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Domain-Driven Data Mining: 
A Framework
Longbing Cao and Chengqi Zhang, University 
of Technology, Sydney

Data mining increasingly faces complex challenges in the
real-life world of business problems and needs.1 The gap be-
tween business expectations and R&D results in this area in-
volves key aspects of the field, such as methodologies, tar-
geted problems, pattern interestingness, and infrastructure
support. Both researchers and practitioners are realizing the
importance of domain knowledge to close this gap and de-
velop actionable knowledge for real user needs.

What is domain-driven data mining?
Domain-driven data mining generally targets actionable

knowledge discovery in complex domain problems.2 It
aims first to utilize and mine many aspects of intelligence—
for example, in-depth data, domain expertise, and real-time
human involvement as well as process, environment, and
social intelligence. It metasynthesizes its intelligence
sources for actionable knowledge discovery. To achieve this
metasynthesis, domain-driven data mining must develop
knowledge actionability, enhance knowledge reliability, and
interact with methodologies and systems that support exist-
ing business uses.

Domain-driven data mining works to expose next-
generation methodologies for actionable knowledge
discovery, identifying how KDD can better contribute to
critical domain problems in theory and practice. It un-
covers domain-driven techniques to help KDD strengthen
business intelligence in complex enterprise applications.
It discloses applications that effectively deploy domain-
driven data mining to solve complex practical problems.
It also identifies challenges and directions for future
R&D in the dialogue between academia and business to
achieve seamless migration into business world.

Determining what knowledge to pursue requires both
technical and business interests to instantiate both objec-
tive and subjective factors.3 Actionable knowledge discov-
ery should fit the following framework:

∀ x � X, � P: x.tech_obj(P) � x.tech_subj(P) �
x.biz_obj(P) � biz_subj(P) → act(P)

where P indicates pattern interestingness from not only
technological and business viewpoints but also objective
and subjective perspectives.4

Why do we need it?
Traditional KDD is a data-driven trial-and-error process

that targets automated hidden knowledge discovery. Re-
searchers commonly use it to let data create and verify their
innovations or to develop and demonstrate the use of novel
algorithms and methods in discovering knowledge of re-
search interest.

In business, however, KDD must support commercial
actions. In addition to business rules, policies, and so on, it
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The complexities of real-world domain problems pose great chal-
lenges in the knowledge discovery and data mining (KDD) field. For
example, existing technologies seldom deliver results that businesses
can act on directly. In this issue of Trends & Controversies, seven short
articles report on different aspects of domain-driven KDD, an R&D
area that targets the development of effective methodologies and
techniques for delivering actionable knowledge in a given domain,
especially business.

To begin, my colleague Chengqi Zhang and I propose a frame-
work that boosts data mining capabilities and dependability by
synthesizing domain-related intelligence into the development
KDD process.

In the second article, Qiang Yang looks at ways of getting data
mining output models to correspond to actions. The framework he
proposes takes traditional KDD output as input to a process that,
in turn, generates actionable output.

The third and fourth articles describe different aspects of visuali-
zation for clarifying data patterns and meaning. David Bell describes
two video and vision system applications that strengthen data
mining practice in general. Michail Vlachos, Bahar Taneri, Eamonn
Keogh, and Philip S. Yu present a simple, fast method for visualiz-
ing DNA transcripts to enhance data mining utility.

Human intelligence plays important roles in actionable data min-
ing. Ning Zhong proposes a methodology for processing multiple
data sources in a systems approach to brain studies.

Privacy imposes a strong constraint on data mining. Mafruz 
Zaman Ashrafi and David Taniar review the issues and techniques
for preserving privacy in aggregated data mining.

Finally, Eugene Dubossarsky and Warwick Graco describe four
aspects of moving data mining from a method-driven approach to
a process that focuses on domain knowledge. —Longbing Cao



must take into account such real-world phe-
nomena as evolving scenarios, constrained
environments, runtime mining, and distrib-
uted and heterogeneous data sources. It must
support business requirements for trustwor-
thy, reliable, and cost-effective performance.
It must also find ways to integrate human
intelligence seamlessly in its processes.

Key issues
Operating on top of a data-driven frame-

work, domain-driven data mining aims to
develop specific methodologies and tech-
niques for dealing with these business com-
plexities. This goal can mean developing
generic frameworks, domain-specific ap-
proaches, or both. Other key issues include

• domain-driven project management;
• actionable knowledge discovery

frameworks; 
• capturing, representing, and using net-

work intelligence; 
• mining in-depth patterns and deep data

intelligence; and
• balancing the conflicts between techni-

cal performance and business interest. 

Table 1 summarizes the differences be-
tween data-driven and domain-driven data
mining.

Applications
We’ve used domain-driven data mining in

real-world trade-support assignments and
for analyzing exceptional behavior in gov-
ernment social security overpayments.4,5 In
one case, we integrated domain intelligence
into the automated construction of activity
sequences in government-customer con-
tacts. We also discovered high-impact

activity-sequence patterns associated with
government-customer debt and identified
customers and events that would likely pre-
vent or recover debt. To this end, we devel-
oped both technical and business measures
for patterns relevant to these issues in real,
unbalanced social security data. For in-
stance, through metasynthesizing intel-
ligence sources, we get the following inter-
estingness of an activity sequence associated
with the occurrence of government debt:

• Technical interestingness: support =
0.01251, confidence = 0.60935, and 
lift = 1.2187;

• Business interestingness:
, the averaged debt

amount in cents of those debt-related
activity sequences supporting the rule;
and , the averaged debt
duration in days of those debt-related
activity sequences supporting the rule.

These measures tell us that the selected
pattern has not only technical interest but
also business impact on debt amount and
duration.

Conclusion
Domain-driven KDD represents a para-

digm shift from a research-centered disci-
pline to a practical tool for actionable
knowledge. Despite many open issues, de-
ployed systems are already showing ways
to transmit reliable research in forms that
satisfy business needs with direct support
for decisions.
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Learning Actions 
from Data Mining Models
Qiang Yang, Hong Kong University 
of Science and Technology

Data mining and machine learning algo-
rithms aim mostly at generating statistical
models for decision making. There are many
techniques for computing statistical models
from data: Bayesian probabilities, decision
trees, logistic and linear regression, kernel
and support-vector machines, and cluster and
association rules, among others.1,2 Most
techniques represent algorithms that summa-
rize training-data distributions in one way or
another. Their output models are typically
mathematical formulas or classification
results describing test data. In other words,
they’re data centric.

d dur_ .( ) = 15 5

d amt_ ,( ) = 29 526
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Table 1. Data-driven versus domain-driven data mining.

Aspects Traditional data-driven Domain-driven

Object mined Data tells the story Data and domain tell the story

Aim Develop innovative approaches Generate business impacts

Objective Algorithms are the focus Solving business problems is the target

Data set Mining abstract and refined data sets Mining constrained real-life data

Extendability Predefined models and methods Ad hoc, runtime, and personalized model customization

Process Data mining is an automated process Humans are integral to the data mining process

Evaluation Based on technical metrics Based on actionable options

Accuracy Results reflect solid theoretical computation Results reflect complex context in a kind of artwork

Goal Let data create and verify research innovation; Let data and metasynthetic knowledge tell the hidden 
demonstrate and push novel algorithms business story; discover actionable knowledge to satisfy 
to discover knowledge of research interest real user needs



Despite much industrial success, these
models don’t correspond to actions that will
bring about desired world states. They max-
imize their utility on test data. But data min-
ing methods should do more than produce a
model. They should generate actions that
can be executed either automatically or
semiautomatically. Only in this way can a
data mining system be truly considered
actionable.

I’ve developed two techniques that high-
light a novel computational framework for
actionable data mining.

Extracting actions 
from decision trees

The first technique uses an algorithm for
extracting actions from decision trees such
that each test instance falls in a desirable
state.3 A customer-relationship-management
problem illustrates our solution. CRM indus-
try competition has heated up in recent years.
Customers increasingly switch service pro-
viders. To stay profitable, CRM companies
want to convert valuable customers from a
likely attrition state to a loyal state.

Our approach to this problem exploits de-
cision tree algorithms. These learning algo-
rithms, such as ID3 or C4.5,1 are among the
most popular predictive data-classification
methods. In CRM applications, we can build
a decision tree from an example customer
set described by a feature set. The features
can include any kind of information: per-
sonal, financial, and so on.

Let’s assume an algorithm has already
generated a decision tree. To generate ac-
tions from this tree, we must first consider
how to extract actions when no restrictions
exist on their number. In the training data,
some values under the class attribute are
more desirable than others. For example, in
a banking application, a customer loyalty
status of “stay” is more desirable than “not
stay.” For each test data instance—that is,
for each customer under consideration—we
want to decide a sequence of actions that
would transform a customer from “not stay”
to “stay” status. We can extract this set of
actions from the decision trees, using the
following algorithm:

1. Import customer data using appropri-
ate data collection, cleaning, and pre-
processing techniques, and so on.

2. Build customer profiles from the train-
ing data, using a decision-tree learning
algorithm, such as C4.5,1 to predict

whether a customer is in the desired sta-
tus. Refine the algorithm to use the area
under the receiver-operating-character-
istic curve.4 (The ROC curve lets us
evaluate candidate-predication ranking
instead of accuracy.) The Laplace cor-
rection is a further refinement to avoid
extreme probability values.

3. Search for optimal actions for each cus-
tomer. This critical step generates actions,
and I describe it in more detail later.

4. Produce reports for domain experts to
review the actions and selectively de-
ploy them.

In this algorithm, when a customer falls
into a particular leaf node with a certain
probability of having the desired status, the
algorithm tries to “move” the customer into
other leaves with higher probabilities of hav-

ing the desired status. A data analyst can then
convert the probability gain into an expected
gross profit. However, moving a customer
from one leaf to another means changing
some of the customer’s attribute values. The
data analyst generates an action to denote
each such change in which an attribute A’s
value is transformed from v1 to v2. Further-
more, these actions can incur costs, which a
domain expert defines in a cost matrix.

On the basis of a domain-specific cost
matrix for actions, we can define an ac-
tion’s net profit:

Pnet = PE � Pgain � �i Costi

where Pnet denotes the net profit, PE de-
notes the total profit of having the customer
in the desired status, Pgain denotes the prob-
ability gain, and Costi denotes each action’s
cost. The algorithm has taken into account

both continuous and discrete attribute
versions.

This solution corresponds to a simple
situation, which limits the number of ac-
tions. However, when we limit actions by
number or total costs, the problem of se-
lecting the action subset to execute be-
comes NP-hard. In an extension of this
work, I’ve developed a greedy algorithm
that can give a high-quality approximate
solution.3 My colleagues and I have run
many tests to show that these methods are
useful in action generation and perfor-
mance. Furthermore, we’ve also considered
a decision-tree ensemble to make the solu-
tions more robust.

Learning from frequent-action
sequences

The second technique uses an algorithm
that can learn relational action models from
frequent item sets. This technique applies
to automatic planning systems, which often
require formally defined action models
with an initial state and a goal. However,
building such models from scratch is diffi-
cult, so many researchers have explored
various approaches to learning them from
examples instead.

The Action-Relation Modeling System
automatically acquires action models from
recorded user plans.5 ARMS takes a collec-
tion of observed traces as its input. It deter-
mines a collection of frequent-action sets
by applying a frequent-item-set-mining
algorithm to the traces. It then takes these
sets as the input to another modeling sys-
tem, called weighted Max-Sat, which can
generate relational actions.

To better understand relational-action rep-
resentations, consider an example input and
output in the Depot problem domain from an
AI planning competition.6 The training data
consists of training plan samples that are
similar to this (abbreviated) sequence of
actions: drive(?x:truck ?y:place ?z:place),
lift(?x:hoist ?y:crate ?z:surface ?p:place),
drop(?x:hoist ?y:crate ?z:surface ?p:place),
load(?x:hoist ?y:crate ?z:truck ?p:place),
unload(?x:hoist ?y:crate ?z:truck ?p:place),
where “?” indicates variable parameters.

From such input sequences, we want to
learn the preconditions, add lists, and
delete lists for all actions. When ARMS
completes the three lists for an action, its
action model is complete. We want to learn
an action model for every action in a prob-
lem domain. In this way, we “explain” all
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training examples successfully. For exam-
ple, a learned action model for the action
load(?x:hoist ?y:crate ?z:truck ?p:place)
might have the preconditions (at ?x ?p), (at
?z ?p), (lifting ?x ?y); the delete list (lifting
?x ?y); and the add list (at ?y ?p), (in ?y
?z), (available ?x), (clear ?y).

ARMS proceeds in two phases. In phase
one, it finds frequent-action sets from plans
sharing a common parameter set. In addi-
tion, with the help of the initial and goal
states, ARMS finds some frequent relation-
action pairs and uses them to make an ini-
tial guess on the preconditions, add lists,
and delete lists of actions in this subset. It
uses these action subsets and pairs to ob-
tain a constraint set that must hold for the
plans to be correct. 

In phase two, ARMS takes the frequent
item sets as input and transforms them into
constraints in the form of a weighted Max-
Sat representation.7 It solves the constraints
using a weighted Max-Sat solver and pro-
duces action models as a result. The pro-
cess iterates until it models all actions.

Future work
While ARMS action models are determin-

istic, in the future we plan to extend the
framework to learning probabilistic action
models that can handle uncertainty. We can
add other constraints to allow partial obser-
vations between actions and prove the sys-
tem’s formal properties. We’ve tested
ARMS successfully on all the Stanford
Research Institute Problem Solver’s plan-
ning domains from a recent AI Planning
Competition based on training action se-
quences.5 In related work,8 we consider ways
to generate actions to cost-effectively acquire
missing data.
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Actionable Data Mining in
Video and Vision Systems
David Bell, Queen’s University Belfast

Techniques for actionable data mining are
often application specific: “Horses for
courses” is a commonly used rule. However,
even application-specific techniques can gen-
eralize to ideas that encourage both formal
and pragmatic advances. Here, I describe
two practical scenarios based on behavioral
data mining in video and vision systems. The
scenarios involve traffic surveillance and a
predator’s observation of its prey. I will show
how both scenarios exert a strong pull on data
mining technology and, at the same time, get
a push from current data mining technology.

The applications’ pull
Both applications are oriented toward

profiling particular individuals and events
from a population. In addition to the usual
data mining problems of representation and
performance, the applications share several
characteristics: they both involve inductive
and transductive reasoning, adaptive learn-
ing over time, and unstructured data.

Inductive reasoning is concerned with
building a global model to capture general
data patterns across a complete data space
and using this model to subsequently predict
output values for a particular input. However,
such models are difficult to create and up-
date, and they’re often not necessary. As the
19th century philosopher John Stuart Mill
noted: “The child who having burnt his fin-
gers, avoids to thrust them again into the fire,
has reasoned or inferred, though he never
thought of the general maxim, Fire burns.”

Transductive reasoning, which argues
from particulars to particulars, works better
in many situations because it produces a tai-
lored local model as a result for each new in-
put—for example, an individual’s behavior
traces from sampled database records. Trans-
duction is often appropriate in situations that
focus on behaviors that unfold over time. A
predator animal hunting its prey at Queen’s
University Belfast is one example we’ve
used in our studies. However, inductive rea-
soning is also useful—for example, in study-
ing species behavior.

For adaptive learning applications, video
and vision systems need techniques for min-
ing time-series data. There are several tradi-
tional approaches. Some look at similarities
between two sequences, some seek optimal
algorithms for classifying sequences into
similar subsequences, some search for re-
peating cycles, and others try to extract ex-
plicit rules over the time series. QUB’s
Knowledge and Data Engineering group has
developed some ideas and techniques for
addressing this specific problem environ-
ment. They involve capturing coarsened
behavior components from pixel values and
classifying sequences as such components.

Video and vision systems also pose ex-
treme requirements on data mining tech-
niques relative to unstructured data. Some
estimates say that 85 percent of the data we
use is unstructured—for example, in emails,
workbooks, consumer comments, and other
textual documents. Video data is often much
more difficult to assemble for pattern recog-
nition than table data. For example, consider
a video of a predator animal trying to gain an
advantage on potential prey by watching it
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adapt to its environment. What will its next
move be? What is its idiosyncratic behavior
pattern? The irrelevant detail and noise in the
visual data is huge. Furthermore, it varies be-
tween individuals and even episodes. Para-
doxically, though, video can have other sorts
of structure, as I will show in the next section.

The technology’s push
Traffic and security surveillance systems

are potentially important instances of ac-
tionable, transductive mining. They use
video clips and other image data that con-
tain multiple, potentially interesting behav-
ioral and other sequences that vary with
time. Our work in this domain includes col-
laboration with QUB’s Speech, Image, and
Vision Systems group, which has devel-
oped—among other things—a sensor-based
system that automatically detects and tracks
moving objects.1 Our work is concerned
with capturing such systems’ output for
higher-level analysis using data mining and,
where appropriate, other AI techniques for
dynamic scene analysis. The applications
envisaged include predicting traffic incidents
by learning activity patterns from stored tra-
jectories and spotting abnormal behavior.

Suppose a vehicle performs a U-turn near
a roadblock. To initiate tracking this vehicle,
the system must learn normal behavior and
then identify unusual patterns. The idea is to
capture coarsened patterns of behavior frag-
ments—for example, speed behavior. We can
obtain tuples tracing the patterns in various
scenarios. We can have an expert describe
abnormal behavior classes or, alternatively,
the system can identify them automatically.
The system then looks for matches with the
patterns being sought. Such traffic surveil-
lance systems have close similarities to
predator-prey scenarios.

This outline is greatly simplified. Indi-
vidual actors have idiosyncratic behavior
patterns, and existing representation schemes
aren’t always rich enough to capture move-
ments and other behaviors in enough detail
to help in inductive or transductive rea-
soning. Nevertheless, patterns often carry
across several episodes of a behavior or
activity, so video and vision systems offer
an analysis medium for classifying the
patterns to gain more general insights into
the behavior or activity.

To demonstrate our techniques and pro-
vide insights into animal behavior, we’ve

implemented a system for capturing time-
varying behavioral pattern sequences of
robots, which serve as animal subjects and
have the advantage of being fully under the
experimenter’s control. The system can use
either video clip observations or a vision
system’s output. The system inputs can be
either real episodes of a robot predator and
a robot prey or synthetic episodes—for ex-
ample, simulations of a prey robot emulat-
ing the vision system of Sony’s Aibo dog
robot. The detailed time slices of action are
coarsened to provide gross, molecular units
of behavior. For both individuals and popula-
tions, or for a particular episode, we can rep-
resent combinations of these behavior units
in table form, to be mined using various
techniques. For example, the output in table
2 shows molecular behavior units such as
Fwd S or Fwd Q (forward slowly/quickly)
and more exotic coarsened units such as Sur-
prised (Surp). Figure 1 illustrates the behav-
ior of tuple 2. The table shows the outcome
of this behavior—in this case, not to attack. 

The table structure is more complex if
the sequence includes a second actor, of
course. The similarities between this sce-
nario and other monitoring and adaptation
applications are significant. From the time
series of behavior chunks, a predator robot
might see, for example, how a prey robot
learns. If it observes more examples of the
prey’s behavior, as in table 2’s other tuples,
it can learn about behavior patterns. If the
predator observes other members of the
prey’s “species,” it might generalize its
knowledge to the species.

Other applications
We study a variety of other data mining

techniques and applications that organi-
cally interact with these techniques. For ex-
ample, we work on more structured data sets
for studies with belief networks, rough sets,
associative-mining methods, and a variety of
text-mining algorithms for different applica-
tions. The results help in debugging multi-
plexer networks in telecommunications
applications, facilitating nuclear safety and
applications such as content management
and technology watch, or simply turning
inert, unstructured text into actionable
knowledge.
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Table 2. Illustrative tuple traces for five time slots relative to an attack decision.*

Tuple T0 T1 T2 T3 T4 Attack

1 Fwd S Pause Fwd S Fwd Q Pause No

2 Fwd S Pause Fwd S Pause Bwd Q No

3 Bwd Q Pause Fwd S Fwd Q Fwd S Yes

4 Pause Fwd Q Fwd S Fwd Q Fwd S Yes

5 Surp Bwd Q Pause Fwd S Fwd Q Yes

6 Surp Bwd Q Pause Surp Bwd Q No

*Fwd S/Q: forward movement, slowly or quickly; Bwd: backward movement; Surp: Surprised

Time

Distance

Forward slowly

Forward slowly

Backward quickly

Pause

Pause

Figure 1. An example of five time slots/molecules from an episode (tuple 2 in table 2).



Algorithm for Projective Sensor Motions Par-
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Visual Mining 
of DNA Sequences
Michail Vlachos and Philip S. Yu, IBM T.J.
Watson Research Center
Bahar Taneri, Scripps Genome Center
Eamonn Keogh, University of California,
Riverside

Now that complete genome mappings
are available for several species, compara-
tive DNA analysis is a routine application,
providing many insights into the conserva-
tion, regulation, and function of genes and
proteins. Even though many consider the
human eye to be the ultimate data mining
tool, visual comparison between DNA
nucleotides can be difficult for humans,
given that typical DNA data sets contain
thousands of nucleotides (typical gene
length is 2,000 bases, and the whole human
genome consists of 3 billion base pairs).

Humans are better at conceptualizing
and comparing shapes than text. Here, we
present a method for visualizing DNA
nucleotide sequences into numerical trajec-
tories in space. The trajectories capture
each sequence’s nucleotide content, allow-
ing for quick, easy comparison of different
DNA sequences. Additionally, the resulting
trajectories are organized in 2D space in a
way that preserves their relative distances
as accurately as possible. We illustrate this
approach in one of many biological appli-
cations, visually determining the molecular
phylogenetic relationship of species. 

Comparative mitochondrial DNA
(mtDNA) analyses have proved useful in
establishing phylogeny among a wide
range of species.1 mtDNA is passed on
only from the mother during sexual repro-
duction, making the mitochondria clones.
This means that mtDNA changes are minor
from generation to generation. Unlike nu-
clear DNA, which changes by 50 percent
each generation, mtDNA mutations are
rare—that is, mtDNA has a long memory.
In this study, we use mtDNA to identify the
evolutionary distances among species.

From DNA sequences 
to trajectories

DNA sequences are combinatorial se-
quences of four nucleotides; adenine, cyto-

sine, thymine, and guanine, which are de-
noted by A, C, T, and G. By scanning each
symbol in a DNA sequence, we can con-
struct a trajectory that starts from a fixed
point on the Cartesian coordinate system
and moves in four directions according to
the given nucleotide.

To quantify the similarity between the
resulting trajectories, we utilize a warping
distance,2 which allows for elastic matching
between the DNA trajectories, supporting
local compressions and decompressions.
The warping distance has an additional
desirable property: it supports matchings
between trajectories of different lengths.
Figure 2 illustrates the flexible matching
between trajectories that warping distance
achieves. Figure 2a shows the mapping be-
tween the points in the resulting human and
chimpanzee mtDNA trajectories, and figure
2b shows the mapping between the human
and cat mtDNA trajectories.

Spanning-tree visualization
Now we need a fast visualization tech-

nique that also accurately highlights the pair-
wise relationships between objects in two
dimensions.3 We can easily retain the dis-
tances between any three objects A, B, and C
in two dimensions by placing the objects on
the vertices of a triangle constructed as fol-
lows: if D(A, B) is the distance between A
and B, we can map the third point at the in-
tersection of circles transcribed with centers
A and B and radii of, respectively, D(A, C)—
that is, the distance between points A and
C—and D(B, C). Given the triangle inequal-
ity, the circles either intersect at two
positions or are tangent. Any position on the
circles’ intersection will retain the original
distance. So, when mapping n objects, we
can retain three distances for the first three

objects and two distances (with respect to
two reference points) for the remaining n – 3
objects, preserving a total of 3 + 2(n – 3) dis-
tances. Using the minimum-spanning-tree
(MST) with this triangulation method, we
can preserve two distances per object on the
2D space: the distance to each object’s near-
est neighbor and the distance with respect to
a pivot point.

However, this mapping is valid only for
metric distances because only then are the
transcribed circles guaranteed to intersect
with respect to the two reference points.
The warping distance we use in assessing
DNA trajectory similarities is a nonmetric
distance, which means the circles might not
intersect. Hence, we must extend the tech-
nique to properly identify the third point’s
position so that it’s as close as possible to
the circumference of the (possibly) nonin-
tersecting reference circles.

Once we’ve incorporated these additions
on the mapping method, we have a power-
ful visualization technique for nonmetric
distances. It preserves as well as possible
not only nearest-neighbor distances (local
structure) but also global distances with
respect to a single reference (pivot) point.
The latter supports global data viewing
using the point as a pivot. Finally, the
method is computationally spartan because
we can construct the MST in O(VlogE)
time for a graph of V vertices and E edges.

Applications 
to evolutionary biology

Several examples demonstrate the useful-
ness of the proposed trajectory transforma-
tion and 2D mapping technique. First, we
use mtDNA from Homo sapiens and seven
related species to construct the spanning-tree
visualization. Figure 3 depicts the results,
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Figure 2. Matching DNA trajectories using warping distance: (a) human versus
chimpanzee and (b) human versus cat.



which agree with current evolutionary views.
The mapping not only is accurate with re-
gard to the evolutionary distance of the spe-
cies but also preserves the clustering between
the original groups that the various species
belong to. Specifically, human, pygmy chim-
panzee, chimpanzee, and orangutan belong
to the hominidae group, gibbon to the hylo-
batae group, and baboon and macaque to the
cercopithicae group. Our results corroborate
earlier findings on evolutionary distances of
Homo sapiens to other mammalian species.2

Human and orangutan divergence took place
approximately 11 million years ago, whereas
gibbon and human divergence occurred ap-
proximately 15 million years ago.5 Accord-
ing to the same source, gorilla divergence
occurred about 6.5 million years ago and
chimpanzee divergence took place about 5.5
million years ago.

Figure 4 illustrates our second example,
which involves a larger mammalian data set
and again takes the human as the referential
point. On this plot, we use the formal species
names and overlay the DNA trajectory of the
respective mtDNA sequence. At first glance,
the closeness of the hippopotamus with the
whales might seem like a misplacement. In-
tuitively, a hippopotamus has greater affinity
with an elephant. In fact, however, the hippo-
potami are more closely related to whales
than to any other mammals. Whales and hip-
popotami diverged 54 million years ago,
whereas the whale-hippopotamus group
parted from the elephants about 105 mil-
lion years ago. The group that includes hip-
popotami and whales-dolphins, but ex-
cludes all other mammals in figure 4, is
Cetartiodactyla.6 In general, the figure
illustrates the strong visualization capacity
of the spanning-tree technique, particularly
in unveiling the similarities and connec-
tions between the different species.

Future work
Here, we’ve used only small data in-

stances to present this novel DNA repre-
sentation and visualization technique.
However, we expect to find many applica-
tions in mining large sequence collections,
especially in conjunction with advanced
compression and indexing techniques. We
intend to apply our techniques to additional
biomedical applications, including screen-
ing and diagnostic techniques for cancer
data, where they could distinguish cancer
transcripts from unaffected ones and iden-
tify different cancer stages.
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Figure 3. A visualization of humans and related species using the spanning-tree 
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Actionable Knowledge
Discovery: A Brain Informatics
Perspective
Ning Zhong, Maebashi Institute 
of Technology

Brain informatics pursues a holistic un-
derstanding of human intelligence through
a systematic approach to brain research.
BI regards the brain as an information-
processing system and emphasizes cogni-
tive experiments to understand its mecha-
nisms for analyzing and managing data.
Multiaspect data analysis is an important
BI methodology because the brain is too
complex for a single data mining algorithm
to analyze all the available cognitive ex-
perimental data. MDA supports an agent-
based approach that has two main benefits
for addressing the complexity and diversity
of human brain data and applications:

• its agents can cooperate in a multiphase
process and support multilevel concep-
tual abstraction and learning, and

• its agent-based approach supports task
decomposition for distributing data min-
ing subtasks over the Grid.

MDA requires a Web-based BI portal that
can support a multiphase mining process
based on a conceptual data model of the hu-
man brain. Generally speaking, MDA can
mine several kinds of rules and hypotheses
from different data sources, but brain re-
searchers can’t use MDA results directly. In-
stead, an explanation-based reasoning pro-
cess must combine and refine them into more
general results to form actionable knowledge.
From an application’s viewpoint, the BI pro-
vides the knowledge-flow management for
distributed Web inference engines that em-
ploy actionable knowledge and related data
sources to implement knowledge services.1

A BI portal for MDA
Building a BI portal requires the develop-

ment of a multilayer, data mining grid sys-
tem to support MDA. At the Maebashi Insti-

tute of Technology’s Department of Life
Science and Informatics, we’ve been devel-
oping a systematic approach to support this
goal. We use powerful instruments, such as
functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG),
to measure, collect, model, transform, man-
age, and mine human brain data obtained
from various cognitive experiments.1

fMRI provides images of functional
brain activity that show dynamic patterns
throughout the brain for a given task; fMRI
image resolution is excellent, but the pro-
cess is relatively slow. EEG provides infor-
mation about the electrical fluctuations be-
tween neurons that also characterize brain
activity, and it measures brain activity in near
real time. Discovering new knowledge and
models of human information-processing
activities requires not only individual data
obtained from a single measuring method

but also multiple data sources measuring
methods.

Our work focuses on human information
processing activities on two levels:

• spatiotemporal features and flow based on
functional relationships between activated
brain areas for each given task, and 

• neural structures and neurobiological pro-
cesses related to the activated areas.

More specifically, at the current stage,
we want to understand how neurological
processes support a cognitive process.
We’re investigating how a specific part of
the brain operates in a specific time, how
the operations change over time, and how
the activated areas work cooperatively to
implement a whole information-processing
system. We’re also looking at individual
differences in performance.

BI’s future will be affected by the ability
to mine fMRI and EEG brain activations on
a large scale. Key issues are how to design
the psychological and physiological experi-
ments for obtaining data from the brain’s
information-processing mechanisms and
how to analyze and manage such data from
multiple aspects for discovering new human
information-processing models. Researchers
are also studying how to use data mining and
statistical learning techniques to automate
fMRI image analysis and understanding.2,3

Web intelligence4 and Grid computing5

provide ideal infrastructures, platforms,
and technologies for building a BI portal to
deal with MDA’s huge, distributed data
sources. They can support a data mining
grid composed of many agent components.
Each agent can do some simple task, but
when the Grid integrates all these agents,
they can carry out more complex BI tasks.

Using data mining agents entails both pre-
processing and postprocessing steps. Knowl-
edge discovery generally involves back-
ground knowledge from experts, such as
brain scientists, about a domain, such as cog-
nitive neuroscience, to guide a spiral, multi-
phase process to find interesting and novel
rules and features hidden in data. On the
basis of such data, BI generates hypotheses
that it deploys on the Grid for use by various
knowledge-based inference and reasoning
technologies.1 From a top-down perspective,
the knowledge level is also the application
level. Both the mining and data levels sup-
port brain scientists in their work and the
portal in updating its resources. From a
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bottom-up perspective, the data level sup-
plies the data services for the mining level,
and the mining level produces new rules and
hypotheses for the knowledge level to gener-
ate actionable knowledge.

Peculiarity-oriented mining
fMRI and EEG data are peculiar with

respect to a specific state or the related part
of a stimulus. Peculiarity-oriented mining is
a proposed knowledge discovery methodol-
ogy that automates fMRI and EEG data
analysis and understanding. POM doesn’t
use conventional fMRI image processing or
EEG frequency analysis, and it doesn’t
require human-expert-centric visualization.

Figure 5 illustrates the methodology ap-
plied to interpreting the spatiotemporal fea-
tures and flow of a human information pro-
cessing system. In the cognitive process
from perception (in this case, a cognitive
task stimulated by vision) to thinking (rea-
soning), the system collects data from sev-
eral event-related points in time and trans-
forms them into various forms for POM-
centric MDA. Finally, the system explains
the results of the separate analyses and syn-
thesizes them into a whole flow.

The proposed POM/MDA methodology
shifts the focus of cognitive science from a
single type of experimental data analysis
toward a deep, holistic understanding of
human information-processing principles,
models, and mechanisms.
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Privacy-Preserving Data
Mining: Past, Present, 
and Future
Mafruz Zaman Ashrafi, Institute 
for Infocomm Research
David Taniar, Monash University

Privacy issues grow in importance as
data mining increases its power to dis-
cover knowledge and trends from ever-
larger data stores. The reason is simple and
straightforward: once information is re-
leased, it’s difficult to control and so im-
possible to protect from misuse.

Aggregating data from various sources
increases the risk of privacy breaches, but
many applications require data sharing to
ensure their resulting model accuracy. Un-

less they aggregate data from different
sources, the mining models they generate can
contain many false positives and useless pat-
terns. More importantly, the models might
exclude knowledge that’s critical in decision
making. For example, homeland-defense
applications profile individuals by combin-
ing privacy-sensitive data sources from vari-
ous domains. Without combining these
sources, the data mining models might tag an
innocent person as a criminal or vice versa.

Because the consequences of inaccuracy
are so serious, privacy has emerged as a top
data mining research priority. Mitigating
privacy risk in distributed data mining mod-
els involves two broad issues: privacy-pre-
serving data aggregation and data mining
model accuracy.

Privacy in frequent-item-set
mining

The distributed data mining process dis-
closes each participating source site’s
item-set frequency. Privacy-preserving
methods in this distributed process mainly
rely on the way each site shares its local
support of its item sets without exposing
the exact frequency. Three well-known
approaches to achieve this goal are ran-
domization, secure multiparty compu-
tation (SMC), and cryptography.

Randomization approaches are based on
randomized data sets from various sites.1

Participating sites preserve privacy by dis-
carding some data set items and inserting
new ones. They send the results to a cen-
tralized third-party site and ensure accuracy
by including statistical estimates of the origi-
nal item frequency and randomization vari-
ance. Applications can use these estimates,
together with the Apriori algorithm,2 to
mine the nonrandomized transaction fre-
quencies while looking only at the random-
ized frequencies.

Randomization techniques in frequency-
item-set mining are either transaction in-
variant or item invariant. The transaction-
invariant technique will breach privacy if the
given data set’s individual transaction size is
large. For example, a transaction size |t| �
10 is doomed to fail at protecting privacy.
On the other hand, the item-invariant tech-
nique includes all items in a perturbed trans-
action |t�| = R(t). This technique assumes the
probability of these items to be the same, and
it completely ignores the correlation between
them. The resulting frequent-item sets might
be unable to accurately reflect many of the
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original items. The item-invariant technique
also incurs additional computational cost.
Furthermore, if each participating site has a
large data set, distorting the data set can in-
volve huge computation.

SMC-based techniques discover an item
set’s global frequency without involving a
trusted third party.3,4 Unlike randomization
approaches, SMC approaches neither per-
turb the original data set nor send it to a
centralized site. Instead, they perform a
secure computation in two cycles.

To discover a global frequency, in the
first cycle, known as obfuscation, every
participating site generates its local fre-
quency x and obfuscates it by performing a
function fi(x 	 ri), where r is a random
noise. The site then sends the obfuscated
frequency to an adjacent site. The adjacent
site j obfuscates its local frequency in the
same manner fj(x 	 rj), combines the ob-
fuscated frequencies, and sends the result
to the next adjacent site. The process con-
tinues until no participating site remains.
At this point, the obfuscated frequency in-
cludes each item set’s local frequency and
noise. In the second cycle, de-obfuscation,
each site repeats this process with one ex-
ception: instead of adding noise, it removes
noise from the obfuscated frequency. At the
end of this round, each site can discover the
exact global frequency of a given item set.

Although generating global frequency of
any item set is quite straightforward with
SMC, privacy is still vulnerable if the par-
ticipating sites collude with each other. For
example, sites i and i + 2 in the chain can
collude to find the exact support of site i +
1. SMC also incurs high communication
costs because each site must communicate
with others many times to find each item
set’s exact global frequency.

SMC’s communication costs increase
exponentially as the number of partici-
pating sites increases. In fact, these ap-
proaches aren’t feasible when the number
of participants is large—for example, in an
online survey. Crypto-based systems can
overcome this limitation by using public-
key cryptography to generate global fre-
quency.5 Similar to randomization, crypto
systems use a centralized site to aggregate
all participating sites’ frequencies without
losing accuracy as the cost of privacy.
However, if each data set has many local
frequent-item sets, this approach not only
incurs high computation costs but also in-
creases communication costs.

Future trends
A privacy-preserving min-

ing model isn’t easy to 
achieve, and it’s perhaps im-
possible to achieve privacy
without trade-offs. A data
mining application deter-
mines the cost it must pay to
reach the required privacy
level. Figure 6 summarizes
these trade-offs for the ap-
proaches we’ve described.

Apart from these trade-
offs, other privacy questions
also need serious and imme-
diate attention. For example,
does the data mining pattern
itself breach privacy? Can
the data mining model’s pri-
vacy be exposed by associ-
ating the model with public
data sources? Such problems might not be
visible immediately, but the threats they
pose are real. 
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Toward Knowledge-Driven
Data Mining
Eugene Dubossarsky, Ernst & Young
Warwick Graco, Australian Taxation Office

Data mining faces many challenges, but

the primary one is to move from a method-
driven approach to a process driven by do-
main problems and knowledge. Here, we
describe four key aspects of successfully
meeting this challenge: moving to intelli-
gent algorithms that utilize expert knowl-
edge, converting dumb data points to smart
ones, combining business knowledge with
technical knowledge to optimize mining
and modeling results, and using discovery
and detection results to improve intelli-
gence analysis.

Intelligent algorithms
Many data mining algorithms lack

smarts and are biased in their capabilities.
For example, K-means clustering algo-
rithms are biased toward recovering clus-
ters that have hyperspherical shapes.1 They
don’t perform well in recovering other nat-
urally occurring forms, such as banana-
shaped clusters. We need intelligent algo-
rithms that can identify clusters in data
regardless of shapes, sizes, and spatial ori-
entations. 

Such algorithms require two key compo-
nents. First is a range of tools and techni-
ques for working out the optimum fit be-
tween data and classification and prediction
models and for discovering data configura-
tions and correlations such as associations,
clusters, and classes. Second, intelligent
algorithms require expert knowledge. This
knowledge can take the form of heuristics
and routines that manage data nuances and
tailor the data mining to specific tasks. One
solution is supervised clustering—for
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example, user-driven selection of cluster
seeds and distance metrics.2 Clustering
techniques can also employ active learning
techniques to obtain expert feedback for
optimal results.3 Other data mining tech-
niques should also incorporate expert
knowledge.

Intelligent data
Current data mining techniques are ap-

plied to dumb data points. Intelligent data
points could aid both data mining and data
modeling. Each data point should have
metadata to explain when it was created,
who created it, and what it represents. In
addition, metaknowledge in the form of
expert explanation and interpretation could
clarify each data point’s significance.

Dumb data points don’t help an algo-
rithm discriminate whether the data is rele-
vant to solving specific mining and model-
ing problems. Efficient algorithms need to
distinguish noise from signal—a distinc-
tion that depends on the problem context.
Data that’s noise in one context might be
signal in another. For example, prevailing
weather conditions might not be relevant
to explaining certain crime patterns, but
they’re likely to be important in explaining
patterns of disease.

We need algorithms that can interrogate
the metadata and metaknowledge attached
to data points in much the same way the
Semantic Web proposes to do for Web con-
tent.4 The Semantic Web expresses Web
content in a form that software agents can
read. This allows them to find, share, and
integrate information more easily. In a simi-
lar way, data mining algorithms could use
metadata and metaknowledge to eliminate
data points that have little bearing on the
problem being solved. These same sources
would also help users understand data min-
ing results.

Business knowledge
Data mining must marry business knowl-

edge and technical knowledge. Data miners
often lack business domain knowledge
when they undertake mining and model-
ing tasks. This essential knowledge comes
from business experts, who can help
throughout the data mining life cycle.
These experts must guide the exploration
process, acting as navigators while data
miners do the driving.

Method-driven data mining can pro-
duce many pages of results with little or
no significance. Knowledge-driven data
mining needs business experts to identify
the important results and interpret them in
the form of metaknowledge. Metaknowl-
edge puts results in perspective and helps
users understand their significance for
purposes such as increasing productivity,
lowering costs, and improving outcomes.
For example, Tatiana Semenova high-
lighted how to use metaknowledge de-
rived from interpreting data mining re-
sults to develop best-practice medical
guidelines to improve patient outcomes.5

Another perspective on this issue is min-
ing the tacit knowledge of experienced
people to predict outcomes. Research has
shown that such knowledge can produce
superior results in prediction markets rang-
ing from political forecasting to commer-
cial sales forecasts.6

Intelligence
Confusion abounds around what “intel-

ligence” means. To clarify it here, we use
the WIKID (pronounced “Why-kid”) hi-
erarchy that’s emerged from the knowl-
edge management community (see table
3). In this hierarchy, intelligence refers to
information that’s been analyzed and
evaluated—part of a process of making
informed assessments of what will hap-
pen, when, and how. It relies on the ca-
pacity to acquire and apply knowledge.
Analysts who perform this function are
responsible for marshalling the facts,
drawing deductions from what is known,

and providing options to decision makers.
Intelligence is the lifeblood of organiza-
tions and helps to determine where re-
sources should be invested to exploit op-
portunities and to counter threats.

Intelligence and data mining have a sym-
biotic relationship. Intelligence helps to re-
solve where to focus data mining—for ex-
ample, to detect fraudulent insurance claims.
Equally, data mining research and practice
discover new knowledge to evaluate.

Conclusion
Knowledge is the fuel that drives data

mining. The work we’ve described here can
move the field toward integrating knowledge
fully into data mining practice and so en-
hance the intelligence of its results.
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Table 3. WIKID hierarchy.

Concept Description

Wisdom Knowledge rightly applied to solve difficult problems and issues

Intelligence Evaluated knowledge from which relevant insights and understanding have been extracted

Knowledge Deep and detailed information on a topic

Information Data on issues

Data Basic facts and figures
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