Thread Detection in Dynamic Text Message Streams

Dou Shent, Qiang Yang', Jian-Tao Sun*, Zheng Chen?

TDepartment of Computer Science and Engineering,
Hong Kong University of Science and Technology
{dshen,qgyang}@cs.ust.hk

iMicrosoft Research Asia, Beijing, P.R.China
{jtsun, zhengc}@microsoft.com

ABSTRACT

Text message stream is a newly emerging type of Web data
which is produced in enormous quantities with the popu-
larity of Instant Messaging and Internet Relay Chat. It is
beneficial for detecting the threads contained in the text
stream for various applications, including information re-
trieval, expert recognition and even crime prevention. De-
spite its importance, not much research has been conducted
so far on this problem due to the characteristics of the data
in which the messages are usually very short and incomplete.
In this paper, we present a stringent definition of the thread
detection task and our preliminary solution to it. We pro-
pose three variations of a single-pass clustering algorithm
for exploiting the temporal information in the streams. An
algorithm based on linguistic features is also put forward to
exploit the discourse structure information. We conducted
several experiments to compare our approaches with some
existing algorithms on a real dataset. The results show that
all three variations of the single-pass algorithm outperform
the basic single-pass algorithm. Our proposed algorithm
based on linguistic features improves the performance rel-
atively by 69.5% and 9.7% when compared with the basic
single-pass algorithm and the best variation algorithm in
terms of F1 respectively.

Categories and Subject Descriptors

H.4.m [Information Systems Application]: Miscellaneous;

1.5.4 [Pattern Recognition|: Applications— Text process-
mng

General Terms

Algorithms, Experimentation

Keywords

Text Stream, Thread Detection, Single-Pass Clustering, Lin-
guistic Features

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’06, August 6-11, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

35

1. INTRODUCTION

Dynamic text message streams are rapidly growing on the
Internet. These data are produced in an enormous quantity
with the popularity of Instant Messaging (IM), Internet Re-
lay Chat (IRC) and online chat rooms. As reported in [6],
IM is widely used among enterprises and other organizations
as well as in personal communications. The number of users
worldwide now exceeds 200 million on the major free ser-
vices. An example of the dynamic text stream is found in
an online chatting group in an intranet forum between pro-
fessors and students. In this forum, professors and students
discuss the problems which are not considered in class and
students can share with others what they have learned. A
part of this kind of message stream is given in Figure 1.

A: How do we compile the C files?

B: Hi, what checksum did you get for the sample input?

C: using g++ also works!

D: checksum is 2307 i encrypted all chacters including
whitespaces.

A: But a required .h file is said to be missing...Not on Unix
NOR VC++

C: Okay... Let me check it with Gary and S:mon. But, could
you tell me which files are missing????

Figure 1: An example of the text message stream.

It is true that most of the message streams produced
through IM or IRC are casual chitchat which are neither
meant to be searched nor analyzed. However, there is a
remarkable category of streams containing valuable knowl-
edge. The above educational example is a good example.
If we can find out what problems are most bewildering for
students from the online discussions between professors and
students, the professors can schedule their class material
and time more appropriately. For another example, many
open-source projects have channels for developer and user
support. Having this valuable information archived and an-
alyzed with good search facilities can make them work more
effectively. However, as shown in Figure 1, the messages
from different participants on different topics are heavily in-
terwoven. It is not appropriate to treat a message stream
as a whole. Moreover, most messages in the stream are too
short to be meaningful by themselves, as a single message
can not convey a relatively rounded topic without consid-

ering the context information. Therefore, it is necessary to
detect the threads in a stream such that each thread is about
a specific topic.

Besides the above motivation, some other scenarios also
push us to detect threads from message streams. While most
participants in chat rooms are engaged in legitimate infor-
mation exchange, chat rooms can also be used as a forum
for discussions of dangerous activities, such as the abduc-
tion of children. Therefore, we need to monitor online con-
versations to aid crime detection or even crime prevention.
However, we can not rely on people to monitor the conversa-
tions actively for a prolonged time. Since it is prohibitively
expensive and usually hard for a person to keep track of
all the topics in the text streams where the topics are di-
verse and the participants change frequently. In addition, a
person could easily lose track of the multiple threads in the
conversations when the size of the data is large. What is
more, users are reluctant to chat when the conversation is
being monitored due to privacy concerns.

To detect the threads, we need to consider the characteris-
tics of the message stream carefully which are double edged
swords. On the one hand, the structure of message streams
is totally different from written discourse because message
streams do not contain linear discussions of any single topic,
but rather contains partially threaded and interwoven topics
that oscillate in short, incomplete messages. Therefore, we
can not rely on the tools for traditional text mining tasks,
such as the Topic Detection and Tracking (TDT) [1]. On
the other hand, a dynamic text stream provides some lin-
guistic features which are not available in other kinds of
text. For example, the pairs such as “Could you help me
on ...”, “Yes, I could 7 are valuable hints for organizing
the messages into threads and finding out the topic of each
thread. How to make maximal use of such knowledge for
thread detection is an important issue.

In the past, little work has been proposed to address the
thread detection problem. An exception is [9], where the
authors identified thread starts based on some patterns pro-
vided by experts. In this paper, we choose the single-pass
clustering algorithm which is popular in TDT as the baseline
and then propose three variations of the single-pass cluster-
ing algorithm to take the temporal information into con-
sideration. An algorithm based on the linguistic features
for text message analysis is also put forward. We compare
our proposed methods with the baseline on a dataset col-
lected from online discussions among professors, teaching
assistants and students. The experimental results show that
by taking temporal information into consideration, the three
variants of the single-pass clustering method can improve
the performance significantly; by leveraging the linguistic
features, further improvement is achieved.

In Section 2, we discuss the related work followed by the
stringent problem definition in Section 3. The algorithms for
detecting threads are shown in Section 4. Section 5 presents
the experimental results on a real dataset together with the
discussions of the results. We give the conclusion and future
work in Section 6.

2. RELATED WORK

Our work is closely related to topic detection and track-
ing which is a longstanding problem [1, 20, 11]. TDT re-
search develops algorithms for discovering and threading
together topically related material in streams of data such

36

as newswire and broadcast news in both English and Man-
darin Chinese. However, our work is different from them
in several aspects: (1) the basic element in TDT is a story
about a certain topic in news streams while in our work it
is a relatively short message which consists of one or several
sentences conveying certain information. In our problem,
it is hard to determine the topic from one single message.
However TDT assumes that the content of each story is rich
enough to reflect a specific topic. (2) in our work, there
may be more than one thread at the same time, and the
text of different threads intersects with each other. (3) the
temporal information in our work plays an important role in
detecting the thread. For example, the two messages “Could
you help me on ...”, “Yes. I could” would likely come to-
gether in a thread, with the former appearing ahead of the
latter and not being far from each other. (4) the text stream
produced by IM or IRC is highly dynamic and interactive.
Two messages in a thread can be connected with each other
not only through the semantic information they convey but
also by some linguistic features. Our work is also related
to text segmentation [7]. Text segmentation aims to iden-
tify the boundaries of topic changes in long text documents
and/or document streams, while in our problem, we aim to
find the threads from streams consisting of short messages.

Some other papers work on the same type of data [2, 4,
16, 9]. Most of them focus on detecting the latent topics
contained in the data. In [2], the authors developed a text
classification system named ChatTrack. ChatTrack creates
a concept-based profile that represents a summary of the
topics discussed in a chat room or by an individual partic-
ipant. It archives the contents of chat room discussions in
XML format. Subsets of this data can be classified upon
request to create profiles of particular sessions or particu-
lar users. The classifier is pre-trained on more than 1,500
concepts, and it can also be extended to include concepts of
interest to a particular analyst. However, the topics in chat
rooms are very divergent and it is impossible to provide a
universal classifier for all possible topics. In [4], Elnahrawy
evaluated the text classification techniques (Naive Bayes, k-
nearest neighbor, and support vector machine) to find suit-
able methods of chat log classification for automated crime
detection.

In [3], the authors adopted complexity pursuit for the
topic identification problem in chat lines and news sources.
This algorithm separates interesting components from a time
series of data and identifies some underlying hidden topics
in streaming data. In [8], a topographical visualization tool
was put forward for a dynamically evolving text stream,
based on the hidden Markov model (HMM). The system is
based on the exploitation of the a priori domain knowledge,
that is, there are relatively homogeneous temporal segments
in a data stream. This system can be seen as a comple-
mentary tool for topic detection and tracking applications.
However, the state number of HMM is required beforehand.
Furthermore, it is hard to extend the tool to work in an on-
line fashion without learning the parameters of HMM from
training data.

Another related work is dialog summarization [18], which
performs automatic transcription, tracking, retrieval, and
summarization of meetings. The difference is that they do
not assume there are many threads at the same time.

In [9], Khan et al. realizing the importance of identifying
the threads, made a preliminary attempt. However, their

approach relies on some positive and negative patterns pro-
vided by experts, which limits its application.

We also want to mention another group of work on data
which are similar to the text message streams we exploit [10,
19]. The data they studied are produced by Newsgroups,
BBS (Bulletin Board System) or other forums. Although
their data appear as a stream consisting of messages, they
are organized explicitly into thread trees. The root of the
thread tree is the first message posted by someone seeking
an answer to his/her question or a message posted by some-
one who wants to initialize a discussion regarding a specific
topic. The thread tree then expands as other people reply to
this message and continue the discussion. Xi et al. studied
the ranking functions for Newsgroup search in [19]. Their
approach is based on some metadata, such as prior knowl-
edge about the author of the message or the depth of the
message. In [10], Kim et al. worked on the topic segmen-
tation of hierarchical messages in Web discussion boards.
Each thread tree is segmented into coherent units to facili-
tate indexing and retrieval. However, the structure of thread
trees is not available in our problem. It is our objective to
discover the structures of the message stream.

In [5], Hatzivassiloglou et al. investigated two linguisti-
cally motivated text features (noun phrase heads and proper
names) in the context of document clustering. Their experi-
mental results showed that linguistic features could improve
the clustering performance. Some other early work also ver-
ified the effectiveness of linguistic features in the context of
information retrieval [13, 14]. In this paper, we exploit two
kinds of linguistic features different from the above men-
tioned ones. These features are more suitable for analyzing
the discourse structure information in our problem.

3. PROBLEM DEFINITION

3.1 Basic Terms

For convenience of discussion, we first clarify the defini-
tions of two concepts in our problem.

Message : A message is an utterance which consists of
one or more sentences. It is what each participant ex-
presses at one time. The nodes on the top of Figure 2
denote the messages. The messages can be classified
into there categories: a start message which raises a
new series of messages focusing on a special topic (T1s
and Trg in Figure 2); a reply message which is a re-
sponse to a previous message (712, T2 and so on in
Figure 2); an end message which ends a topic (Tig in
Figure 2). An end message is a special case of reply
message. Since the end message has a distinct role, we
distinguish it from other types of messages. If we can
detect the end messages accurately, we can improve
the thread detection task since we would not assign
messages onto the threads which have been ended. Be-
sides that, end messages can provide some potentially
semantic information. For example, if a student posts
a question, and after several go-rounds of discussions,
the student may end this topic with a message like “It
is ok. Thanks” (positive) or “It still does not work.
Thank you, anyway” (negative). It is clear that the
end messages can indicate the quality of the discus-
sion. If another student raises the same question, we
can provide the discussion threads with positive end

37

messages to him instead of those with negative end
messages.

Thread : a thread is a series of messages which starts with
a start message and then a sequence of reply messages.
In our work, we assume that one thread corresponds
to one topic. That is, all the messages in a thread are
focused on the same topic. For example, Ty s, Ti2, T3,
Ti4, Thg in Figure 2 form a thread. As shown in Fig-
ure 2, the messages in a thread form a tree in which
the start message is the root of the tree and each reply
message is the child of one of the previous messages
but not necessarily the nearest neighbor. The thread
defined in this paper is a little different from that in
the usual sense. Usually, a thread refers to the conver-
sation among several participants from the beginning
to the end. It may contain more than one topic. How-
ever, for the convenience of the application scenarios
presented in Section 1, that is information retrieval
and topic monitoring, it is better to detect thread at
the topic level. Therefore, we constrain the thread to
be a smaller unit compared with the usual concept of

thread.
()) [Ta] T) T
““““ PR S

)
e o -
®

&

Figure 2: An illustration of the goal of thread de-
tection in dynamic text stream.

3.2 Definition of Thread Detection Task

As we have discussed, the basic and important step for
processing the text stream data is to find out how many
topics are being discussed and what they are. The detection
task can be classified into two categories: off-line detection
and on-line detection. The former focuses on the detection of
topics in an accumulated collection, and the latter strives to
identify the threads from online conversations. In this paper,
we work on the off-line detection which is easily evaluated.
In fact, most of the algorithms can be applied to on-line
detection. In the following, we define the problem more
precisely.

Thread Detection : We assume that each thread contains
a single topic and each topic may be discussed in sev-
eral threads. The reason for us to consider thread de-
tection instead of topic detection is that it is easy for
us to conduct further research based on threads, for
example, to detect the relationships between partici-
pants, to study the evolvement of a topic and so on.
As we have shown, a thread is a series of messages
which starts with a starting message followed by reply
messages. The thread detection task is to find out all

the threads in the given text stream without knowing
the number of threads beforehand. An illustration is
given in Figure 2. It is perfect to detect the tree of
a thread accurately as shown in Figure 2. However,
it is more difficult than the task to just find out the
messages belonging to the same thread. This paper
focuses on the latter task although all the proposed
algorithms can solve the former one by minor modi-
fication. Then, the thread detection problem can be
converted to a special kind of clustering problem and
can be evaluated with the standard criteria.

We make some assumptions for the thread detection task
in this paper. Firstly, we assume that the author of each
message is unknown. In fact, in most text messages streams,
such information is available. We omit it for the follow-
ing reasons: (1) some users may change their names during
conversation; (2) a user can participate in several different
threads at the same. In both cases, information about the
authors may give us false leads for thread detection. There-
fore, in our work, we only focus on the textual and temporal
information in the text streams. However, it may be inter-
esting to detect the true identity of the authors with multi-
ple aliases in Internet chat rooms. We leave it to our future
work. Another assumption is that we have no clue about
the number of threads in a text message stream. This as-
sumption is reasonable since the text message streams are of
variable length and there is no prior knowledge about them.

4. APPROACHES FOR THREAD DETEC-
TION

Thread detection is in fact the task of grouping the mes-
sages in the text stream into different groups and each group
represents a topic. We employ the single-pass clustering al-
gorithm (incremental clustering) which is tested in TDT [20]
as the baseline algorithm. To cater to the characteristics of
text stream, we propose three variations of the single-pass
clustering algorithm. We also put forward a new algorithm
which is similar to the single-pass algorithm where we also
employ linguistic features in it. In this paper, we do not
adopt the well studied K-means algorithm, since the num-
bers of threads vary radically among different streams and
are hard to be estimated.

4.1 Representation of Messages and Threads

To represent the semantic information of messages and
threads (clusters of messages) in our detection algorithms,
we employ the conventional vector-space model which uses
the bag-of-terms representation [12]. A message is repre-
sented using a vector of terms (words or phrases), which
are weighted using the term frequency (TF) and the Inverse
Document Frequency (IDF) in this paper and are appropri-
ately normalized. The normalized sum of all vectors corre-
sponding to the messages in a thread is used to represent the
thread. This representation is called a prototype or a cen-
troid of the thread. We use the standard cosine similarity,
i.e., the cosine value between vectors of objects (messages
or threads) to measure their similarity.

We also introduce two kinds of linguistic features to re-
flect the discourse structure information of messages. One
is the Sentence Type used in messages and another is the
Personal Pronouns. English has four main sentence types:
Declarative Sentences (to state an idea), Interrogative Sen-

38

tences (to form questions), Imperative Sentences (to request
or demand), and Conditional Sentences (to describe the con-
sequences of a specific action, or the dependency between
events or conditions). As to the personal pronouns, gram-
marians have divided them into three categories: the first
person (such as I, me, my, we, our, and so on); the second
person (such as you and your) and the third person (such
as he, she, they, their, his, hers, him, her, and so on). In
this paper, we only consider the category of personal pro-
nouns of the subject. If the subject is noun, it is classified
as third person. Note that it is nontrivial to identify the
sentence type and the subject for a sentence. For simplic-
ity, we employ some heuristically designed automatons. For
example, an interrogative sentence usually starts with an in-
terrogative word and ends by a question mark; the subject
appears at the beginning in a declarative sentence. The in-
tuition to introduce linguistic features is that the messages
in a thread are the conversational utterances between partic-
ipants and they are highly interactive. The sentence types
and personal pronouns used in neighboring messages are not
random, but follow some hidden rules. In this paper, we try
to discover these rules and apply them for thread detection.
For each message M, we will record the Sentence Types of
the first and the last sentences in this message using M.STF,
M.STL, together with the category of personal pronouns in
them using the notations of M.PPF and M.PPL. STF and
PPF refer to Sentence Type of the First sentence and Per-
son Pronouns in the First sentence respectively. STL and
PPL can be explained similarly. If there is only one sentence
in M, then M.STF equals to M.STL and M.PPF equals to
M.PPL, which represent the Sentence Type and the cate-
gory of person pronouns in the single sentence respectively.

4.2 Thread Detection Approaches

In this section, we present the algorithms for the thread
detection task. We first introduce our baseline algorithm:
a single-pass clustering algorithm. Then we present three
variations of the single-pass clustering algorithm as well as
a novel algorithm which utilizes the linguistic features.

4.2.1 Single-Pass Clustering Algorithm (SP) and its
Variants

Given a text stream in which the messages are sorted ac-
cording to the occurring time, the basic idea of a single-pass
clustering algorithm is as follows. First, take the first mes-
sage from the stream and use it to form a thread. Next,
for each of the remaining message, say M, compute its sim-
ilarity with each existing thread. Let T be the thread that
has the maximum similarity with M. If sim(M,T) is greater
than a threshold ¢, which is to be determined empirically,
then add M to T; otherwise, form a new thread based on M.
Function sim(M,T) is defined to be the similarity between
M and the cluster T. The single-pass clustering algorithm
is efficient as it considers each message once. We can not
detect the number of threads in advance, but it is at most
N where N is the number of messages. Therefore the time
complexity is O(N+N). We denote the single-pass clustering
algorithm as SPg.

In SPg, whenever a new message M is added to a thread
T, the centroid of T is updated as the normalized vector sum
of messages in T. That is, all messages in a thread contribute
to the centroid of the thread equally, no matter when it is
added. However, by intuition, in the dynamic text stream,

old messages in a thread should play less important roles
than new messages. In fact, we can adjust the performance
of SPp in two directions. By adjusting the threshold tsim,
we can obtain clusters at different levels of granularity. By
changing the method for calculating centroids of the threads
and the form of sim(M,T'), we can emphasize different fac-
tors which will affect the similarity measurement. We made
much effort to exploit the dynamic nature of the text stream
and the temporal properties of messages including time win-
dow and discounting strategy. These efforts are described
in the following variations of SPg.

In these variants, we exploit the temporal information.
For simplicity, we use the messages’ relative positions along
the message stream to reflect the temporal information, in-
stead of using the absolute occurring time. Besides the fol-
lowing three variants, we can define many others. However,
these three are representative enough in that they involve
different attempts to exploit the effectiveness of the tempo-
ral information.

1. SP with Weighted Centroid (SPwc)

S Pw ¢ is the same as S Pp except that the importance
of the messages in a thread is determined according
to their time of occurrence when calculating the cen-
troid of the thread. The newer a message, the more
important it is. The centroid of a thread T can be cal-
culated as shown in equation (1) and then normalized

properly.

—M; (1)

where T is the centroid of thread T and M, is the
vector of message M;; all the messages in T are ordered
according to the time of occurrence and M; is the ith
message among them; m is the number of messages
belonging to T up to the considered message.

2. SP Using Nearest Neighbor (SPyn)

Similar to S Pw¢, SPnn also takes the dynamic nature
of the text stream into consideration but in a different
way. A time window of size m is employed in SPyn.
S Py N does not use the cosine value between message
M and the centroid of T as the similarity measurement.
It uses the maximal cosine value between M and the
messages belonging to T within the window, which is
given in equation (2).

sim(M,T) (2)

m NN
= max cosine(M, M;)

i=
where the notations are same as in equation (1).

3. SP Using Weighted Nearest Neighbor (SPw)

SPwnn is different from SPyy when calculating the
similarity between messages M; and M. The similarity
depends on not only the cosine value between the vec-
tors of these two messages, but also the time distance
between them, as shown in equation (3).

cosine(M, M;)

sim(M,T) = (3)

max 1 dist(M, M;)

where dist(M, M;) refers to the time distance between
M and M; in terms of the distance of positions where

39

they appear along the text stream. For example, if M
and M; is the k** and I*" message along the text mes-
sage stream, then dist(M, M;) is defined as k — [. In
fact, some more sophisticated forms of distance mea-
surement can be leveraged here, which will be studied
in our future work.

4.2.2 Linguistic Features Based Single-Pass Cluster-
ing Algorithm (SP.r)

As discussed above, the relationships between linguistic
features in neighboring messages in a thread are not ran-
dom, but follow some hidden rules. One way to describe
these rules is by conditional probability. For simplicity, we
assume the dependence satisfies the Markov chain prop-
erty. That is, the likelihood of a feature in message M;
is entirely determined by the proceeding message M; in the
same thread. Further, we assume that the linguistic fea-
tures used in the first sentence of message M; are entirely
determined by the last sentence in the proceeding message
M;. For example, in Figure 2, if T»3 ends with an interroga-
tive sentence which raises a question, it is supposed that Ts5
will begin with a declarative sentence to answer the ques-
tion. What we are interested in is the likelihood of two
messages being neighboring messages in a thread given the
linguistic features describing them, that is, the probability
M;.PPF). Given two messages M; and M;, we can define
a Boolean function T'(M;, M;) as follows to represent the
event where M; and M, are the neighboring messages in a
thread:

1 If M; and M; belongs to the same thread
and M; is the preceeding message of M;
0 Otherwise

T(M;, M;) =

(4)
The probability P(T(M;, M;)|M;.STL, M;.STF) and
P(T(M;, M;)|M;.PPL, M;.PPF) can be estimated based
the Bayes Rule according to equation (5) and (6):

P(T(M;, M;)|M;.STL, M;.STF)
P(M;.STL, M; .STF|T(M;, M;))*P(T(M;, M;))
= P(M;.5TL, M;.5TF)

()

P(T(M;, M;)|M,;.PPL, M;.PPF)
_ P(M;.PPL,]VIj.PPF\T(]VIi,]Mj))*P(T(]W,‘,, M]))
= P(M;.PPL, M; PPF)

(6)

where the parameters on the right side of equations (5) and
(6) can be estimated using Maximal Likelihood (ML) di-
rectly from the training data. To combine the two different
kinds of linguistic features, we use a simple way of calculat-
ing P(T(M;, Mj;)) as follows:

P (T(M;, M;)|Linguistic Features of M; and M)
= %(((Ms, M;)|M;.STL, M;.STF)
+P(T(M;, M;)|M;.PPL, M;.PPF))

(7)

Based on P(T(M;, M;)|Linguistic Features of M; and Mj),
we now present the linguistic features-based Single Pass Al-
gorithm (SPrr). SPrp is similar to SPyny and SPwNnN
except that the similarity between messages is not only de-
pendent on the semantic similarity but also the linguistic

features, as shown in equation (8).

sim(M,T) = mi&lx cosine(]\?7]\7[1)*

(8)
P(T(M;, M)|Linguistic Features of M; and M)

An intuitive explanation of equation (8) is that the similarity

between messages measured in terms of semantic informa-

tion is adjusted according to the linguistic features of these

messages.

5. EXPERIMENTS

We have described the single-pass clustering algorithm for
our problem, as well as three variations of it and a new al-
gorithm based on linguistic features. In this section, we
empirically compare these algorithms. We introduce the ex-
perimental data set, our evaluation metrics and present the
experimental results based on those metrics. The possible
reasons for the different methods’ performances are also ex-
plained.

5.1 Data Set

The data set used in this paper consists of real text streams
produced in online conversations among professors, teaching
assistants and students in 16 different classes. The thread
information is provided by the authors of the messages. For
simplicity, we use the numbers 1 to 16 to represent the 16
text streams. The statistical information of the three largest
and three smallest streams measured by the number of mes-
sages is shown in Table 1 and Table 2. The average number
of messages, threads and participants among the 16 streams
are 102.8, 23.3 and 26.6 respectively.

Table 1: The 3 Largest Text Streams

ID of Text Stream 4 11 15
Number of Messages 381 | 181 | 176
Number of Threads 92 | 46 | 39

Number of Participants | 68 | 39 | 34

Table 2: The 3 Smallest Text Streams

ID of Text Stream 2 116| 9
Number of Messages 35| 39 | 46
Number of Threads T 719

Number of Participants 10

For SPLr, we need the training data to estimate condi-
tional likelihood parameters. Therefore a 3-fold cross val-
idation procedure is applied in the experiments. That is,
we randomly split the 16 streams into 3 folds (with one fold
containing 6 streams and the other two containing 5 streams
each) and at each time, we use two folds as training data
and another fold as test data. Though all other thread de-
tection algorithms do not need the training data, they are
also tested on the same test data used by SPrp for compar-
ison purposes.

5.2 Evaluation Method

The precision, recall and F measure are commonly used
metrics in information retrieval to evaluate the retrieval re-

40

sults [17]. They have been adapted to evaluate the perfor-
mance of clustering [15]. Here, we explain these metrics in
the context of the thread detection problem. For each de-
tected thread, we calculate its precision and recall against
each real thread. The F measure is defined by combining the
precision and recall together. Specifically, for the detected
thread j and the real thread i, the metrics can be calculated
as follows:

Recall(i, j) = 7;] (9)
Precision(i,j) = By (10)

nj

2 x Precision(i, j) x Recall(i, j)

F(i,5) =
(&) Precision(i, j) + Recall(i, j)

(11)

where n;; is the number of messages of the real thread ¢ in
the detected thread j, n; is the number of messages in the
real thread 7, n; is the number of messages in the detected
thread j and F(i, j) is the F measure of the detected thread
j and the real thread 3.

The whole F measure of the detection result in a stream
is defined as a weighted sum over all threads as follow:

F= — max(F'(, 12

52 max(FG.9) (12)
where the max is taken over all detected threads and n is
the total number of messages. The results we report in the
next section are in terms of the average F value among all
the test streams.

5.3 Experimental Results and Analysis

We compared our proposed algorithm based on linguistic
features and the 3 variations of the single-pass algorithm
with the basic single-pass algorithm. The results are shown
in the tables from Table 3 to Table 10. The results are ob-
tained through three-fold cross validation procedure. The
number in boldface is the highest F-value which can be
achieved by the corresponding algorithm when tuning the
parameters. In the next section, we give a detailed anal-
ysis of the parameters tuning procedure and explain why
different algorithms reach peak performance under different
parameter settings.

Table 3: Performance of SPp when tg;, changes
tsim | 0.40 | 0.46 0.52 0.58 | 0.64
F 0.351 | 0.356 | 0.361 | 0.352 | 0.338

Table 4: Performance of SPy ¢ when tg;, changes
tsim | 0.48 | 0.54 | 0.60 0.66 0.72
F 0.342 | 0.392 | 0.392 | 0.395 | 0.389

From the results shown in from Table 3 to Table 10, we
can order the different algorithms based on the performance:
SPrLr > SPnNn > SPwnn > SPwe > SPg. Inthe following
part, we give an explanation for the performance differences
among them.

It is easy to see that the 3 variations of the single-pass
algorithm can achieve obvious improvement over the basic
single-pass algorithm. This observation validates the effect

of the temporal information. When taking the temporal
information into consideration, the variations can remove
the impact of the distant messages whose thread is not active
any more. Then it is possible for them to assign the right
thread label to the currently processed messages.

Table 5: Performance of SPyy when the similarity
threshold is fixed as 0.53 (m means the window size)

m 6 7 8 9 10
F | 0.521 | 0.558 | 0.550 | 0.540 | 0.486

Table 6: Performance of SPyy when the window size
is fixed at 7
tsim | 0.49

F 0.530

0.51
0.536

0.53
0.558

0.55
0.532

0.57
0.513

Table 7: Performance of SPwyny when the similarity
threshold is fixed at 0.42 (m means the window size)

m 10 15 25 30 35
F | 0.385 | 0.411 | 0.430 | 0.435 | 0.420

Table 8: Performance of SPyxy when the window
size is fixed at 30
tsim | 0.36

F 0.380

0.38
0.378

0.40
0.421

0.42
0.435

0.44
0.407

Table 9: Performance of SPrr when the similarity
threshold is fixed at 0.19 (m means the window size)

m 11 12 13 14 15
F | 0.562 | 0.612 | 0.606 | 0.591 | 0.556

Table 10: Performance of SPrr when the window

size is fixed at 8
tsim | 0.15 0.17 0.19 0.21 0.23
F 0.580 | 0.608 | 0.612 | 0.600 | 0.592

SPnnN increases the performance relatively by 41.3% in
terms of F-value compared with SPyw . The reason for the
improvement is explained as follows. There are two ma-
jor differences between SPyy and SPwce. The first one
is that SPyn only considers the messages within a win-
dow with size m; the second is that SPyn determines the
thread of the target message based on each single message in
each existing thread instead of the centroid of each thread.
These differences both contribute to the better performance
of SPyn. Due to the dynamic nature of a text stream,
that is, some active topics may become inactive when the
conversation moves, it is proper to neglect the impact of
the old messages in the stream. Therefore, using a sliding
window is better than the discounting strategy adopted by
SPwc. To get the centroid of a cluster, we need to com-
bine the messages belonging to the cluster. However, after
mixing up the messages, it may become harder for us to
distinguish two topics if they share some common words.
Then, it is better to record all the messages in the exist-
ing clusters and determine the similarity between the target

41

message and a thread by computing the similarity between
the target message and each distinct message in that thread,
which is another reason for SPnn’s better performance.

SPwnn is similar to SPyn except that the former dis-
counts the similarity between the target message and the
message in a window according to the distance between the
two messages. In fact, in the text stream, one message might
not always reply to its nearest neighbor. For example, in
Figure 2, Tos5 replies to Tas instead of Ta4. So if we discount
the similarity between Tbs and T»2, the similarity may fall
below the predefined threshold and they would not be clus-
tered together which leads to an error. This explains why
SPwNn is not as good as SPyy.

From Table 9 and Table 10 we can see that SPrr is the
best one among the several algorithms including basic single-
pass algorithm, and the three variations of basic single-pass
algorithm. SPrrp improves the performance relatively by
69.5% and 9.7% when compared with the basic single-pass
algorithm and the best variation respectively. In fact, SPrr
is modified on the basis of SPxn and it takes the advantage
of SPyy as shown before. Besides that, SPLr takes the
linguistic features into consideration. In fact, in the text
stream generated by conversations, the linguistic features
play an important role in connecting the messages within a
thread. That is why SPrr outperforms SPny.

5.4 Parameters Tuning

The parameter for S P and S Py ¢ is the similarity thresh-
old (tsim) which is easy to tune since the performance of
the algorithms depends solely on it. However, for SPyn,
SPwnn and SPrrp, there are two parameters for each al-
gorithm to tune at the same time. That is the size of the
window (m) and the similarity threshold (¢sim). It is hard to
search over all the parameter space to reach the peak perfor-
mance for each algorithm. So we adopt a greedy approach
by tuning the two parameters alternatively and repeatedly
until the performance converges. That is, we first fix m and
then tune ts;m, to find out the best value of tsin,. After that,
we fix tsim as the best value we just obtained and tune m
to get its best value. We repeat this process until the per-
formance of the algorithm does not change any more. The
tables from Table 5 to Table 10 show the last two steps for
SPnn, SPwn~ and SPrr respectively.

From the results shown in Table 5 to Table 10, we can
observe that the best values of the window size and the sim-
ilarity threshold for different algorithms are quite different.
We illustrate the observation by the window size. The win-
dow size means the reliable range within which we calculate
the similarity between messages. If one message is out of
the window, we can not rely on it to decide the thread of
the target message even if the similarity between them is
high. Therefore, it is reasonable that the best window size
for SPw nn is much larger than that for SPnn since the for-
mer is guaranteed by the discounting strategy. Since SPLr
also takes a discounting strategy, based on linguistic fea-
tures instead of the time distance, the best window size for
it is larger than that for SPyNx but not as large as that for

6. CONCLUSION AND FUTURE WORK

In this paper, we explored the issue of thread detection
in dynamic text message streams, which is considered as
a newly emerging kind of data on the Internet. After in-

troducing the stringent definition of the task, we proposed
three variations of the single-pass clustering algorithm and a
novel algorithm based on linguistic features. The variations
take the temporal information into consideration and im-
prove the performance by at most 54.6% when compared
with the basic single-pass algorithm. The linguistic fea-
tures in this paper include Sentence Type and the Personal
Pronouns used in messages. By modeling the relationship
between neighboring messages in a thread in terms of de-
pendent probability distribution of linguistic features in the
messages, our proposed method outperforms the best vari-
ation of the single-pass clustering algorithm by 9.7%.
Although we obtained promising results compared to the
baseline through our proposed solutions, there is much room
for improvement. Firstly, the linguistic features in this pa-
per are relatively simple and the way to identify the features
are heuristic. We need to find out more advanced linguistic
features which can indicate the relationships between mes-
sages more accurately. Secondly, we will try some other
sophisticated approaches to combine different linguistic fea-
tures. Thirdly, the way we utilize temporal information is
straightforward which may limit the performance of some
algorithms such as SPwc. We will try other approaches in
the future. Fourthly, though we mentioned the importance
of the end message in a thread, we did not study it explic-
itly. We will design some specific methods for discovering
it. Finally, to validate our proposed algorithms, we will test
them on some much larger data sets in our future work.

7. ACKNOWLEDGMENTS

Dou Shen and Qiang Yang are supported by a grant from
NEC (NECLC05/06.EG01). We thank the anonymous re-

viewers for their useful comments.

8. REFERENCES

[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and
Y. Yang. Topic detection and tracking pilot study. In
Proceedings of DARPA Broadcast News Transcription
and Understanding Workshop, pages 194-218, 1998.

[2] J. Bengel, S. Gauch, E. Mittur, and
R. Vijayaraghavan. Chattrack: Chat room topic
detection using classification. In 2nd Symposium on
Intelligence and Security Informatics (ISI-2004)., page
266-277, Tucson, Arizona., June 2004.

[3] E. Bingham, A. Kabdn, and M. Girolami. Topic
identification in dynamical text by complexity pursuit.
Neural Process. Lett., 17(1):69-83, 2003.

[4] E. Elnahrawy. Log-based chat room monitoring using
text categorization: A comparative study. In
St.Thomas, editor, Proceedings of the IASTED
International Conference on Information and
Knowledge Sharing (IKS 2002), US Virgin Islands,
USA, November 2002.

[5] V. Hatzivassiloglou, L. Gravano, and A. Maganti. An
investigation of linguistic features and clustering
algorithms for topical document clustering. In SIGIR
’00: Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 224-231, 2000.

[6] http://www3.gartner.com/3_consulting_services/
marketplace/instMessaging.jsp.

42

[7] X. Ji and H. Zha. Domain-independent text
segmentation using anisotropic diffusion and dynamic
programming. In SIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on
Research and development in informaion retrieval,
pages 322-329, 2003.

[8] A. Kabdn and M. A. Girolami. A dynamic
probabilistic model to visualise topic evolution in text
streams. J. Intell. Inf. Syst., 18(2-3):107-125, 2002.

[9] F. M. Khan, T. A. Fisher, L. Shuler, T. Wu, and

W. M. Pottenger. Mining chatroom conversations for

social and semantic interactions. Technical Report

LU-CSE-02-011, Lehigh University, 2002.

J. W. Kim, K. S. Candan, and M. E. Donderler. Topic

segmentation of message hierarchies for indexing and

navigation support. In WWW ’05: Proceedings of the
14th international conference on World Wide Web,

pages 322-331, 2005.

G. Kumaran and J. Allan. Text classification and

named entities for new event detection. In SIGIR ’0/:

Proceedings of the 27th annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 297-304, 2004.

G. Salton. Automatic text processing: the

transformation, analysis, and retrieval of information

by computer. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1989.

G. Salton and M. Smith. On the application of

syntactic methodologies in automatic text analysis. In

SIGIR ’89: Proceedings of the 12th annual

international ACM SIGIR conference on Research and

development in information retrieval, pages 137-150,

1989.

A. F. Smeaton. Progress in the application of natural

language processing to information retrieval tasks.

Comput. J., 35(3):268-278, 1992.

K. G. Steinbach, M. and V. Kumar. A comparison of

document clustering techniques. Technical report

00-034, Department of Computer Science and

Engineering, University of Minnesota, 2000.

V. H. Tuulos and H. Tirri. Combining topic models

and social networks for chat data mining. In WI ’04:

Proceedings of the Web Intelligence, IEEE/WIC/ACM

International Conference on (WI'04), pages 206—213,

Washington, DC, USA, 2004. IEEE Computer Society.

R. C. van. Information Retrieval. Butterworths,

London, second edition edition, 1979.

A. Waibel, M. Bett, M. Finke, and R. Stiefelhagen.

Meeting brower: Tracking and summarizing meetings.

In Proceedings of the DARPA Broadcast News

Transcription and Understanding Workshop, 1998.

W. Xi, J. Lind, and E. Brill. Learning effective

ranking functions for newsgroup search. In SIGIR ’04:

Proceedings of the 27th annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 394—401, 2004.

Y. Yang, T. Pierce, and J. Carbonell. A study of

retrospective and on-line event detection. In SIGIR

’98: Proceedings of the 21st annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 28-36, 1998.

(10]

(1]

(17]

(18]

(19]

20]

