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Abstract

This paper addresses the problem of recovering the
locations of both mobile devices and access points
from radio signals, a problem which we calb-
localization by exploiting bothlabeledand unla-
beleddata from mobile devices and access points.
We first propose a solution using Latent Seman-
tic Indexing to construct the relative locations of
the mobile devices and access points when their
absolute locations are unknown. We then pro-
pose a semi-supervised learning algorithm based
on manifold to obtain the absolute locations of
the devices. Both solutions are finally combined
together in terms of graph Laplacian. Extensive
experiments are conducted in wireless local-area
networks, wireless sensor networks and radio fre-
guency identification networks. The experimental
results show that we can achieve high accuracy with
much less calibration effort as compared to several
previous systems.

Introduction

In the first step, we assume that oniylabeledRSS data are
given. In such case, we show that the problem can be solved
by Latent Semantic Indexing (LSI) or Singular Value Decom-
position (SVD)[Deerwesteet al., 1994, techniques that are
popular in information retrieval. Consequently, the rigkat
locations of APs and mobile device trajectory can be deter-
mined. In the second step, we assume that a small amount
of labeledRSS data from mobile devices and access points
are given. To determine the absolute locations of the dsvice
and access points, we apply a semi-supervised algorithm
with graph Laplacian and manifold learnih@hung, 1997;
Belkin and Niyogi, 2003; Haret al,, 2004. Finally, we pro-
vide a unified framework for both the above unsupervised and
semi-supervised solutions.

We tested ouco-localizatioralgorithms in differentindoor
environments using both static and mobile client devices. W
also tested the algorithms with different hardware such as
802.11 Wireless Local Area Networks (WLAN), Wireless
Sensor Networks (WSN) and Radio Frequency Identifiers
(RFID). Experimental results showed that we can achieve a
higher accuracy with much less calibration effort in diffiet
environments, motion patterns and with different hardware

2 Related Works

Accurately trackingnobiledevices in wireless networks us-
ing radio-signal-strength (RSS) values is a useful tasloin r Propagation-model-based approaches are widely used for
botics and activity recognition. It is also a difficult taskee  location estimation due to their simplicity and efficiency
radio signals usually attenuate in a highly nonlinear and un[Letchneret al., 2009. These methods usually assume that
certain way in a complex environment where client devicesaccess points arlabeled e.g., their locations are known.
may be moving. Existing approaches to RSS localizatioriThey estimate the distance of the mobile devices relative to
fall into two main categoriefFerriset al, 2004: (1) radio  some fixed access points based on signal strengths through
propagation model§Maligan et al, 2005; Savvide®t al, models that predicts the signal propagation patt¢Sey/-
2001], which rely on the knowledge of access point locations;vides et al, 200]. Researchers have also used Bayesian
(2) statistical machine learning modéhéguyenet al, 2005;  models to encode the signal propagation patieetchneret
Letchneret al, 2005; Bahl and Padmanabhan, 2D@¢hich  al., 2005; Maligaret al., 2005 and infer the locations using
require a large amount of costly calibration. Monte Carlo methodgThrunet al, 2004. A drawback of

However, in cities and large buildings where wireless netpropagation-model-based methods is that these models may
works are set up by different network suppliers, it is notyeas become inaccurate in a complex domain.
to ask them to share the location information of all access An alternative is to apply machine-learning-based algo-
points for business or privacy reasons. Besides, a mobile deithms. With these algorithms thiabels of access points
vice may also want to locate access points for obtaining staneed not be known. Instead, they usually rely on models that
ble connections or to spot them in hostile areas. In all thesare trained with RSS data collected on a mobile device and
cases, sufficient calibratiotapeled data on mobile devices are labeled with physical locationdLetchneret al, 2005;
and access points may not always be available due to the ladkguyenet al, 2005; Niet al, 2003; Bahl and Padmanab-
of GPS coverage or costly human effort. han, 2000. The training data are usually collected offline.

In this paper, we address the problem of simultaneouslyrhese signal values may be noisy and nonlinear due to envi-
recovering the locations of both mobile devices and accessonmental dynamics. Therefore, sufficient data shall be col
points, a problem which we catlo-localization using la- lected to power algorithms for approximating the signabto |
beledandunlabeledRSS data from both mobile devices and cation mapping functions using K-Nearest-Neighd@ahl
access points. We take two steps for solving this problemand Padmanabhan, 2d0Rerneld Panet al., 2004, Bayesian



filters [Letchneret al,, 2004 and Gaussian procesdé=rris
et al, 2004. A drawback of these models is that they may
require much calibration effort.

A viable approach is to use bothbeled and unlabeled

Table 1: Signal Strength (unit:dBm)
APl AP2 AP3 AP4 APE)

data. For example, Bayesian frameworks can be applied to tp | =50 | -60 -80

use botHabeledandunlabeledaccess pointld_etchneret al, te -40 | -70

2009 and mobile device trajectorfChai and Yang, 2045 tp | -80 -40 | -70

Our work differs from the above in that we treat mobile de-

vices and access points in a completely symmetric manner: tr | -80 -80 | -50
we use both théabeledandunlabeleddata from mobile de- (All values are rounded for illustration)

vices and access points to recover the locations of both of
them rather than locating the mobile devices only. To thé bes
of our knowledge, this is the first such work.

1. Considering tworows of the data, the mobile device
at two different time may spatially close to each other
if their signal strengths are similar when received from
most access points, e.g., the timeandt g.

3 Methodology 2. Considering twaolumnsof the data, two access points

3.1 Problem Definition may be spatially close to each other if the signal
id di ionalo-localizati bl strengths to the mobile device be similar most of the
Consider a two-dimensionalo-localizationproblem. As- time, e.g.,AP, andAP;.

sume that a user holds a mobile device and navigates in an in- o . _
door wireless environmeiit C R? of n access points, which 3. Considering aingle cells;; of the data, the mobile de-

can periodically send out beacon signals. At some tintae vice and thej access point may spatially close to each
RSS values from all the access points are measured by the ~ other at timet; if the signal be strong, e.g., the mobile
mobile device to form a row vecte; = [s;1 si2 ... Sin] € device is close tol P; at timetp.

R™. A sequence ofn signal strength vectors form an x n

The above observations enabled us to relate co-localizatio
with information retrieval.  Not surprisingly, theso-
localizationis closely related to the Latent Semantic Indexing
(LSI) [Deerwesteet al., 1994. In this view, we treat an ac-
cess point as a term and a mobile device at some time as a
focument. The above three observed characteristics would

matrix S = [s} s, ... s/ ]’, where “prime” is used to de-
note matrix transposition. Here, the locations of some sgce
points and the mobile devices at some titnare known or
labeled while the rest ar@nlabeled

Our objectives are stated as follows: We wish to estimat

H H _ / / 77
th‘ef‘ x 2 Ipcatlog 'rsn?r:réxlgca?ollpé;‘rt)ﬁé' mégT(a] dv(\elh‘?:reeat be mapped to the similarities of document-document, term-
%i)rlne_t-[];lr#dp{?l]ene 2|Iocation mé\trix T ,' V', ; ©° term and document-term respectively. Estimating the posi-
i x ; Q = [d), a5, dn)"  tigns of the mobile device and the access points corresponds
whereq; = [g;1 gj2] € C is the location of thej access

. JL 1 ; 4 to discovering the latent semantics of documents and terms i
points. Our objectives are to determine the locations offall some concept space.

the remaining access points and the trajectory of the mobilé More specifically, we can estimate the relative coordinates
device. We call this problemmo-localization PE ALY, "
by performing Singular Value Decomposition (SVD).

. . 1. Transform the signal matri€ = [s;j]mxn» t0 @ non-
Example 1 As an example, Figure 1(a) shows an indoor negative weight matrixl = [a;;],mx, by alinear func-
802.11 wireless LAN environment of size ab60in x 50m. tion a;; = s;; — s™" wheres™" is the minimal signal

It is equipped withn = 5 access points. A user with an ;
IBM T42 notebook that is equipped with an Intel Pro/2200BG strength detected, e.g., the noise levean0d Bm.

internal wireless card walks from throughB, ..., E to F 2. Normalize the weight matrix byl = D;1/2AD;1/2_

attimeta,tp,...,tp. m = 6 signal strength vectors are Here, D, and D, are both diagonal matrices such that

extracted and thé x 5 matrix S is shown in Table 1. By Dy = diag(d},d}, ..., dL,) whered} = "' a;; and
Iking from A to B E and finally toF' in the hallways : 2 72 2\ 2 T

wa e ’ Dy = diag(d3,d3, ..., d2) whered? = 37" | a;;.

we collected>00 signal strength vectors fromaccess points. _ _ _
Note that the blank cells denote the missing values, which we 3. Perform SVD on the normalized weight matrix by

can fill in a small default value, e.g-100dBm. An = UnxrErxrVyyp- The columns ofUy, ., =

Our task is to estimate the trajectory matFbof the mobile [ur...u.] andVyx, = [vi...v,] are the left and right
device at all times and to determine the location mafiaf singular vectors. The singular values of the diagonal
the access pointd P, AP, ..., APs. matrix .., = diag(c1,02,.. ., 0,) are ranked imon-

increasingorder.

3.2 SVD-based Relative Co-Localization 4. The (latent) location matrices of the mobile deviee
Givenunlabeleddata only, we can determine the relative lo- and that of the access poinfscan be estimated using
cations of the mobile device and the access points. Thisprob P = Dy */*[u, us] andQ = D; */*[v, vs]. Note that
lem is called relativeo-localization Intuitively, we may ob- we skip the first singular vectorg andv; which mostly

serve the following characteristics of the data (see Taple 1 capture some constant since matdix- is not centering.
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Figure 1: The Wireless LAN, Wireless Sensor Network and tReORTest-beds
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Figure 2: 802.11 Wireless LAN test in an indoor environment

As an example, after performing SVD on datdsxample 1, When the manifold assumption holds, the optimal solution
we obtained the latent coordinates of the mobile device and give byf* = argmin X!_, | f; — v;|> ++fT Lf [Hamet al,,

the access points, which are shown in Figure 2(a). In thi2003 where the first term measures the fitting error and the
example, it is easy to see that the hallway structure is ntht wesecond term poses the smoothness along the manifold and
preserved by comparing the true location sequence shown is the graph LaplacialChung, 1997, For our problem, the
Figure 1(a). This is because SVD assumésear subspace, objective is to optimize:

while the correlation of RSS values and distance to APs is . . / /

often nonlineafNguyenet al,, 2005. Pr= irG%TiE(P = Yp)'Jp(P =Yp) +pP'LpP (1)

A better solution is using Kernel SVD or simply trans- i ) ) , ,
forming signal strengths to weights by somenlinearfunc- Here, P |s_the coordma;e matrix of the m_ob|le (_jev_|ce to
tion. More specifically, we transform the signal matfix= b€ determined./p = diag(éy,02,...,0m) is an indica-
[$41]mxn t0 @ New weight matrixd = [a,;],mn by a Gaussian tlon. matnxlwhere.éi = 1 if the coord!nate of the mobile
kemela;; = eap(—|si; — s™a7|2 /952 ) wheres™ is the de/wc&/a at tIm/Et/i_IS given and othermséi_: 0; Yp =
maximal signal strength detected, e.g., the signal sthengtly1:¥2: -+ ¥r,] IS @nm x 2 matrix supplying the calibra-
around an access point er30dBm. Figure 2(b) plots the tion datq Wher.@’i is the given coord_mate of the mobile de-
co-localizationresult usingP and@. Intuitively, the recon- vice at timet; if 5, = 1 gnd otherwise the value gf; can
structed hallway structure and the locations of accesstpoin P @ny, €.9.y; = [0 0]; yp controls the smoothness of
are better than that shown in Figure 2(a) while referrindpéo t the coordinates along the manifoldp = Dp — Wp is

ground truth illustrated in Figure 1(a). the graph LaplaciarkVp = Q[wij];”x.m Is the weight matrix

) o andw;; = exp(—||s; — s,;||?/20%) if s; ands; are neigh-
3.3 Manifold-based Absolute Co-Localization bors along the manifold and otherwisg; = 0; Dp =
When the physical locations of some access points and th&ag(di, d, . . ., dy) andd; = 37" | w;.

mobile device at some time are known, we can ground the Setting the derivative of Equation (1) to zero, the optimal
unknown coordinates by exploiting the geometry of the dignasolution is given byf{Hamet al,, 2004

distribution. More specifically, we can use manifold-based * -1

learning, which generally assumes that if two points arselo Pt =(Jp+qpLe)  JrYp (2)
in the intrinsic geometry of the gBarginaI distribution, ithe Similarly, the coordinates of the access points are given by
conditional distributions are similg@Belkin et al., 2005; Ham X . / /

et al, 2009. This implies that the mobile device shall be @ ZYERTQ(Q ~YQ) (@ =Yo) +10Q' LR (3)
spatially close to each other if their signal vectors aralaim

along some manifold structufPatwari and Hero, 2004; Pan and . .

et al, 2006. For example, the mobile device at time and Q" = (Jo+7La) JoYo (4)
tr shall be spatially close to each other (Figure 1(a)) sincavhereLy = Do — Wy, is the graph Laplaciari}, is the
their signal strengths are similar (Table 1). weight matrix andD, is constructed fromiVg.



Thus, when the locations of the mobile device and the ac-
cess points are partially known, we ceo-localizethem by
solving Equations (2) and (4) respectively. Alternativeie
can combine them into a single equation as °

R*=(J+~vsLp+~cLe) tJY 5)

Here, R = [P’ Q'] is the coordinate matrix of the mobile
device and the access points;= [Y; Y]’ gives the label

information;.J = [ A } is the indication matrixl 5 = .
L 0 0 0 H
0 o } andL¢ = [ 0 Lo } are the graph Laplacians. Figure 3: Co-Localization with graph embedding

In practice, the graph Laplaciansg and Lo in Equa-
tion (5) are normalizedBelkin and Niyogi, 2003; Shi and
Malik, 200d. I_:igu_re 2(c) shows an _example of the_manifc_)ld—
basedco-localizationwhen the locations of the mobile device mobile device at time., ¢, to, £ tr and the access point

attimet,, s, tc,tp, tp, tr andthe access pointshs, AP;, AP, are known. As can be seen, most of the locations are

APy are known. As can be seen, the trajectory of the mObIIecorrectly recovered while using less calibration data thamn
device is well grounded when compared to the ground truti Figure 2(c)

shown in Figure 1(a). However, due to the limited number
of access points, their locations are estimated badly, the). .
location of APs. 4 Experiments

In the following, we will combine the SVD-based and the \we evaluated the performance of the-localizationalgo-
Man|f0|d-based:o-local|zat|0ntogether so that we can allgn rithm on three sets of different devices and test-beds:

the mobile device and the access points to the ground trut{) Wireless Local Area Network (WLAN): a person carrying

In practice, the graph Laplaciahis normalized. An ex-
ample of applying the abow@o-localizationalgorithm using
Equation (8) is shown in Figure 3 when the locations of the

and to each other. an IBM®© T42 notebook, which is equipped with an Iri¢el
. Pro/2200GB internal wireless card, walked in an indoor-envi
3.4 AUnifying Framework ronment of abou0m x 50m in size as shown in Figure 1(a).

So far, we have formulated the unsupervisedocalization A total of 2000 examples are collected with sample die:.
based on SVD and the semi-superviseedocalizationbased The ground-truth location labels are obtained by referting

on the manifold assumption using Equation (5) by exploitinglandmark points such as doors, corners and dead-ends. The
the correlation within the mobile device and the accesstpoin localization area is composed by one-dimensional hallways

In this section, we integrate them through a unifying theory (2) Wireless Sensor Network (WSN): We used a number of
Essentially, performing SVD oAy, is equivalent to solving MICA2 sensors from Crossbé% for experiments. As can

the generalized eigenvalue problgbhillon, 2001 be seen from Figure 1(b), 8 static nodes (AP) were placed in
a room of sizesm x 4m. One mobile node (MD) was at-
LaZ = DaZA (6)  tached on the top of a robot that moved around freely in this

whereL 4 — D4—W. is the graph LaplaciafChung, 1997, domain. A total of 4000 examples are collected with sam-

0o A b, 0 : ple rate2H z. The ground-truth location labels of the mobile
Wa=1|a o } andDy = { o b, |- Theeigenval- node were supported by the cameras deployed on the ceiling.
ues of the diagonal matrix = diag(\1, Az, ..., \m+n) are  The localization area is a two-dimensional plane.

ranked innon-decreasingrder. Z = [z1,z2,...2,1,] are  (3)Radio Frequency Identification (RFID): We used 4 Man-
the eigenvectors.[P’ Q']' = [z z3]. Note that we skip tis readers (AP) and 30 tags (MD) from RF C&de They
the first eigenvector; since the solution is trivial. Fur- were all deployed as stationary nodes, which is shown in
thermore, it is interesting to see that we haye= 1 — o; Figure 1(c). A total of 2000 examples were collected. The
wherei = 1,2,...,r [Dhillon, 2001. Detailed analysis ground truth locations were marked down manually.

and comparison of LSI, SVD and graph Laplacian can be We summarize our three experimental setups in Table 2.

found in Latent Semantic Indexif@eerwesteet al., 1990; For comparison, we also run the following baseline algo-
Dhillon, 2001; Hendrickson, 2006 rithms (1) LANDMARC, a nearest-neighbor weighting based
Putting these together, our objective is to optimize: method designed for RFID localizatigNi et al., 2003; (2)

. ) , , Support Vector Regression (SVR), a simplified variant of a
R*= argmin (R-Y)J(R-Y)+~yRLR (7)  kernel-based method used for WSN localizatfibiguyenet
ReR(mtm)xa al., 2009; (3) RADAR, a K-Nearest-Neighbor method for
The first term measures the fitting error and the second ter/LAN localization[Bahl and Padmanabhan, 2000
constrains the smoothness among the mobile device and theln each experiment, we randomly pick up 500 examples
access points, = y4La +vgLp +vcLc = D — W. The  for training and the rest for testing. The training data is fu
solution is given by: ther split intolabeledandunlabeledparts. The results shown
. . in Figure 4 are averaged over 10 repetitions for reducing sta
R = (J+~L)" JY (8) tistical variability. All results are measured ielative error



Table 2: The experimental setups of WLAN, WSN and RFID

Infrastructure AP MD Test-bed Scale Dataset Sizd Motion Pattern
WLAN 5 Access Pointg 1 Notebook | Hallway | 60m x 50m 2000 Mobile (robot)
WSN 8 Static Nodes | 1 Mobile Node| Room 5m x 4m 4000 Mobile (human)
RFID 4 RFID Readery 30 RFID Tags| Room 5m x 4m 2000 Static

distanceswhich are error distances in percentage while redocalizing access points in a static and plane-shaped soena
ferring to the maximal error distance in each figure for easyrather than a mobile and complex environment.
comparison. All parameters are determined from a validatio
subset. LANDMARC, RADAR and SVR use tltebeledpart

of training data only.

In contrary, theco-localizationmethod used bottabeled ~ \We have developed a novel graph Laplacian approachto solve
andunlabeleddata. We will show how our algorithm ben- the problem of simultaneously recovering the locations of
efits from the additionalinlabeleddata and reduces calibra- both mobile devices and access points. In our co-locatinati
tion effort. In all, we tested on two configurations for the framework, we find the relative locations of mobile devices
co-localizationmethod: (1) Co-Localization no AP uses ~ and access points by exploiting a SVD based method, and
partially labeled data from mobile devices for training, in find the absolute locations using a small collection of latiel
which we tries to recover the locations of the access pointsdata through graph Laplacian methods. Our extensive exper-
and (2) Co-Localization with AP’ repeats the same experi- iments in three different configurations showed that we can
ments with the locations of all access points known. achieve high performance with much less calibration effort

Figures 4(a), 4(b) and 4(c) show the localization error of®S compared to several previous approaches. The signéicanc

different mobile devices by varying the number of labeled ex of the work_ is that We can leverage bqth the ](nowle_dge (.)f the
gccess point locations and the mobile device trajectodes t

three figures could be read in two directions. First, if we eom obtain more accurate localization. Indeed this is one of our

pare the results vertically in each figure, we can see how thilturé works. Besides, we would try to evaluate the perfor-

unlabeleddata help improve the result in the proposed meth/mance in a large-scale and dynamic environment, e.g., in a

ods. For example in Figure 4(c), most compared method€Sity level and in different time. We may also vary more para-

have a relative error distance of around 80% when using SE1€ters such as number of access points and their deployment

labeledexamples. In contrary, the proposed methods have afl€nSity and study the robustness.

error of around 40% by employing additional 460labeled

examples. Secondly, if we compare the results horizonitally Acknowledgement
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