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Abstract—In wireless networks, a client's locations can be three signal transmitters could uniquely identify a uskerstions.
estimated using signal strength received from signal transmit- However, in practice, it is impossible to obtain an accurate
ters. Static fingerprint-based techniques are commonly used for signal propagation model because physical characterisfian
location estimation, in which a radio map is built by calibrating environment, such as walls, furniture and even human &etiyi

signal-strength values in the offline phase. These values, compiled L . .
into deterministic or probabilistic models, are used for online add significant noise to RSS measurements. Therefore, igeEm

localization. However, the radio map can be outdated when Dased on static location fingerprints are often adopted dioan
signal-strength values change over time due to environmental location-estimation systems.

dynamics, and repeated data calibration is infeasible or expen-  Fingerprint-based techniques consist of two phaseoffine
sive. In this paper, we present a novel algorithm, known as training phaseand anonline localization phasg1] [6] [10]
LEMT ( Location Estimation using Model Trees), to reconstruct a [22]. In the offine phase, aadio mapis built by tabulating

radio map using real-time signal-strength readings received at the . . . .
referencéO pointqs. This algorgijthm can ?ake into zgccount real-time RSS_mea§urements rece_lved from signal transmitters aﬂmt_&d
signal-strength values at each time point and make use of the locations in the area of interest. These values compriselia ra
dependency between the estimated locations and reference paint map of the physical region, which is compiled intdeterministic
We show that this technique can effectively accommodate the or probabilistic model for online localization. In the online local-
variations of signal strength over different time periods without jzation phase, the real-time RSS samples received fromalsign
the need to rebuild the radio maps repeatedly. The effectiveness yransmitters are used to search the radio map to estimatera us
of LEMT is de_monstrated using two real data sets collected from current location based on the learned madel.
an 802.11b wireless network and a RFID-based network. . . . . .
In the offline phase, a learned location-estimation model is
Index Terms— Location Estimation, Temporal Radio Maps, essentially a mapping function between the signal spacettand
Received Signal Strength, Reference Points location space. Deterministic techniques build such a ingpp
by simply storing the average RSS values at a collection of
I. INTRODUCTION known locations, and use the nearest neighbor method tteloca
client. Probabilistic techniques, on the other hand, ttoos
nﬁe mapping by storing the RSS distributions as the contént o

in developing various location-estimation systems. A ériask & 'adio map. The distributions are then used in a maximum
in building such systems is to develop techniques for estiga likelihood calculation for localization. With sufficientaining
the locations of mobile devices — and hence users — in wieldld@. probabilistic methods are typically more accuradm their
environments. In indoor settings, much effort has beendedu deterministic counterparts by directly ha”_d"”g t_he_ utwaty
on the development of Radio-Frequency (RF)-based locatidtf RSS measurements. However, a major limitation of both
estimation techniques using Received Signal Strength RS- fingerprint-based methods is that the radio maps are s@tice
surements, by making use of popular infrastructures sudheas '€amed in the offline phase, a static radio map is applieeéieer
IEEE 802.11b wireless local-area-networks (WLANSs) [1] [6] to gs'u.matg the Iocat|0n§ in later time pgrlods without aafém.
[22] and Radio Frequency Identification (RFID) based neksor 'NiS simplistic assumption poses a serious problem to tiee-ef
[11]. Being able to accomplish these tasks plays an impbrtam’e_nes?’ of location egtlmatlon. In dyna_mlc indoor en\{mmmts,
role in many location-aware applications that range fromtext- 'adio signal propagation suffers from time-correlatedirigdet-
dependent content delivery to the monitoring of moving ofsie f€€ts, which typically consist of two components: the loegnt
and people [4] [19]. fading caused by the shadowing effect of the building or rzhtu
RF-based location-estimation systems utilize signalngtie [€atures, and the short term fading caused by rapid scajteri
received from signal transmitters, such as WLAN Access Bojrff0und @ moving device. As a result, RSS samples measured in
(APs) and RFID tags, to infer the locations of users. In ttil,eorthe onl_lne phase may S|gn|f_|cantly_de_v|ate fr_om those _st(umed
signal strength decays linearly with log distance and a ka'mr}he radio map. Therefore, using static fingerprint-baselrtigues

triangulation method using signal strength from three oreniban [0F location estimation can be grossly inaccurate and tegsires
repeated data gathering to maintain predictive accuracy.
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adaptation can be performed independently of locationseyer, In this work, our objective is to extend current indoor ldcat
in a real environment, RSS values can vary a lot from oneilmeat estimation techniques to cope with the variations of theorad
to another. The LANDMARC system [11] and the LEASE systemrmaps at different time periods. This extension would allbw t
[9] both utilize reference points to adaptively offset tlaiations radio map built at one time instant to be adaptable and ugable
of RSS samples caused by environmental changes. The aggantgher time instants. We mainly focus on dealing with envinem-
of these systems is that the location estimation can adapttéb changes caused by the short term fading, like unpredéeta
environmental dynamics by using real-time RSS samplesveste people moving and door opening or closing, in the building.
at reference points. However, experiments on these systeave We can also cope with small environmental changes caused by
that the accuracy of these systems can be guaranteed onty withe long term fading, like the changes of light, temperatumd
the reference receivers are densely distributed. humidity in the environment. However, if significant infrascture

In this paper, we propose a novel method called LEMT fathanges occur, such as the change of the building layout and
estimating locations even when RSS samples are dynamicdlg moving of signal transmitters, the radio map needs to be
changing over time. Our approach works in three steps: first, rebuilt by calibrating new RSS samples. Our basic intuition
place a number of RF receivers at fixed locations to detett rethat, for a mobile client at a specific location, its neigtsoan
time RSS samples; these receivers are catifdrence points reflect similar dynamic changes in its surrounding envirentn
Second, we use the radio map collected at a certain time o ledherefore, even though the values of RSS samples may change
the functional relationship in the RSS samples between titgilen greatly over time even at the same location, the relation of
client and the reference points. Third, we apply a nearéghber how signal strength depends on its neighboring referenaggo
based method to find the most likely locations. This approaseémain relatively constant. In other words, the local nbwhood
is referred to as thedaptive temporal radio major location relationship stays the same while each neighbor may chaitbe w
estimation. In our preliminary work [20], we have shown titat time. This constraint is typically used in machine learningen
is feasible to use a model tree to adapt a radio map dynagicalimensionality reduction is applied to complex data [16f @én
in WLANs. We extend this work by comparing our approach tthus adapt the radio map built at a certain time instagniising
existing adaptive approaches (the LANDMARC system [11] arféal-time RSS samples received at references points at tirte
the LEASE system [9]). In addition to the WLAN environmentjnstantst;. This assumption will be thoroughly verified using
we also evaluate our approach through extensive expernient extensive experiments presented in Section IV.

a RFID-based network environment. The novelty of our work can be summarized as follows:
o Compared with previous static fingerprint-based techrigue
Es‘iﬁz;egt‘ffd“’ ES“&“;‘;ejtlfjd“’ our proposed LEMT method can better adapt to the varia-

tions of RSS values caused by the environmental dynamics.

o Our proposed LEMT method can achieve higher localization
accuracy than existing adaptive techniques, even with a low
density of reference points.

Measured Radio ] .
Map at (0 I e e The rest of the paper is organized as follows. Section I
reviews related work on location estimation using RF signal
4‘—% i ) strength. Section Il presents our proposed algorithm doation
I I estimation in detail. Section IV presents extensive expenital
evaluation of our proposed algorithm. Section V concludes t
Reference Reference H H .
Poins at 11 Points at 0 paper and discusses directions for future work.
| | | >
0 i 2 Time Il. LOCATION ESTIMATION BASED ONRF SGNAL STRENGTH

In this section, we review two major approaches to loca-
tion estimation using RF signal strength. Section II-A esvé
. . . . fingerprint-based techniques for location estimationtiSed|-B
Figure 1 illustrates the idea behind the LEMT method. As 'Bresents the noisy characteristics of RF signal strengitti® I-

prgylous wqu, k:N € .start. by collecl:tlng dalta to g:onstrugt ;’Gtac discusses adaptive techniques to tackle the variatiosgyoél
radio map n the time |nstgn§t0. n any .ater time period;, strength due to environmental changes.
wherei > 1, instead of rebuilding the radio maps repeatedly, we

place a few RF receivers which act as dynamic reference goint o ) )

throughout the geographic area. Based on real-time RSSleamp Static Fingerprint-Based Techniques

received at reference points, we apply a regression asalgsi  Significant research has been undertaken on location é&iima
obtain the estimated radio maps which comprise the coomsti using static fingerprint-based approaches. The basic islda i
we need to make to the static radio map. In our approach, theild a radio map by collecting RSS samples in predefined
static radio map is complied into a model-tree based model locations in the offline phase and apply the radio map to egém
which trees are built on the RSS values collected at the mobihe locations in the online phase. Depending on how the radio
client and those collected at reference points. In the erpimase, map is built, we classify fingerprint-based approaches dge
the models are used to predict the most likely location of therministic techniqueand probabilistic techniquesDeterministic
mobile client. We show that this method is more robust daschniques [1] [2] apply deterministic inference to estina
time evolves and the environment changes. We demonstrate ¢thent’s locations. For example, the RADAR system by Miarfbs
capability of this method in two real wireless network dongi Research [1] uses the nearest neighbor method to infer & user

Fig. 1. |lllustration of the adaptive temporal radio map basethote



locations. In the offline phase, RADAR builds a radio map bgignal can reach the receiver through different paths, baghng
storing the average RSS value for each AP at each location.itthhown amplitude and phase. These different componenthane
the online phase, new RSS samples are compared againstcihmbined to reproduce a distorted version of the originghaii
radio map and the coordinates of the best matches are aderafeese phenomena are particularly severe when operatiogiiad
to give the location estimate. The accuracy of RADAR is abobiecause there is rarely a line of sight between the traremitt
three meters with 50% probability. Since RADAR only représe and the receiver. In addition, RF signal strength also sase
RSS samples using a simple mean instead of the whole sigdéferent time periods due to time-correlated phenomena [7
distribution, its localization performance is limited. These phenomena include changes in environmental comslitio
Probabilistic techniques [4] [10] [15] [21] [22] [23] formhé caused by people moving, or doors opening and closing in the
second category of fingerprint-based approaches. Theletduk building, and transient interference caused by other releitt
uncertainty problem in indoor wireless networks by coriding devices. These changes can cause signal strength to vany fro
the RSS distributions over locations in the radio map and uBme to time over both small and large timescales, which m tu
probabilistic inference methods for localization. For myde, the makes the RSS radio maps collected at one time period become
robotics-based location sensing system [10] first comptiies invalid at later time periods.
conditional probabilities over locations based on RSS $esnp In Figures 2, we give a typical example to illustrate the
Then a post-processing step, which utilizes the spatiadtcaints variations of RF signal strength over different time pesio@ihe
of a user's movement trajectories, is used to refine the ilmtat figure shows three signal-strength histograms at diffetene
estimation and to reject the estimates showing significaahges periods at a particular location 20 meters away from a fixedTAP
in the location space. Depending on whether the postprimgessbuild each histogram, at each location we took 450 RSS sample
step is used or not, the accuracy of this method is 83% within a time period of 45 seconds. From these histograms,
77%, respectively, within 1.5 meters. Youssef et al. [23]lappwe can clearly observe that, these distributions, asynienetr
a joint clustering technique to group locations so as tocedhe and having multiple modes, are essentially non-GaussiareM
computational cost of the system. The method first detesnéne importantly, the signal-strength histograms vary notitgaver
most likely cluster within which to search for the most prblea different time periods. These variations suggest thatedeing
location, and then applies Bayesian inference to estinhateibst on the histograms trained in the offline phase, locatiomegton
probable location within the cluster. The core techniquéhebe might be inaccurate if RSS samples measured in the onlingepha
approaches is the use of the Maximum Likelihood (ML) methodeviate significantly from those collected in the offline pha
which computes a probability distribution over locatiorendi-  Figure 3 shows two signal-strength histograms received by a
tioning on RSS samples and estimates the location to be e ®FID reader in a RFID-based network. To build each histogram
with the maximum likelihood in the distribution. The advagé we collected 150 RSS samples at a location three meters away
of the ML method is that it captures the noisy charactessitic from the RFID reader. For data calibration, we used the RF
signal propagation using conditional probabilities. Eiere, it Code MANTIS™ active readers and tags [14] in our experiment.
can preserve complete information contained in the RSS le8mprhe operating frequency is 303.8 MHZ and the transmission
for further localization. range is up to 1500 feet. RFID readers detect and interpret
Most of the above fingerprint-based approaches are based afed radio frequency beacon emitted by RFID tags to identify
common assumption that the radio map built in the offline phaghem and provide signal-strength information to deterntineir
does not change much later in the online phase. A major fimita |ocations. We can see that, the signal-strength histograthe
with this assumption stems from the dynamic charactesistic daytime is quite different from that collected at night haligh
signal propagation and the environment, where the RSS walyge uncertainty within the same time period is not as highhas t
measured in the online phase can significantly deviate ffmee RSS samples in a WLAN environment.
stored in the radio map, thereby limiting the localizati@cwaracy In summary, the RSS samples received in the WLAN and

in practical location-estimation systems. RFID-based network environments have similar uncertaara:
teristics in nature as time evolves. Therefore, it is a emgling
B. Noisy Characteristics of RF signal strength task to accurately determine the locations of the trackeshicin

As we have mentioned in Section I, our work is motivate§Uch dynamically changing environments.
to cope with the variations of radio maps at different time
periods. In this section, we demonstrate the need for thi® ra%
map adaptation by showing the uncertain nature of RF signal
strength. We llustrate using two particular experimertedt- In recent years, several adaptive algorithms have beergpedp
beds: an indoor WLAN environment and a RFID-based netwotk deal with the signal-strength variations caused by enwviren-
environment. Below we analyze the noisy characteristicRiBf tal changes. Haeberlen et al. [7] adapt the static radio nyap b
signal strength in the two networks. calibrating new RSS samples at a few known locations andditti

The IEEE 802.11b WLAN uses radio frequencies in the 24 linear function between these values and the old values the
GHz band, which is attractive because it is license-free astm radio map. In the online phase, new RSS samples, independent
places around the world. However, it does suffer from inhereof different locations, are first shifted to old samples gsthe
disadvantages. In the 2.4 GHz band, microwave ovens, Bittretoestimated linear function, so that the original radio map ba
devices, 2.4 GHz cordless phones and other devices canréesed. The main assumption of this method is that, the atiapt
sources of interference. Subject to reflection, refragtiifirac- is uniformly performed across all the locations. Howevhis is
tion and absorption by structures and humans, signal patjpery not true in real wireless environments where the RSS valugistm
suffers from severe multi-path fading effects [8]. A tranised vary a lot from one location to another.

Adaptive Techniques in Previous Works
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The LANDMARC system [11] and the LEASE system [9] botHNVe accomplish this task by using real-time RSS samplesvedei
utilize the concept of referent points to alleviate the @ffecaused at reference points to adapt the static radio map over tinmeeO
by the fluctuation in RF signal strength. LANDMARC [11]the model is constructed in an offline phase, we apply thisehod
first computes the Euclidean distance in signal-strengttiove to the RSS values received in real time for online locaticti- es
between a tracked client and reference points, and then iusesiation. Below, we first introduce the formal problem defoniti
nearest reference points’ coordinates to the locationefrdicked and notations that will be used in our algorithm description
client. The authors report that one reference tag is needed f
each square meter to accurately locate the objects witkierttor A. Problem Definition
distance between one and two meters. However, the accufacy one model the physical area of interest as a finite locatiooespa
LANDMARC can only be guaranteed with a high density of, — {i;,... 1,}. The location spacé. is defined as a set of
reference points. The LEASE system [9] deploys a number physical locations with x- and y- coordinates:
stationary emitters (SEs) and sniffers to assist locatstimation
in WLANS. In this system, SEs play the role of reference mint L={li=(z1,91), - ln = (zn,yn)},
as in our work. To obtain up-to-date values, LEASE appli§gnhere each tupléz;,y;), 1 < i < n, represents the location of a
Akima splines to interpolate RSS values at each grid usieg thacked mobile client.
known coordinates of the SEs and RSS values received at SEsye define the signal-strength vector received by a trackedtcl
To estimate the location, a nearest-neighbor method wab Use ass = (sy,...,sp), wheres;, 1 < j < p, denotes the RSS value
an area of 68 meters 44 meters, LEASE can achieve a mediageceived from thej’” signal transmitter (APs or RFID tags), and
error of 4.5 meters and 2.1 meters, using 12 SEs and 104 SEg the number of signal transmitters in the environment p®sp
respectively. However, since LEASE interpolates the RS8ega that there aren reference points placed in the environment, the
for each grid based on the RSS values received at SEs and dffal-strength vector received at a reference point cateheted
locations of SEs, LEASE can work well only when the densityg,, — (Fk1s--->Thp), Wherery;, 1 < k < m, 1 < j < p,
of SE distribution is high. represents the RSS value received atitHereference point from

the j*" signal transmitter. The location estimation problem is,
. THELEMT ALGORITHM: AN OVERVIEW given a signal-strength vectsmeceived by a tracked client and a

In this section, we present our LEMT algorithm in detailset of signal-strength vectorg, 1 < k < m, received at reference
Since the data calibration process is labor-intensive @me-t points, we would like to estimate the client’s locationn the
consuming, our main objective is to build an accurate locati location spacé..
estimation model that can work at different time periodsneve In our work, the performance of location estimation is mea-
when limited training data are collected at a single timenpoi sured using the notion dbcalization accuracylLet d be a given



error distance threshold measured in meters between twgqathy ~ Since the neighboring reference points are subject to thne sa
locations. If the distance between the estimated locdtamd the effect in the environment as the tracked mobile client, teely
actual location* is less than the error distande it is called a observed RSS values at the reference points can be used to
correct estimation. Given a test data set consisting/adignal- dynamically update the information for localization in Iréiene.
strength vectors received by the client, if the locatiotirestion Therefore, this approach is more flexible and adaptive to the
algorithm makes” correct estimations, the algorithm is called teenvironmental dynamics. In order to achieve high accurdey,

have an accuracy af'/N within an error distancéd. critical issue is to model the functional relationshig between
In the following, we detail the offline phase and the onlinghe RSS values received at the reference points and at the
phase respectively. mobile device during the offline phase, and use this relaligm

to compute the estimated signal-strength vectors that neay b

) o received at each location during the online phase.
B. The Offline Training Phase

. During the offline phase, .Wh'Ch corresponds to the t'm? PE. Building Nonlinear Regression Relationship using Model
riod ty, we apply a regression analysis to learn the predlctlvlcsrees

relationship between RSS values received at the refereviatsp

and at the mobile client which is tracked at each predefined!n this section, we discuss how to model the functional re-
location. Consider a locatiof}, 1 < i < n, for the ji" signal lationship f;; in Equation (1). Since the signal propagation in
transmitter,1 < j < p, we learn a functional relationshig;; indoor environments is quite complex, we can never expect a
which denotes the mapping from RSS valugs(o) received at globally linear rellatlonshlp between Fhe RSS values.remem

the k" reference point] < k < m, to the RSS value receivedthe reference points and at the mobile client. In particifara

at the mobile clients;(to) at timeto. In particular, we build a mobile client, its neighboring reference points can reftbetdy-

regression relationship using the following functigp (to): namical changes in its surrounding environment more ateiyra
Therefore, we propose a nonlinear approximation approasbd

sj(to) = fij(r1(to);r25(t0), - - - s rmj(t0)), on a model tree [12] [18] to model the functional relatiopsh;.
1<i<n,1<j5<p, (1) A model tree is a decision tree with linear regression flomgi

. . . . L . at the leaf nodes. Thus it can represent any piecewise linear
While this funCt'onfij(tO_) is learned in time Pe“OdO' the approximation to an unknown function. Figure 4 illustratbe

funda_lmental a_ssum_pnon in our work is that '_t captures thB?asic idea behind the construction of a model tree. As we can

fur}ctlonal relationship petwegn RSS values regelved areate go0 fom the figure, the whole reference-point value space is
points and at the mobile device for each locaticegardless of ,iigned into several regions, in each of which a diffelmear

the t'lmz perr:odt. Ir;llor((ijer to compute the e>|<pected IRSS”\’aIuﬁodel is used for relating the RSS values received at referen
received at the mobile device at imewe simultaneously collect i 1o the RSS value received at the mobile client.

RSS values at reference points also at the time periothe
value s;(t) we obtain via Equation (1) is used to represent the
estimated RSS value that may be received at the mobile davice
each location at time. In Section IV, we empirically show that
the LEMT algorithm using this assumption gives the bestltesu
as compared to other competing systems. LM1

RP1 RP3

LM4 LM5

RP2
C. The Online Localization Phase

During the online phase corresponding to time periobdased RP4

on the signal-strength vectors received at reference gome
compute a signal-strength vect®i(t) = (5;1(t), ..., 5:;(t)) that
may be received at each locatifrusing the corresponding func-
tion f;;. We refer to the signal-strength vector computed using the
function f;; as anestimated signal-strength vectef(¢). Then, Fig. 4. lllustration of a model tree built for a signal transenitat a location
given anactual signal-strength vectos(t) = (s1(¢),...,sp(t))

recorded by the mobile device at time we use the nearest Specifically, for each signal transmitter at each locatioe,
neighbor method to compute the location of the mobile deviceuild a model tree to learn the predictive relationship teetw
Speciﬁca”y, for each |ocationi' we Compute the Euc”deanthe RSS values received at reference pOintS and at the mobile
distanceD; between its corresponding estimated signal-strengigvice. As an example, Figure 5 shows such a tree structure

vectors;(¢) and the actual signal-strength veckgt) as follows: bulilt over four reference point§zPy ~ RPy) to predict the RSS
value received at the mobile device. Note that this treectira

P is equivalent to the state-space structure shown in Figurie 4
Di(t) = \j Z(Siﬂ' (6) = s5(1))*. @ the figure, each internal node corresponds to a binary tetlten
=1 RSS value received at a specific reference point. Two suhnee
Finally, the estimated locatiohis the one which can minimize branched from an internal node, each corresponding to aybina
the corresponding distande; (t): range of values. For example, the root node corresponds to a
binary test:RP; < —73 or RP; > —73. Starting from the root
node, a test sample is asked through a sequence of questions

LM2
LM3

[=arg rr%in D;(t). 3)



|LM4|

| LM5|

Fig. 5. An example of a model tree built for a signal transmittea bpcation

value, that node is also considered as a leaf node even ikit ha
not reached the minimum node size.

In addition, the algorithm computes a multivariate lineardel
for each node of the tree. Each linear model takes the form of

(6)

whereas, as, .. ., oy are the RSS values received at the reference
points. The regression coefficients, w1, ..., w; are calculated
using the least square estimation method [5]. However, theetn
is restricted to the reference points tested in the subtedenb
this node, because other reference points that affect #aigbed
value have been considered in the tests that lead to the node.
2) Pruning the Tree:After an initial tree is constructed, the
algorithm prunes the tree based on cross-validation. Theipg
procedure makes use of an estimate of the expected erroctat ea
node for unseen samples. First, the absolute differencgeleet
the predicted value and the actual class value is averaged ov

LM = wo + wioq + waan + - - + wpop,

until it reaches a leaf node. Each leaf node at the lowest Ix-;ve,[he training samples that reach that node. Since this aserag

attached with a linear regression functiéi/;, from which the

estimated RSS value that may be received at the mobile C"?ﬂﬁltiplication factor(

can be calculated accordingly.
Now let us explain the process of building a model tree.

tree, which works in two stages: In the first stage, a decitiea
induction algorithm is used to build an initial tree by miriing
the intra-subset variation of the target value. In the sd&iage,
the tree is pruned back by replacing subtrees with lineaessipn

might underestimate the expected error for unseen samales,
u+v)/(u—w) is introduced to compute the
estimated error, where is the number of training samples that

. ¢ IPbach the node, and is the number of parameters in the linear
our work, we apply the M5’ algorithm [17] to induce a model,,

odel at that node. The linear model at each node is simplifyed
dropping terms one by one, greedily, so long as the erramasti
decreases. Finally, once an optimal linear model is in pface
each internal node, the tree is pruned by turning some branch
nodes into leaf nodes, and removing the leaf nodes under the

functions to minimize the estimated error. The two stages ¥riginal branch.

detailed in the following discussions.
1) Building the Initial Tree: A model tree is initially built

As an example of the online prediction process, consider
estimating the RSS value received at the client from a signal

by the divide-and-conquer method, which splits the samipiees .o mjtter using the model tree shown in Figure 5. Suppluae t

subsets and applies the same process recursively to thetsub§,. rss values received at reference poi

The splitting criterion is used to determine which attréoig the
best to split the samples that reach a particular node. lased
on treating the standard deviation of the class values asaaune

R$; ~ RP,) are
-78, -80, -90 and -70, respectively. Starting from the rootien
RPy, the left branch would be followed because the condition
RP; < —73 is satisfied. Subsequently, for the internal ndte,,

of the error at that node, and calculating the expected temfuc right branch would be chosen becafde, > —82 is satisfied.

in error as a result of testing each attribute at that node Tﬁinally

expected error reduction, which is called the Standard &evi
Reduction (SDR), is calculated as follows:

SDR = sd(T) - % * sd(T), (4)

the prediction process reaches the leave nbgls. If
LMy = 0.5%x RP; + 0.5 % RP», the estimated signal strength that
would probably be received at the mobile client is -79.

E. Summary of the LEMT Algorithm

where T' represents a set of samples that reach a particulanwe now summarize the two phases of the LEMT algorithm,
node, andT; represent the subsets that result from splitting thiellowed by a detailed discussion about its online com poe
node according to the chosen attributé. denotes the standardcomplexity and robustness.

deviation of a set of samples, which is computed as:

1M
_ .2
sd = M_El(yz )2,
1=

wherey; is the class value of each training sample, @nid the
mean of class values for a set df samples.

Based on the splitting criterion, the algorithm of buildiag
model tree works as follows: Initially, all the training sples
are placed in the root node. The algorithm then tries to bteak
samples into subsets using all possible splitting position each

®)

reference point, and chooses the one that maximizes the SDR a

the splitting point. This splitting is then applied to eadlile new
branches. The splitting process continues until each neaehes

a specified minimum node size and becomes a leaf node. If the
standard deviation in a node reaches a user-specified mimimu

1) LEMT Algorithm Description: Our LEMT algorithm for
location estimation is divided into two phases:

« Offline Learning of Model Tree®uring the offline phase at
time periodtg, at each location;, we use a series af RSS
samples received at the mobile device and reference points
as the training data. Specifically, we use the following data

— D —adata set of RSS samplgs, 1 < i < n} collected
at the mobile client in each of the locations at time
periodtg.

— R —aset of RSS samplgs;, 1 < k < m} collected at
each of them reference points at time periag.

Then for each locatioi;, we learnp different model trees,
one corresponding to each signal transmitter.

Online Application of Learned Model Tree®uring the
online phase, for each signal transmitter, given the RSS



samples received at reference points, we walk down the ctwurs in length, and tested different algorithms at différeme
responding model tree until a leaf node is reached. Througkriods including night and daytime.

the linear models attached to that leaf node (Equation (6)),

we calculate an estimated signal-strength vector that may Experiments on WLAN Data

be received at the mObl|e~ clied; = (3i1,3i2,. -, 3ip) We conducted the experiments in a section of the third floor
for each location/;. Onces; are obtained, we can USE.¢ o Academic Building where the Department of Computer
Equat|or_1 (2) to compute thelr_ Euclidean d|sFances_ to tk§cience and Engineering at the Hong Kong University of S@en
actual_ glgnal-st_rength vectar Finally, the _Iocatl_onli with and Technology is located. The building is deployed withEEBE
the m|n|mgm dlstance).i~amqng alln locations is returned 802.11b wireless network in the 2.4 GHz frequency bandwidth
as the estimated locatidnat time:. The layout of the experimental test-bed is shown in FigufEhés
2) Online Complexity AnalysiswWhen we apply the learned area measures 30m15m. We chose eight available PC machines
model tree for localization during the online phase, theetimalong the horizontal hallway, each of which is equipped véth
complexity of the LEMT algorithm isD(m'np), which is linear Linksys Wireless-B USB Network adapter, as the referendetpo
with the number of locationa, the number of signal transmittersThe placement of reference points is marked with solid egcl
p, and the average depths of learned model tree¢ere we may in the figure. In this environment, nine APs can be detectéd, o
havem’ < m because the LEMT algorithm always chooses aphich five APs distributed within this areas are marked witink
optimal subset of reference points to build the tree instéaing  triangles in the figure. The other four APs are located eitimethe
all the reference points. The space requirement is the nunfbe same floor outside this area or on the different floors. Onamesr
model trees that must be stored, which equals the numbertieé number of APs covering a location is six. In addition, BNI
locations times the number of signal transmittedg{p)). 1.29GHz laptop with a Linksys Wireless-B USB Network adapte
3) Robustness Analysigthe LEMT algorithm is based on the served as the tracked mobile client in our experiment. Toemak
absolute RSS values received at the reference points. [fdties our RSS measurements, we developed an API program running
between all the signal transmitters to all the referencatpaire under Windows XP to actively scan for APs, based on the NDIS
blocked in the online phase, while not in the training phalse, User Mode 1/O (NDISUIO) driver [13] provided by Microsoft.
RSS sample might be distorted, which causes location etstima
to be inaccurate. However, in our work, we usa@eference points

wherem is more than two. In such a case, there are two reaso =
why our method can still work (that is, robust), even thougt i ol LSRN
some of the reference points are blocked. First, the chamce f = Sl
all the paths from signal transmitters to all reference points to pe 2
be simultaneously blocked is fairly small. Second, whenigb || ]
. TTAR pssd S SN |

of paths (sayu) are blocked, it only affectas model trees to =SNETNIEIEIRT ol 11 C
give inaccurate results, which may affect the distancetfandn ST el b & =
Equation (2) used to calculate the nearest neighbor, batrgsds 5 5 =
u < m, the distance function can still reflect to some extent tht= = | | L
true distance between two points in the signal space. Tiwexef ;
the LEMT algorithm is robust to small environmental changes Al

IV. EXPERIMENTAL EVALUATION S ]

In order to evaluate the performance of our proposed alguarit Fig. 6. The layout of the experimental test-bed
extensive experiments were carried out on two different- tes
beds: a WLAN-based environment and a RFID-based networkWith the placement of reference points shown in the figure,
environment. For comparison, three different algorithmerav we repeatedly collected RSS samples at the reference points
used as baselines. The first one is the Maximum Likelihogwver different time periods across three days. While thea dat
(ML) method, which is an essential fingerprint-based athoni Were continuously collected at the reference points, tweqres
[10] [23]. This baseline is used to show the effect of dynamigimultaneously used an IBM laptop to collect RSS samples at
environments on the localization accuracy. The other twe agarious positions in the horizontal hallway, along whicference
proaches are used to test the sensitivity of adaptive afgosi points are placed. Each grid has a sizelof x 1.5 meters, and
against reference points. The first one is the interpolatiased we have a total of 55 grids. At each grid, RSS samples were
algorithm used in the LEASE system [9], and the second onedsllected at various positions and with different orieiutas. In
the localization algorithm used in the LANDMARC system [11]the collection process, each scan of the APs produces al signa
For LANDMARC, we set the number of nearest neighbors to b&ctor. We had 10 active scans every second and took the mean
four because our experiments show that the highest accisac@s one sample because we may miss some APs in a single scan.
usually obtained at this point, as pointed out in [11]. Iniidd, At each grid, 90 samples were collected separately foritrgin
since data calibration is labor-intensive and time-corisgrour  and testing at different time periods.
experiments were designed to test the localization acguofic ~ To test the validity of our LEMT algorithm, we partitionedeth
different algorithms only based on limited training datdexted data set into two separate parts: night and daytime.
at a single time instant. Therefore, in our experiments, s&du « Let D,;,,, be the data set collected at the time period
the data collected at midnight for training, which span save tn, Wheret,, is between 8:00 PM and 12:00 AM aight



LEMT
—o— LEASE
—— LANDMARC |

LEMT
—a— ML

—e— LEASE
—%— LANDMARC |

o
)

Accuracy
Accuracy

o
o

15 3.0 4.5 6.0 7.5 9.0 105 13.0 145 150 15 3.0 4.5 6.0 75 9.0 105 120 135 150
Error Distance (meters) Error Distance (meters)

(a) Night (b) Daytime

Fig. 7. Localization accuracy vs. different error distamce

Dypignt = {Yi,1 < i < n =55} is a collection of 90 RSS grid and the actual grid during the localization phase. Farhe
samplesY; = {51, 5e,...,S90} calibrated at each of 55 value of the error distance, we tested the performance of the
grids. Dy,;¢5¢ is used later for building the training data. four algorithms over 10 trials. For training in LEMT and ML,

o Let Dy,, be the data set collected at the time pertgd we used the dat®,,;,;,, collected at night, where we randomly
where t; is between 8:00 AM and 4:00 PM during theselected’'r,, for each of the 10 trials. For testing, we took the
daytime over three daysDg,, = {Y;,1 < i < n} is a corresponding disjoint dat@s,,, also over 10 trials. We can see
collection of 450 sample¥; = {S1,5s,...,S450} collected from the figure that LANDMARC performs poorly because it
during the time period, at each of the 55 grids. cannot work well with such a sparse density of referencetpoin

As a whole, LEMT outperforms the other three algorithms. For

example, LEMT can achieve the accuracy of 95% within three

meters at night. We can also observe that, the variations in

grid, we allowed the person to vary his positions and origomta 2ccuracy for each §|gorithm are very small. Thlis is begahee t

while collecting the 90 samples. However, since the orteoria  €Nvironmental conditions in the department at night aratireily

of the person were not typically changed within one secora, \§tatic, when the building is quiet. Therefore, the variasicof

did not average signal-strength values of different dicast In RSS samples collected at night are relatively small. AlsDML,

addition, we collected the test data in a time span of thrges da>inCe the static radio map built offline can model the RSS #zsnp

to capture day-to-day variations of the RSS samples. collected in the online phase, it can be observed to outparfo
1) Impact of environmental factorsExperiments were first LANDMARC and LEASE by making use of the training process.

performed to compare the four algorithms (LEMT, ML, LEASE Figure 7(b) shows the localization accuracy tested durirey t
and LANDMARC) with respect to their ability to adapt to thedaytime at different time periods with respect to differentor
environmental factors. In this experiment, we used the RS%fistances. Similar to the night time, we performed 10 trials
samplesD,,; 5, collected at night to train the radio map for MLeach value of error distances. In each trial, for ML and LEM,
and LEMT. We bootstraped,,; .. to build different training sets used7r,, collected at night for training, and randomly selected
as follows. LetTr, be a set of sample§y;, 1 <i < n}, where testing datal's, during the daytime period for testing. The same
eachy; is a subset of 45 RSS samples that are randomly selecteg, were also used in testing LEASE and LANDMARC. We can
from 90 sampled; at each gridTr,, is used as one set of trainingsee from the figure that LEMT can achieve higher accuracy than
data in our experiments, and repeating this process prewide ML. Also, LEMT has much smaller variance in accuracy than ML
with different training data sets. For each selof,, we derive a over different daytime periods. This is because the enwiemt
non-overlapping subset of sampl€s,, = {Y; —Y;,1 <i <n} during the daytime is more complex than at night due to people
as the testing samples during the time peripd moving, doors opening or closing, changing temperatuesel

For ML, Tr, were used as the training data. For LEMT;, as other environmental conditions. These conditions cdlise
and the data calibrated at the reference points were used R8S samples measured during the daytime to be significantly
training. The test data setBs, for daytime were constructed different from those stored in the radio map, which was ctéld
similarly from the data setD4,,, by randomly selecting 45 at night. Therefore, the performance of ML may degrade dtama
samples at each of the 55 grids from the data Bgt,. For ically depending on the environmental dynamics. Accorlying
LANDMARC and LEASE, the datdl's, or T'sq; were directly ML can also be observed to perform worse than LEMT and
used for localization because training is not required fierivo LANDMARC at certain error distances. We can also observe
systems. The four algorithms were tested on the disjoirtt gats that LEMT outperforms LEASE and LANDMARC by a large
Tsy andT'sg, for night and daytime, respectively. margin. Subject to dynamic environmental conditions, tbal-r

Figure 7(a) shows the localization accuracy tested at g0 time RSS samples measured at reference points and the mobile
PM to 12:00 AM) with respect to different error distancesréle client may vary a lot over different daytime periods. Theref
the error distance is defined as distance between the mddidor LEASE and LANDMARC, the accuracy varies much over

We took special care to account for small-scale variatidrnthe
RSS samples defined in [21], where “small-scale variatioagr
to significant signal-strength changes at small distangegsach



different daytime periods. In contrast, by using trainingtad 10

LEMT can achieve higher accuracy with smaller variance. ool v
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Fig. 9. Localization accuracy within 1.5 meters vs. difféareammbers of
reference points

LEMT ML LEASE LANDMARC
Localization Algorithms

Fig. 8. Localization accuracy within 1.5 meters vs. difféaréme periods In this experiment, although LEASE can be seen to outperform
LANDMARC, their performance depends much on the number
Figure 8 compares the localization accuracy of the four a¥f reference points. When the number of reference points is
gorithms at six different time periods including 10:00 PMO® eight, the performance of ML and LEASE is comparable to each
AM, 10:00 AM, 12:00 PM, 2:00 PM and 4:00 PM. Similarly, other. Another interesting observation is that, the acguraf
we performed 10 trials for each time period and plotted tHe&EMT is insensitive to the number of reference points. Thsis i
mean value. For each trial at a certain time period, we usb@cause LEMT always chooses an optimal subset of reference
Try, collected at night for training, and usétk, or T's, at the points to construct the model tree according to their cdipabi
corresponding time period for testing. We can see from thedig of predicting the RSS value received at the mobile clienenev
that LEMT and ML can achieve comparable localization accrawhen more reference points are provided. From the perspecti
at 10pm, a quiet time in the department. This is because tbksystem design, it is difficult to specify the appropriatenber
environmental conditions at night are relatively statior ML, Of reference points before the system starts to work. Thesgf
the radio map built in the training phase can accurately modeéEMT is more feasible than LEASE and LANDMARC in time-
the RSS samples observed in the localization phase in theése gdependent location-based applications.
time periods. Therefore, there is not much difference iruescy 3) Impact of access points€Experiments were also conducted
between ML and LEMT. However, the situation is quite differe to study the effect of the number of APs on the localization
in the daytime periods, when LEMT can be seen to outperforaccuracy. In this experiment, 45 samples at each locatibected
ML to a large extent. Also, LEASE and LANDMARC performat night were randomly chosen frol,,;,,, for training, and
poorly in this environment with a low density of referencénts. 45 samples in the daytimé®,,, were used for testing. For
2) Impact of reference pointdiVe also carried out experimentsa given number of APs, we chose 20 random subsets of all
to investigate the effect of reference points on the loasiim the nine APs and ran the four algorithms 20 times. Figure 10
accuracy. Intuitively, the placement and number of refeeenshows the accuracy within 1.5 meters with respect to differe
points are related to the technique used to build the model. Fhumbers of APs. We can see that, as the number of APs initially
LEMT, the model is built by first dividing the whole reference increases from one, the accuracy of the four algorithmseas®s
point value space into sub-regions and then fitting a differeand the variances in accuracy decrease at the same time. This
linear function to each sub region. In each sub region, at l®e is because when more APs are used, we have more information
reference points are needed for reasonable smoothing @r tod for localization and thus the systems become more robust. On
learn a linear function. Thus, we divided the horizontalkay interesting observation is that, when the number of APsimes
into four sub squares with approximately equal area, in eatthsix, the accuracy of ML begins to decrease with more added
of which at least two reference points are placed on two sidA®s. This occurs because, as the number of APs increases,
respectively along the hallway. more information is added for localization while more noise
Figure 9 shows the localization accuracy within 1.5 meteigcurred on the other hand. Therefore, ML can achieve thé bes
by varying the number of reference points. In this experimerperformance using a subset of APs. This result is consistiht
for both LEMT and ML, we still randomly chose 45 sampleshe work of [3], in which an optimal subset of APs is claimed to
from the dataD,,;,,: collected at night for each grid as thebe able to produce the highest localization accuracy. FWMTE
training data. The testing data were 45 samples randomlyechowhen the number of APs increases to six, the accuracy remains
from the dataD,,,, collected at different daytime periods. For @lmost the same. Therefore, we only need six APs to accyratel
given number of reference points, we chose 20 random subdetzste a mobile client in our WLAN-based environment.
of reference points and compared the four algorithms. In theFrom the experiments on WLAN data, we can conclude that
figure, the accuracy of ML is a horizontal line because it duds LEMT can adapt best to the dynamics of environmental con-
utilize the information about reference points. We can $ex, t ditions by leveraging the offline training process and mfiee
as the number of reference points increases, the accuragysvapoints. If the environmental conditions are relativelybdta ML
of LEASE and LANDMARC increase as well. can outperform LANDMARC and LEASE by taking advantage
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algorithms with respect to their adaptive abilities to thevie

oo T e ] ronmental conditions. To avoid statistical variabilityetreported
S ] results are based on 10 trials. Figure 12(a) shows the amcura

tested at night with respect to different error distances. ML

and LEMT, 100 samples randomly chosen at each grid ffem

were used for training. The four algorithms were tested on an

independent data set, which consists of 100 samples ragdoml
selected fromD;. In the figure, LEMT can be seen to outperform
the other three algorithms, and the performance of LEASE and

LANDMARC is comparable. Figure 12(b) shows the accuracy

tested in the daytime with respect to different error distan

T 2 3 4 s s 7 8 e For ML and LEMT, 100 samples randomly selected at each
umber f Access Ponts (A7) grid from D; were used for training. We also tested the four
! o - ) algorithms on an independent data set, which consists of 100

Fig. 10. Localization accuracy within 1.5 meters vs. difféaraumbers of .

APs samples randomly chosen for each grid fr@p. Note that we
adopt the same process of training and testing in the fatlgwi
experiments. We can see that, the performance of LEMT ieclos

of the offline training process. In contrast, if the envir@mal to that of LEASE and LANDMARC, whereas three of them

conditions change a lot over time, LANDMARC and LEASEoutperform ML. From this part of experiments, we can conelud
can perform better than ML by using densely deployed refexenthat, LEMT outperforms ML, LEASE and LANDMARC, while
points. However, since the reference points are sparsglpyled the performance of LEASE and LANDMARC is still good. For

in the WLAN-based environment, ML usually outperform LEASEexample, both of them can achieve about 90% accuracy within 2

Accuracy

and LANDMARC in most cases. meters, with a 1mx 1m density of reference tags.
b) Impact of RFID readers:We performed another set of
B. Experiments on RFID Data experiments to investigate the effect of the number of RFID

To show the generality of our LEMT algorithm, we a|sde_ad_ers on the Iocz_ilization accuracy. Figure_ 13 shows td:lﬂacy
conducted a series of experiments on real data sets callecfdthin 2 meters using the four algorithms with respect téedént
from a RFID-based network environment. For data calibrationumbers of RF readers. For each grid, we still randomly chose
we used the RF Code MANTTY active readers and tags [14]100 samples from one group as the training data, gnd 100 sampl
in our experiment. The operating frequency is 303.8 MHZ arfgem the other group as the test data. For a given number of
the transmission range is up to 1500 feet. Each RFID reader &&FID readers, we chose 10 random subsets of RFID readers and
detect up to 500 tags in 12.5 seconds. Each tag is pre-proggdm 'an the four algorithms. Figure 13(a) and Figure 13(b) show
with a unique 8-character ID for identification by readersIR the localization accuracy tested at night and in the daytime
readers detect and interpret the radio frequency beacdtedrby eSpectively. We can see that, in general, the accuracy ef th
RFID tags in order to identify them and provide signal-stytén four algorithms increases as the number of RF readers sesea
information to determine their locations. Moreover, LEASE and LANDMARC can usually outperform ML

1) RFID Experimental Setupin our standard setup shownin Most cases, with such a high density of reference points.
in Figure 11(a), we place four RFID readers (p=4) and 16 tags C) Impact of reference tagsExperiments were also carried
(m=16) as reference points in our pervasive computing laie Tout to study the effect of the number of reference tags on the
reference tags are placed every one meter apart from eaeh otficalization accuracy. Figure 14 compares the accuracinvit
(each grid is 1mx 1m), which are marked with blank squares i2 meters using the four algorithms with respect to different
the figure. Another tag that is placed at different positinithin  numbers of reference tags. In this experiment, the number of
each grid serves as the tracked object in our experiment. readers is fixed at 4. For each grid, 100 samples randomlyechos

With the placement of the reference tags and the tracked tdfgm one group were used for training and 100 samples from
shown in the figure, we collected two groups of RSS sampl#e other group for testing. For a given number of reference
from four RFID readers continuously. A first data se{ was tags, we randomly chose 20 subsets of reference tags and ran
collected at multiple nights from 12:00 AM to 6:00 AM whenthe four algorithms. We can see that, the accuracy of ML is a
there is little noise. The other data sy was collected during horizontal line because it does not use the reference pohsts
multiple days from 2:00 PM to 6:00 PM, during which varioushe number of reference tags increases, the accuracy of EEAS
activities were carried out in our lab that would result iffetient and LANDMARC increases and the highest accuracy can be
levels of noise. Specifically, each RSS sample is a 4-dimensi achieved when the number of reference tags is 16. In Figure
vector. To locate a tracked tag, we took 200 RSS samples tar bd4(a) and 14(b), we can observe that, the performance of EEAS
D; and Dy, at a sampling rate of one sample every two secondd)d LANDMARC is close to or better than that of ML, when
at the tracked tag and the reference tags. For LEMT and ML, fde number of reference points reach 15 and 16, respectively
locate a RFID tag, we randomly chose 100 samples at each dfidcontrast, the performance of LEMT does not depend on
from D; for training and 100 samples at each grid frdm for the number of reference tags to a large extent because it can
testing, or vice versa. For LEASE and LANDMARC, the procestitelligently choose an optimal subset of reference tags.
of training is not required. 2) RFID Experimental Setup with a lower density of reference

a) Impact of environmental factorsWe first performed tags: In order to study how the density of reference tags affects
experiments to compare the localization accuracy of the fothe localization accuracy, we conducted our experiments on
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Fig. 11. Experimental setup: (a) Standard placement of RFersaahd reference tags; (b) Placement of RF readers andnedetagys with a lower density
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Fig. 13. Localization accuracy within 2 meters vs. differanmbers of RFID readers

another setup with a lower density of reference tags, asmstiow 2m. The tracked tags are placed at different positions ndaslh

Figure 11(b). In this setup, we place four RFID readers (@) solid dots in the figure. Similar to the previous standardsetve
15 reference tags (m=15) in our lab. The reference tags acegl collected two groups of dat®; at night andDs in the daytime
every 2 meters apart from each other and thus each grid is 2nrespectively. Also, in the following experiments, we use ame
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experimental procedure as in the previous standard setup.

a) Impact of environmental factorsFigure 15 shows the
accuracy of the four algorithms tested in two different eowi
ments. We can see that, LEMT consistently yields higherraoyu
than the other three algorithms. Let us further comparergids
with Figure 12 to analyze the effect of the density of refesen
tags on the localization accuracy. It is clearly noticedt ttie
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Localization accuracy within 2 meters vs. differantnbers of reference tags

1) By using reference points, LEMT is more robust than ML
when the environmental conditions change over time.

2) LEMT is more accurate than LEASE and LANDMARC
by making advantage of the offline training process, in
particular, in a lower density of reference points.

3) LEMT is less sensitive to the number of reference points
than LEASE and LANDMARC.

accuracy of LEASE and LANDMARC decreases significantlyherefore, LEMT can achieve better localization perforoeahy
with a lower density of reference tags. For example, ther@oyu |everaging the offline training process and real-time RSSpas

of LANDMARC at night decreases from8% to 48% and the
accuracy in the daytime decreases from¥% to 48% within 2

received at reference points.

Furthermore, we summarize the comparison among the other

meters. In contrast, by making use of training process, LEMfree algorithms (ML, LANDMARC and LEASE) as follows:

can achieve higher accuracy than LEASE and LANDMARC with

a lower density of reference tags. We can also see from Figure

15, ML can outperform LEASE and LANDMARC in most cases
with a sparse deployment of reference points.

b) Impact of RF readers:Experiments were also carried
out to investigate the effect of the number of RF readers en th
accuracy in this experimental setup. Figure 16 shows theracg
within 2 meters with respect to different numbers of RF resde
Again, the accuracy of the four algorithms increases asuheoer
of RF readers increases.

c) Impact of reference tagsAgain, experiments were per-
formed to investigate the effect of the number of referermags t
on the localization accuracy. Figure 17 shows the accuraityrw
2 meters with respect to different numbers of reference. tags
Similarly, the number of readers is set to be 4 in this expenin
We can conclude from the figure that LEMT is less sensitive to

1) If the environmental conditions are relatively statid, Kan
outperform LANDMARC and LEASE by taking advantage
of the training process.

If the environmental conditions change dynamically over
time, LANDMARC and LEASE can outperform ML with

a dense deployment of reference points, as shown in our
experiments on RFID data using the experimental setup
in Figure 11(a). However, if reference points are sparsely
deployed, as shown in our experiments on both WLAN data
and RFID data using experimental setup in Figure 11(b),
ML can still achieve higher accuracy than LANDMARC
and LEASE.

2)

V. CONCLUSIONS ANDFUTURE WORK
In this paper, we have proposed a novel RF-based location-

the number of reference tags than LEASE and LANDMARC estimation algorithm called LEMT, which can well adapt to

From the experiments on RFID data, we can conclude th
LEMT can also perform best to offset dynamic environmental
changes in two different experimental setups shown in Eigu
11. When the envionmental conditions change a lot, LEASE aﬁ
LANDMARC can outperform ML with a dense deployment of?
reference points (Figure 11(a)). However, if referencenfzoare in
sparsely deployed (Figure 11(b)), the performance of LEAS

LANDMARC may remarkably degrade and they become Ie@

accurate than ML.

namic environmental changes. Our extensive experinsos

at the LEMT algorithm can achieve a large advantage over
e

ML method in terms of localization accuracy using adegpti
poral maps via reference points. Compared with existing
aptive techniques, LEMT is much more robust to the redocti
the number of reference points. For LEMT, the number

& of reference points and signal transmitters is known, batrth

ysical locations are not required as an input.
Our work can be extended in several directions. First, we

will consider reducing the online computational complgxitf
_ the LEMT algorithm. LEMT has relatively high computational
C. Experimental Summary overhead, mainly due to the model tree algorithm used tnesti
Based on extensive experiments presented above, we rbe signal strength that may be received at all the locatiand
summarize the advantages of our LEMT algorithm as follows:the nearest neighbor method used to search the best location
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Fig. 17. Localization accuracy within 2 meters vs. differantmbers of reference tags

in the location space. In addition, the computational caxipf selecting signal transmitters [3]. Second, we will also sider
increases as the number of signal transmitters increasege\ter, applying additional nonlinear approaches to build theaadap
the model tree algorithm itself does not incur much compartal  at each grid point using the signal-strength values redeate
overhead in the online phase, because it only requires atgopa the reference points. Third, we wish to incorporate the siser
operations when walking along the tree to estimate the kigmaovement trajectories to further improve the localizatieouracy
strength that may be received by the mobile device. Thezethe of the LEMT algorithm.

computational complexity of the LEMT algorithm can be fuath

reduced by using clustering techniques [23] or by intefiiye
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