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Abstract— WLAN location estimation based on 802.11 signal map is a table of signal strength values received at selected
strength is becoming increasingly prevalent in today’s perasive |gcations from the APs in the area of interest. RF signals
computing applications. Among the well-established loc&n qyide rich information on locations since the signal iyt

determination approaches, probabilistic techniques showgood . . . )
performance and thus become increasingly popular. For thes Vari€s noticeably with the distance between the APs and the

techniques to achieve a high level of accuracy, however, arge  Physical locations where a wireless device is located. ewe

number of training samples are usually required for calibration, location estimation is still a challenging problem because
which incur.s a great amount of offline manual effort. In th!S of the non-trivial ways in which Signa|5 propagate. A |arge
paper, we aim to solve the problem by reducing both the sampiig 3 mper of samples are usually required to be collected efflin

time and the number of locations sampled in constructing a rdio f libration i der t ke th di bust to th
map. We propose a novel learning algorithm that builds locabn- Or calibration In order o make the radio map robust o the

estimation systems based on a small fraction of the calibrain NOISYy signals. To obtain the signals, a calibration prodsss
data that traditional techniques require and a collection d¢ very labor intensive. LetV,, be the number of consecutive
user traces that can be cheaply obtained. When the number signals to form one sample. Because the wireless signals are
of sampled locations is reduced, an interpolation method is uncertain in nature and a single scan may probably miss some

developed to effectively patch a radio map. Extensive expenents AP hould collect | si | d thei
show that our proposed methods are effective in reducing the S, we should collect several signals and use their mean

calibration effort. In particular, unlabeled user traces can be as a single sample. LeN, be the sampling time at each
used to compensate for the effects of reducing calibrationflert  location. For a fixedN,,, specifying the sampling timev,

and can even improve the system performance. Consequently,js equivalent to specifying the number of samples collected
;ncirl‘]‘:;': eﬂfgrétﬁfgcﬁ?e{,iﬂuced substantially while a high leveof ot aach |ocation. Moreover, lIét; be the number of selected
y o o . (sampled) locations. The amount of calibration effort daunst
Index Terms—Location estimation, 802.11 signal strength, pe quantitatively measured @§,, x N, x N;. Suppose that
Bayesian methods, interpolation, Hidden Markov Model, EM in a small environment with 100 location®{ = 100) and
100 samples are collected at each location, one sample per
|. INTRODUCTION second Vs = 100). Typically several hours are required to
collect such an amount of calibration data, let alone theted

W ITH the recent development in mobile computing deI'abeling process. The problem is more serious when the area

are of Vr'g\?vfnar}gt:'r';ilte;‘ﬁ(;zﬁznggléi;il:c?rtgz;vivr?rf syst(lej concern, such as a shopping mall, is very large and where
g 9 9 gy FEIpU atially high-density calibration is needed. In this pape

as well as practical. In building such systems, a fundam A . o
. . : . . .focus on how to significantly reduce the offline calibration
tal issue is to know the locations of mobile devices in a . : S . . . o
: . . . . effort while still achieving high accuracy in location esttion
wireless environment, where an important goal is to in@e

! L : . . aﬁwough machine learning techniques.
the accuracy of location estimation. In indoor settingslica , .
. . . One way to reduce the manual effort is through reducing
frequency (RF)-based techniques are particularly effecti

7 . . -~ "both N, and N, [7]. That is, reduce the sampling time at each
among the existing solutions because they provide Ublql;"tqocation and reduce the number of locations to sample from
coverage and use the inexpensive wireless LAN (WLAN) '

; . owever, simply reducingV, and V; results in inaccurate ra-
the fundamental infrastructure. In recent years, a varidty . . . . o
dio maps and thus lowers their accuracy in location estonati

systems have emerged [1] [2] [3] [4] [5] [6].

. . In our work, a radio map stores a signal-strength distrdwuti
Most RF-based systems estimate locations by measur b 9 9

the st th of the sianal ted f h M9each sampled location, which statistically measures the
€ strenginh ot the signals propagated from Ine accessspolfy ength values of signals that can be received at thisitotat
(APs) in the environment. They usually work in two phas

] . . . . . . hen N, and N; are reduced, signal-strength distributions
[6]: an offlmetrammg phase and amnhneloc_anon e§t|mat_|on at the sampled locations are easily screwed and those at the
phase. In_the offline phase, a so-callexdjl_o map 1S bw_lt. slgpped locations (i.e., locations not sampled) are missin
In the online phase, the strength of received signals is us@xperiments show that 26% of accuracy is lost whénand
to lookup the radio map to estimate the location. A radinl are both reduced by two-thirds
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are sequences of signal strength recording a user's moventeection VI.
in the environment. These are unlabeled samples because the
signal strength received during the movement is recorded| | ocaTioN ESTIMATION BASED ON802.11 SGNAL
without any position label. The most attractive property of STRENGTH
user traces is that without the labeling process, sequesfces
samples can be collected easily and cheaply. Using a hidd&n
Markov model to model user traces, our method provides aln general, location estimation can be classified into twe ca
way to build a probabilistic location estimation systemtthagories:deterministictechniques angrobabilistic techniques.
requires only a small fraction of the calibration data. eai Deterministic techniques [1] [2] [8] use deterministicénénce
from a limited number of labeled samples, the system camethods to estimate a user’s location, such as Triangulatio
gradually improve its performance as more user traces aed K-nearest neighbor averaging (KNN). The RADAR sys-
obtained. Experiments show that when all the calibraticta dg¢em [1] [2], one of the pioneering and most comprehensive
are used, an accuracy of 85% within three meters is obtaingdrk using signal-strength measurements, is based on KNN
using a Bayesian-estimation method. Using 60 unlabeltglinfer a user’s location. It maintains a radio map with vihic
traces, the same accuracy is achieved requiring only 1/6 egich online signal-strength measurement is then compared.
the calibration data as before. Moreover, using 100 trabes, The coordinates of the best K location matches are averaged
accuracy reaches 86% with only 1/9 of the calibration datm give an estimation.
Therefore, the manual effort can be reduced substantiddilew  Probabilistic techniques [3] [4] [6] [9] [10] [11] form
higher accuracy can be achieved. Furthermore, the méethiod the second category. They are also called distributiomdbas
makes the implementation of location tracking straightfmd, techniques since they store the signal-strength distobsit
as we will see in Section IV. from the APs as the content of a radio map. In contrast

Our HMM-based method requires an initial complete rae the first category, in the second category, probabilistic
dio map to be known. WherV, is reduced, however, theinference methods are used to estimate a user’s locati¢l, In
constructed radio map is incomplete because signal-dtrenipcations in the area are pre-clustered into groups so as to
distributions are missing at those skipped locations, as weduce the computational cost of searching the radio map.
will see in Section II-C. In our work, a novel interpolationin [9], correlation among consecutive samples from the APs
method (/) is developed as a pre-processing stepof To is introduced to enhance the system performance. In [10],
patch an incomplete radio map, the methdd™ interpolates a perturbation technique is used to compensate small-scale
signal-strength distributions at one location from thoge w®ariation in signal strength. Furthermore, in [3] and [4Jasal
neighboring locations. Moreovel/ ™ is also able to reinforce and motion constraints are applied in a postprocessingtstep
an inaccurate radio map and thus improve it performanceriefine the estimation. The core to all these techniques igshe
location estimation. Experiments show that usihff”, we of Bayesian inference to compute the posterior probadsliti
can achieve about 5% improvement in accuracy when all theer locations.
locations are sampled and reduce the loss by about 10% whehllowever, compared with the various techniques on location
the number of sampled locatio§ is reduced by two-thirds. estimation, in previous literature, little attention haseh paid
Comparison betweed/™ and a kernel-based interpolatiorto the issue of reducing the calibration effort. To the best
method [7] is made in Section V-C.3. of our knowledge, [7] [12] are among the only work that

Our main contribution is to exploit unlabeled trace data arekplicitly considers minimizing the calibration effortf@n
use an EM-based learning algorithm to supplement a limitétdoor 802.11 location estimation system. In [7], the atgho
number of calibrated data for accurate location estimati@xperimentally studied the impact of (1) shortening theetim
in a wireless environment. Using this method, a locatiorspent at each calibration location and (2) skipping some of
estimation system can be initialized from a limited numbfer she locations altogether on the estimation accuracy. In the
sampled data and gradually improve its performance by usifidlowing, we refer to these methods ad,, reducing the
more and more unlabeled traces. As a consequence, offl§@npling time at each location, aid,, reducing the number
manual effort can be reduced substantially. A by-product & locations sampled, respectively. Concerning the second
that location tracking can be performed as a filtering precesituation where some locations are skipped during caldmat
through the learned hidden Markov model. We evaluate otlrey represented locations as functions of signal streagth
methods by conducting experiments in a real-world indotwy formulating the problem as one of interpolation, they
wireless environment. showed that a significant fraction of calibration locatiaas

The rest of the paper is organized as follows. In Section be skipped. In our work, we not only consider how to apply
we introduce the problem of location estimation based dnterpolation to patch an incomplete radio map with skipped
802.11 signal strength. In particular, we present a Bapesiaalibration locations, but also consider how to use intkatmn
estimation method in detail. In Section Ill, we present oainm to further reinforce a complete radio map. Furthermore, to
contribution in this paper — an EM-based learning algorithqrogressively reduce the manual effort, we propose a legrni
that explores unlabeled trace data. In Section 1V, we sthdy talgorithm that can extract calibration information fromlam
problem of location tracking and present an HMM filterindbeled data to supplement a small amount of labeled calibrati
method. Extensive experimental evaluation of our proposddta. The similar idea of using unlabeled data to improve
methods is shown in Section V and we conclude the paperlatalization accuracy was also explored in [12]. In theirkyo

Overview of Previous Work



Bayesian network models, which embody extant knowledge
about Wi-Fi signals as well as physical constraints of tha-en
ronment, were constructed. The authors explored the itheds t

prior knowledge may provide sufficient constraints to obwia o181
the need to know the actual locations of the training data. As ST
a result, they proposed a hierarchical Bayesian model whose  3°1f
parameters can be learned from unlabeled data. However, the £ o1

o

o
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low calibration requirement comes at the cost of resolution
predictive error distance is above ten feet. We observe that
trace data record consecutive signal measurements during a
user's movement. Such sequential data provide not onlyadpat H HH HH
but also temporal correlations that we can explore. Thus, we ‘ ‘ (L, 0

focus on unlabeled trace data in this work. The similar idea © * Sgnalstrength ? o
of using unlabeled trace data to improve localization sacyr
was also used in [13]. By assuming piecewise linear Gaussfdt -
distributions over locations, they employed a version ohitéo

Carlo localization algorithm for tracking people. Unladel
traces are used to tune a motion model so as to adapt it
to individual persons, exploiting regularities when a pers
navigates the environment. However, directly refining tdia

map was not considered in their work.
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B. Noisy Characteristics of Wireless Channel
The IEEE 802.11b standard works over the radio frequen-

Number of AP’s detected

cies in the 2.4 GHz band. The standard is widespread because Ao & e e
the band is license-free at most places around the world. It i
also attractive because the RF-based techniques are popula . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
. . . g . . 1 2 3 4 5 6 7 8 9 10
and inexpensive, providing much ubiquitous coverage and Sampling sequence

requiring little overhead.

A WLAN and a wireless device held by a user have differefitd- 2- Variation of AP coverage over a fixed location
functionality: APs in the WLAN broadcast signals and the
wireless device acts as a sensor which senses the location by, . . . o
analyzing the signals received. Although signal strengifies rb Background: Probability-Based Location Estimation
noticeably with the distance between APs and the wirelessSince our work lies in the category of probabilistic tech-
device, accurate location estimation using measurementshiiues, in this section we introduce the Bayesian framework
signal strength is still a difficult task due to theisy charac- ©f location estimation. In general, an estimation is regnésd
teristicsof signal propagation. Subject to reflection, refractior®s & probability distribution over all the locations in theaof
diffraction and absorption by structures and even human bdaterest. The Bayesian inference method is used to comiperte t
ies, signal propagation suffers from severe multi-patfinid distribution conditioning on the observed signal strengthe
effects in indoor environments [14]. A transmitted signahc €stimated location is the one with the maximum probability
reach the device through different paths, each having its oi? the distribution.
amplitude and phase. These different components combihe anFormally, we model the physical area of interest as a finite

reproduce a distorted version of the original signal. Meegp location-state spade = {l1, .. .,l.}. The location-state space
changes in environmental conditions, such as temperaturélois defined as a set of physical locations with x- and y-
humidity, also affect the signals to a large extent. coordinates:

Fig. 1 gives a typical example of a normalized histogram L={l=@@,u) . ln = (@n,ym)}.

of signal strength received from an AP at a fixed location.

Several hundreds of measurements were sampled to constArcan example, each locatidrcan represent a grid cell in the
the histogram. It is clear from the figure that even at a fixduhllways in an environment.

location, the signal strength received from the same AResari All possible signal-strength values are modelled as a finite
with time. Furthermore, the number of APs covering a logaticobservation spac® = {o1, ..., 0., }. An observatiorv in the
also varies with time. As shown in Fig. 2, not only the numbeibservation spad® is a set ofi signal-strength measurements
of APs changes over time, the group of APs detectable at tteeeived fromk different access points whekeis the number
location also changes as well, as indicated by the numbefsAPs which have the strongest signals. Normally, in an
beside each point. For example, the fourth sample in Fig.eAvironment, signals from many APs are detectable some-
contains signals from AP1, AP3, AP5, AP6 and AP7, whilethere, either located within the area of concern or located
the fifth sample contains signals from AP4 and AP6. outside. A subset of APs is selected in order to reduce the



computational cost. Thus, each observatida represented as threshold measured in meters between two physical location
a vector ofk pairs as follows: Suppose that give@;, a location-estimation system predicts a
location grid labelL;. If the distance betweeh; andL; is less
than the error distancP, then it is called a correct prediction.
whereb; represents théth AP scanned ands; is the signal Otherwise, it is considered as an error. For a test datd’set
strength received from,. consisting of N data points, if the location-estimation system

In the offline training phase, calibration data are colldctenakesC correct predictions, then the system is said to have
at each locatiort;. That is, signal-strength measurements a1 accuracy, within the error distance bf of

0=< (b1,881), ..., (bk, s8K) >,

recorded at each location as observations. After the data ar C

collected, we build a histogram of observation for eacht/\P Ace = N’ )
at each locatiom;. This is done by constructing the conditional

probability Pr(ss;|b;,1;), which is the probability that AP [1l. USING UNLABELED TRACES TOREDUCE THE

b; has the signal-strength measuremesf at location/;. OFFLINE CALIBRATION EFFORT

By making an independence assumption among signals fream Overview
different APs, we multiply the probabilities of all APs totain As discussed before. the amount of calibration effort is
the conditional probability of receiving a particular obssion determined by the foIIO\;ving factors:

at locationi; as follows: .
© ! e N,,: the number of signals that are averaged to form

k one sample. Because the wireless signals are uncertain in
Pr(olli) = H Pr(ssjlbj, i), @) nature, we need to collect several signals and use their
g=1 mean as a single sample;
which is exactly the content stored in a radio map. In the « IV, is the sampling time spent at each location to collect
online phase, a posterior distribution over all the loaadids signal samples. For a fixed,,, specifying the sample
computed using Bayes rule: time N; is equivalent to specifying the number of samples
collected at each location; and

= nPT(O |li3Pr(li) , (2)  « N is the number of locations to sample from.

2izy Pr(o*(l) Pr(li) Therefore, the offline calibration effort 9(N,,, x N5 x N;).
whereo* is a new observation obtainefr(l;) encodes prior  In our work, we fix the number of signals collected in one
knowledge about where a user may i#:(l;) can be set second to be a constant 10, and vary the other two variables.
as a uniform distribution, assuming every position is elyualEach sample consists of the average value from 10 signals
likely. The estimated locatiofi* is the one which obtains thereceived at a location. In particular, we wish to study how
maximum value of the posterior probability: to enhance the location-estimation accuracy while allgwin
low calibration effort. A reduction in calibration efforhén
corresponds to reductions in both the number of samples take

The advantage of the above Bayesian-estimation metho ¥Seach location i(;) and the number of locations to sample

that it treats uncertainty in location sensing in a statigti rom (N,). As we will show later experimentally, reducing

manner. Noise in signal propagation is captured by these cé\rff and N, will resuit in a highly incomplete and inaccurate

ditional probabilities. For example, the possibility oftaiming radio map. To pa_ltch up for the missing parts_of the ra<_j|o map
. . and to improve its robustness, we will use interpolation and
signal-strength measuremesi; from AP b; at location!;

is represented byPr(ss;[b;,1;). Since location estimates areepr0|t the extra unlabeled user traces which are much reasie

represented probabilistically (i.e., by the posteriotriisition to obtain.

Pr(lijo*) in (2)), the Bayesian method preserves complet? More specifically, user traC(_as are seguences of S|gnal-
) . . . . o . sfrength measurements recording a user's movements in the
information contained in the signals and all this inforroati

. . . . . . environment. The main difference between calibration data
is readily available for use, as we will see in Section IlI;

. . . and user traces lies in whether the true position where an
Moreover, by making an independence assumpti@mong

signals from different APs, the Bayesian method is robust %)servqnon is taken IS known or not. Each sample Of. the
o ) .. calibration data has its location label, and therefore it is
the situations where signals from some APs are missing Or . . . .
. . recorded as a paifo,l), where!l is the location at which
some APs are removed from the environment. In either casé

the conditional probabilitiesPr(ss,|b;,1;) corresponding to o is taken. On the other hand, a user trace has no location

those absent APs can be just omitted in the computation ?P:elrjsjligﬁj l\ggenl re2cordedq;l I';asv%eea;res ﬂ?s §u ssrcg::?in?e of
Pr(o*|l;) and subsequently’r(l;|0*) in (1) and (2). ples o, 0., 0 ' P P

.m is the time index. Therefore it cannot be used directly for

In our wor.k, the performance of location estimation I%’raining as the calibration data. While labeling signal ps
measured using the notion a€curacy Let D; = {O;, L;} be . oo . .
with the correct locations is time-consuming, collectihgrn

a data point wher@; is a signal-strength measurementdnd . : o .

. . . . . is relatively easy. This is especially true when samples are

is the corresponding grid label. L&t be a given error distance . 4 : :
collected consecutively as a user is walking around in the

1signal-strength measurements from different APs passed dest of enV|r0r_1ment. T_hen- an |.ntere.st|ng question 'S. how to ?ktrac
independence with a significance level @f= 0.05. useful information contained in user traces to improve adorad

Pr(l;|o")

* = argmlaxPr(lﬂo*). 3)



map that is built from a limited amount of calibration data. Pr(1")  Pr(I?) _ Pr(1?I%)

. . X 1T —5 12 —5" 3 . |t
In this paper, we propose a method in which we use a
hidden Markov model to model user traces and apply an EM
algorithm to improve an inaccurate radio map. We call this
methodM*.

B. Modelling User Traces Using Hidden Markov Model
(HMM) o> 00— 03 N ot

We use an HMM to model user traces. HMM is a well-
known technique in pattern recognition and has a wide rangg. 3. An illustration of user-trace modelling using HMM
of applications [15] [16]. In pervasive computing, HMM and
its variations have been successfully used in tracking and
recognizing human activities [17]. An HMM is a stochastido reduce the calibration effort and in the meantime still
finite state machine which models a Markov process withchieve good performance, we apply an EM algorithm [18]
parameters. It is termed “hidden” since the internal stafes to improve a radio map using unlabeled traces. \‘etlenote
the process are viewed as hidden and only the outputs of #re initial radio map which is built from a limited amount
states are observable. In modelling user traces, the wmagrl of labeled calibration data. In the case that interpolai®n
process is a user’s sequential changes in location, where tised,\’ is the resulting interpolated radio map. L&t denote
user’s locations are the hidden internal states and thelsigran initial location-state transition matrix and® denote an

strength measurements are the observations. initial state distribution. BothA® and 7" are seta priori.
For our purpose, an HMM for user-trace modelling i®\n HMM can then be initialized by the model parameter
defined as a quintuple L, O, \, A, 7 >: 9 = (X%, A% 70). Given a set of unlabeled tracds EM
e L: a location-state spacele= {l1,l2, -, ln}; is used to adjust the model parameter (\, A, ) iteratively
e O: an observation space® = {01, 02, -, 0m }; to find 6* such that the likelihoodPr(T'|6*) is maximized.

e \: aradio map -\ = {Pr(o,|l;)}, whereo; € O,l; € That is, maximize the likelihood of the trac#ésgenerated by
L; A such thatPr(T'|0*) > Pr(T|0). Here,Pr(T'|0) is calculated
e A: a location-state transition matrix A4 = Pr(l,|l;), as follows:
wherel;,l; € L;

e 7 an initial location-state distribution = = Pr(l;), P”(TW):H Pr(tf) = H ZPT(H%G)PT(‘JW) ®)
wherel; € L. teT teT q
The HMM is defined on a location-state spaceand an =11>_ (Pr(ll|9)Pr(ol|ll,0)
observation spac®, both of which are given in Section II-C. teT q
The radio map) is a set of conditional probabilities which e
give the likelihood of obtaining signal-strength measueemn <[] Pr(lkuk_la9)P7°(0k|lka9)) (6)
o; € O at locationl; € L. The initial location-state distribution k=2
7 encodes prior knowledge about where a user may be. Bogh (5) and ()¢ = (o', 02, ...,0") is a trace of length; and
A andw are also given in Section II-C. The transition matrix, _ (11,12,...,1™) is a possible location sequence with the

A specifies how a user travels thro_ugh the sta_te space. W@}ﬁne length as The likelihood of " (given6) is the product

a user can freely navigate the environment, his movementgisihe jikelihood of each individual trace(given 6), which is
subject to certain constraints imposed by the environni@mt. 5 \yeighted summation over all possible hidden locatiotesta
example, he can only walk in hallways or rooms bl_J_t Ca”ngéquences. As given in (8Br(t0) = S, Pr(t|q, 0)Pr(q|6),
yvalk across rooms. Also, the_ user has I_|m|ted mob_|I|ty. Th%herePr(qW) gives the probability quq being a user’s true
is, he can not move too quickly in an indoor environmengeqyence of location changes aRd(t|q, §) is the likelihood
but can only move to nearby locations in consecutive timsg observing the trace when the user's movement is In
steps. All this prior information can be encoded intb (6), Pr(q|6) is expanded intdr(11|0) x [, Pr(I*|i*~1,0),

by a properPr(l;|l;). In an HMM, A, A and = are the \yhich can be calculated from and A, and Pr(t|q,0) =
parameters adjustable. Lét= (A, A,w) denote an HMM'’s Pr(o'|it,0) x [[i, Pr(o®|I*,0) can be obtained from\

model parameter. Given an observed user ttaamed a model wherer, A and A are the three components of the current

parameterd, the well-known Viterbi algorithm [16] can be y,ode| parametet. Furthermoreg* maximizing the likelihood
used to infer the most probable hidden state sequence in T|6*) means that the parametérbest explains the signal-
HMM, which is a sequence of a user’s location changes. 'As’ﬂrength measurement sequences in the traces.

illustration of user-trace modelling using HMM is shown in 6 £\ algorithm is an iterative process through two steps:
Fig. 3. In the figure, the non-shaded nodes are the hiddgn gy hectation step (E-step) and a Maximization step (M-
location states, and the shaded nodes are the observat|0n§.tep). A standard method is to maximize a so-calefiinction

C. Improving A Radio Map\ Using EM Algorithm during the iterations. The Q-function is defined as follows:

When the calibration data are insufficient, a radio map Q(0,0%) = ZZIOgPT(taQW)PT(tvqwk)a @)
built from a small number of labeled samples is inaccurate. teT g



wheref” is the parameter obtained after thth iteration and However, small-scale variations prevent us from samplimd) a
0 is a free parameter. In the E-steps, the Q-function (7) iisterpolating at close-by locations, where calibratiogaltions
calculated; in the M-steps, maximization is taken of#eand are at sub-meter range (at the order of wave-length) [10].
the model parameter is updated fréthto #*+1: Thus, we only consider using interpolation when calibmatio
locations are at least three meters apart.

Instead of sampling at each locationlin calibration data
are only collected at a subset of locatidhg € L. The rest
locationsLy (Ly = L — L) are skipped. Signal-strength
distributions at locations ifi.; can be built in the same way
ZteT 22"21 Pr(t,l° = li|9k)5(os,0j) as intrqc_igced in Section II-C. That is, construct condion

S S Pr(t 15 = 1|09 ; probabll|t|e§P_r(o|ll-_) fr_om_the samples co_IIectgd at (I; €
teT Lus=1 ’ ‘ 8) IL1). The missing distributions at the locationslin are then
whered(z,y) is a function such thad(z,y) = 1 if z = y, interpolated to complete the radio map. An illustration fué t

otherwise 6(z,y) = 0. During the iterations, a sequencdntérpolation method is shown in Fig. 5, wheltgl;, (€ L)
of model parameterg®, 0" ...9* is generated, wherg? — are the locations directly sampled ahd(€ L>) is one of the
(\°, A%, 70) is the initial parameter and* = (\*, A*, 7*) is locations _skipped betwedp andl,. In the figure,dl_ andds
the converged parameter obtained when iterations termingt'® the distances fro to I, andl. to I;, respectively. We
The EM algorithm guarantees th&-(T|0%+1) > Pr(T|6%) interpolate the signal-strength distribution/atfrom those at
and the parameter convergeséto when the likelihood does l« @andls as follows ((9)):

not change in consecutive iterations. Interested readees®

refer to [18]. Therefore, starting from an initially inacete d d-

radio map\", EM tunes it to best explain the set of unlabeled | |a| | le | | I |

traces. Meanwhile, these traces are implicitly used to aner
the radio map and useful |nf0rr_nat|on _Tﬁ is thus e_XtraCted Fig. 5. An illustration of interpolation, wher&r(o|l.) is interpolated from
and absorbed. When a new radio meipis learned, it can be pr(o|,) and Pr(oll,)

used to substitute the initial mayd for location estimation. To

avoid the bias towards unlabeled traces, we take an addition

step. We use\* to label the traces to get a new set of labeled do dy

samples. This new set of samples, together with the original’(0;llc) = —Pr(0jlla) + —Pr(ojlle), ~ 0; €0 (9)
calibration data, produces a modified radio m&p which whered = d; + d. The idea of (9) is to exploit the similarity

!ﬁ tr][ent uster(]j ”|1El;[/|he Ion“.?ﬁ Io;:atlon-es:Lmatlon Iphase.EFlg;.b tweenPr(o;|l.) andPr(o,|l,) to rebuild the signal-strength
tustrates the algonthm from another angie. an E-Steheyip iion at the skipped locatidp. The difference between
labels the tracgs with a current radio map, and then an M'Sﬁ% two distributions depends on the distance betwgemd

updates a radio map based on the labeled traces. l,. This is intuitive since the closer the two locations are, th

Let Ny be the number of traceg, be the average trace L . .
o ; more similar the signals they received. In (9), such depecele
length, andN;, be the number of locations. The time com: 9 y ()

. N ; dto beli dth ffici dz d
plexity of EM training is N;e, x O(NTNfl), where N;e, IS IS asstmed o be Tinear an e coe |C|e¥3{san 4 areuse

th ber of iterati ‘ 10] iments). Th to normalize the interpolated distributid?r(o,|l..).
€ number ot ltera 'onsz.\(”.” < 101h our experimen s). The .. Compared to our linear interpolation method, more complex
training time is quadratic in the number of locations, but ﬁ

. onlinear relationships can also be assumed. For example,
can be done offiine. the work of [7] used a kernel-based method to capture the
similarity between the signals from two neighboring locas.

D. Using Interpolation to Learn an Initial Radio Map In Section V-C.3, we will compare this method with ours

The HMM-based algorithm presented above requires &RPirically. o _
initial radio map), to be known. In this section, we discuss Since the signal-strength distributions at those skiped |

how to re-construct such an initial radio map when sonf@tions inlL, are now interpolated, we also refer to these

or L = arg max Q(0, 0").

In particular, the M-step in thé + 1)th iteration for updating
the radio map\*+1 = { Pr(o;|1;)*+1} is as follows:

PT(Oj |ll)(k+1) =

locations are skipped, that is, whé¥ is reduced. locations asnterpolatedlocations.
When N; is reduced, the constructed radio map is in-
complete because signal-strength distributions are nysat IV. L OCATION TRACKING

those skipped locations. A consequence of this reduction isA potential application of the HMM-based methad™*

that the HMM-based method cannot be used anymore, siriseobject tracking. Tracking is the process of continuously
the method requires a complete radio map to be availaldstimating a people’s trajectory as he moves. One feasible
as an initial distribution\g. Thus we need to patch thesolution is to treat a sequence of sensor readings as a set of
incomplete radio map. Our approach to making up for thedependent observations and then apply the basic location
missing distributions is to apply a linear interpolationthwel, estimation technique repeatedly. In doing so, however, the
which we denote ad/". The idea is to construct them fromsequential nature of the readings is lost. In particulartiomo
available ones at sampled locations. Similar ideas ofitrga constraints confine possible location changes. (This s @ls
location as a function of signal strength were used in [7].[19motivation of using HMM and the EM algorithm to improve
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Fig. 4. An illustration of improving a radio map using the ENgarithm

a radio map.) A better solution is cast the tracking problem a V. EXPERIMENTS

a filtering process through which we can estimate the statesy, thjs section, we evaluate the performance of our proposed
of a dynamic system from noisy observations along with thgethods. First, we study the effects of reducing the samplin
time. The same idea was proposed in [4], where a differefihe v, and the number of sampled locatioNs on accuracy.
term, sensor fusionwas used. Then, we present the results on using interpolatibfit{ to

_ Bayesian-filter technlque_s provide a powerful tool for krac improve a radio map. After that, we apply the EM algorithm
ing [11] [20]. Among various candidates, we adopted the g show the effectiveness of exploiting unlabeled traoes t
HMM filter, also known as a grid-based method, for tWemnrove the overall location-estimation performance.afijn
reasons. First, the location state space is discrete argist®n o performance of tracking is investigated. In all experits,

of a finite number of states. These are sufficient conditiops, \ill use the accuracy measure as defined in (4).

for tractable computation. Second, ouf* method tunes not
only the radio map\ but also the initial state distribution

and the location-state transition matrik These are exactly A. Comparison Baselines
the model parameters of an HMM filter. In this section, we present several baselines that we use

Given a sequence of observatianls =< o', 0%,---,0' > as comparison targets for our proposed HMM-based method

up to timet, Pr(i*[o""), the degree of belief in the location ™. In experimental results we subsequently present, we
state! at time t, is recursively calculated. The probabilitywill show that //* outperforms these methods under various

density function Pr(I*|o'*) is obtained recursively in two experimental conditions.
stages: 1) M; : Reducing the Sampling Time at Each Location:

« Prediction: Suppose thatPr(I'~!|o**~1) is available, One baseline method is to reduce the calibration effort by
the prediction stage is to compufr(It|o’t~1) as fol- reducing the sampling timéVy at each sampled location.
lows: This method is simple and straightforward, and it has been

£ 11 el 11 +—1, 1.1, Proven to be quite effective [7]. Although it is not necegsar
Pr(l*lo ):Z Pr(lPI72, 07 0) x Pr(l™ o™ 70) 44 spend much time at each location during calibration, it
e normally requires tens or even hundreds of samples to g@abil
=>_Pr(i"I"=") x Pr(I""'|o**"")  (10) signal-strength distributions and reduce the influenceaisy
-1 wireless channels. When the calibration data are scardg, on
Note that Pr(It|Ii*=1, o%*=1) = Pr(I*|i*~1) under the five or ten samples available at each location, the limited
first-order Markovian assumption, an#r(I*|i*=!) is samples are not representative enough. This is because a
given by the location-state transition probability matrigignal-strength distribution constructed from a small bem
{Pr(l;|l;),l;,1; € L}. of samples is easily biased towards these samples, that is,

« Update: Attime stept, a new observatiod is available, these samples gain much higher probability values in the
and it can be used to update the belief using Bayes’ rulg€onstructed distribution than they do in the actual distidn.

Pr(of|It) x Pr(itjot*1) As a consequence, when a measurgment is obtalneq online,

Pr(otot1) it can be ea_lsny rejegt(e_d as an outlier only because it dpes
- P not appear in the training data. Although there are existing
__Pr(o[lY) x Pr(lflo™"") (11) techniques to smooth these distributions [21], they atkfati
> Pr(ot|i) x Pr(lt|ot*=1) from being satisfactory when the training data are extrgmel

Intuitively, we first predict where a user is (at time stdp insufficient. Our experiments reveal that only 3% of accurac

based on our knowledge on his previous position (at tim& lost whenN; is reduced from 60 to 30 at each location,

stept — 1), and then update our prediction based on thehich is a good tradeoff since half the effort can be saved.
observation newly obtained. Subsequently, we can estiméatewever, accuracy decreases by 12% whe€pn is further

the user’s location as the location point which maximize®duced to 10. Therefore, reducidg, has its limitation in

Pr(It|o*?). Therefore, location tracking can operate using owchieving significant calibration-effort reduction.

method. 2) M> : Reducing the Number of Locations Sampled:
The complexity of filtering isO(IN?) operations per time A second baseline method is to reduce the calibration effort

step. When the location-state space is too large to make rdst reducing the number of locationg; at which we collect

time tracking feasible, fast approximation-based mettsoddr  samples offline. Similar to the methdd;, this method is also

as particle filtering can be used. This is beyond the scopestfaightforward [7]. By the method/,, instead of sampling

this paper. at each location inL, we collect samples at a subset of

Pr(lt|o*")=




. . 1 1
locationsL; € IL and skip the resiLy (L = L — Ly). HZ?:_PT(OUFQ)_;_ipr(ouiﬁ), (14)

Signal-strength distributions at locations ity are built in 2 o L 1
the same way as introduced in Section II-C. However, signal- Hi=woH; + w1 H; +w Hj. (15)
strength distributions at the locationslin are missing since |n summary, using interpolation, we can patch a radio map or
we have no calibration Samples direCtIy collected at the%nforce one where onby“u of the locations are Samp]ed' Es-
locations. Therefore, the resulting radio map is incongpletsential to the interpolation method introduced in SectidiRB
Let r = [L,[/[L| denote the sampling ratio, that is, the ratignd \-A.3 is the idea of exploiting useful information from
of Sampled locations to all the locations. With the decreﬂsek)ca' neighborhoods_ However' since On'y the calibratiatad
r, the performance of the incomplete radio map deteriorate§e used, improvement that can be achieved by meftidd
as we will see in Section V-C.2. is still limited. This is especially true when methads is

3) M™: Using Linear Interpolation to Reconstruct A Radioysed to reduce the calibration effort, where only a fraction
Map: A third baseline method i9/", which applies linear of the locations are sampled directly. As will be shown in
interpolation as we described in Section IlI-D. This methogection V-C.2, reducing two-thirds a¥; (i.e., the sampling
can be used even if a radio map is complete, because thefailo » = 1/3) still incurs a loss of 16% in accuracy even if
can be used to reinforce it. interpolation is used.

More specifically, letS; denote the set of samples col-
lected at locationl;. An implicit assumption made by theB_ Experimental Setup

Bayesian-estimation method in constructing a radio map Is . . _
Our experimental testbed was set up in the office area of

that locations are independent from one another. That;is, - ) -
is exclusively used to construct the conditional probgpilith€ CS Department at Hong Kong University of Science and
{echnology. The building is equipped with an IEEE 802.11b

Pr(oll;) at locationl;. However, signals received at different’ " ' - :
locations are correlated, especially at the neighboriregoAs w]reless network in the .2.4 GHz frequency bandwidth. Cisco
ironet 340 access points are deployed. The layout of the

in the example shown in Fig. 6, strength values of the redeive : ; ! _ . .
signals at location; tend to be between those at locatipn, 1100 iS shown in Fig. 7. This area has a dimension of

and those at locatioh_; from a statistical perspective. It is64 x 50 meters. Experiments were carried out in the four
thus feasible to us§;_1, S;+1 and other sample sets to assisl?"3‘"""‘3‘3’S (HWIVHW,A') and two rooms (Room1l and Room2)
S, in constructingPr(o|l; ). as labeled in the figure. The four hallways measure 19.5,

37.5, 46 and 21 in meters, respectively. To form the location
state space, we modelled the environment as a space of 99
Hi H¢ Hf locations, each representinglé x 1.5 meter grid cell. The
)‘>{<’ \ sampling C++ program was run on an IBM 1.29GHz P4 laptop
_ _ . ) under Windows XP. The sampling rate was set to 10Hz. The
li2li-a| li |livaflive2 wireless card used was Linksys Wireless-B Notebook Adapter
supporting up to 11 Mbps transfer rate. We developed an
Fig. 6. An illustration of interpolation, wher®r(o|l.) is interpolated using AP] 2 to interface the sampling program. Calibration data and
Si=2s Si-1, Si Sig1 and Sipo unlabeled user traces were collected by two persons across
, multiple days. Since a single scan may probably miss some
OSuppose thabr(oll;) is constructed fronb; only. We use aps ‘e took average over the signal-strength measurements
H; to denotePr(ofl;). As given in (9), we can interpolate ot ten consecutive scans and took it as one sample. For
another signal-strength distribution at locatignfrom those he calibration data, one hundred samples were collected at

at li—1 andl;;, or those atli—» and l;i». The resulting gacp jocation, one sample per second. Thus, the length of
interpolated distributions, denoted &' and I, are given ine calibration time spent at each location is equal to the
in (13) and (14) belowH;, H; and H? are three signal- nymber of samples used from that location to construct the
strength distributions that are at the same locatiprand yaqio map. Traces were recorded when a person navigated

are obtained from different sample sets. They can then g environment, walking through the hallways. On average,
combined to produce an integrated distributiti, as given 4 trace contains 40 unlabeled samples.

in (15), to substituteH?. In the equationw, ~ w, are
the weights associated with these three distributions,revhe ) )

wo+wi +ws = 1. Let W = (wo,wi,w2) be a weight C. Analysis of the Baseline Methods

vector. Different'V specifies different roles off?, H} and 1) Testing Baseline Method/;: Reducing the Sampling
H? in the integrated distributiof;. Through interpolation, we Time: Experiments were first carried out to study the effect
makeS;_o, S;_1, Si+1 and S,y o help S; constructPr(o|l;). 0f the varying length of sampling time on accuracy. The entir
As we will see in the experiments, interpolation show gooeglibration data set was repeatedly divided into two subset
performance in reinforcing radio maps, especially when tigetraining set/'r and a testing set’s. 7'r comprises the first

calibration data are scarce. N, collected samples at each location, and they were used to
construct a radio maf's comprises the rest of the samples,
H)=Pr(oll;), (12) and we evaluated the performance of the constructed radio ma

1 1
Hl-lz§PT‘(O|li_1) + 5PT(O|Z¢+1), (13)

2Available at http://www.cs.wisc.edu/ xchai/Downloaddwapi.zip.



/y -~ by skipping every several locations between them. In the
experiments, we variefl.;| among three possible values: 50,

) 31 and 24. Correspondingly, the sampling ratie= |L;|/|L
%JUU %% p gly pling ratie= [L,|/|L|)

is approximatelyl /2, 1/3 or 1/4. Fig. 9 illustrates the case

Entmncsl He 7 . .
e o // Eatranend wherer = 1/3: The 31 locations marked with black squares
$ / form Ly, and the other 68 skipped locations fofm. In all the
7 Hlbv ? BuvirontmntSettting three cases, the calibration data at the locatiofis ivere still
] |
v

T % e rance 13 data at the locations if., were no longer used for training

——————— | 3 . Lo . - .
Extranee? AP i;\;;z;;:::;;sr::;:ﬁ:tseﬂ but for testing only. As a result, incomplete radio maps were

.
.
% Areas: Office, Roam 1 andRoom? used to construct the signal-strength distributions witile
/
|
7

between the predicted and the actual location points. Rest P
Entrance2 + |

are shown in Fig. 8, with the number of training sample
ranging from 5 to 60. 7/ @:&'{

100%

AP’s: Access points as indicated
by double concretecircles

Rooml

constructed. Given a radio map, we then measured how the

Room1 location-estimation accuracy is affected.
Fig. 7. The layout of the office area of CS Department of Hongdo 7/% % % %
University of Science and Technology RoomZ M@D " = = m. = = mm =

2 _smemi* sl
by testing it on them. Starting from five samples per locatic eumu A m o n V/ Entranee
(i.e., N = 5), we increased the number by five each ste 77
to reproduce the effect of gradually increasing the catibra /////////////////% ? % FnvironmntSettting
time. The estimation accuracy was measured with an er |+ % .
distance of three meters. The error distance is the distar Wy )| e % TuamcosErramenl s
/ HWs: HallWay 14
7

Fig. 9. Layout illustration of reducing the number of locats sampled,
95% - ] where dark dots are the sampled locations.

90%
Fig. 10 shows the effect of reducing the number of locations
sampled with varying sampling ratios. For illustrationge th
factor of reducing the sampling tim¥, was also considered.
In the figure, the dashed curve is the same as the one in
Fig. 8, which is shown for comparison. The curve is denoted
65%; as “Basic” since no location is skipped and the radio maps are
son ] complete. The other three curves represent the situatibesav
r=1/2,r =1/3andr = 1/4. As we can see from the figure,
the more locations that are skipped, the lower the accuracy

85%

80% -

75%

Accuracy

70%

55% -

50%
5

B er o ainey samles areach oatng. _that the resulting in_cc_)mplete radio map has. Also, yvith the
increase of the training samples at sampled locations, the
Fig. 8. Accuracy v.s. number of training samples at eachtilmecg(M) accuracy of a radio map increases. This is intuitive becthese

more training samples that we have at each sampled location,
When the training samples are scarce, increasing the amotiiat more accurate signal-strength distributions thesatilmrs
of calibration data has a significant influence on accuradyave. However, the discrepancy between the performance of
As shown in the figure, the accuracy increases by 10.2% asomplete radio map (i.e., the “Basic” one) and that of an
the number of training samples increases from five to teincomplete radio map (e.g., the one with 1/2") is large.
Enhancement is less significant when more training samplesr example, whenV, = 60, the accuracy of the latter is
are available. Overall, the discrepancy can be as large 1#5% lower than that of the former.
22.3%, accuracy ranging from 62.89%V( = 5) to 85.1% It is also interesting to compare the two methodis, and
(Ns = 60). As we can see, reducing the sampling time calf,, in terms of their effects on accuracy. From Fig. 8 and
degrade the system performance significantly. Thus, metheig. 10, we can see that reducing the sampling time is more
M, has limited ability in saving the calibration effort. effective than reducing the number of locations sample@& Th
2) Testing Baseline Methodl/;: Reducing the Number of accuracy decreases by 6% when the sampling time is reduced
Locations Sampled:Another set of experiments was conby 2/3 (N, = 20 in Fig. 8), while the accuracy decreased
ducted to examine the effect of reducing the number bf 16% when 2/3 of the locations are skipped=£ 1/3 in
locations sampled ;). For this purpose, we set up theFig. 10).
experiments as follows. Out of the totHl| (=99) locations  3) Testing Baseline Method/™: Using Interpolation to
in modelling the test environment, we selectéd| locations Improve the PerformanceWe also evaluated the method of
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Fig. 10. Accuracy v.s. number of training samples at eachptarocation

(Ma) Fig. 12. Improvement achieved through using interpolatormatch radio

maps ¢ = 1/3)

interpolating a radio map. In the experiments, we variedh bot

the sampling timeN, and the number of sampled Iocationgf sampled locations and interpolated the skipped location
Ny, as in Sections \;-C 1 and V-C.2 afterwards. For this purpose, signal-strength distringi at

Fig. 11 shows the effect of using interpolation to reinforc%—; locations inL, were constructed from the calibration

complete radio maps. A radio map was first constructed wi ta (with var_ying]_\fs); the distributic_ms at those chations
N training samples at each locations, whé¥fg varied from n Ly wterhe gu"t u;l]ngMﬁ Afterdaﬂ |nc:)hmplletet_rad|0 ;ﬂapt_

5 to 60. After that, we reinforced it using the interpolatioNVas paiched, we then measured now the jocation-estimation
method introduced in Section V-A.3. In the experimentsemr.accuracy IS affec_ted at both the sampled locations and the
different weight vectors were testedit; = (0.5,0.3,0.2), mterpolated locations. L . .

W = (0.3,0.3,0.3) and W3 = (0.2,0.4,0.4), corresponding Fig. 12 shows the effect of using interpolation to improve
to the three solid curves in the figure. Again, the “Basic™veur th?_ ra(;jm mzps V\f"th _a.flxed sar;1pllnfg ratio = 1/3_' For

in Fig. 8 is also shown for comparison, where interpolatiof fixed number of training samples, for examp¥e = 20,

was not used. As we can sek[* is useful to improve the three measurements were taken. The first one isanepling

performance of a radio map, especially when the calibratiggcuracy It is the accuracy of the signal-strength distributions
data are scarce: Improvement is above 5% when<—= 20 at the sampled locations in;, which were built directly from

To be more specific, the method is effective in making sampl&?,ca“brat'qn data, = 20). The _secpnd measurement IS
at neighboring locations help one another to adjust sign |_e|nterpolat|o_n a.ccu.raC)of the <_j|str|but|ons at the locations
strength distributions. As given in (15), the roles thesapslas in Lo. T_hese distributions were mterpolated from the sampled
play are determined by the weight vector. Overdlh, which ones with N, = 20. The last one is theverall accuracy

views H°, H! and H2 equally important, achieves the bespf the patched radio map. We obtained it by measuring the
perform;ncelamong the threB/( ~ W) performance of the radio map over all the locationslLin

For comparison, the performance of incomplete radio maps
with the same sampling ratio (1/3) is shown by the dashed

100%

assol A curve in the figure, wherd/™ was not used. As we can see
= ws from the figure, both the sampling accuracy bn and the

90% - q

interpolation accuracy oh, increase as more calibration data
are available. This is because as more training samples are
obtained at the sampled locations, the sampled signaiggtre
distributions and subsequently the interpolated distidins
are more accurate. In general, the interpolation accurscy i
|/ about 20% lower than the sampling accuracy, and thus the
¥ overall accuracy lies between them. Compared with the dashe
curve whereM ™ was not used, using/ ™ does achieve much
%y 7 improvement: accuracy increases by 7.5% whén= 5 and
W 15 20 % 3 % 40 45 5 55 w0 by 12.1% whenV, = 60.
Number of raining samples at each location We also compared our interpolation methdfit with the
Fig. 11. Improvement achieved through using interpolatmreinforce radio kernel-based interpolation method proposed in [7]. Inrthei
maps approach, the interpolation formulation fits a radial basis
function which takes signal-strength measurements ast inpu
To evaluate Mt in patching an incomplete radio mapand outputs location coordinates. Calibration data ard tse
and thus improving its performance, we reduced the numbmmpute Gaussian kernel weights by least squares fitting. Fo

85%

80%

Accuracy
~
3
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Fig. 13. Comparison o T and kernel-basedFig. 14. Comparison oM+ and kernel-basedFig. 15. Comparison oM+ and kernel-based
interpolation ¢ = 1/2) interpolation ¢ = 1/3) interpolation ¢ = 1/4)

100%

comparison, we implemented their algorithm, with the numbe = I‘iig
of signal-strength clusters at each sampled location sbt¢e. so% BRIy
The results of overall accuracy with varying sampling ratio
(r=1/2,1/3,1/4) are shown in Fig. 13 through Fig. 15. The

two methods show similar accuracy when the sampling ratio is 70%
high (- = 1/2). The kernel-based method performs better than
M when the sample ratio is low and the calibration data are
limited (less than 30 samples per sampled location in Fig. 14 50%
and Fig. 15). As the calibration data increa&&t outperforms

the kernel-based method. This may be explained by the prob-

80%

60%

Accuracy

40%

abilistic nature of M+ method that quantitatively measures 0%
the likelihood of any possible signal-strength observatio S
Thus, the more calibration date+ uses, the more accurate ® 1% I umber of iraining samples at sampled locations

the sampling distributions and the interpolated distidnsg.
Moreover, instead of imposing a mapping between sign';oiﬂ- 16. Sampling accuracy of patched radio maps with varngampling

strength and location coordinates as the kernel-basedoahetf"*S”

does,M ™ explicitly constructs signal-strength distributions at 100% —
the interpolated locations. These signal-strength distions S r=13
are required byl/* on initialization. Thus we only studj/* > S
in the following of this paper. The “Basic” curve correspend g0

ing to the case where all locations are sampled=(1) are
also shown in the figures. In addition, by comparing fife
curves in Fig. 13 through Fig. 15 with those in Fig. 10, we can
see the effectiveness dff *: on average, accuracy increases
by 7.21% whenr = 1/2, by 10.2% whenr = 1/3 and by
6.6% whenr = 1/4. 40

30%

70%

60%

Accuracy

lb 1‘5 2‘0 2‘5 C;O 55 46 4‘5 5‘0 5;5 60
It is also interesting to investigate the influence robn Number of raining samples at sampled |ocations
the sampling accuracy and the interpolation accuracy. Tp@. 17,
experimental results are shown in Fig. 16 and Fig. 17. hatiosr
general, the interpolation accuracy decreases as expebtad

less locations are directly sampled. The sampling acclalsoy ]
decreases when is changed from /2 to 1/3. However, the D- Testing Our HMM-based Methodl/*

accuracy then increases wheis further decreased tb/4, as In this section, we measured the performance of using
shown in Fig. 16. This is possibly because when the samplinglabeled traces in the HMM-based methtt, which cor-
ratio is low (1/4), the sampled locations are sparse angsponds to our main contribution in the paper. Radio maps
thus the signal-strength distributions at these locatmarsbe were first initialized usingM ™ when there were skipped
easily distinguished from one another. Therefore, the fiamp locations. Then we used/* to improve them. The initial
accuracy increases instead. However, since the inteipolatstate distributionr? is set to a uniform distribution over all the
accuracy decreases more significantly wheis changed to locations. The initial location-state transitiotf = Pr(l;[;)

1/4, the overall accuracy decreases, as shown in Fig. B3also set to a uniform distribution but with the following
through Fig. 15. constraints: Pr(l;|l;) # 0, if I; is within 4.5 meters of

Interpolation accuracy of patched radio maps wattying sampling
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100%

l;; otherwise, Pr(l;|l;) = 0. Such constraints reflect our = ‘E?f”é%?fs))
assumption that a user can only moves to a nearby location s = Emcootry |
in consecutive time steps and he moves with a normal speed e

(i.e., within a radius of 4.5 meters in the next second). To -
investigate the utility of unlabeled traces, we also vatieel
number of traces used in training the HMM.

Fig. 18 shows the improvement in accuracy using unlabeled
traces, whereV; = 99 and the sampling time is fixed &f, = [
20. When no learning is performed (the number of traces used o5
is zero), the accuracy is about 79%. The accuracy goes up as %[
the number of traces increases. Improvement is about 4% when S5
20 traces are used and 9% using 100 traces. At this point, the
radio map tends to stabilize as the influence of using more
traces is lessened. ,

Fig. 19 shows the effect of using unlabeled traces to redtfﬁ'%é 19.
the sampling time. The dashed curve is the same as the one
in Fig. 8. It is denoted as “Basic (0 Trs)” since only the
calibration data but no traces are used. The other thre@surusing 20 traces and an increase of 33.2% using 100 traces. To
show the performance of improved radio maps tuned by the more illustrative, the improvement in sampling accuracy
EM algorithm using 20, 60 and 100 traces. The improvemeat the sampled locations and the improvement in interpiati
is significant when the calibration data are extremely star@ccuracy at the interpolated locations are shown in Fig.ri2il a
At the point whereN, = 5, an increase of 12.8% is achievedrig. 22, respectively. Unlabeled traces are particuldfiyctive
using 20 traces and 23.8% using 100 traces, compared withadjusting the distributions at the interpolated locasio
a 11.3% increase using the interpolation methdd . This
shows that unlabeled user traces are informative and by 100%
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is much more effective thai/ ™. Thus, using unlabeled traces,
we can progressively reduce the sampling time and a high leve 80%g
of accuracy can still be achieved.
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Fig. 20. Improvement in overall accuracy using™ and M*

We also varied both the number of user traces and the
sampling ratior. The experimental results are shown in
100 Fig. 23, where the sampling tim&/; is fixed at 20. When

no trace is used, the discrepancy between the performance
Fig. 18. Improvement achieved through using an increasimghrer of traces of radio maps with different sampling ratios is significant:
(Ns =20, N = 99) Accuracy decreases by 16.2% wheis reduced from 1/2 to
1/4. As the number of user traces increases, all the radi@ map

It is most interesting to see how much further improvemeghibit better performance and in the meantime, the diffeee
that M* can achieve aften/™ is used. For this purpose,petween them is reduced: the accuracy differs only by 1.8%
we conducted experiments to evaluate the learning algoritiyhen 100 traces are used. This experiment shows from another

when bothN; and N, are reduced and/™ is applied to im- angle thatM* is good at adjusting screwed signal-strength
prove the radio maps. In the first set of experiments, we fixegktributions towards correct ones.

the sampling ratio td /3. The results are shown in Fig. 20,

Fig. 21 and Fig. 22. Fig. 20 compares the overall accuracy of
radio maps tuned by different numbers of traces. The overkt
accuracy oriL using M T from Fig. 12 is shown by the dashed Another advantage of applying/* is that it also tunes
curve for comparison. As we can see, the improvement tise initial state distributionr and the location-state transition
significant. WhenN, = 5, we achieved an increase of 17.2%natrix A, in addition to the radio map. These are exactly

20 40 60 80
Number of unlabeled traces used

Location Tracking Experiments
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Fig. 22. Improvement in interpolation accuracy usihg" and M Fig. 24. Static location estimation vs. robotics tracking

the model parameters that we need to implement an HMiMance of location estimation: Given a user’s previous loca-
filter. In the experiments, the performance of tracking wd®n estimate, motion constraints (i.e., location-stas@gition
tested. The data set was again divided into two subsetsmatrix) effectively reduce the number of possible locatien
training data sef'r and a testing data sé@ts. T'r consists of user may be at. In other words, history location information
the first N, collected samples for training, wheré, ranges is propagated during tracking. Thus, the estimation acyura
from 5 to 60 at an interval of BI's comprises the rest of theis increased. Moreover, tuning HMM model parameters is
samples, and they were used to produce unlabeled traceswétthwhile, especially when the calibration data are szarc
trace was generated as follows: we first planed a walk trip in
the hallways, which consists of a sequence of location ppint VI. CONCLUSIONS AND FUTURE WORK
a sample at each of those locations was then randomly sétlecteln this paper, we empirically study the effect of reducing
from T's; finally, those samples were concatenated to producé calibration effort on estimation accuracy by reducintghb
trace. Consequently, the actual location labels of the &8npthe sampling time and the number of locations sampled. An
in a trace are known for evaluation. In total we generatédterpolation method is developed to exploit the limitelodked
200 traces, each trace containing 60 unlabeled samplescafibration data available to complete and improve a radio
average. In the experiment, both the hand-coded HMM filteiap. When additional user traces are available, our prapose
as used in [4], denoted @obotics Trackerand our tuned EM-based learning algorithm can explore these unlabeeetr
HMM filters using unlabeled traces, denoted &S tracker, data to supplement the labeled calibration data to furtimer i
were examined. Moreover, to evaluate the benefits of usipgove location-estimation performance. Experiments stiat
temporal correlation of samples in tracking, we also testeémth methods can adjust inaccurate radio maps into accurate
M* method which treats samples in a trace independeniynes, and furthermore, unlabeled traces can be effectiselgt
Since it can be viewed as a static method, we refer to it & compensate the effects of reducing the calibration data.
M~ Static Tracking, on the contrary, is dynamic; it smooth@\s a result, manual effort is reduced substantially whilghhi
location-state transitions along the time dimension. Reswe accuracy is still achieved.
shown in Fig. 24 and Fig. 25. In the future, we plan to take complex spatial and temporal
As can be seen, tracking using filters improves the perfa@nvironment dynamics into consideration. For example, in
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