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Abstract. Existing categorization algorithms deal with homogeneous Web objects, and consider interrelated
objects as additional features when taking the interrelationships with other types of objects into account.
However, focusing on any single aspect of the inter-object relationship is not sufficient to fully reveal the
true categories of Web objects. In this paper, we propose a novel categorization algorithm, called the Iterative
Reinforcement Categorization Algorithm (IRC), to exploit the full interrelationship between different types
of Web objects on the Web, including Web pages and queries. IRC classifies the interrelated Web objects by
iteratively reinforcing the individual classification results of different types of objects via their interrelationship.
Experiments on a clickthrough-log dataset from the MSN search engine show that, in terms of the F1 measure,
IRC achieves a 26.4% improvement over a pure content-based classification method. It also achieves a 21%
improvement over a query-metadata-based method, as well as a 16.4% improvement on F1 measure over the
well-known virtual document-based method. Our experiments show that IRC converges fast enough to be
applicable to real world applications.

Keywords: categorization, interrelated Web objects, iterative reinforcement, clickthrough data.

1. Introduction

The advent of the World Wide Web has rejuvenated research interest in text categoriza-
tion. A huge number of Web pages are available on-line, and categorizing them into
meaningful semantic categories is a practical and challenging research problem.

Traditional content-based Web-page-categorization approaches use simple rep-
resentation schemes that are based on word-occurrence statistics. However, such a
representation approach is deficient in several aspects. First, non-text objects, such as
images and scripts, which are meaningful parts of Web-page content, are unusable by
text classifiers since they cannot be represented well in this representation method.
Furthermore, even if textual information in the Web pages can be utilized fully, they may
still contain too much noisy information which cannot be distinguished by this repre-
sentation method. Second, the Web pages are created by different authors who may have



230 XUE ET AL.

no coherent page-construction styles and structures. Thus, it is impossible to include
all this information by directly applying the vector space model for text categorization.

Recently, some emerging applications, such as Web mining and collaborative filtering,
started to focus on multiple data collections and multiple data types. In such applications,
data objects are of different types but highly interrelate with each other. In Figure 1,
we illustrate these data objects in the Web environment, where the objects consist of
Web pages, users and queries. These three types of objects are interrelated: users issue
queries in order to search Web pages, users browse Web pages related to their previously
issued queries, and queries reference the Web pages. It is clear from this picture that
when we classify the Web users, the pages they browse and the queries that they issue
should play an important role. Similarly, when classifying Web pages, users and queries
should be considered as well.

The intuitive approach to exploiting the information hidden in the interrelationships is
to augment the features by the additional features in the Web objects. This approach takes
the interrelated Web objects of an object as its additional features since related objects are
likely to have similar properties. For example, in Web-page categorization (Beeferman
and Berger, 2000; Wen et al. 2001), the feature vector of a Web page can be constructed
by combining its content and the queries that are associated with the page through the
clickthrough data. In such cases, the relationships or interactions between Web pages
and queries are only considered in the feature representation step. That is, each data
object is represented by two sets of features: one is extracted from the data object itself
like the content features of Web pages; another is extracted from the objects related to
the target object, such as content features in related queries. We denote these methods
as virtual-document categorization. In our experiment, to exploit the interrelationship
in this way can slightly improve the performance over the content-based categorization
approach. Thus, there is still headroom for harnessing such interrelationships between
heterogeneous objects.

Interrelated heterogeneous objects are likely to have similar topics. Therefore they
are also likely to share similar category information. So, after classifying the objects
based on their content, is it possible to impose the category information of the interre-

Figure 1. An example of multi-type interrelated data.
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lated objects in improving the categorization performance? In this paper, we propose
a novel classification algorithm, the Iterative Reinforcement Categorization (IRC), to
fully exploit interrelated relationships. In this algorithm, the category information of one
object is reinforced by the category information of all its interrelated objects; and the
updated category information of the object consequently reinforces the category infor-
mation of its interrelated objects. That is to say, such an iterative reinforcement process
continues until it converges to a conclusive result. The difference with our method from
the virtual-document method is that we use the category information to reinforce the
categorization results instead of the content feature of queries directly. In fact, each
Web page is usually interrelated to a few queries while the dimension of the query
vector space is very high (up to 46,000). Therefore, the virtual-document categorization
algorithm may suffer from severe data sparseness; which happens when each query is
related only to a few features in a large space of features. This is an issue resolved by
our IRC algorithm.

Our IRC algorithm can be directly applied to multiple types of data as well as those
from multiple sources, so long as the objects in these data are interrelated. When data
come from multiple sources, we can model these linkages where the intra-source links
describe the intra-type relationship between the data objects within a single source, and
the inter-source links describe the inter-type relationship between different data sources.
We show in this paper that our algorithm is general enough to include any number of
data sources; however, to focus our attention, we demonstrate how to apply the IRC
algorithm to two main Web objects: Web pages and user queries.

The novelty of our work can be seen from several aspects. First, we extend the
traditional classification methods to multi-type interrelated data objects. We aim to
classify interrelated data objects of different types simultaneously using both their
content features and their relationship with other types of objects. Second, we present a
reinforcement algorithm to classify interrelated Web data objects by introducing a new
way to exploit the interrelationship among the multi-type data objects. In this algorithm,
the category information of one type is propagated to reinforce the categorization of
another interrelated data object, vice versa, as an iterative process.

We perform comprehensive experiments on the clickthrough dataset from the MSN
search engine to evaluate the proposed approach. In these experiments, data are from
two different sources: the Web pages and the clickthrough-log data. In two data sources,
there exist two types of data objects: queries and Web pages. Our experiments show
that, in terms of the F1 measurement, IRC achieves a 26.4% improvement over a pure
content-based classification method, a 21% improvement over a query metadata-based
method, and a 16.4% improvement over a virtual document-based method.

The rest of the paper is organized as follows. In Section 2, we review some related
work on Web classification and clickthrough data analysis. In Section 3, we explain
the IRC algorithm and analyze the properties of the algorithm. Experimental results are
reported in Section 4. We give conclusions and discuss possible future work in Section
5.

2. Related work

Considering the problems we discussed, there are two major fields related to our work.
One is Web-page categorization and the other is clickthrough data analysis.
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2.1. Web-page categorization

The first collection of related works is about classification of Web pages which can be
divided into two categories: content-based classification techniques and link-analysis-
based classification techniques.

The former relies on the textual content of Web pages being classified. The content
of Web pages is usually represented by Vector Space Model (VSM). Joachims (1998)
proposed a method of using Support Vector Machines (SVMs) to classify Web pages.
Dumain and Chen (2000) use text representation to organize search results into an
existing hierarchical structure. Not many of these methods achieve a satisfactory per-
formance on Web pages, in some cases due to the noise contained in the Web pages.
In fact, these methods cannot handle some Web pages at all if they just contain some
non-text information such as images and scripts that are unusable for these methods.

In the link-analysis-based classification techniques, learning algorithms are applied to
handle both textual information of the Web pages and the hyperlink relationship among
them. Slattery and Craven (2000) explored the hyperlink topology using an extended
HITS algorithm. Similarly, Cohn and Hofmann (2001) and Glover et al. (2002) showed
that classification performance can be improved by combining link-based and content-
based techniques. Chakrabarti et al. (1998) proposed a probabilistic model to utilize both
text and linkage information to classify a database of patents and a small Web collection.
They showed that directly incorporating words from neighboring pages might reduce
the classification performance. However, incorporating category information, such as
hierarchical category prefixes, improves performance. Oh et al. (2000) reported similar
results on a collection of encyclopedia articles. Getoor et al. (2001) and Lu and Getoor
(2003) proposed the PRMs to combine the content feature and its relationship under a
probabilistic model. Currently, most of their algorithms just deal with one kind of data
object (Web page), but consider many kinds of relationships such as In-link, Out-link,
Co-inlink and Co-outlink.

Our work is different from the hyperlink-based classification methods in that we can
classify the heterogeneous data objects across different data types; such as Web pages,
search queries and users, simultaneously by fully exploiting the interrelated relationships
through an iterative process.

Furthermore, our method can be regarded as an extension of multi-database mining
(Zhang et al. 2003, 2004). In Zhang et al. 2003, local pattern analysis was used to
discover high-performance patterns from a multi-database. However, in our work, we
focus on the learning among different types of data sources, which contains different
kinds of data objects while they are interrelated with each other. Local patterns (such
as category information in our problem) of data objects can be iteratively reinforced by
their interrelated data objects.

2.2. Clickthrough data analysis

A second group of related work is clickthrough data analysis. Beeferman and Berger
(2000) proposed an innovative query clustering method based on clickthrough data.
In their work, they treat clickthrough data sets as a bipartite graph and identify the
mapping between queries and the associated URLs. Queries with similarly clicked
URLs can be clustered together. Our work is different from this work in that they deal
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with the query clustering problem while we deal with the categorization problem (for
both query and Web pages). Another difference is that we use the interrelationship
to infer probability that a query/Web page belongs to a class, while their work only
uses the interrelationship as an additional feature for clustering. Jeh and Widom (2002)
proposed finding similar objects by utilizing the relationship among different types of
data objects, which iteratively calculate the similarities between the objects through
their relationships. Wen et al. (2001) described a query clustering method that made use
of user logs. Chuang and Chien (2003) proposed a technique for categorizing Web query
terms from the clickthrough data into a pre-defined subject taxonomy based on their
popular search interests. Wang et al. (2003) put forward a method of using clickthrough
data to iteratively reinforce the clusters of queries and Web pages.

To the best of our knowledge, our work on multi-type data objects classification on
the Web is one of the first to integrate content information with interrelationships across
different data types to improve the performance of classification.

3. Categorization of multi-type interrelated objects

In this section, we first define the problem of classifying multi-type interrelated
objects into a general form, followed by our iterative reinforcement categorization
algorithm.

3.1. Problem definition

We are given K different types of objects X1, X2, . . . , XK . Each type of data object Xi

is described by a set of features Fi. Data objects within the same type are interrelated
to each other through intra-type relationships Ri ⊆ Xi × Xi . Data objects from two
different types are related through inter-type relationships Ri j ⊆ Xi × X j . (i �= j, i =
1,2, . . . ,K, j = 1,2, . . . ,K). To distinguish the features extracted from the relationships,
Fi is referred to as content feature of data objects.

For a specific object x ∈ Xi , we use x .Fi to represent its content features, and use
x .Ri ⊆ Xi and x .Ri j ⊆ X j to denote the objects related to it in Xi and Xj, respectively.
For example, considering the Web page, the plain text contained in the Web page is
defined as its content feature. The hyperlink between the Web pages is the intra-type
relationship while the relationship of “clickthrough” between the Web page and the
queries is the inter-type relationship.

An illustration of multiple-type data objects and their relationships is shown in
Figure 2. Besides its content feature, Ri is the intra-type relationship of the data object
Xi. Considering Xi, X1, X2, . . . , and XK are the interrelated objects of Xi, Ri1, Ri2, . . . , and
Rik are the inter-type relationships between Xi and Xi, X1, X2, . . . , XK , respectively. For
the data object Xi, there exists the training set Xit and testing set Xis. The data objects in
the training set are labeled while the data objects in the testing set need to be classified.

The problem of classifying multi-type interrelated data objects is to classify each type
of data object Xis into a set of predefined categories C = {c1, c2, . . . , ck}, where k is the
number of categories.

Considering that an object x ∈ Xi has both the content feature and relationships with
other objects, we can define the feature vector of x as:
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Figure 2. A graph representation for multi-type objects.

x = α · x .F + β · x .Rintra + γ · x .Rinter (1)

where α, β, and γ are weights for different features with α + β + γ = 1.
From the above definition, we can see that the different features are combined linearly.

By assigning different values to α, β, and γ , we can adjust the weights of different
features. For example, if α = 1, β = γ = 0, we only consider the content feature and
ignore the effects of intra-type features and inter-type features.

By using the additional feature, the problem of classification could be solved using
the traditional classification algorithms. That is, after mapping the relationships among
data objects as relationship features, each type of data objects could be classified indi-
vidually. While this approach seems feasible, it would not work well when the number
of objects becomes large. Furthermore, due to the sparseness of the relationships among
the different types of data objects, this method cannot avoid the curse of the dimension
problem.

To address these problems, we propose the IRC algorithm to iteratively exploit the
relationship between the heterogeneous data objects.

3.2. Iterative reinforcement categorization algorithm

To fully utilize the relationship among the different types of data objects, we propose a
novel iterative reinforcement classification method. The basic idea behind this method
is to propagate the categories information computed for one type of object to all related
objects by updating their probability distribution of belonging to a certain category.
This process is iteratively performed until the classification results for all object types
converge.

Our iterative reinforcement algorithm is described in Figure 3.
In the following, we illustrate the process with two object types: Web pages X = {x

1, x2, . . . , xm}, and queries Y = {y1, y2, . . . , yn}, while the clickthrough relationships
are taken as the interrelations between them. The training data set and the testing data
set of data objects X are defined as XT and XS, while the training data set and the testing
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Figure 3. Iterative reinforcement categorization algorithm.

data set of data objects Y are defined as YT and YS. The inter-type relationship of object
x(y) is defined as x.RY (y.RX). By distinguishing the relationship between the training
set and testing set, the inter-type relationship of object x to the training set YT and YS

are defined as x .RYS and x .RYT .
Furthermore, the relationship among the different data types of objects is associated

with a weight, which reflects the closeness of the relationship. For any two objects x ∈ X
and y ∈ Y, the weight of the relationship between x and y is defined as x.Ry.

We can use vectors Pi = {pi1, pi2, . . . , pik} and Qi = {qi1, qi2, . . . , qik} to represent
the probabilities of the testing data objects xi ∈ XS and the testing data objects yi ∈ Y
belonging to each category, respectively, where 0 ≤ pi j , qi j ≤ 1. Thus, a probability
matrix Pn×k (Qm×k) for all n objects in X (m objects in Y) can be constructed, where
each entry pij (qij) is the probability that object xi (object yi) belongs to category j.

To complete the first step shown in Figure 3, we take the SVM classifier as the content
feature based classifier. We first train the classifier on the training data set XT and YT by
the content features. Then, we classify the objects in XS and YS into categories according
to their content features.

3.2.1. Classifying objects based on their interrelated relationship. After initially
classifying objects XS and YS according to their contents, we can update the category
information of each object in YS by considering the relationships with X. That is, we
adjust the probability distribution of objects in YS belonging to categories according to
the category information of their interrelated objects in X. This propagation of probability
is based on the assumption that the objects of a certain category are usually related to
data objects of the same category.

In general, for any object y ∈ YS, its interrelated data objects in our experiment may
be from two different sets: the training set Xt and the testing set Xs. Since the categories
of objects in the training data set Xt are known and the categories of objects in the testing
data set Xs are predicted with probability, the role played by the training data and testing
data on the objects should be differentiated. We denote y.RT

X (y.RS
X ) as the adjacency
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matrix between the training data objects in X (testing data objects) and the data objects
in YS.

In particular, the entry qi j of the probability matrix Q, denoting the probability that
object yi ∈ YS belongs to category j, is computed through the following equation:

qi j = λ1qi j + λ2

∑

xz ∈yi .RXT

yi .Rxz pzj

∑

xz ∈yi .RXT

yi .Rxz

+ λ3

∑

xz ∈yi .RXS

yi .Rxz pzj

∑

xz ∈yi .RXS

yi .Rxz

(2)

where λ1, λ2 and λ3 are the parameters to be tuned to reflect the relative importance
among its content feature, the relationship to the training data XT and the relationship
to the testing data XS. Meanwhile, λ1 + λ 2 + λ 3 = 1.

We denote the matrix MT and MS as the row normalized matrix RYS XT
and RYS XS

.
Equation (2) can be re-written with a matrix form:

RS = λ1 RS + λ2 MT PT + λ3 MS PS (3)

where Pt and Ps are the probability distribution matrices of Xt and Xs on k categories,
respectively.

Similarly, just as the objects in X can affect the objects in Y, the classification result
of objects in Y can also affect the objects in X. After acquiring the categorization of
objects in Y, we can re-classify objects in XS through the relationship between objects XS

and Y. In this step, we also take the content and the categories of the associated objects
into consideration. The element pi j of the matrix P, denoting the probability that object
xi∈XS belongs to category j, is computed through the following equation:

pi j = λ′
1 pi j + λ′

2

∑

yz ∈x .RYT

xi .Ryz qzj

∑

yz ∈x .RYT

xi .Ryz

+ λ′
3

∑

yz ∈x .RYT

xi .Ryz qzj

∑

yz ∈x .RYT

xi .Ryn

(4)

where λ′
1, λ′

2 and λ′
3 are also the parameters to be tuned to reflect the relative importance

among its content feature, the relationship to the training data YT and the relationship to
the testing data YS. Also λ′

1 + λ′
2 + λ′

3 = 1.
We denote the matrix NT and NS as the row normalized matrix RXS YT

andRXS YS
. Eq.

(4) can be re-written in a matrix form:

PS = λ′
1 PS + λ′

2 NT QT + λ′
3 NS QS (5)

3.2.2. Iterative reinforcement categorization (IRC). Using only the above two steps,
we still do not fully utilize the interrelationships between two interrelated objects.
Therefore we continue to perform an iterative reinforcement on the categorization by
exploiting the relationships. Such calculation is an iterative process in which the category
information is propagated from one side to the other. Let Qi

S denote the probability
matrix of interrelated objects in Y andPi

S denote the probability distribution matrix of
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objects in X after ith iteration. The algorithm can be re-written in the following matrix:

Qi+1
S = λ1 Q0

S + λ2 MT PT + λ3 MS Pi
S (6)

Pi+1
S = λ′

1 P0
S + λ′

2 NT QT + λ′
3 NS Qi

S (7)

Based on the Eqs. (6) and (7), we can derive the following equation:

Qi+1
S = λ1 Q0

S + λ2 MT PT + λ′
1λ3 MS P0

S + λ′
2λ3 MS NT QT + λ′

3λ3 MS NS Qi
S (8)

Taken λ1 Q0
S + λ2 MT PT + λ′

1λ3 MS P0
S + λ′

2λ3 MS NT QT as Q, the formula can be
written in the following form:

Qi+1
S = Q + ωMS NS Qi

S (9)

where ω is equal to λ′
3λ3.

The equation implies that the probability matrix of objects in Y is affected by the
probability calculated on the content of objects in Y and the relationship of the adjacent
matrix.

Similar to Eq. (7), the computation of the probability matrix for objects in X is derived
as follows:

Pi+1
S = λ′

1 P0
S + λ′

2 NT QT + λ′
3λ1 NS P0

S + λ′
2λ3 NS MT PT + λ′

3λ3 NS MS Pi
S (10)

By denoting λ′
1 P0

S + λ′
2 NT QT + λ′

3λ1 NS P0
S + λ′

2λ3 NS MT PT as P, the formula can
be written in the following form:

Pi+1
S = P + ωNS MS Pi

S (11)

After several iterations, PS and QS would not change any more. Then, the category of
x is taken to be arg max

ci

[P(ci |x)], while the category of y is arg max
ci

[P(ci |y)].

The above computation is performed iteratively until the change of probability dis-
tribution of each object among different categories is trivial. In this paper, we use the
Euclidean length of the residual vector

∥
∥Pi+1

S − Pi
S

∥
∥ to measure the change. That is

when
∥
∥Pi+1

S − Pi
S

∥
∥ becomes less than a predefined δ, the iteration process stops.

3.3. Convergence of IRC

In this section, we give proof of the convergence property of our proposed algorithm.
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Lemma 3.1. MS and NS are nonnegative matrices and sum of each row is equal to 1.

Proof: It is a direct induction from the definition of MS and NS.

Lemma 3.2. MSNS is a Markov matrix and therefore (MS NS)i is also a Markov matrix
for any integer i.

Proof: MSNS is a nonnegative square matrix and it is easy to verify that the entries in
each row of MSNS sum to 1. So it is a Markov matrix. Also from the Markov Chain
theory (Grimmett and Stirzaker, 1992), (MSNS)i is also a Markov matrix for any integer
i.

Theorem 3.1. The IRC algorithm converges to a fixed point.

Proof: Without loss of generality, we only prove that the matrix Pi
S converges to a

fixed point.
MS and NS are Markov matrices (Lemma 1), and ω(0 < ω<1)
From Eq. (11),

Pi+1
S = P + ωMS NS Pi

S

= P + ωMS NS P + (ωMS NS)2 P + · · · + (ωMS NS)i P + (ωMS NS)i+1

Now we see the convergence as following:

l lim
i→∞

||Pi+1
S − Pi

S|| = lim
i→∞

||(ωMS NS)i (P + ωMS NS − E)||

= lim
i→∞

||ωi (MS NS)i (P + ωMS NS − E)||

Since,

lim
i→∞

ωi = 0 (0 < ω < 1)

(MS NS)i is a Markov matrix too (Lemma 2).
So (MS NS)i is nonnegative and sum of each row is equal to 1.
Thus,

lim
i→∞

||(ωMS NS)i || = lim
i→∞

||ωi (MS NS)i || = 0

Finally,

lim
i→∞

||Pi+1
S − Pi

S|| = 0

It is obvious that Pi
S converges to its fixed point eventually.

Analogously, Qi
S converges to its fixed point eventually.
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3.4. Complexity of IRC

We now consider the time and space complexity of IRC. The space required is simply
O(k(m+n)) to store the results of the probability matrices PS and QS, where m and n
denote the number of objects in X and Y, respectively. Let T be the iteration number.
In our experiments, IRC usually converges within five iterations. Let d1 be the average
number of the objects in X that is associated with the objects in Y and d2 be the average
number of the objects in Y that is associated with the objects in X. The time for computing
the probability matrices of objects in X and Y is O(Tkmd1) and O(Tknd2), respectively,
where k is the number of categories. Thus, the overall time required is O(Tkmd1+Tknd2).
Since the relationship between the data objects is very sparse, d1 and d2 is very small
on average.

4. Experiments

In order to validate IRC, we conducted the experiments on the ODP dataset with MSN
clickthrough data. In the data set, there are two kinds of data objects: Web pages and
queries. There exist clickthrough relationships between two kinds of data objects.

4.1. Data set

To evaluate the performance of our algorithm, experiments were performed using
a set of classified Web pages extracted from the Open Directory Project (ODP)
(http://dmoz.org/). ODP contains about 1.2 million Web pages, in which each Web page
is classified by human experts into 17 top level categories (Arts, Business and Economy,
Computers and Internet, Games, Health, Home, Kids and Teens, News, Recreation, Ref-
erence, Regional, Science, Shopping, Society, Sports, Adult and World). Because the Web
pages in the regional category are also included in other categories and the Web pages
in the category of the world are not written in English, these two categories are removed
in our experiments. Accordingly, 15 categories in all are used in the experiments.

Real query clickthrough data is collected from MSN as our experiment data set. The
clickthrough data contain about 1.2 million query requests recorded over 12 hours in
August 2003. The data we obtained had been already processed into a predefined format;
i.e. each query request is associated with one or more clicked Web pages, forming a
“query session”, which can be defined as follows:

Query Session : = query text[clicked Web page∗]

Some preprocessing steps are applied to queries and Web pages in the raw log. All
queries are converted into lower-case, and are stemmed using the Porter algorithm. The
stop words are removed too. The query sessions sharing the same query and the same
URL are merged into one query session, with the frequencies summed up.

Since we only have 12 hours of clickthrough data on hand, some of Web pages in
the ODP data set are not in our query clickthrough log. Hence, in our experiment, we
only deal with the common pages which appeared in both the ODP data set and the
clickthrough data. Finally, we got 131,788 Web pages in 15 top-level categories, 199,564
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Figure 4. Distribution of Web pages in the 15 categories.

associated queries and 468,696 query sessions. Figure 4 shows the distribution of the
number of Web pages in 15 categories.

We test the relevancy of queries to the contents of Web pages from the users’ per-
spective. We randomly select three subsets which contain 600 query sessions in total.
Ten volunteer graduate students are invited as our evaluation subjects. They are asked
to evaluate whether the queries are relevant to the Web pages according to the content
of the pages. The results are shown in Table 1. Figure rom the table it is easy to find that
about 81.7% of queries on average are relevant to the contents of the Web pages.

Before the experiment, we conducted another statistical test to see whether query
terms can introduce extra information for Web categorization. Several examples of
Query session in the raw data are shown in Table 2. From the examples we may come
to a conclusion intuitively that the pages linked by the same query are likely to belong
to the same category. Statistically 68.4% Web pages fall into the same ODP category
when they are clicked by the same query.

4.2. Evaluation criteria

The performance of the proposed methods was evaluated using the conventional pre-
cision, recall and F1 measures. Precision p is defined as the proportion of correctly
classified examples in the set of all examples assigned to the target class. Recall r is

Table 1. Relevance between the queries and Web pages.

Subset Session Relevant Ratio

1 300 247 0.82

2 300 262 0.87

3 300 228 0.76

Average 0.817
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Table 2. A sample of raw MSN clickthrough data.

Query URL Category

Software bugs http://www.cpsr.org/program/y2k Computer

http://www.bugnet.com Computer

Softball hitting http://www.hitranger.com Shopping

http://www.decatursports.com/softball drills page.htm Sports

Playing mantis http://www.playingmantis.com Games

http://www.johnnylightning.com Recreation

Sniper rifles http://www.sniperworld.com Sports

http://www.snipercentral.com Sports

http://www.norcalprecision.com Sports

defined as the proportion of the correctly classified examples out of all the examples
having the target class. F1 is a combination of precision and recall defined as follows:

F1 = 2pr

p + r
(12)

Furthermore, micro-averaging and macro-averaging (Yang and Pedersen, 1997) were
applied to get single performance values over all classification tasks.

4.3. Baseline

As mentioned above, we take two kinds of objects: queries and Web pages as the
interrelated data objects in our experiments. Since we do not have the training set
and the category information for the queries, we just evaluate the performance of our
proposed algorithm on the Web pages.

The content-based classification method for Web pages is taken as the baseline. Since
we assume that most queries are relevant to the topics of the corresponding Web pages,
we can take the interrelated queries as an additional feature for their corresponding
pages. Web page di is clicked by users through queries q1, q2, . . . , qm with different
frequencies. Thus Mi1·q1 + Mi2·q2 + · · · + Mim·qm can be taken as additional metadata
for Web page di where Mik means the frequency that users click on di following query
qk. We consider two methods that utilize the query metadata. First, we can use the
query metadata directly as additional features of a Web page. We denote this method as
query-metadata based classification. Second, we can integrate the query metadata and
the content of the Web page together and regard them as a virtual document of the Web
page. To test the relative importance of the query metadata, we try different weights of
the metadata and integrate them with the content of the Web pages. For example, if we
set “content: metadata” as 1:2, the query metadata is twice as important as the content
of the Web page. After removing stop words and feature selection, the dimension of
the Vector Space for the content of collection, the query metadata of collection and the
virtual document collection are 258,669, 46,002, and 281,259 respectively.
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To speed up the classification, a simple feature selection method, known as “Infor-
mation Gain (IG)” (Yang and Pedersen, 1997), is applied in our experiments.

SVM is a promising classification algorithm developed by Cortes and Vapnik (1995)
and Joachims (1998). In this paper, we use linear SVM because of its high accuracy when
used for text categorization. The SVMlight software package is used (http://research.
micro-soft.com/∼jplatt/smo.html). In all experiments, the trade-off parameter C is set
to 1. The widely used one-against-all approach is used for the multi-class case. In the
rest of this paper, we only consider the probability of the data objects that belong to the
categories, so we utilize the method in Platt (1999) to assign each category a probability.

4.4. Performance

We fixed several parameters for the rest of the experiments: the ratio between the
content of Web pages and the query metadata is set as 1: 2 when constructing the virtual
documents; λ1, λ2, and λ3 in Eq. (2) are set as 0, 0.6 and 0.4; λ′

1, λ′
2 and λ′

3 in Eq.(4)
are set as 0.7, 0, and 0.3; and iteration times equals 5. These parameters are determined
based on an experiment conducted on a validation dataset.

We start by analyzing how each source of information such as content, query metadata
and virtual document performs without using the iterative algorithm. Table 3 shows
the micro-averaged F1 values for the different classifiers. The highest values for each
classifier are shown in bold face. The content-based classifiers, as expected, showed poor
results, indicating that the text of the Web pages does not provide sufficient information
to reliably classify the Web pages. Since queries are relevant to the topics of Web pages,
they can be used to improve the performance.

From Table 3, we also find that IRC, in comparison, achieves a higher performance
than the other three methods. Relatively speaking, IRC improved 26.4% over the content
method, 21% over the query metadata method, and 16.4% over the virtual document
method under the F1-micro-averageing measure. The reason for the improvement lies
in the fact that our algorithm can fully exploit the relationship between the Web pages
and the queries.

We conducted a further experiment to show the effect of the clickthrough data by
increasing the clickthrough data size as displayed in Figure 5. We randomly selected 10%
of the clickthrough data the first time and 20% the second time and so on. We found that
the performance of the content-based categorization is quite poor. When clickthrough
data is introduced, the performance of the Web-page categorization steadily improves.

Table 3. Performance of the four algorithms.

MICRO MACRO

Precision Recall F1 Precision Recall F1

Content 0.561 0.561 0.561 0.642 0.470 0.496

Query metadata 0.586 0.586 0.586 0.523 0.554 0.523

Virtual document 0.609 0.609 0.609 0.575 0.583 0.568

IRC 0.709 0.709 0.709 0.671 0.664 0.68
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Figure 5. Performance on the different clickthrough data size.
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Figure 6. Error rate on different file length.

Since the content-based classification methods rely heavily on the content of Web
pages, they may perform badly when the length of Web pages is short. In order to verify
such an intuition, two experiments are conducted and the results are shown in Figure 6
and Table 4.

When processing the data, we find many pages that contain too few words to indicate
their main topics though they are meaningful with plentiful non-text resources such as
pictures and videos. Thus it is hard to identify their labels based only on such words.
However, these pages may still be retrieved and clicked on by users when they are
relevant to the query given by them. In these cases, the query logs may be especially
effective to predict the labels of these pages. In Figure 6, we can see the error rate of
the content-based categorization gradually increasing on a large scale with the shorter
length of pages while our IRC show a very small change in error rate. We also perform
statistics on a testing set with 13173 Web pages using the content-based categorization.
The results are shown in Table 4. The average length of correctly classified Web pages
is larger than that of wrongly classified Web pages.

Figure 7 shows the performance of the IRC algorithm with the iteration times. The
implicit relationships are exploited more and more thoroughly with the increase of the

Table 4. Effect of the length of file on classification.

Wrongly classified Correctly classified Total

Number of files 6060 7113 13173

Average length of files 180.85 375.28 285.84
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iterations and these relationships contribute to the improvement of the classification
performance.

We can also find that the performance of IRC converges quickly as shown in Figure 7.
In the following, we give a more detailed experiment to show IRC’s convergence
property.

The convergence curve of our iterative algorithm is shown in Figure 8. The gap∥
∥Pi+1

S − Pi
S

∥
∥ denotes the difference between the current iteration and the previous

iteration. Figure 8 shows the IRC algorithm converges within five iterations.
We run the IRC algorithm on the Pentium 1.9G PC with 512M of memory. Figure 9

shows the execution time of the algorithm on different data size, where the CPU time is
linear with the size of the clickthrough data, which shows that the algorithm scales up
well with large data.

4.5. Parameters selection

As mentioned earlier, several parameters are used in the experiments, such as the ratio
between the content of Web pages and query metadata when constructing the virtual
documents, the ratio of the categories weight between the training data and testing data
when classifying queries, the ratio of the categories weight between content features
and queries when classifying Web pages and the iteration count of the our iterative
algorithm. We conducted the experiments on a validation dataset to determine these
parameters.
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Figure 9. Execution time on different data size.
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Figure 10. Performance on weight between content and query.

The first experiment shows how to combine the content of the Web page and the
query metadata to get the highest performance on the F1-measure when constructing the
virtual document for classification. As shown in Figure 10, we vary the ratio between
the content of the Web page and query metadata. We find that classification based on the
virtual document can achieve best performance when the ratio of the weight between
the content and the query metadata is 1:2.

When classifying the queries, we measure the weight of the category that is set by
the training data and the weight of the category that is calculated by the testing data
in Eq. (4). Since we do not have the training set of the query, λ1 is set to 0. We vary
the parameter of λ2 (the weight for the training data) and λ3 (the weight for the testing
data) from 0 to 1. Since λ2 + λ3 = 1, we only change the λ2 in our experiment. The
experimental results on F1-measure are shown in Figure 11. We find that the F1 value on
classifying the Web pages has improved while the weight for the category of the training
data has changed from 0 to 0.6. The system achieves the best precision when λ2 = 0.6
and λ 3 = 0.4. If we continue to increase the weight of the training data category, the
precision would drop down since the effect of the relationship exploited between queries
and testing Web pages is reduced incrementally.

In order to measure the weight of the probability which is calculated by the pure
content feature and the weight of the probability which is calculated by queries in Eq.
(6), we tune the parameter of λ′

1 (the weight for the content) and λ′
3 (the weight for the

query) from 0 to 1 in the SVM model. Here λ′
2 is set to 0 because we do not have the
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Figure 12. Performance on the content weight.

training set for the query. Since λ′
1 + λ′

3 = 1, we only change the λ′
1 in our experiment.

The experimental results on F1-measure are shown in Figure 12. We found that the F1

value is improved when introducing content. The system achieves the best precision
when λ′

1 = 0.7 and λ′
3 = 0.3. If we continue to introduce more content information, the

precision drops as a result of the poor quality in the content classification.

5. Conclusions and future work

In this paper, we proposed an iterative reinforcement classification algorithm to cate-
gorize Web pages, which have a relationship to the queries. The proposed algorithm
considers both the content feature of data objects and the relationship across the different
types of data objects in the iterative classification process. The intermediate classifica-
tion results of each type are used to update the classification results of their related
data objects which may be different types. Such a reinforcement process can exploit the
knowledge hidden in the interrelationships effectively. Experiments on the ODP dataset
with MSN clickthrough log data show that IRC can significantly improve the Web page
classification under the F1 measure after iteratively exploiting the relationships between
the Web pages and queries.

Although IRC can be applied on multiple data sources with multiple interrelation-
ships, in this work, we only consider two types of data objects and the clickthrough
relationships during the classification process. In the future, it would be interesting to
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apply the algorithm to effectively integrate multi-source data objects and their inter-type
relationships to improve the classification performance.
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