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Tracking Mobile Users in Wireless Networks
via Semi-Supervised Co-Localization
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Abstract—Recent years have witnessed growing popularity of sensor and sensor-network technologies, supporting important practical
applications. One of the fundamental issues is how to accurately locate a user with few labelled data in a wireless sensor network,
where a major difficulty arises from the need to label large quantities of user location data, which in turn requires knowledge about the
locations of signal transmitters, or access points. To solve this problem, we have developed a novel machine-learning-based approach
that combines collaborative filtering with graph-based semi-supervised learning to learn both mobile-users’ locations and the locations
of access points. Our framework exploits both labelled and unlabelled data from mobile devices and access points. In our two-phase
solution, we first build a manifold-based model from a batch of labelled and unlabelled data in an offline training phase and then use a
weighted k-nearest-neighbor method to localize a mobile client in an online localization phase. We extend the two-phase co-localization
to an online and incremental model that can deal with labelled and unlabelled data that come sequentially and adapt to environmental
changes. Finally, we embed an action model to the framework such that additional kinds of sensor signals can be utilized to further
boost the performance of mobile tracking. Compared to other state-of-the-art systems, our framework has been shown to be more
accurate while requiring less calibration effort in our experiments performed at three different test-beds.

Index Terms—Wireless sensor networks, Semi-supervised learning, Indoor localization, Co-localization, AI applications.
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1 INTRODUCTION

Locating users in a wireless network is an important task
in many applications that range from context-aware com-
puting [1], location-based services [2], [3] to robotics [4],
[5]. With recent advances in pervasive computing and mobile
technology, the problem of tracking wireless devices using
received-signal-strength (RSS) has attracted intense interest in
many research communities [6], [7]. RSS-based tracking or
localization is a challenging task since radio signals usually
attenuate in a highly nonlinear and uncertain way in a complex
environment where client devices may be moving. Existing
approaches to RSS-based localization fall into two main
categories: (1) radio propagation models [8]; (2) statistical
machine learning models [9], [10], [11]

Traditionally, practitioners have used geometric models that
are based on signal propagation properties and access point
locations. These models have poor accuracy when the access
points (APs) are separated far from each other as in cellphone
base towers. More recent works have used learning-based
models that can achieve much better accuracy. These learning
based models are set up purely from the client devices based
on a large amount of calibration data [9], [10], [11].However,
a major problem with the learning-based models is that, in
many indoor localization cases, the calibrated training data are
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manually collected since the Global Positioning System (GPS)
may not work in an indoor environment. The data collection
process is time consuming, and can be easily outdated, making
it necessary for us to collect the data over and over again. In
order to reduce the calibration effort, this work attempts to
answer the following three questions:

• How can we reduce calibration effort to build a tracking
system by incorporating unlabelled data?

• Can we further enhance the performance if the locations
of some access points are known?

• Can we make use of different kinds of signals to further
boost the performance?

In this paper, we address the problem of simultaneously
recovering the locations of both mobile devices and access
points, which we call co-localization, using labelled and
unlabelled RSS data from both mobile devices and access
points. We propose two solutions to this problem. The first one
is called two-phase co-localization which is based on semi-
supervised manifold-learning techniques, which has an offline
training phase and an online localization phase. However, a
two-phase model may not adapt to environmental changes
well since the model remains unchanged after being trained.
To solve this problem, we extend the model to online co-
localization which can cope with calibrated and uncalibrated
data stream in real-time and adjust itself online.

• Solution I: Two-Phase Co-Localization
In general, learning-based systems using RSS values func-

tion in two phases : an offline training phase and an online
localization phase. In the offline phase, a learning-based
model is trained by using the signal strength values received
from the access points at selected locations in the area of
interest. These values comprise the training data gathered from
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a physical region, which are used to calibrate a probabilistic
location-estimation system. In the online localization phase,
the real-time signal strength samples received from the access
points are used to estimate the current location based on the
learned model.

More specifically, in the offline training phase, we take
two steps for model building. In the first step, we assume
that only unlabelled RSS data are given. We show that the
problem can be solved by Latent Semantic Indexing (LSI)
or Singular Value Decomposition (SVD) [12] techniques that
are popular in information retrieval. Consequently, the relative
locations of access points and mobile device trajectories can be
determined. In the second step, we assume that a small amount
of labelled RSS data from mobile devices and access points
are given. To recover the absolute locations of the devices
and access points, we apply a semi-supervised algorithm with
graph Laplacian and manifold learning [13], [14]. Finally, we
provide a unified framework for both the above unsupervised
and semi-supervised solutions. A preliminary version of this
solution can be found in [15].
• Solution II: Online Co-Localization
However, in many applications, access points can not be

deployed in a static environment where calibrated and un-
calibrated data arrive in a streaming manner. Access points
may be removed, relocated and added for better coverage and
link quality. In each case, a localization system may gradually
become inaccurate without costly re-calibration and re-running
the whole training process. It is also wasteful to discard
previous computational results even if the system can be re-
trained. A better idea is to construct an online localization
model in a streaming manner.

The online co-localization extends the two-phase framework
and addresses the problem of recovering the locations of
both mobile devices and access points from radio signals that
come in a streaming manner, by exploiting both labelled and
unlabelled data from mobile devices and access points. The
solution is based on online and incremental manifold-learning
techniques [16], [17] and semi-supervised techniques [14]
that can cope with labelled and unlabelled data that come
sequentially. A preliminary version of online co-localization
can be found in [18].
• Extension: Sensor Fusion with Action Models
Note that the above two solutions rely on measuring signal

strength values sent from static landmarks such as wireless
access points to mobile devices. Localization systems can
also be broadly classified into two categories: Landmark-based
and Landmark-free, depending on what sensor devices are
used. Landmark-based systems rely on a certain proximity
measurement between a mobile device and multiple landmarks
that are deployed in the environment [19], [20]. Typical
landmarks can be satellites in GPS or access points in WiFi
Networks. In an indoor environment, satellite signals are not
always available. Instead, WiFi access points are deployed in
many buildings. However, accurate tracking mobile devices
using RSS is a challenging task since RSS values have large
noise in a complex indoor environment due to attenuation,
shadowing and multi-path effects.

Landmark-free systems can perform self-localization with-

out relying on any external references [21]. For example, a
mobile robot can locate itself because an action sequence
is usually available. The robot can update its status after
executing an action such as move(forward, 1 meter) or
turn(left, 90o), which means the robot is “to move forward
1 meter” or “to turn left 90 degrees”, respectively. Similarly,
an Inertial Navigation System (INS) has motion sensors such
as gyroscope, accelerometer and compass, which can be used
for inferring the action of a mobile user such as speed and
orientation, walking or not, etc. Landmark-free systems can
be very accurate for a short time. However, errors may be
accumulated due to sensor noise if no landmarks are available
for re-calibration.

Hence, a better idea is to combine the Landmark-based
and Landmark-free systems. In this paper, we extend the
proposed co-localization solutions by utilizing both signal
strength received from landmarks and readings from motion
sensors. Specifically, we use the action sequences inferred
from compass and accelerometer, and reconstruct the location
trajectory via semi-supervised manifold learning techniques.
We borrow and extend the idea from [22] in the sense that
if actioni and actionj are similar, the change of status or
location would be similar. Our method is called Localization
via Action Respecting Manifold (LARM).

2 RELATED WORKS

In the past, propagation models were widely used for loca-
tion estimation due to their simplicity and efficiency [23].
These models usually assume that access points are labelled,
e.g., their locations are known. An alternative is to apply
machine learning methods to learn a model that captures
the correlations between RSS values and locations [7]. With
these methods the location information of access points need
not to be known. Instead, they usually rely on models that
are trained with RSS data collected on a mobile device
and the corresponding labels or physical locations [9], [24],
[11]The training data are usually collected offline. These signal
values may be noisy and nonlinear due to environmental
dynamics. Therefore, sufficient data have to be collected to
power algorithms for approximating the signal to location
mapping functions using histograms [24], k-nearest-neighbors
(KNN) [9], etc.

Besides semi-supervised learning models, transfer learning
techniques have been also applied to the RSS-based localiza-
tion problem to reduce the calibration effort [7]. The goal of
transfer learning is to learn a precise model in a target domain
with as few as training data by making use of training data
from a related domain, where the data distribution may be
different from that of the target domain [25].

However, these transfer-learning-based models only fo-
cused on tracking the mobile device, while our proposed co-
localization framework can recover the locations of access
points and track the mobile device simultaneously. By assum-
ing an action model be given, Ferris et al. [19] proposed an
unsupervised framework for SLAM (simultaneous localization
and mapping) [5] in a WiFi environment. It has been observed
in [22] that two identical actions lead to similar status change.
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By treating actions as discrete labels, latent coordinates can
be recovered via Action Respecting Embedding [22].

3 METHODOLOGY

3.1 Problem Statement
Consider a two-dimensional co-localization problem1. Assume
that a user holds a mobile device and navigates in an indoor
wireless environment C ⊆ R2 with n access points, which can
periodically send out beacon signals. At some time ti, the RSS
values from all the n access points are measured by the mobile
device to form a row vector si = [si1 si2 . . . sin ] ∈ Rn. A
sequence of m signal strength vectors form an m× n matrix
S = [s′1 s′2 . . . s′m]′, where s′i denotes a transposition of
si. Here, the locations of some access points and the mobile
devices at some time ti are known or labelled, while the rest
are unlabelled.

We estimate the m × 2 location matrix P =
[p′

1,p
′
2, . . . ,p

′
m]′ where pi = [pi1 pi2 ] ∈ C is the location

of the mobile device at time ti and the n× 2 location matrix
Q = [q′

1,q
′
2, . . . ,q

′
n]

′ where qj = [qj1 qj2 ] ∈ C is the location
of the jth access point. We call this problem co-localization.
More specifically, we have two main objectives:

• Two-phase co-localization. Given a fixed amount of
labelled and unlabelled data collected offline, the first
objective is to build a model for simultaneously recov-
ering the locations of the remaining unknown access
points and the trajectory of the mobile device. The model
can then be used for online localization. The model
remains unchanged in the online phase unless we re-train
everything. These offline and online phases are done in a
way as most traditional machine learning approaches do.

• Online co-localization. Assuming that partially calibrated
data come sequentially, the second objective is to deter-
mine and update the locations of the remaining unlabelled
access points and the trajectory of the mobile device in
real-time. Note that m is not a constant value. As time
elapses, m may increase from 1, 2, . . ., to any number.
We wish to dynamically adjust the model when observing
new data without relying on an offline training phase.

Fig. 1. An indoor WLAN Test-bed.

Example 1 As an example, Figure 1 shows an indoor 802.11
wireless LAN environment of size about 60m× 50m, which

1. Note that it is straight-forward to extend our proposed models to three-
dimensional co-localization problems.

has n = 5 access points. A user with an IBM T42 notebook
that is equipped with an Intel Pro/2200BG internal wireless
card walks from A through B,C,D,A,E to F at time
tA, tB , tC , tD, tA′ , tE , tF . Correspondingly, a total number
of m = 1, 2, . . . , 7 signal strength vectors are incrementally
extracted. The final 7 × 5 matrix S is shown in Table 1. By
walking from A to F in the hallways, we collected 500 signal
strength vectors from 5 access points. Note that the blank cells
denote the missing values, which we can fill in a small default
value, e.g., −100dBm.

TABLE 1
Signal Strength (unit:dBm).
AP1 AP2 AP3 AP4 AP5

tA -40 -60 -40 -70
tB -50 -60 -80
tC -40 -70
tD -80 -40 -70
tA′ -40 -70 -40 -60
tE -40 -70 -40 -80
tF -80 -80 -50

(All values are rounded for illustration)

Our first task is to estimate the trajectory matrix P of the
mobile device at all times and to determine the location matrix
Q of the access points AP1, AP2, . . . , AP5. Our second task
is to dynamically update the trajectory matrix P of the mobile
device at each time when new data come and to update the
location matrix Q of the access points in an online manner.

3.2 Domain Characteristics
There are four main characteristics about RSS by observing
the data in Table 1:

1) Considering two rows of the data, the mobile device at
two different time may be spatially close if their pairwise
signal strengths are similar from most access points, e.g.,
the time tA and tA′ .

2) Considering two columns of the data, two access points
may be spatially close if their pairwise signal strength
values are similar most of the time, e.g., AP1 and AP4.

3) Considering a single cell sij of the data, the mobile
device and the j access point may be spatially close to
each other at time ti if the signal is strong, e.g., the
mobile device is close to AP3 at time tD.

4) Considering two neighbored rows of the data, the mobile
device at two consecutive time may be spatially close if
their time interval is small by assuming that a user may
not move too fast or too irregularly. For example, the
locations of the mobile device at time tA′ and tE are
close since |tA′ − tE | < ∆T .

3.3 SVD-based Relative Co-Localization
Given unlabelled data only, we can determine the relative
locations of the mobile device and the access points. Not
surprisingly, the relative co-localization is closely related to
Latent Semantic Indexing (LSI) [12]. In this view, we treat an
access point as a term and a mobile device at some time as a
document. The first three observed characteristics mentioned
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above would be mapped to the similarities of document-
document, term-term and document-term respectively. Esti-
mating the positions of the mobile device and the access points
corresponds to discovering the latent semantics of documents
and terms in some concept space.

More specifically, we can estimate the relative coordinates
by performing Singular Value Decomposition (SVD).

1) Transform the signal matrix S = [sij ]m×n to a non-
negative weight matrix S̃ = [s̃ij ]m×n by a linear func-
tion s̃ij = sij − smin, where smin is the minimal signal
strength detected, e.g., the noise level or −100dBm.

2) Normalize the weight matrix by S̃N = D
−1/2
1 S̃D

−1/2
2 .

Here, D1 and D2 are both diagonal matrices such that
D1 = diag(d11, d

1
2, . . . , d

1
m) where d1i =

∑n
j=1 s̃ij and

D2 = diag(d21, d
2
2, . . . , d

2
n) where d2j =

∑m
i=1 s̃ij .

3) Perform SVD on the normalized weight matrix by S̃N≈
Um×rΣr×rV

′
n×r. The columns of Um×r=[u1 . . .ur] and

Vn×r=[v1 . . .vr] are the left and right singular vectors.
The singular values of the diagonal matrix Σr×r =
diag(σ1, σ2, . . . , σr) are ranked in non-increasing order.

4) The (latent) location matrices of the mobile device P
and that of the access points Q can be estimated using
P = D

−1/2
1 [u2 u3] and Q = D

−1/2
2 [v2 v3]. Note that

we skip the first singular vectors u1 and v1 which mostly
capture some constant since matrix S̃N is not centering.

As an example, after performing SVD on data in Example
1, we obtained the latent coordinates of the mobile device
and the access points, which are shown in Figure 2(a). In this
example, it is easy to see that the hallway structure is not well
preserved by comparing the true location sequence shown in
Figure 1. This is because SVD assumes a linear subspace,
while the correlation of RSS values and distance to access
points is often nonlinear [11].

A better solution is using kernelized SVD [26], by trans-
forming signal strength values to weights by a nonlinear
function. More specifically, we transform the signal matrix
S = [sij ]m×n to a new weight matrix S̃ = [s̃ij ]m×n by a
Gaussian function:

s̃ij = exp(−|sij − smax|2/2σ2) (1)

where smax is the maximal signal strength detected, e.g., the
signal strength around an access point, and σ is a parameter
of the Gaussian kernel, which is known as kernel width.
Figure 2(b) plots the co-localization result using P and Q.
Intuitively, the reconstructed hallway structure and the loca-
tions of access points are better than that shown in Figure 2(a)
while referring to the ground truth illustrated in Figure 1.

3.4 Manifold-based Absolute Co-Localization

When the physical locations of some access points and the
mobile device at some time are known, we can ground the
unknown coordinates by exploiting the geometry of the signal
distribution. More specifically, we can use manifold-based
learning, which generally assumes that if two points are close
in the intrinsic geometry of the marginal distribution, their
conditional distributions are similar [27]. This implies that

mobile devices would be spatially close to each other if their
signal vectors are similar along some manifold structure [28].
For example, the mobile device at time tA and tE would
be spatially close to each other (Figure 1) since their signal
strength values are similar (Table 1).

A more concrete example is shown in Figure 3. As can
be seen in Figure 3(a), there is a two-dimensional triangle
localization area with three beacon nodes placed at the ver-
tices. The corresponding signal strength values form a two-
dimensional nonlinear signal manifold in a three-dimensional
space in Figure 3(b). Point A, B and C are neighbors in both
location and signal spaces.
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C

(a) Triangle test-bed
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Fig. 3. Neighborhood preserving.

When the manifold assumption holds, the optimal solution
is given by f∗ = argminΣl

i=1|fi − yi|2 + γfTLf [14], where
the first term measures the fitting error and the second term
poses the smoothness along the manifold and L is the graph
Laplacian [29]. For our problem, the objective is to optimize:

P ∗ = argmin
P∈Rm×2

(P − YP )
′JP (P − YP ) + γPP

′LPP, (2)

where P is the coordinate matrix of the mobile device to be
determined; JP = diag(δ1, δ2, . . . , δm) is an indication matrix
where δi = 1 if the coordinate of the mobile device at time
ti is given and otherwise δi = 0; YP = [y′

1,y
′
2, . . . ,y

′
m]′ is

an m × 2 matrix supplying the calibration data where yi is
the given coordinate of the mobile device at time ti if δi = 1
and otherwise the value of yi can be any, e.g., yi = [0 0]; γP
controls the smoothness of the coordinates along the manifold;
LP = DP −WP is the graph Laplacian; WP = [wij ]m×m is
the weight matrix and wij = exp(−∥si − sj∥2/2σ2) if si and
sj are neighbors along the manifold and otherwise wij = 0;
DP = diag(d1, d2, . . . , dm) and di =

∑m
j=1 wij .

By setting the derivative of the right hand side in (2) to
zero, we obtain the optimal solution shown as follows,

P ∗ = (JP + γPLP )
−1JPYP . (3)

Similarly, the coordinates of the access points can be
obtained by solving the following optimization problem Q∗=
argmin
Q∈Rn×2

(Q−YQ)
′JQ(Q−YQ)+γQQ

′LQQ, and thus

Q∗ = (JQ + γQLQ)
−1JQYQ, (4)

where LQ = DQ − WQ is the graph Laplacian, WQ is the
weight matrix and DQ is constructed from WQ.

Thus, when the locations of the mobile device and the
access points are partially known, we can co-localize them
by solving Equations (3) and (4) respectively. Alternatively,
we can combine them into a single equation as

R∗ = (J + γBLB + γCLC)
−1JY, (5)
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Fig. 2. 802.11 Wireless LAN test in an indoor environment.

where R = [P ′ Q′]′ is the coordinate matrix of the mobile
device and the access points; Y = [Y ′

P Y ′
Q]

′ gives the
label information; J =

[
JP 0
0 JQ

]
is the indication matrix;

LB=
[

LP 0
0 0

]
and LC=

[
0 0
0 LQ

]
are the graph Laplacians.

In practice, the graph Laplacians LB and LC in Equation (5)
are normalized [13], [30]. Figure 2(c) shows an example
of the manifold-based co-localization when the locations of
the mobile device at time tA, tB , tC , tD, tE , tF and the
access points AP2, AP3, AP4 are known. As can be seen,
the trajectory of the mobile device is well grounded when
compared to the ground truth shown in Figure 1. However,
locations of access points are estimated badly, e.g., the location
of AP5. The reason is that in manifold-based co-localization,
there are two manifolds, one is for WiFi data and the other is
for access points. These two manifolds are learned separately.
Most manifold-based methods require dense unlabelled data
to propagate label information through an underlying manifold
structure. However, from access points’ perspective, the data
are extremely sparse. Furthermore, AP5 is far away from the
other four. In this case, the manifold-based co-localization
approach is not able to estimate the location of AP5 accurately.
In contrast, the SVD-based co-localization approach employs
matrix factorization techniques to recover latent locations of
the access points and WiFi data jointly. As a result, a lot
of unlabeled WiFi data can help recover latent locations of
the access points. Although the latent coordinates can not be
aligned to absolute locations without label information, the
relative distance between access points is more accurate than
that estimated by the manifold-based co-localization approach.
In the following, we propose to combine SVD-based and
manifold-based co-localization to align the mobile device and
the access points to the ground truth jointly.

3.5 Solution I: Two-Phase Co-Localization

Offline Training Phase So far, we have formulated the
unsupervised co-localization based on SVD and the semi-
supervised co-localization based on the manifold assumption
using Equation (5) by exploiting the correlation between the
mobile device and the access points. In this section, we
integrate them through a unifying framework. Essentially,
performing SVD on SN is equivalent to solving the following
generalized eigenvalue problem [31]

LAZ = DAZΛ, (6)

where LA = DA −WA is the graph Laplacian, WA=
[

0 S̃

S̃′ 0

]
and DA=

[
D1 0
0 D2

]
. The eigenvalues of the diagonal matrix

Λ = diag(λ1, λ2, . . . , λm+n) are ranked in non-decreasing
order. Z = [z1, z2, . . . zm+n] are the eigenvectors. [P ′ Q′]′ =
[z2 z3]. Note that we skip the first eigenvector z1 since the
solution is trivial. Furthermore, it is interesting to see that we
have λi = 1−σi where i = 1, 2, . . . , r [31]. Detailed analysis
and comparison of LSI, SVD and graph Laplacian can be
found in literatures on LSI [12], Bipartite Co-Clustering [31]
and Fiedler Embeddings [32].

Putting (5) and (6) together, we aim to optimize:

R∗ = argmin
R∈R(m+n)×2

(R− Y )′J(R− Y ) + γR′LR. (7)

The first term measures the fitting error and the second term
constrains the smoothness among the mobile device and the
access points. The solution is given by:

R∗ = (J + γL)−1JY, (8)

where L = γALA + γBLB + γCLC = D −W .
We set γ to a small positive value, which is directly

related to harmonic functions on the graph such that the
coordinate of a mobile device or an access point ri in
R = [r′1, r

′
2, . . . , r

′
m+n]

′ is determined by the average of its
neighbors: ri =

∑
j wijrj∑
j wij

, where W = [wij ](m+n)×(m+n) =[
γBWP γAS̃

γAS̃
′ γCWQ

]
.

In practice, we optimize the objective function over the
normalized graph Laplacian [13], [30] to balance the weights
of vertices by substituting R=D−1/2F into (7)

F ∗=argmin
F∈R(m+n)×2

(D−1/2F−Y)′J(D−1/2F−Y)+γNF ′LNF, (9)

where LN = D−1/2LD−1/2 is the normalized graph Lapla-
cian. The optimal F is given by

F ∗ = (JD−1/2 + γNLN )−1JY. (10)

Substituting F = D1/2R back to Equation (10), the locations
of the mobile device and the access points are given by

R∗ = D−1/2(JD−1/2 + γNLN )−1JY. (11)

We can export the estimated coordinates of the mobile
device trajectory P ∗ and the access point locations Q∗ from
R∗ = [P ∗′ Q∗′]′.
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Online Localization Phase The location of a new signal
strength vector si is predicted as follows:

1) Find the k neighbors closest to si in the training data
S = [s′1 s′2 . . . s′m]′. Let Ci be the index set of
the k nearest neighbors. Besides, we link si to those
access points from which we can detect the radio signal.
We also link si to si−1 in order to pose the temporal
constraint by assuming that a user may not move too
fast (ti − ti−1 < ∆T ). Denote the index set for these
additional links as Bi.

2) Approximately, we can predict the location using har-
monic functions [33], which are smooth functions on
the graph such that ri is determined by the weighted
average of its neighbors. This property holds if there
is no uncertainty in the labelled locations of matrix P
during training (γ → 0 in (7)),

r̃i ≈
∑

j∈Ci∪Bi
wijrj∑

j∈Ci∪Bi
wij

. (12)

Note that the above r̃i is an approximation because
adding si to the existing neighborhood graph from the
training data may slightly change the graph structure. We
link the ith node to the node set Ci but do not eliminate
any existing edge in the graph to maintain the k-neighbor
relationship among all nodes.

3.6 Solution II: Online Co-Localization

We will extend the above Two-Phase Co-Localization model
to an online version. We wish that it can dynamically adjust
itself when new data come sequentially in real-time. The key
point is how to add the new data into the learned graph by
updating the k-neighbor relationship and the corresponding
weight matrix W . This can be done repeatedly in two online
steps: Predict and Update.
Predict Given a new signal vector si at time ti, we find its k
nearest neighbors and use Equation (12) in the above online
localization phase for predicting the location r̃i.
Update The addition and deletion of nodes can modify the
neighborhood graph and the corresponding graph Laplacian.
We use the method described in [16] for updating the neigh-
borhood graph structure locally.
• Node Addition Let A+

i and D+
i be the set of edges to

be added and deleted after inserting vi to the neighborhood
graph, respectively. Let τj be the index of the kth nearest
neighbor of vj . Here we assume that all k nearest neighbors
of vj have been ranked in non-decreasing order in terms of
the distance to vj . Given a k-nearest-neighborhood graph
consisting of n nodes, when the (n+1)

th node vi is inserted
to the graph, we need to add k edges to connect vi to its
k nearest neighbors, e(vi, vj), where vj ∈ Ci. Furthermore,
for each vj in the old graph, if ∆j,τj ≤ ∆j,i, where ∆j,i

denotes the distance between vi and vj , then the k nearest
neighborhood of vj remains the same, thus the corresponding
local neighborhood graph of vj does not need to be updated.
Otherwise, if ∆j,τj >∆j,i, then vi replaces vτj in the k nearest
neighborhood of vj . Thus the corresponding neighborhood

graph needs to be updated as follows:

A+
i = {e(j, i) : j ∈ Ci or ∆j,τj > ∆j,i},

D+
i = {e(j, τj) : ∆j,τj > ∆j,i & ∆τj ,j > ∆τj ,lj},

where lj is the index of the kth nearest neighbor of
vτj after inserting vi in the graph.

• Node Deletion Similarly, let A−
i and D−

i denote the set
of edges to be added and deleted after removing vi from the
neighborhood graph, respectively. The graph update can be
done as follows:

A−
i = {e(i, hi)}, where hi is the (k + 1)th nearest

neighbor before removing vi in the graph.
D−

i = {e(i, j) : j ∈ Ci}.

After updating the neighborhood graph, it is straight-
forward to modify the corresponding weight matrix W . For
an added edge e(i, j), we set both the values of wij and wji

because the neighborhood graph is symmetric. If it is a deleted
edge, we clear the values of wij and wji. The graph Laplacian
L=D−W can be updated in a similar way.

Finally, we have to re-estimate the location matrix R =
[P ′ Q′]′ of the mobile devices and the access points so that it
can reflect the change of the neighborhood graph and the new
graph Laplacian L. Instead of using Equation (8) for solving
R, we update R by iteration. In each iteration cycle, we apply

rnewi =
∑

j∈Ci∪Bi
wijr

old
j∑

j∈Ci∪Bi
wij

, i=1, . . . ,m+n. We use the predicted
r̃i as the initial values for iteration. Furthermore, the weight
matrix W does vary too much after addition or deletion. We
can thus obtain very good estimation after a few iterations.
Example 2 A user with a mobile device walks in the office
area shown in Figure 1. The mobile device periodically
collects signal vectors. The user can mark down his location
when he walks by some landmark points such as corners and
dead-ends of the hallways (A,B, . . . , F ). Thus, the data that
come in a streaming manner are partially labelled. By applying
the online co-localization method, we continuously update
the recovered locations of the mobile devices and the access
points. Figure 4 shows the online co-localizaiton results at
six key frames when the user walks by A,B, . . . , F . As can
be seen, the locations of the user trajectory and the access
points are dynamically calibrated when obtaining new data.
For example, AP3 gradually converges to its true location.

3.7 Special Cases of Co-Localization

Co-localization is a general framework for RSS-based tracking
and mapping. It addresses the problem of simultaneously
recovering the locations of both mobile devices and access
points by exploiting both labelled and unlabelled data from
mobile devices and access points. The model can be applied
with or without an offline training phase. It is flexible since
we can calibrate the system in many different ways, depending
on what information we have at hand. For example, if a
wireless provider is unable to provide us with some access
point locations, we can still set up an accurate tracking system
by collecting data ourselves. If the access point locations are
partially known, we can use them and further enhance the
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performance. Some special cases of our model are summarized
as follows:

• When only unlabelled RSS data collected by mobile
devices and no location information of access points are
available, we can do unsupervised dimension reduction
and recover the relative coordinates of both access points
and mobile devices as shown in Figure 2(b). It is related
to a Gaussian Process Latent Variable Model to recover
latent coordinates of user trajectories based on unlabelled
data [19].

• When labelled RSS data collected by mobile devices
and no location information of access points are avail-
able, the model acts similarly to a classical KNN-based
method [9], which is applied for indoor tracking using
WiFi signal strength values.

• When partially labelled RSS data collected mobile de-
vices and no location information of access points are
available, the model performs similarly to LeMan [28],
which is a semi-supervised algorithm for sensor-network-
based localization based on manifold learning. LeMan
calibrates a tracking system purely from the client site.

• In general, when RSS data collected mobile devices and
locations of access points are partially labelled, we can
use all the available data for model building and get a
better result than using part of the information only. We
have studied how the labelled and unlabelled data help
co-localization in [15], [18].

4 EXTENSION WITH ACTION MODELS
As we describe in Section 1, localization systems can be
classified into two categories: landmark-based and landmark-
free. Landmark-based systems rely on the measurement be-
tween a tracking target and multiple landmarks such as the
received signal strength between a WiFi client and multiple
access points. Landmark-free systems can localize themselves
without the need of external references. An Inertial Navigation
System can continuously update its position from measured
velocity and time. Sensor readings may be inaccurate and
noisy in either category of systems. WiFi signal has large
noise in a complex indoor environment due to shadowing and
multi-path effects. Inertial systems produce inaccurate dead
reckoning over long periods, but accurately estimate relative
motion over short intervals. In this section, we leverage the
use of multiple sensors and extend the localization framework
as learning Action Respecting Manifold (LARM for short).

4.1 Problem Re-Statement
Similar to the problem statement described in Section 3.1,
assume that a user holds a mobile device and navigates in a
two-dimensional indoor wireless environment C ⊆ R2 with n
access points, which can periodically send out beacon signals.
At some time ti, the RSS values from all the n access
points are measured by the mobile device to form a row
vector si=[si1 si2 . . . sin]∈Rn. A sequence of m signal
strength vectors form an m×n matrix S=[s′1 s′2 . . . s′m]′.
Furthermore, the mobile device has additional sensors for
measuring the activity of the mobile user. Such sensors can

be compass or accelerometer, from which we can estimate
the moving direction and speed. Let the speed at time ti be
oi and the direction or azimuth be θi. In this paper, azimuth
is measured in angle in degree. It ranges in [0◦, 360◦) and
0◦ =North, 90◦ =East, 180◦ = South, 270◦ =West. We
denote O=[o1 o2 . . . om]′ and Θ=[θ1 θ2 . . . θm]′ column
vectors of the sequences of speed and azimuth, respectively.

The locations of the mobile device at some time t are
labelled, while the rest are unlabelled. Furthermore, loca-
tions of some access points are known, while the rest are
unknown. Our objective is to estimate the m× 2 location
matrix P = [p′

1,p
′
2, . . . ,p

′
m]′ and n × 2 location matrix

Q = [q′
1,q

′
2, . . . ,q

′
n]

′, where pi = [pi1 pi2 ] ∈ C and
qj = [qj1 qj2 ] ∈ C are the location of the mobile device at
ti and the location of the jth access point respectively.
Example 3 Again, Figure 1 shows an indoor WiFi environ-
ment with 5 access points deployed. A user holds a mobile
device and walks from A through B, . . . , E and finally stop at
F at time tA, tB , . . . , tF . Besides the signal strength vectors
collected in Table 1, we can get azimuth vectors from the
compass sensor e.g., Θ= [270◦ 180◦ 90◦ 0◦ 180◦ 90◦ 90◦]′,
and estimate the walking speed from the accelerometer sensor.
Assume the user walk at a constant speed (1m/s) and stops
at F , the speed vector is estimated as O = [1 1 1 1 1 1 0]′.
Our task is to estimate the trajectory matrix P of the mobile
device and the location matrix Q of the access points.

4.2 Signal Characteristics
Besides all the domain characteristics described in subsec-
tion 3.2, there is one more important feature that explores
the connection between actions and location changes:

• Consider two actions inferred from the motion sensors.
If their actions are similar, the location change may also
be similar. For example in Figure 1, a user walks from A
through B,C,D,A,E to F at time tA, tB , tC , tD, tA′ ,
tE , tF . The actions of the mobile device are both
move(east) at time tC and tA′ , the change of their
locations ∆C and ∆A′ should be similar. Note that
the change of locations is a vector, having distance and
direction of changes (Fig 5).

  !"#

$%&'(!)*+(,"*"$-&
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/0  0!"#

$%&'(!)*+(,"*"$-&
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Fig. 5. Similar actions (move east) result in similar change
of location (∆C and ∆A′).

4.3 Dead Reckoning Localization
Let the initial position, speed and azimuth of the mobile device
be p1, o1 and θ1. We set up a coordinate system using p1 as
the origin, east as the positive x-axis and north as the positive
y-axis. The location can be updated with pi+1=pi+∆pi (i=
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Fig. 4. Illustration of the online co-localization when a user walks from A through B,C,D,E to F .

1, . . . ,m−1), where pi+1 and pi are the locations at time ti+1

and ti. ∆pi is the displacement in the interval ∆ti=ti+1−ti.
More specifically,

∆pi = [∆pi1 ∆pi2 ] =

[
oi ∗∆ti ∗ sin(θi)
oi ∗∆ti ∗ cos(θi)

]′

, (13)

where oi and θi can be inferred from accelerometer and
compass sensors, respectively.

Alternatively, we can reformulate it as an optimization prob-
lem. The objective is to minimize

∑m−1
i=1 ((pi+1−pi)−∆pi)

2.
Again, we can rewrite it as a matrix form,

P ∗ = argmin
P∈Rm×2

(GPP −∆P )′J∆P (GPP −∆P ), (14)

where GP = (gij)m×m. If 1 ≤ i ≤ m − 1 & i = j, then
gij =1, else if 1≤ i≤m− 1 & i= j−1, gij =−1, otherwise
gij = 0. P is the coordinate matrix of the mobile device to
be determined, and J∆P = diag(δ1, δ2, . . . , δm−1, 0) is an
indication matrix where δi = 1 if the action information of
the mobile user at time ti is available and otherwise δi = 0,
and ∆P = [∆p′

1 ∆p′
2 . . . ∆p′

m−1 0′]′ is an m × 2 matrix
supplying the calibration data where ∆pi is the change of
location from time ti to ti+1 if δi = 1 and otherwise the
value of ∆pi can be any. By setting the derivative of the right
hand side in the optimization problem (14) to zero, we can
get a close form solution P = (G′

PJ∆PGP )
−1G′

PJ∆P∆P .
Note that matrix GP is singular, and thus matrix inverse

is not applicable. One may consider using pseudo-inverses.
Alternatively, we can pose a regularization term P ′P to
the objective function as many machine learning methods
do. Meanwhile, we borrow the idea from Action Respecting
Embedding [22] and add another term P ′G′

PL∆PGPP to
measure the smoothness of actions. Then we get a new
optimization problem as:

P ∗=argmin
P∈Rm×2

α(GPP−∆P )′J∆P (GPP−∆P )

+βP ′G′
PL∆PGPP + ϵP ′P, (15)

where α, β and ϵ are parameters to balance the loss function
term, the smoothness of actions and the “complexity” of P ,
respectively. L∆P is the Graph Laplacian for describing the
similarity of action pairs. Again, the similarity is described
with Gaussian Kernel: wij = exp(−∥∆pi −∆pj∥2/2σ2

∆P ).
By setting the derivative of the right hand side in (15) to zero,
we can get a close form solution
Example 4 Figure 6(a) shows that a user holds a mobile device
and walks in an area of 70m × 80m from point 1, 2, . . ., to
5. The device can measure the WiFi signal strength from the
surrounding access points periodically. Meanwhile, the mobile
device has digital compass and accelerometer sensors mounted
so that we can estimate a sequence of azimuth θi and speed
oi, which will be converted to ∆pi using Equation (13). The
localization result is obtained by solving (15). Figure 6(b)
illustrates the localization trajectory. Compared to the ground
truth trajectory shown in Figure 6(a), the estimated locations
are accurate at an initial stage, say from point 1 to 2. It
gradually becomes inaccurate because the error is accumulated
as time elapses. Note that, we use an uncalibrated compass
for collecting data. Therefore, the azimuth reading may not
be accurate. However, a calibrated compass may be disturbed
and become inaccurate if it is close to some local magnetic
fields such as elevators.

4.4 Extension: The LARM Algorithm
By combing the dead reckoning objective (15) and the
manifold-based objective (2) together, we optimize:

P ∗=argmin
P∈Rm×2

(P−YP)
′JP (P−YP)+βP

′G′
PL∆PGPP+ϵP

′P

+γPP
′LPP+α(GPP−∆P )′J∆P (GPP−∆P ).

The first term is the fitting error to labelled data. The second
term describes the smoothness on the action manifold. The
third term poses a penalty on the complexity of the solution.
The fourth term is the smoothness on the signal manifold. The
fifth term is the agreement of location changes.
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Fig. 6. Localization comparison with motion sensors.

Example 5 By combining all sensor readings together, we
can recover a better location map for either unsupervised
or semi-supervised cases. Figure 6(c) shows the localization
result without any labelled location. If we compare Figure 6(c)
to Figure 6(b), we can see that unsupervised LARM can
greatly correct the drifting error of Dead Reckoning by using
additional unlabelled WiFi signal data. Additionally, if we have
5 percent of random labelled locations, the recovered trajectory
as shown in Figure 6(d) will be pretty close to the ground truth.

Note that a motion or action model is unavailable for access
points. Thus, we can combine (15) with (7) or (9) and form
the objective of action-guided co-localization. The essential
idea is to incorporate possible constraints about the similarity
among signals and locations of mobile devices and access
points, location changes and actions, etc. The new optimization
problem of action guided co-localization can be written as
follows,

R∗= argmin
R∈R(m+n)×2

(R−Y)′J(R−Y)+γR′LR+βR′G′L∆RGR

+α(GR−∆R)′J∆R(GR−∆R)+ϵR′R,

where R = [P ′ Q′]′ is the coordinate matrix of the mobile
device and the access points; Y = [Y ′

P Y ′
Q]

′ gives the label
information; J=

[
JP 0
0 JQ

]
is the indication matrix. L=γALA+

γBLB+γCLC , which is the same as defined in Section 3.5.
G=[G′

P 0′]′, L∆R=[L′
∆P 0′]′, ∆R=[∆P ′ 0′]′ and J∆R=

[J ′
∆P 0′]′. Similarly, a close form solution of the optimization

problem can be obtained by

R = (J + γL+ αG′J∆RG+ βG′L∆RG+ ϵI)−1

×(JY + αG′J∆R∆R). (16)

Note that the above solution still works even if all locations
are unlabelled and actions are partially labelled.

4.5 Action Recognition

In previous sections, we assume the walking speed and di-
rection can be estimated from accelerometer and compass
sensors. While it is straight-forward to obtain direction read-
ings Θ = [θ1, θ2, . . . , θm]′ from compass sensors, we have
not yet described any detail on how to estimate the speed
O = [o1, o2, . . . , om]′. Whether a user is running, walking
or standing still can be inferred from accelerometer sensors.
When we recognize that the user is running or walking, the
speed can be estimated via step counting, assuming the step
size is known and fixed.

To recognize the user actions, we transform the sequential
accelerometer data into a fixed dimension of features. More
specifically, we apply a sliding window on the signals and
extract the mean value, standard deviation, Cepstrum (a feature
widely used in speech recognition) on each dimension of
readings and Pearson correlation between pairs of dimensions.
More features and models can be found at many previous
works [34]. We collect a set of data and train a Support Vector
Machine with Linear Kernel for action recognition. Table 2
shows the experimental results for six different actions from
a different set of accelerometer data. The overall accuracy is
88.55%. Note that the action “turn left” or “turn right” may be
ambiguous while the action “static” is easy to be recognized.
In practice, we do not need to recognize the actions on
“turning” since compass sensor has richer information.

We further count the steps once we recognize that the user is
walking or climbing upstairs/downstairs. To properly segment
steps, we implement some cycle detection algorithm. We apply
Fast Fourier Transformation (FFT) to detect whether there
is a cycle in frequency domain. FFT is an efficient method
for transforming signals from time domain to frequency
domain[35]. By applying FFT, we can detect a strong cycle
signal in the frequency domain based on periodic patterns.
Assume that the user has a fixed step size, we can estimate
the walking speed reasonably well.

TABLE 2
Action recognition using accelerometer sensor only
estimation
/ truth

static upstairs downstairs walk left turn right turn

static 994 0 0 1 7 6
upstairs 0 959 102 115 42 5
downstairs 0 36 967 56 34 9
walk 0 1 0 4457 112 131
left turn 0 50 1 117 948 15
right turn 0 0 5 248 24 314

5 EXPERIMENTAL SETUP

In this section, we first evaluate the performance of the co-
localization algorithms on three sets of different devices and
test-beds. They are wireless local area networks (WLAN),
wireless sensor networks (WSN) and radio frequency identifi-
cation networks (RFID). In the past, researchers have tried to
formalize various metrics for evaluating activity recognition
and location based services [36]. A summary of our three
experimental setups is shown in Table 3.
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TABLE 3
The experimental setups of WLAN, WSN and RFID

AP MD test-bed scale motion pattern
WLAN 25 APs 1 notebook hallway 60× 50m2 mobile (human)
WSN 8 nodes 1 mobile node room 5× 4m2 mobile (robot)
RFID 4 readers 30 RFID tags room 5× 4m2 static

A person carrying an IBM c⃝ T42 notebook, which is
equipped an Intel c⃝ Pro/2200GB internal wireless card, walks
in an indoor environment of about 60m × 50m in size. An
IEEE 802.11b wireless network in the 2.4GHz frequency
bandwidth has been set up in the indoor environment. We
can detect more than 20 access points. The person walks in
the hallways and a total of 2000 examples (vectors of RSS
values) are collected with sample rate 2Hz. The ground-truth
location labels are obtained by referring to landmark points
such as doors, corners and dead-ends. The localization area is
composed by one-dimensional hallways.

The sensor-based tracking experiment is performed in the
Pervasive Computing Laboratory at the Hong Kong University
of Science and Technology. The room is set up an experimental
test-bed of 5.0 meter by 4.0 meter.

We use CrossBow MICA2 and MICA2Dot to construct a
wireless sensor network. We program these sensor nodes to
broadcast and detect beacon frames periodically so that they
can measure the RSS from each other. By combining the RSS
from different nodes we can estimate locations of these nodes.
We configure all the nodes such that each of them can measure
the RSS from the remaining eight nodes in every 0.5s. We try
different kinds of robots that could run freely around the floor
such as Sony AIBO dogs, LEGO Mindstorms and off-the-
shelf toy cars. A Camera Array is used to record experiments
for supporting location information (ground truth) of mobile
robots. Each camera monitors at least one-fourth part of the
test-bed. The central area is covered by all four cameras. We
use some landmarks to do camera calibrationsuch as static
sensor nodes which locations are known.

For the RFID experiment, we used four Mantis readers (AP)
and 30 tags (MD) from RF Code c⃝. They are all deployed as
stationary nodes. All the tags are deployed at 6×5 grid points
on the 5.0m× 4.0m floor. A total of 2,000 examples with
ground truth locations were collected.

6 EXPERIMENTAL RESULTS

6.1 Accuracy Test of Two-Phase Co-Localization

For comparison, we run the following baseline algorithms
(1) LANDMARC, a nearest-neighbor weighting based method
designed for RFID localization [37]; (2) Support Vector Re-
gression (SVR), a simplified variant of a kernel-based method
used for WSN localization [11]; (3) RADAR, a KNN method
for WLAN localization [9]. In each experiment, we randomly
picked 500 examples for training and the rest for testing. The
training data was further split into labelled and unlabelled
parts. The results shown in Figure 7 are averaged over 10
repetitions for reducing statistical variability. All results are
measured in relative error distances, which are error distances

in percentage while referring to the maximal error distance in
each figure for easy comparison.

LANDMARC, RADAR and SVR were trained with the
labelled part of training data. In contrast, the proposed two-
phase co-localization method uses both labelled and unla-
belled data. We test on two configurations for the two-phase
co-localization method: (1) “Co-Localization no AP” uses
partially labelled data from mobile devices for training, in
which we try to recover the locations of the access points; and
(2) “Co-Localization with AP” repeats the same experiments
with the locations of all access points known. Note that all
error distances are presented in percentage since they are
normalized when referring to the maximal error in each figure.

6.1.1 Model Parameter Setting
Our experiments mainly target at showing how labelled and
unlabelled data can help increase accuracy and reduce calibra-
tion effort in relative error distance. We do not specifically fine
tune the parameters. Instead, parameters are determined in a
validation set at a coarse level. We set smax = −30 dBm and
σ = 8 in the Gaussian function in Equation (1) for signals
in all networks. smax = −30 is a value that roughly ranks
top 1% of all signal strength values. We avoid using top 1st

value to avoid potential outlier. We also try other values in
the experiment such as smax = −40 and σ = 16. There is
no significant difference in the experiment results. We use
k nearest neighbors for building the neighborhood graph in
constructing all graph Laplacians. We set k = 10 for LP in
Equation (3) and k = 5 for LQ in Equation (4) after trying
popular values such as 5, 10 or 15 in manifold learning. γ
is a global regularization term for second level terms γA,
γB , γC in Equation (8). In the following experiments, we set
γA = 0.01, γB = 1.0, γC = 0.001 and γ = 0.0001, which are
tuned in a validation set. The details of a strategy of parameter
(γ’s) tuning and a sensitivity study on the parameters will be
described in Section 6.1.3.

6.1.2 Comparison Results
Figures 7(a), 7(c) and 7(e) show the location estimation errors
of different mobile devices by varying the number of labelled
examples in a training set whose size is fixed to be 500. We can
observe from the figures that firstly, if we compare the results
vertically in each figure, we can see how the unlabelled data
help improve the result in the proposed methods. For example
in Figure 7(e), most compared methods have a relative error
distance of around 80% when using 50 labelled examples. In
contrast, the proposed methods have an error of around 40%
by employing additional 450 unlabelled examples. Secondly,
if we compare the results horizontally in each figure, we can
find how our methods reduce calibration effort. For example
in Figure 7(a), most compared methods have a relative error
distance of around 60% when all 500 examples are labelled.
The “Co-Localization with AP” has similar performance
when using only 50 labelled and 450 unlabelled examples.
Hence, we save the calibration effort dramatically.

We can find that the mobility of the mobile device and
the environment complexity are two main factors that affected
the performance of the two-phase co-localization algorithm.
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(a) RFID MD (tags)
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(b) RFID AP (readers)
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(c) WSN MD (mobile sensor node)
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(d) WSN AP (static sensor nodes)
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(e) WLAN MD (notebook)
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Fig. 7. Experimental results over 10 repetitions (Mean and Std.): MD for mobile device; AP for access point.

In a static and plane-shaped test-bed (Figure 7(a)), the radio
signals are less noisy and the “Co-Localization no AP”
configuration demonstrated similar performance as RADAR,
LANDMARC and SVR when the number of labelled examples
is small. In a mobile and complex environment, as shown in
(Figure 7(e)), the radio signal is more noisy and the “Co-
Localization no AP” performed much better and more robust
than the compared methods. We have also tried some other
combinations of experiments that led to a similar conclusion,
such as using RFIDs in a mobile scenario.

While comparing the results of “Co-Localization no AP”
and “Co-Localization with AP” in Figures 7(a), 7(c) and 7(e),
we can find that knowing the locations of access points is
more helpful for localizing the mobile devices in a static and
planar scenario (Figure 7(a)) than in a mobile and complex
environment (see Figure 7(e)). Similarly, we can see from
Figures 7(b), 7(d) and 7(f) that knowing the locations of
mobile devices are more helpful for localizing access points
in a static and plane-shaped scenario rather than a mobile and
complex environment.
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Fig. 8. Parameter Tuning on a Validation Set.

6.1.3 Parameter Sensitivity Test
In this section, we study the parameter sensitivity on the
performance of the two-phase co-localization algorithm. Fig-
ure 8 shows the sensitivity of relative error distances while
varying parameters such as the k for retrieving top nearest
neighbors in Figure 8(a) and the regularization parameters
γ for penalizing the smoothness along the data manifold

in Figure 8(b) on a validation set. As can be seen from
Figure 8(a), the error ranges in [98.5%, 99.4%] (less than
1% change) when k varies from 5 to 20. This observation is
consistent with most manifold-based learning methods when
k is generally picked up among popular values such as 5,
10 or 15. Besides the parameter k, there are several γ’s for
controlling the smoothness on data manifolds, γA, γB , γC and
γ. As we described in Section 6.1.1, γ is a global tuning term
for γA, γB and γC in Equation (8). For tuning these parameters
in a validation set, we first fix γB to 1 and tune the others. The
tuning strategy may not be optimal but it works well in our
experiments. Figure 8(b) shows how the error changes when
the global parameter γ ranges in [10−6 10−2] while fixing
γB = 1, γA = 0.01 and γC = 0.001. The best value can be
picked up in about [10−4 10−3]. Small changes in parameter
setting such as k and γ would not change the trend of the
curves shown in Figure 7.

6.2 Speed Test of Online Co-Localization
Figure 9 shows the average running time for adding a new
training example. The test is done in Matlab on a computer
with a 2.0GHz CPU. Experimental results show that we
can greatly reduce the time for the model adaption in an
online manner. For example, when the training dataset size
is incrementally enlarged to about 500, the two-phase method
needs 1.2s to re-estimate everything while the online method
spends no more than 0.1s. The online method is more than
ten times faster. The localization accuracy of the online model
is similar to the two-phase counterpart. The difference is
that the neighborhood graph and weight matrix are revised
incrementally rather than rebuilt.

6.3 Encode a Motion Model
In this experiment, we aim to verify that, by employing a
Kalman Filter, the error distances of all previous compared
methods can be further reduced by 5% to 10% in a mobile
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Fig. 9. Average running time comparison.
scenario. Here, we perform an additional three-dimensional
tracking experiment, showing the usefulness of encoding mo-
tion models. The whole test-bed fills up a cubic space of
6.0m×6.0m×2.0m. In the test-bed, we have ten static nodes
that send out beacon signals. Five of them are deployed on the
floor and the rest on the ceiling. There is one more node that
moves freely around the environment for tracking experiments.
The ground truth location of the mobile node is exported from
four cameras deployed in the laboratory. In Figure 10(a), the
location of the mobile node is obtained by computing the
intersection point E of lines CD and AB estimated from
two different cameras. We collect 1,000 examples, which are
split into two parts: 500 examples for training and the rest
for testing. Again we vary the number of labelled examples
and repeat the experiments 10 times. The experimental result
is shown in Figure 10(b). As can be seen, the error distance
of co-localization with a motion model is about 10% smaller
than that without a motion model when sufficient labelled data
are available.
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(a) WSN 3D test-bed
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Fig. 10. Experiments with a motion model.

6.4 Encode an Action Model

In Section 4.4, we have already demonstrated how LARM
works in previous examples shown in Figure 6. In this section,
we conduct experiments to study whether the LARM algorithm
can further boost the performance of location tracking by
fusing different types of sensors. For this purpose, we use
an Android G1 phone for collecting data because it has a lot
of built-in sensors such as accelerometer, magnetic sensors,
WiFi, etc.

With a built-in 3-axis accelerometer sensor, system-detected
orientation and direction can be directly read from a built-in
compass sensor, and speed values can be indirectly estimated
from the accelerometer sensors. Specifically, we applied the
estimation method introduced in [34] to infer the speed from
accelerometer readings. Since speed and direction values are
taken as additional input, in our experiments, we did not

explicitly vart the accuracy of speed/direction values. Instead,
we focused on studying how the LARM algorithm can improve
the localization accuracy by embedding an action model even
when the speed and direction values contain noise.

The values (unit: m/s2) are in the format of (X, Y, Z).
The X axis refers to the screen’s horizontal axis (the small
edge in portrait mode, the long edge in landscape mode) and
points to the right. The Y axis refers to the screen’s vertical
axis and points towards the top of the screen. The Z axis
points toward the sky when the device is lying on its back
on a table. Figure 11(a) shows the directions of X, Y and
Z when the phone works in portrait mode. Accelerometer
sensor can be used as a pedometer for speed estimation.
Orientation is estimated from a built-in compass sensor. It is
represented by a triple (Azimuth, P itch,Roll). All values are
angles in degree. Azimuth is the rotation around the Z axis
(0◦ ≤ azimuth < 360◦), for which 0◦ = North, 90◦ = East,
180◦ = South, 270◦ = West as shown in Figure 11(a). Pitch
is the rotation around X axis (−180 ≤ pitch ≤ 180), with
positive values when the Z-axis moves toward the Y-axis. Roll
is the rotation around Y axis (−90≤roll≤90), with positive
values when the Z-axis moves toward the X-axis.

Alignment among sensors are necessary during data col-
lection because they have different sample rates. The rate
of sampling WiFi signal strength is 2Hz. Accelerometer and
orientation sensors have a sample rate 45Hz and thus will
be downsampled after action recognition naturally. In the
area shown in Figure 6(a), we walk around and collect 1000
examples at sample rate 2Hz.

6.4.1 Overall Results
In each experiment, we randomly picked a small portion
of data for labelling while the rest for testing. The results
(mean error and standard deviation) shown in Figure 11(b)
are averaged over 10 repetitions. The horizontal axis is the
percentage of data that are labelled, which ranges from 0% to
10%. The vertical axis is the average error distance in meters.
As can be seen, Dead Reckoning Localization without using
any labelled data has a large error due to drifting factor. When
we combine WiFi tracking through co-localization and Dead
Reckoning Localization together using unsupervised LARM,
the error is reduced at least by half. If some small percent of
labelled data are available, the location estimation error of the
semi-supervised LARM algorithm can be reduced significantly.
The fusion of WiFi and motion sensors with LARM also has
better performance than using partially labelled WiFi data
alone (denoted “Co-Localization without an Action Model”).
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Fig. 11. Experiments with an action model.
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6.4.2 Parameter Sensitivity Test
Compared to the two-phase co-localization algorithm, the
action-model-embedded algorithm LARM has three more pa-
rameters α, β and ϵ. In experiments shown in the previous
section, we use the same parameter settings for γA, γB , γC , γ
and k as described in Section 6.1.3, and set α=0.5, β=0.001
and ϵ = 10−6 in Equation (16), which are all tuned in a
validation set. In this section, we fix the values of γA, γB ,
γC , γ and k to test the sensitivity at different values of α, β
and ϵ on the overall performance of LARM. Figure 12 shows
how the error distance changes while looping through α, β and
ϵ. As can be seen in Figure 12(a), LARM performs well when α
ranges in [10−1 101]. Similarly, Figure 12(b) suggests that the
best value for β falls in the range [10−4 10−2]. Figure 12(c)
shows that the performance of LARM is good and vary little
when ϵ is set to a value smaller than 10−4.
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Fig. 12. Parameter sensitivity study with an action model.

7 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel semi-supervised graph
Laplacian approach to solve the problem of simultaneously
recovering the locations of both mobile devices and access
points. In our co-localization framework, we estimated the
relative locations of mobile devices and access points by
exploiting a SVD based method, and estimated the absolute
locations using a small collection of labelled data through
graph Laplacian methods. Our extensive experiments in three
different test-beds showed that we can achieve high perfor-
mance with much less calibration effort as compared to several
previous approaches. Meanwhile, our model can deal with data
stream and adjust itself online relatively faster while compared
to its two-phase counterpart. Finally, we extend our framework
for multiple sensor fusion via an Action Respecting Manifold.
Several demonstrations and experimental results show that the
performance of combing multiple sensors for localization is
much better than using them individually.

The significance of the work is that we can leverage the
knowledge of the access point locations, the mobile device
trajectories and motion sensors to obtain more accurate lo-
calization. We will continue to evaluate the performance in a
large-scale and dynamic environment, e.g., in a city level and
at different time periods. We may also vary more parameters

such as the number of access points and their deployment
density and study the robustness of our proposed algorithm.
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