analysis 
 

Suppose that the sample data points (1), (2),..., ( )u u u N  

are d-dimensional column vectors, where N is the number 

of samples, and that U is the sample matrix with ( )u i  as 

its i
th

 column. PCA aims to find a subspace whose basis 

vectors correspond to the directions with maximal 

variances. It projects the original data into a p- 

dimensional (p << d) subspace. The new p-dimensional 

feature vector can be computed as Ty W u= , where W is 

the projection matrix and its column vectors correspond to 

the p leading eigen-vectors of the centralized covariance 

matrix TC UU= . Here uppercase T stands for transpose of 

matrix. 

PCA minimizes the reconstruction error in the sense of 

least square error, and finds out the most representative 

features. The objective function of PCA is,  

( ) { }T
J W tr W CW= . 

In other words, the projection matrix W is achieved by 

maximizing the objective function ( )J W . 

Moreover, PCA is in fact a scalable algorithm since it 

has effective incremental learning algorithm [2] which 

could process large scale streaming data. However, it 

ignores the class label information which is very valuable 

for general classification tasks.  
 

2.2. Linear Discriminant Analysis 
 

Linear Discriminant Analysis (LDA), also called Fisher 

Discriminant Analysis (FDA), was proposed to pursue a 

low dimensional subspace that can best discriminate the 

samples from different classes. Suppose 
d p

W R
×∈ is the 

linear projection matrix; LDA aims to maximize the so-

called Fisher criterion, 

{ }
( )

{ }

T

b

T

w

tr W S W
J W

tr W S W
= , 

Where 

1

( )( )
c

T

b i i i
i

S p m m m m
=

= − −∑ ,   

1

( )( )
c

T

w i i i i i
i

S p E u m u m
=

= − −∑  

are called the Inter-class scatter matrix and the Intra-class 

scatter matrix respectively, where c is the number of 

classes, m  is the mean of all samples, im  is the mean of 

the samples belonging to class i and ip is the prior 

probability for a sample belonging to class i. The 

projection matrix W can be obtained by maximizing the 

objective function ( )J W . Through simple mathematical 

derivation, it is to solve the following generalized eigen-

vector decomposition problem:  

b wS w S wλ= . 

LDA explicitly utilizes the class label information of 

the samples and is a supervised algorithm. There are at 

most c-1 nonzero eigen-values, so the upper bound of p is 

c-1; and at least d c+  sample data is required to make it 

possible that wS  is not singular. These limit the 

application of LDA. Furthermore, it is difficult for LDA 
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Mean of class 1 

to handle large-sized datasets when the feature-space 

dimension is high. For example, as in the Reuters Corpus 

Volume 1, the feature dimension is about 300,000 where 

it is impossible to conduct the generalized eigen-vector 

decomposition on a computer with moderate configuration.  

Figure 1 shows a simple example of different subspace 

learning approaches on a group of synthetic data. The 

stars and triangles are two dimensional data points belong 

to two different classes. The straight line is the one 

dimensional subspace found by PCA and the broken line 

is the one dimensional subspace found by LDA. It is 

obvious that if we project the data into the subspace 

calculated by LDA, they will be separated easily. 

However, if we project the data into the subspace 

calculated by PCA, the samples of two classes will be 

mixed together. As a conclusion, the unsupervised PCA 

project the data based on the overall distribution of dataset 

while supervised LDA project the data based on the class 

distribution of dataset. This is one of the reasons why 

supervised subspace learning approaches are always better 

than unsupervised ones on some classification tasks.  
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Figure 1. A simple example of subspace calculated 

by different subspace learning approaches. 

 

3. Problem Formulation 
 

As demonstrated in the previous section, subspace 

learning approaches attempt to find a projection matrix 

which could efficiently project the data from the original 

feature space to a target representation under a certain 

optimization criterion. In mathematical terms, suppose 

that we are given N training data ( )
d

u i R∈ , 1,2,...i N=  

where the class label of ( )u i is il , il ∈ {1,2,…,c}and c is 

the number of classes. The mean of class i is
i

m  . The 

problem then is to give an objective function ( )J W which 

satisfies the properties listed below.  We can then solve 

the projection matrix 
d p

W R
×∈ (p << d) by optimizing 

this objective function ( )J W  in order to produce the 

subspace. The properties we wish the objective 

function ( )J W to satisfy are:  

•  It should be optimal for classification tasks. In other 

words, it should outperform at least PCA and at the same 

time, perform the same or better than LDA for 

classification problems; 

•  This criterion should be applicable. In other words, 

the dimension of subspace should not be limited by the 

class size.  Furthermore, the computation should not be 

constrained by the singularity problems; 

•  The optimization of this criterion should be scalable, 

i.e. suitable for incremental learning with much lower 

complexity than batch calculation. In other words, it 

should support both batch as well as online learning. 

 

4. Supervised Kampong Measure 
 

Intuitively in the history of human being, to avoid hurts 

of animals, the residents of the same remote antiquity 

Kampong always live together as close as possible, on the 

other hand, to avoid war and get enough food, the 

residents of different kampongs always live as far as 

possible. We are motivated to make use of a similar idea 

in subspace learning. This is the reason why we call our 

criterion SKM. We measure the distance between a data 

point and all the class centers for subspace learning. In 

other words, we wish to make the distance between a data 

point and its corresponding class center as short as 

possible in the extracted low dimension subspace, at the 

same time, we wish to make the distance between data 

points and the inhomogeneous class centers as far as 

possible.  

Figure 2 shows the intuitive motivation of the SKM 

algorithm for subspace learning.  For a high dimensional 

data point that belongs to class 2, suppose P1, P2, P3 are 

three possible positions after projected to the 2 dimension 

subspace. Under our motivation, possible position 2 (P2) 

is better than possible position 1 (P1) since it is closer to 

its own class mean. Moreover, P3 is better than P2 due to 

the reason that P3 is one of the closest positions to its own 

class mean among the three possible positions, and is the 

furthest to the other class means. 
 

4.1. Derivation of the Criterion 

 
Figure 2. An intuition explanation of our proposed 

criterion. 

P 3 

P 2 

P 1 

Mean of class 2 
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Using the same symbols defined in section 2, all data 

points are d-dimensional column vectors in Euclidean 

Space, thus the distance between the
th

i sample data and 

the mean of class j  could be represented by, 

2
( ( ), ) ( ) ( ( ) ) ( ( ) )T

j j j jdis u i m u i m u i m u i m= − = − −   (1) 

Through algebra transformation, it is easy to prove that, 

( ( ) ) ( ( ) ) {( ( ) )( ( ) ) }T T

j j j ju i m u i m tr u i m u i m− − = − −      (2)  

where {}tr ⋅  is the trace of a given matrix. In other words, 

we have  

2{( ( ) )( ( ) ) } ( ( ), )T

j j jtr u i m u i m dis u i m− − =          (3) 

Thus we can use the trace of scatter matrix 

( ( ) )( ( ) )T

j ju i m u i m− − to measure the distance between 

the th
i sample data and the mean of class j .  

     Suppose that d p
W R

×∈ is the linear projection matrix 

to be found by our algorithm through which a new p-

dimensional feature vector can be computed as Ty W u=  . 

The distance between the
th

i sample data and the mean of 

class j in the low dimensional subspace then could be 

denoted by, 

{ ( ( ) )( ( ) ) }T T

j jtr W u i m u i m W− −                  (4) 

From the supervised learning perspective, different 

class has different prior probability. Intuitively, the 

stronger a kampong is, to avoid conflict and hurt, the 

farther other kampong’s residents should live away from it. 

In terms of subspace learning, the larger prior probability 

of a class is, the larger distance between its class mean 

and a data point of other class should be. This leads to a 

weighted form of formula (4). Suppose that
i

l stands for 

the class label of ( )u i and 
,il j

e , 1,2,...j c= are the weights of 

different class centers with a determined data point (we 

discuss how to set these weights in the next section). Then 

the measurement of distance between ( )u i and jm is: 

,
{ ( ( ) )( ( ) ) }

i

T T

l j j jtr W e u i m u i m W− −                    (5) 

In order to make a people live far away from all other 

kampongs except for his own, we should maximize the 

distance between a data point ( )u i and all other class 

centers in the low dimensional subspace, i.e. we should 

maximize, 

,1,{ ( ( ( ) )( ( ) ) ) }
i i

T Tc
j j l l j j jtr W e u i m u i m W= ≠ − −∑          (6) 

On the other hand, in order to minimize the distance 

between a data point and its corresponding class centers 

after being projected on a low dimensional subspace, we 

minimize, 

,{ ( ( ) )( ( ) ) }
i i i i i i

T T

l l l l l ltr W e u i m u i m W− −               (7) 

To get a unified formula, we define a δ -function as, 

{
1

( , )
1

i

i

i

l j
l j

l j
δ

− =
=

≠
                        (8) 

Then we can combine formular (6) and (7) as,  

,1{ ( ( , ) ( ( ) )( ( ) ) ) }
i

T Tc
j i l j j jtr W l j e u i m u i m Wδ= − −∑     (9) 

      Note that if formula (9) gets its maximum value, then 

our original motivation i.e. assigning data points as close 

as possible to their corresponding class means, meanwhile, 

assigning data points as far as possible to the 

inhomogeneous class means is satisfied for a given data 

point ( )u i . And then for all the sample data, the full 

criterion could be write as,                                                         

,1( ) { ( { ( , ) ( ( ) )( ( ) ) }) }

        { }                                                       (10)

i

T Tc
j i l j j j

T

c

J W tr W E l j e u i m u i m W

tr W S W

δ== − −∑

=

where {}E ⋅ is the expectation of a random variable and 

    
,1{ ( , ) ( ( ) )( ( ) ) }

i

Tc
jc i l j j jS E l j e u i m u i mδ== − −∑         (11) 

Based on the above discussion, the SKM for subspace-

learning is transformed into an optimization problem. In 

the equation (11), we exercised freedom to multiply W 

with some nonzero constant. Thus, we additionally require 

that W consists of unit vectors, i.e. 

1 2[ , , ]pW w w w= L and 1T

k kw w = .  In addition, we require 

the projection matrix W to be orthogonal matrix in 

Euclidean space, i.e. 0T

k lw w = if k l≠ . Then the 

optimization problem of the proposed objective function 

(10) is translated to the following constraint optimization 

problem: 

* arg max ( ) arg max { }
T T

T

c

W W I W W I

W J W tr W S W
= =

= =         (12) 

where I is the identity matrix. The problem can be restated 

as,  

 

1arg max Tp
k k c kw S w=∑ , 

subject to
1

0

T
k l

k l
w w

k l

=
= 

≠
,  

k=1,2,…,p . 

 l=1,2,…,p . 
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4.2. Design of the Weights 
 

In this section we consider the design of weights
,il j

e in 

objective function (10). Note ij l≠ indicates that the 

sample ( )u i does not belong to class j, in which situation 

we want to separate ( )u i from samples of class j in the p-

dimensional subspace. As demonstrated in section 4.1, the 

more samples in class j , the larger the weights are needed 

for class j, i.e. the longer the distance is needed to separate 

them. Alternatively, when ij l=  , we wish to associate ( )u i  

with samples of class j in the p-dimensional subspace. 

Intuitively from the global perspective, if a kampong has a 

few residents, then everyone is very important to this 

society. All people should live very close for safety. 

However if a kampong has a lot of residents, people can 

live a little far away from each other since the loss of a 

single person will not affect the kampong much. Thus the 

more samples in class j , the smaller the weights should be 

for class j.  

The analysis above tells us that the weights must satisfy 

the following constraints: (a), if ( )u i does not belong to 

class j , the weight ,il je should be monotone increasing 

with the prior probability of class j; (b), in contrast, if 

( )u i belongs to class j , the weight ,il je should be monotone 

decreasing with the prior probability of class j; (c), the 

third is a common constraint that all weights must 

satisfy
,

0
il je ≥  and

,1 1
i

c
l jj e= =∑ ; (d), finally, a people live 

together with his own kampong is more important than 

live far away from other kampongs. In other words, the 

distance between a data point and its corresponding class 

mean should be more important than the distance between 

the data point and all the other class centers, i.e. 

, ,  
i i i

i

l l l j
j l

e e
≠

≥ ∑ . 

It is clear that we can design various weights to satisfy 

these constraints. As an example, we assign the weights 

which can satisfy (a) ~ (d) by Theorem 1.  

    Theorem 1, the weights 

{
,

( ) /

/i

j i

l j

j i

a p M j l
e

p M j l

− =
=

≠
,               (13) 

satisfies all the constraints (a) ~ (d) discussed above 

when 1a ≥ , where M is a positive real const used to 

normalize the weights (a simple proof is given in appendix) 

    Without loss of generality, we could use  

{
,

( )

i

j i

l j

j i

a p j l
e

p j l

− =
=

≠
,                    (14) 

to represent the weights in our problem. This is due to the 

reason that multiplying by a constant will never affect the 

projection matrix,  mathematically  

arg max { } arg max { ( ) }
T T

T T

c c

W W I W W I

tr W S W tr W MS W
= =

= .       (15) 

For convenience, we combine the weights and the δ -

function as, 

{
( )

( , )
j i

i

j i

a p l j
q l j

p l j

− − =
=

≠
,                  (16) 

and then the objective function can be rewritten as, 

1( ) { ( { ( , )( ( ) )( ( ) ) }) }

         { }                                                     (17)

T TC
j i j j

T

c

J W tr W E q l j u i m u i m W

tr W S W

== − −∑

=
   

4.3. Algorithm Analysis 
 

Note our algorithm is an optimization problem, 

1arg max Tp
k k c kw S w=∑ subject to some constraints. By 

introducing a Lagrangian function below, 

1( , ) ( 1)T Tp
kk k k c k k k kL w w S w w wλ λ== − −∑           (18) 

where kλ are the Lagrange multipliers. At the saddle point, 

the derivatives of L must vanish, leading to c k k kS w wλ= .  

Thus, the columns of W are eigen-vectors of the criterion 

matrix cS . Therefore, ( )J W is maximized when W is 

composed of the first p leading eigen-vectors of cS .  

Compared to the classical LDA algorithms, our 

proposed algorithm has no singularity problem since it 

need not to calculate the inversing of a matrix.  In addition, 

our proposed algorithm is not limited by the number of 

classes.  

 

4.4. Incremental Learning 

 

The above eigen-system could be solved by the 

classical Singular Value Decomposition (SVD), but the 

computational complexity of SVD is 3( )O m , where m is 

the smaller value between the sample number and the data 

dimension. However, in real applications, we allow data 

to be streamed from a data source, such that the data are 

incrementally received. Furthermore, when the dimension 

of the data set is high, both the computational and storage 

costs grow fast. Thus, an incremental method is highly 

desired to compute an adaptive subspace when the data 

arrive sequentially.  

Assume that the sample sequence is presented 

as { ( )}u n , where n=1, 2…. Our algorithm aims to 

maximize the criterion ( ) T

cJ W W S W= . Denote p as the 

dimension of the transformed data, i.e. the final subspace 

dimension. The criterion scatter matrix of step n after 

learning from the first n samples can be written as,  
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1 1

1
( ) ( , )( ( ) ( ))( ( ) ( ))Tn c

i jc i j jS n q l j u i m i u i m i
n

= == − −∑ ∑ (19) 

where ( )jm i is the center of class j at step i.  

The general eigen-function is Aµ λµ= , where eigen-

value of A is λ  and the corresponding eigen-vector is µ . 

By replacing the matrix A with ( )cS n , we can obtain an 

approximate iterative eigen-vector computation 

formulation with v λµ= : 

1 1

( ) ( ) ( )                                                        (20)

1
       ( , )( ( ) ( ))( ( ) ( )) ( )

c

n c
T

i j j
i j

v n S n n

q l j u i m i u i m i i
n

µ

µ
= =

=

− −∑ ∑B
. 

Then the eigen-vector can be directly computed 

as /v vµ = . For iterative calculation, let 

( )iµ = ( 1) / ( 1)v i v i− − , we have the following incremental 

formulation:  

 
1 1

1 ( 1)
( ) ( , )( ( ) ( ))( ( ) ( ))

( 1)

n c
T

i j j
i j

v i
v n q l j u i m i u i m i

n v i= =

−
= − −

−
∑ ∑  (21)    

Through simple algebra derivation, we can get      

1

1
( ) ( 1)                                                    (22)

1 ( 1)
          ( , )( ( ) ( ))( ( ) ( ))

( 1)

c
T

n j j
j

n
v n v n

n

v n
q l j u n m n u n m n

n v i=

−
= − +

−
− −∑

−

 

For initialization, we set (1)u as the first sample.  

Notice that eigen vectors are orthogonal to each other. 

So, it helps to generate “observations” only in a 

complementary space for computation of the higher order 

eigen-vectors. To compute the ( 1)th
j + eigen-vector, we 

first subtract its projection on the estimated th
j eigen-

vector from the data, 

1( ) ( ) ( ( ) ( )) ( ) / ( ) ( )j j j T j j j ju n u n u n v n v n v n v n+ = − ,   (23) 

where 1 ( ) ( )u n u n= . In this way, the time-consuming 

orthonormalization is avoided and the orthogonality is 

always enforced when the convergence is reached, 

although not exactly so at early stages. A very similar 

convergence proof of this algorithm could be found in 

[15]. Then the full algorithm is computing (22) (23) 

iteratively from the initially value. 

The time complexity of incremental SKM to train N 

input samples is ( )NcdpO , where c is the number of 

classes, d is the dimension of the original data space, and 

p is the target dimension, which is linear with each factor. 

Furthermore, when handling each input sample, SKM 

only need to keep the learned eigen-space and several 

first-order statistics of the past samples, such as the mean 

and the counts. Hence, SKM is scalable which can handle 

large scale and continuous data. 

 

5. Experimental Results 
 

In order to test our algorithm, we conducted three sets 

of experiments. In the first set, we tested the incremental 

algorithm on a very high dimensional and large dataset 

RCV1 whose dimension is about 300,000.  In the second 

experiment, we used a synthetic dataset generated using a 

normal distribution.  The purpose of this experiment is to 

illustrate the subspaces learned by LDA, PCA and SKM 

algorithms follow our initial intuition. In the third set of 

experiments, we applied our method to some UCI datasets 

[5] to compare the classification performance with other 

approaches.  

 

5.1. Reuters - Large Scale Text Data 
 

In order to demonstrate the performance of Incremental 

SKM on a high dimensional and large scale data set, we 

tested our algorithm on the Reuters Corpus Volume 1 

(RCV1). We show the performance of a=1 in this test; we 

observed that using other values of a resulted in similar 

performance.  

To compare the effectiveness of Incremental SKM 

algorithm with other subspace learning algorithms, we 

constructed classification experiments on RCV1. The 

dimension of each sample data is about 300,000, where 

each dimension is defined by a keyword. 

We chose the data samples with the highest four topic 

codes (CCAT, ECAT, GCAT, and MCAT) in the “Topic 

Codes” hierarchy, which contains 789,670 documents. 

Then we applied a five-fold cross validation on the data.  

We split them into five equal-sized subsets, where in each 

experiment four of them are used as the training set and 

the remaining one is left as the test set. The experimental 

results reported are the average of the five runs. The 

detailed experiments following the 5 steps listed below, 
� Applying the dimension reduction algorithm on a 

specific size of training data to learn a subspace; 
� Transforming all the training data to the subspace; 
� Training SVM classifier by the reduced training data; 
� Transforming all the test data to the subspace; 
� Evaluate the classification performance, using F1 

value, on the transformed test data. 

Figure 3 gives the F1 value, which is a common used 

evaluation measure for text classification, of the 

incremental algorithm using Support Vector Machine 

(SVM) as the classifier. In this experiment, the 

Information gain (IG) and Incremental Principal 

Component Analysis (IPCA) algorithms are used as 

baselines.  
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Figure 3. F1 value of incremental SKM 

 

The numbers after the tags in figure 3 denote the 

subspace dimension. For example “IG500” means the 

500-dimension subspace found by IG. The y-axis of 

Figure 3 are Micro-F1 and Macro-F1 respectively. The 

larger F1 value is, the better classification performance is 

achieved. The x-axis is the number of training samples 

used in our incremental algorithm. Note that we use all the 

training data when we train the baseline algorithms for 

dimension reduction.    

    From this experiment, we can observe that the 3- 

dimensional subspace calculated by incremental SKM is 

much better than even the 500-dimensional subspace of 

Principal Component Analysis. Moreover, for IG, one of 

the most popular dimensionality reduction approaches for 

large scale text data, SKM on 3-dimensional subspace 

outperforms it on the same scale and SKM3 has 

comparable performance with IG500. 
SKM outperforms PCA for classification problems 

since the former is supervised approach while the latter is 

unsupervised which ignores the valuable class label 

information. SKM outperforms IG due to the reason that 

IG is feature selection approach. It directly selects features 

from the original data space while SKM use a 

transformation (projection) matrix to reduce the very high 

dimension of data. Since the text data are sparse dataset, 

feature selection approaches always reduce many different 

data points to the same zero vectors when the reduced 

dimension is low.  

Table 1 gives the comparison of all the different 

approaches considered by us. 

Table 1. Summary of different approach 

 A B C D 

SKM YES   YES   YES YES 

PCA    NO   YES YES YES 

LDA YES    NO YES    NO 

IG YES   YES NO   YES 

(A), supervised approach which is usually better than 

unsupervised approaches for classification; 

(B), scalable approach which could be used to large 

scale dataset; 

(C), feature extraction approach which could reduce 

large scale sparse text data to very low dimensional space; 

(D), a free approach which is not limited by the data 

structure. For example, for a large scale dataset with the 

dimension more than 10’000, if the number of classes is 

only 3, the subspace dimension by LDA could not beyond 

2. 

 

5.2. Synthetic Data Set 
 

In this experiment we show the performance of SKM 

by generating a 3-dimensional dataset with two classes for 

intuition. As an example, each class consists of 100 

samples following the norm distribution with means (0,0,0) 

and (5,5,5). Figure 4-(a) shows a scatter plot of the data 

set. (b), (c), (d) (e) (f) are low dimensional projection of 

original data by different subspace learning approaches. In 

(b) we project the data into 1-dimensional subspace by 

PCA; in (c) and (d) we project the data into 1-dimensional 

subspace by SKM and LDA respectively; in (e) and (f) we 

project the data into 2-dimensional subspace by PCA and 

SKM respectively. 

From (b) and (e) we can see that the PCA subspace 

mixes these two classes of data in both one dimension and 

two. Though LDA subspace could separate them in figure 

(d), the dimension of LDA subspace could not beyond one, 

i.e. we can not project the data into 2-dimensional 

subspace due to the limitation of class number. (c) and (f) 

show that our proposed approach could separate these two 

class in any dimensional subspace for this synthetic 

dataset.  

From this experiment we can see intuitively that PCA 

is not optimal for classification tasks and mixes the two 

classes; the subspace dimension of LDA could not beyond 

one due to its limitation. It is clear that our proposed 

algorithm outperform PCA and do not limited by the 

number of classes. 
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Figure 4. Synthetic data experiment.  

 

(a), original data sets;(b), projected to 1 dimension by PCA; (c), projected to 1 dimension by SKM; (d), projected to 1 

dimension by LDA;(e), projected to 2 dimension by PCA; (f), projected to 2 dimension by SKM; 

 

5.3. UCI  Data 
 

      The UCI machine learning dataset is a repository of 

databases, domain theories and data generators that are 

used for the empirical analysis of machine learning 

algorithms. For each UCI dataset that do not provide 

training-testing split, we used repeated holdout methods 

by repeatedly separating them into two folds randomly. 

SKM, PCA and LDA are then applied to the training 

data to find the subspace.  

      The k-nearest neighbor classifier is used to classify 

these testing data. By using the same classifier, we use 

classification error rate to evaluate the performance of 

different subspace learning algorithms for classification 

tasks. 6 UCI subsets are utilized in this paper for 

experiments.  

(1), “IRIS” has 150 samples with 2 classes. The 

dimension of data is 4.  

(2),  “Isolet Spoken Letter” has 6927 samples with 

26 classes. The dimension of data is 617. 

(3),  “Wine” has 178 samples with 3 classes. The 

dimension of data is 13. 

(4),   “Letter” has 20000 samples with 26 classes. 

The dimension of data is 16. 

(5),  “Monk’s Problem” has 556 samples with 2 

classes. The dimension of data is 6. 

(6),  “BUPA” has 345 samples with 6 classes. The 

dimension of data is 2. 

      Figure 5 shows the picture of error rate with 

subspace dimension on these subsets of UCI. It seems 

that supervised subspace learning approaches 

outperform unsupervised PCA most of the time (a), (b), 

(c), (d), (e). However, the subspace dimension was 

limited for LDA. Moreover, SKM still could outstand 

even on the dataset which PCA is more suitable than 

LDA (d). Note we choose a=1,2,3 in this paper and plot 

the average solution. 
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Figure 5. The error rate of some subsets of UCI by perform different subspace learning algorithms.  
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Figure 6. Convergence curve of incremental SKM 

To measure the convergence ability of incremental SKM, 

we show the convergence curve on two subsets of UCI, 

IRIS and Monk’s Problem, for intuition. Since 

' 2(1 ')v v v v− = − ⋅ , and 'v v= iff. ' 1v v⋅ = , the 

correlation between two unit eigen-vectors is represented 

by their inner product, and the larger the inner product is, 

the more similar the two eigen-vectors are. Figure 6 shows 

the inner product between eigen-vectors found by the 

proposed incremental algorithm in each step and the 

eigen-vectors found by the batch approach. The x-axis is 

the number of training data and the y-axis is the inner-

product. From this Figure we can see that, incremental 

SKM can converge very fast. The CCIPCA [13] is the 

incremental PCA algorithm involved in this paper which 

has been used in section 5.1.  

 

7. Conclusion and Future Work 

 
In this paper, we proposed a novel supervised subspace 

learning algorithm called as Supervised Kampong 

Measurement. The incremental algorithm of this new 

criterion is also presented. In contrast to traditional LDA, 

the available subspace dimension with this measurement is 

not limited by the number of the classes and it is efficient 

and has no singularity problem in computation. Moreover, 

it is a highly scalable algorithm. In other words, it can 

process large scale data incrementally. The extensive 
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experiments on both synthetic and real datasets 

demonstrated that it outperforms PCA and even LDA on 

classification tasks. One of our future work is to give an 

algorithm which can learn the optimal parameter a 

automatically in the designing of weights. 
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Appendix 

 
Theorem 1, Weights (13) satisfies all the constraints listed 

in section 4.2 when 1a ≥ , 

 

Proof: Since 1a ≥ and 0 1jp≤ ≤ , we can obviously seen 

from (13) that if ij l≠ , 
,il je increases when jp increases; 

on the other hand, if ij l= , 
,il je decreases 

when jp increases. Thus the first two constrains are 

satisfied.  

      The third constrain is a common one. 
,

0
il je ≥ due 

to 1a ≥ and M is a positive number used to normalize the 

weights. 

      For the latest one, since 1jp =∑ and 

, ,
( ) (1 ) 1

i i i i i

i

l l l j l l
j l

e e a p p a
≠

− = − − − = −∑  

The latest constrain is satisfied if and only if 1a ≥ . 

      End of Proof.  
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