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Abstract
This paper addresses the problem of recovering the
locations of both mobile devices and access points
from radio signals, a problem which we callco-
localization, by exploiting bothlabeledandunla-
beleddata from mobile devices and access points.
We first propose a solution using Latent Seman-
tic Indexing to construct the relative locations of
the mobile devices and access points when their
absolute locations are unknown. We then pro-
pose a semi-supervised learning algorithm based
on manifold to obtain the absolute locations of
the devices. Both solutions are finally combined
together in terms of graph Laplacian. Extensive
experiments are conducted in wireless local-area
networks, wireless sensor networks and radio fre-
quency identification networks. The experimental
results show that we can achieve high accuracy with
much less calibration effort as compared to several
previous systems.

1 Introduction
Accurately trackingmobiledevices in wireless networks us-
ing radio-signal-strength (RSS) values is a useful task in ro-
botics and activity recognition. It is also a difficult task since
radio signals usually attenuate in a highly nonlinear and un-
certain way in a complex environment where client devices
may be moving. Existing approaches to RSS localization
fall into two main categories[Ferriset al., 2006]: (1) radio
propagation models[Maligan et al., 2005; Savvideset al.,
2001], which rely on the knowledge of access point locations;
(2) statistical machine learning models[Nguyenet al., 2005;
Letchneret al., 2005; Bahl and Padmanabhan, 2000], which
require a large amount of costly calibration.

However, in cities and large buildings where wireless net-
works are set up by different network suppliers, it is not easy
to ask them to share the location information of all access
points for business or privacy reasons. Besides, a mobile de-
vice may also want to locate access points for obtaining sta-
ble connections or to spot them in hostile areas. In all these
cases, sufficient calibration (labeled) data on mobile devices
and access points may not always be available due to the lack
of GPS coverage or costly human effort.

In this paper, we address the problem of simultaneously
recovering the locations of both mobile devices and access
points, a problem which we callco-localization, using la-
beledandunlabeledRSS data from both mobile devices and
access points. We take two steps for solving this problem.

In the first step, we assume that onlyunlabeledRSS data are
given. In such case, we show that the problem can be solved
by Latent Semantic Indexing (LSI) or Singular Value Decom-
position (SVD)[Deerwesteret al., 1990], techniques that are
popular in information retrieval. Consequently, the relative
locations of APs and mobile device trajectory can be deter-
mined. In the second step, we assume that a small amount
of labeledRSS data from mobile devices and access points
are given. To determine the absolute locations of the devices
and access points, we apply a semi-supervised algorithm
with graph Laplacian and manifold learning[Chung, 1997;
Belkin and Niyogi, 2003; Hamet al., 2005]. Finally, we pro-
vide a unified framework for both the above unsupervised and
semi-supervised solutions.

We tested ourco-localizationalgorithms in different indoor
environments using both static and mobile client devices. We
also tested the algorithms with different hardware such as
802.11 Wireless Local Area Networks (WLAN), Wireless
Sensor Networks (WSN) and Radio Frequency Identifiers
(RFID). Experimental results showed that we can achieve a
higher accuracy with much less calibration effort in different
environments, motion patterns and with different hardware.

2 Related Works
Propagation-model-based approaches are widely used for
location estimation due to their simplicity and efficiency
[Letchneret al., 2005]. These methods usually assume that
access points arelabeled, e.g., their locations are known.
They estimate the distance of the mobile devices relative to
some fixed access points based on signal strengths through
models that predicts the signal propagation patterns[Sav-
vides et al., 2001]. Researchers have also used Bayesian
models to encode the signal propagation pattern[Letchneret
al., 2005; Maliganet al., 2005] and infer the locations using
Monte Carlo methods[Thrun et al., 2001]. A drawback of
propagation-model-based methods is that these models may
become inaccurate in a complex domain.

An alternative is to apply machine-learning-based algo-
rithms. With these algorithms thelabels of access points
need not be known. Instead, they usually rely on models that
are trained with RSS data collected on a mobile device and
are labeled with physical locations[Letchneret al., 2005;
Nguyenet al., 2005; Ni et al., 2003; Bahl and Padmanab-
han, 2000]. The training data are usually collected offline.
These signal values may be noisy and nonlinear due to envi-
ronmental dynamics. Therefore, sufficient data shall be col-
lected to power algorithms for approximating the signal to lo-
cation mapping functions using K-Nearest-Neighbors[Bahl
and Padmanabhan, 2000], kernels[Panet al., 2005], Bayesian



filters [Letchneret al., 2005] and Gaussian processes[Ferris
et al., 2006]. A drawback of these models is that they may
require much calibration effort.

A viable approach is to use bothlabeledand unlabeled
data. For example, Bayesian frameworks can be applied to
use bothlabeledandunlabeledaccess points[Letchneret al.,
2005] and mobile device trajectory[Chai and Yang, 2005].
Our work differs from the above in that we treat mobile de-
vices and access points in a completely symmetric manner:
we use both thelabeledandunlabeleddata from mobile de-
vices and access points to recover the locations of both of
them rather than locating the mobile devices only. To the best
of our knowledge, this is the first such work.

3 Methodology

3.1 Problem Definition

Consider a two-dimensionalco-localizationproblem. As-
sume that a user holds a mobile device and navigates in an in-
door wireless environmentC ⊆ R

2 of n access points, which
can periodically send out beacon signals. At some timeti, the
RSS values from all then access points are measured by the
mobile device to form a row vectorsi = [si1 si2 . . . sin] ∈
R

n. A sequence ofm signal strength vectors form anm × n
matrix S = [s′1 s′2 . . . s′m]′, where “prime” is used to de-
note matrix transposition. Here, the locations of some access
points and the mobile devices at some timet are known or
labeled, while the rest areunlabeled.

Our objectives are stated as follows: We wish to estimate
the m × 2 location matrixP = [p′

1,p
′
2, . . . ,p

′
m]′ where

pi = [pi1 pi2] ∈ C is the location of the mobile device at
time ti and then × 2 location matrixQ = [q′

1,q
′
2, . . . ,q

′
n]′

whereqj = [qj1 qj2] ∈ C is the location of thej access
points. Our objectives are to determine the locations of allof
the remaining access points and the trajectory of the mobile
device. We call this problemco-localization.

Example 1 As an example, Figure 1(a) shows an indoor
802.11 wireless LAN environment of size about60m×50m.
It is equipped withn = 5 access points. A user with an
IBM T42 notebook that is equipped with an Intel Pro/2200BG
internal wireless card walks fromA throughB, . . . , E to F
at time tA, tB, . . . , tF . m = 6 signal strength vectors are
extracted and the6 × 5 matrix S is shown in Table 1. By
walking fromA to B, . . . , E and finally toF in the hallways,
we collected500 signal strength vectors from5 access points.
Note that the blank cells denote the missing values, which we
can fill in a small default value, e.g.,−100dBm.

Our task is to estimate the trajectory matrixP of the mobile
device at all times and to determine the location matrixQ of
the access pointsAP1, AP2, . . . , AP5.

3.2 SVD-based Relative Co-Localization

Givenunlabeleddata only, we can determine the relative lo-
cations of the mobile device and the access points. This prob-
lem is called relativeco-localization. Intuitively, we may ob-
serve the following characteristics of the data (see Table 1):

Table 1: Signal Strength (unit:dBm)
AP1 AP2 AP3 AP4 AP5

tA -40 -60 -40 -70
tB -50 -60 -80
tC -40 -70
tD -80 -40 -70
tE -40 -70 -40 -80
tF -80 -80 -50
(All values are rounded for illustration)

1. Considering tworows of the data, the mobile device
at two different time may spatially close to each other
if their signal strengths are similar when received from
most access points, e.g., the timetA andtE .

2. Considering twocolumnsof the data, two access points
may be spatially close to each other if the signal
strengths to the mobile device be similar most of the
time, e.g.,AP1 andAP4.

3. Considering asingle cellsij of the data, the mobile de-
vice and thej access point may spatially close to each
other at timeti if the signal be strong, e.g., the mobile
device is close toAP3 at timetD.

The above observations enabled us to relate co-localization
with information retrieval. Not surprisingly, theco-
localizationis closely related to the Latent Semantic Indexing
(LSI) [Deerwesteret al., 1990]. In this view, we treat an ac-
cess point as a term and a mobile device at some time as a
document. The above three observed characteristics would
be mapped to the similarities of document-document, term-
term and document-term respectively. Estimating the posi-
tions of the mobile device and the access points corresponds
to discovering the latent semantics of documents and terms in
some concept space.

More specifically, we can estimate the relative coordinates
by performing Singular Value Decomposition (SVD).

1. Transform the signal matrixS = [sij ]m×n to a non-
negative weight matrixA = [aij ]m×n by a linear func-
tion aij = sij − smin wheresmin is the minimal signal
strength detected, e.g., the noise level or−100dBm.

2. Normalize the weight matrix byAN = D
−1/2

1 AD
−1/2

2 .
Here,D1 andD2 are both diagonal matrices such that
D1 = diag(d1

1, d
1
2, . . . , d

1
m) whered1

i =
∑n

j=1
aij and

D2 = diag(d2
1, d

2
2, . . . , d

2
n) whered2

j =
∑m

i=1
aij .

3. Perform SVD on the normalized weight matrix by
AN ≈ Um×rΣr×rV

′
n×r. The columns ofUm×r =

[u1 . . .ur] andVn×r = [v1 . . .vr] are the left and right
singular vectors. The singular values of the diagonal
matrixΣr×r = diag(σ1, σ2, . . . , σr) are ranked innon-
increasingorder.

4. The (latent) location matrices of the mobile deviceP
and that of the access pointsQ can be estimated using
P = D

−1/2

1 [u2 u3] andQ = D
−1/2

2 [v2 v3]. Note that
we skip the first singular vectorsu1 andv1 which mostly
capture some constant since matrixAN is not centering.
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Figure 1: The Wireless LAN, Wireless Sensor Network and the RFID Test-beds
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(a) (Linear) SVD Co-Localization
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(c) Manifold-based Co-Localization

Figure 2: 802.11 Wireless LAN test in an indoor environment

As an example, after performing SVD on data inExample 1,
we obtained the latent coordinates of the mobile device and
the access points, which are shown in Figure 2(a). In this
example, it is easy to see that the hallway structure is not well
preserved by comparing the true location sequence shown in
Figure 1(a). This is because SVD assumes alinear subspace,
while the correlation of RSS values and distance to APs is
often nonlinear[Nguyenet al., 2005].

A better solution is using Kernel SVD or simply trans-
forming signal strengths to weights by somenonlinearfunc-
tion. More specifically, we transform the signal matrixS =
[sij ]m×n to a new weight matrixA = [aij ]m×n by a Gaussian
kernelaij = exp(−|sij − smax|2/2σ2

A) wheresmax is the
maximal signal strength detected, e.g., the signal strength
around an access point or−30dBm. Figure 2(b) plots the
co-localizationresult usingP andQ. Intuitively, the recon-
structed hallway structure and the locations of access points
are better than that shown in Figure 2(a) while referring to the
ground truth illustrated in Figure 1(a).

3.3 Manifold-based Absolute Co-Localization
When the physical locations of some access points and the
mobile device at some time are known, we can ground the
unknown coordinates by exploiting the geometry of the signal
distribution. More specifically, we can use manifold-based
learning, which generally assumes that if two points are close
in the intrinsic geometry of the marginal distribution, their
conditional distributions are similar[Belkin et al., 2005; Ham
et al., 2005]. This implies that the mobile device shall be
spatially close to each other if their signal vectors are similar
along some manifold structure[Patwari and Hero, 2004; Pan
et al., 2006]. For example, the mobile device at timetA and
tE shall be spatially close to each other (Figure 1(a)) since
their signal strengths are similar (Table 1).

When the manifold assumption holds, the optimal solution
is give byf∗ = arg min Σl

i=1|fi − yi|
2 + γfT Lf [Hamet al.,

2005] where the first term measures the fitting error and the
second term poses the smoothness along the manifold andL
is the graph Laplacian[Chung, 1997]. For our problem, the
objective is to optimize:

P ∗ = arg min
P∈Rm×2

(P − YP )′JP (P − YP ) + γP P ′LP P (1)

Here, P is the coordinate matrix of the mobile device to
be determined;JP = diag(δ1, δ2, . . . , δm) is an indica-
tion matrix whereδi = 1 if the coordinate of the mobile
device at timeti is given and otherwiseδi = 0; YP =
[y′

1,y
′
2, . . . ,y

′
m]′ is anm × 2 matrix supplying the calibra-

tion data whereyi is the given coordinate of the mobile de-
vice at timeti if δi = 1 and otherwise the value ofyi can
be any, e.g.,yi = [0 0]; γP controls the smoothness of
the coordinates along the manifold;LP = DP − WP is
the graph Laplacian;WP = [wij ]m×m is the weight matrix
andwij = exp(−‖si − sj‖

2/2σ2
P ) if si andsj are neigh-

bors along the manifold and otherwisewij = 0; DP =
diag(d1, d2, . . . , dm) anddi =

∑m
j=1

wij .
Setting the derivative of Equation (1) to zero, the optimal

solution is given by[Hamet al., 2005]

P ∗ = (JP + γP LP )−1JP YP (2)

Similarly, the coordinates of the access points are given by

Q∗ = argmin
Q∈Rn×2

(Q − YQ)′JQ(Q − YQ) + γQQ′LQQ (3)

and
Q∗ = (JQ + γQLQ)−1JQYQ (4)

whereLQ = DQ − WQ is the graph Laplacian,WQ is the
weight matrix andDQ is constructed fromWQ.



Thus, when the locations of the mobile device and the ac-
cess points are partially known, we canco-localizethem by
solving Equations (2) and (4) respectively. Alternatively, we
can combine them into a single equation as

R∗ = (J + γBLB + γCLC)−1JY (5)

Here,R = [P ′ Q′]′ is the coordinate matrix of the mobile
device and the access points;Y = [Y ′

P Y ′
Q]′ gives the label

information;J =
[

JP 0

0 JQ

]

is the indication matrix;LB =
[

LP 0

0 0

]

andLC =
[

0 0

0 LQ

]

are the graph Laplacians.

In practice, the graph LaplaciansLB and LC in Equa-
tion (5) are normalized[Belkin and Niyogi, 2003; Shi and
Malik, 2000]. Figure 2(c) shows an example of the manifold-
basedco-localizationwhen the locations of the mobile device
at timetA, tB, tC , tD, tE , tF and the access pointsAP2, AP3,
AP4 are known. As can be seen, the trajectory of the mobile
device is well grounded when compared to the ground truth
shown in Figure 1(a). However, due to the limited number
of access points, their locations are estimated badly, e.g., the
location ofAP5.

In the following, we will combine the SVD-based and the
Manifold-basedco-localizationtogether so that we can align
the mobile device and the access points to the ground truth
and to each other.

3.4 A Unifying Framework
So far, we have formulated the unsupervisedco-localization
based on SVD and the semi-supervisedco-localizationbased
on the manifold assumption using Equation (5) by exploiting
the correlation within the mobile device and the access points.
In this section, we integrate them through a unifying theory.
Essentially, performing SVD onAN is equivalent to solving
the generalized eigenvalue problem[Dhillon, 2001]

LAZ = DAZΛ (6)

whereLA = DA−WA is the graph Laplacian[Chung, 1997],

WA =
[

0 A

A
′

0

]

andDA =
[

D1 0

0 D2

]

. The eigenval-

ues of the diagonal matrixΛ = diag(λ1, λ2, . . . , λm+n) are
ranked innon-decreasingorder. Z = [z1, z2, . . . zm+n] are
the eigenvectors.[P ′ Q′]′ = [z2 z3]. Note that we skip
the first eigenvectorz1 since the solution is trivial. Fur-
thermore, it is interesting to see that we haveλi = 1 − σi

where i = 1, 2, . . . , r [Dhillon, 2001]. Detailed analysis
and comparison of LSI, SVD and graph Laplacian can be
found in Latent Semantic Indexing[Deerwesteret al., 1990;
Dhillon, 2001; Hendrickson, 2006].

Putting these together, our objective is to optimize:

R∗ = arg min
R∈R(m+n)×2

(R − Y )′J(R − Y ) + γR′LR (7)

The first term measures the fitting error and the second term
constrains the smoothness among the mobile device and the
access points.L = γALA + γBLB + γCLC = D − W . The
solution is given by:

R∗ = (J + γL)−1JY (8)
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Figure 3: Co-Localization with graph embedding

In practice, the graph LaplacianL is normalized. An ex-
ample of applying the aboveco-localizationalgorithm using
Equation (8) is shown in Figure 3 when the locations of the
mobile device at timetA, tB , tC , tD tF and the access point
AP4 are known. As can be seen, most of the locations are
correctly recovered while using less calibration data thanthat
in Figure 2(c).

4 Experiments
We evaluated the performance of theco-localizationalgo-
rithm on three sets of different devices and test-beds:
(1) Wireless Local Area Network (WLAN): a person carrying
an IBM c© T42 notebook, which is equipped with an Intelc©

Pro/2200GB internal wireless card, walked in an indoor envi-
ronment of about60m×50m in size as shown in Figure 1(a).
A total of 2000 examples are collected with sample rate2Hz.
The ground-truth location labels are obtained by referringto
landmark points such as doors, corners and dead-ends. The
localization area is composed by one-dimensional hallways.
(2) Wireless Sensor Network (WSN): We used a number of
MICA2 sensors from Crossbowc© for experiments. As can
be seen from Figure 1(b), 8 static nodes (AP) were placed in
a room of size5m × 4m. One mobile node (MD) was at-
tached on the top of a robot that moved around freely in this
domain. A total of 4000 examples are collected with sam-
ple rate2Hz. The ground-truth location labels of the mobile
node were supported by the cameras deployed on the ceiling.
The localization area is a two-dimensional plane.
(3)Radio Frequency Identification (RFID): We used 4 Man-
tis readers (AP) and 30 tags (MD) from RF Codec©. They
were all deployed as stationary nodes, which is shown in
Figure 1(c). A total of 2000 examples were collected. The
ground truth locations were marked down manually.

We summarize our three experimental setups in Table 2.
For comparison, we also run the following baseline algo-

rithms (1) LANDMARC, a nearest-neighbor weighting based
method designed for RFID localization[Ni et al., 2003]; (2)
Support Vector Regression (SVR), a simplified variant of a
kernel-based method used for WSN localization[Nguyenet
al., 2005]; (3) RADAR, a K-Nearest-Neighbor method for
WLAN localization[Bahl and Padmanabhan, 2000].

In each experiment, we randomly pick up 500 examples
for training and the rest for testing. The training data is fur-
ther split intolabeledandunlabeledparts. The results shown
in Figure 4 are averaged over 10 repetitions for reducing sta-
tistical variability. All results are measured inrelative error



Table 2: The experimental setups of WLAN, WSN and RFID
Infrastructure AP MD Test-bed Scale Dataset Size Motion Pattern

WLAN 5 Access Points 1 Notebook Hallway 60m× 50m 2000 Mobile (robot)
WSN 8 Static Nodes 1 Mobile Node Room 5m× 4m 4000 Mobile (human)
RFID 4 RFID Readers 30 RFID Tags Room 5m× 4m 2000 Static

distances, which are error distances in percentage while re-
ferring to the maximal error distance in each figure for easy
comparison. All parameters are determined from a validation
subset. LANDMARC, RADAR and SVR use thelabeledpart
of training data only.

In contrary, theco-localizationmethod used bothlabeled
andunlabeleddata. We will show how our algorithm ben-
efits from the additionalunlabeleddata and reduces calibra-
tion effort. In all, we tested on two configurations for the
co-localizationmethod: (1) ‘Co-Localization no AP’ uses
partially labeled data from mobile devices for training, in
which we tries to recover the locations of the access points;
and (2) ‘Co-Localization with AP’ repeats the same experi-
ments with the locations of all access points known.

Figures 4(a), 4(b) and 4(c) show the localization error of
different mobile devices by varying the number of labeled ex-
amples in a training subset which size is fixed to be 500. The
three figures could be read in two directions. First, if we com-
pare the results vertically in each figure, we can see how the
unlabeleddata help improve the result in the proposed meth-
ods. For example in Figure 4(c), most compared methods
have a relative error distance of around 80% when using 50
labeledexamples. In contrary, the proposed methods have an
error of around 40% by employing additional 450unlabeled
examples. Secondly, if we compare the results horizontallyin
each figure, we can find how our methods reduce calibration
effort. For example in Figure 4(a), most compared methods
have a relative error distance of around 60% when all 500
examples arelabeled. The proposed ‘Co-Localization with
AP’ has a similar performance when using 50labeledand
450unlabeledexamples. We save the calibration effort.

We found that the mobility of the mobile device and the
environment complexity are two main factors that affected
the performance of theco-localizationalgorithm. In a sta-
tic and plane-shaped test-bed (Figure 4(a)), the radio signals
are less noisy and the ‘Co-Localization no AP’ configura-
tion demonstrated similar performance as RADAR, LAND-
MARC and SVR when the number oflabeledexamples is
small. In a mobile and complex environment, as shown in
(Figure 4(c)), the radio signal is more noisy and the ‘Co-
Localization no AP’ performed much better and more robust
than the compared methods. We have also tried some other
combinations of experiments that led to a similar conclusion,
such as using RFIDs in a mobile scenario.

While comparing the results of ‘Co-Localization no AP’
and ‘Co-Localization with AP’ in Figures 4(a), 4(b) and
4(c), we can find that knowing the locations of access points
is more helpful for localizing the mobile devices in a static
and planar scenario (Figure 4(a)) than in a mobile and com-
plex environment (see Figure 4(c)).

Similarly, we can see from Figures 4(d), 4(e) and 4(f) that
knowing the locations of mobile devices are more helpful for

localizing access points in a static and plane-shaped scenario
rather than a mobile and complex environment.

5 Conclusion
We have developed a novel graph Laplacian approach to solve
the problem of simultaneously recovering the locations of
both mobile devices and access points. In our co-localization
framework, we find the relative locations of mobile devices
and access points by exploiting a SVD based method, and
find the absolute locations using a small collection of labeled
data through graph Laplacian methods. Our extensive exper-
iments in three different configurations showed that we can
achieve high performance with much less calibration effort
as compared to several previous approaches. The significance
of the work is that we can leverage both the knowledge of the
access point locations and the mobile device trajectories to
obtain more accurate localization. Indeed this is one of our
future works. Besides, we would try to evaluate the perfor-
mance in a large-scale and dynamic environment, e.g., in a
city level and in different time. We may also vary more para-
meters such as number of access points and their deployment
density and study the robustness.
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(a) RFID MD (tags)
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(b) WSN MD (mobile sensor node)
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(c) WLAN MD (notebook)
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(d) RFID AP (readers)
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(e) WSN AP (static sensor nodes)
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Figure 4: Experimental Results over 10 Repetitions (Mean and Std.): MD for Mobile Device; AP for Access Point

[Deerwesteret al., 1990] S. C. Deerwester, S. T. Dumais,
T. K. Landauer, G. W. Furnas, and R. A. Harshman. Index-
ing by latent semantic analysis.Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[Dhillon, 2001] I. S. Dhillon. Co-clustering documents and
words using bipartite spectral graph partitioning. InPro-
ceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
269–274, New York, NY, USA, 2001. ACM Press.

[Ferriset al., 2006] B. Ferris, D. Hahnel, and D. Fox.
Gaussian processes for signal strength-based location esti-
mation. InProceedings of Robotics: Science and Systems,
Philadelphia, Pennsylvania, USA, August 2006.

[Hamet al., 2005] J. Ham, D. Lee, and L. Saul. Semisuper-
vised alignment of manifolds. InProceedings of the Tenth
International Workshop on Artificial Intelligence and Sta-
tistics, pages 120–127. Society for Artificial Intelligence
and Statistics, January 2005.

[Hendrickson, 2006] B. Hendrickson. Latent semantic
analysis and fiedler embeddings. InProceedings of SIAM
Workshop on Text Mining, April 2006.

[Letchneret al., 2005] J. Letchner, D. Fox, and A. LaMarca.
Large-scale localization from wireless signal strength. In
Proceedings of the 20th National Conference on Artificial
Intelligence, pages 15–20, Pittsburgh, USA, July 2005.

[Maliganet al., 2005] D. Maligan, E. Elnahrawy, R. Martin,
W. Ju, P. Krishnan, and A.S. Krishnakumar. Bayesian
indoor positioning systems. InProceedings of the Con-
ference on Computer Communications, volume 2, pages
1217–1227, Miami, FL, USA, March 2005.

[Nguyenet al., 2005] X. Nguyen, M. I. Jordan, and B. Si-
nopoli. A kernel-based learning approach to ad hoc sensor

network localization.ACM Transactions on Sensor Net-
works, 1(1):134–152, 2005.

[Ni et al., 2003] L.M. Ni, Y. Liu, Y.C. Lau, and A.P. Patil.
LANDMARC: Indoor location sensing using active RFID.
In Proceedings of the First IEEE International Confer-
ence on Pervasive Computing and Communications, pages
407–416, Dallas, TX, USA, March 2003.

[Panet al., 2005] J. J. Pan, J. T. Kwok, Q. Yang, and
Y. Chen. Accurate and low-cost location estimation using
kernels. InProceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 1366–
1371, Edinburgh, Scotland, 2005.

[Panet al., 2006] J. J. Pan, Q. Yang, H. Chang, and D. Y.
Yeung. A manifold regularization approach to calibration
reduction for sensor-network based tracking. InProceed-
ings of the Twenty-First National Conference on Artificial
Intelligence, pages 988–993, Boston, USA, July 2006.

[Patwari and Hero, 2004] N. Patwari and A. O. Hero. Mani-
fold learning algorithms for localization in wireless sensor
networks. InProceedings of the International Conference
on Acoustics, Speech, and Signal Processing, May 2004.

[Savvideset al., 2001] A. Savvides, C. Han, and M. B.
Strivastava. Dynamic fine-grained localization in ad-hoc
networks of sensors. InProceedings of the 7th Annual
International Conference on Mobile Computing and Net-
working, pages 166–179, Rome, Italy, 2001.

[Shi and Malik, 2000] J. Shi and J. Malik. Normalized cuts
and image segmentation.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

[Thrunet al., 2001] S. Thrun, D. Fox, W. Burgard, and Del-
laert. F. Robust monte carlo localization for mobile robots.
Artificial Intelligence, 128(1-2):99–141, 2001.


