
Test-Cost Sensitive Naive Bayes Classification

Xiaoyong Chai, Lin Deng and Qiang Yang
Department of Computer Science

Hong Kong University of Science and Technology
Clearwater Bay, Kowloon, Hong Kong, China
{carnamel, ldeng, qyang}@cs.ust.hk

Charles X. Ling
Department of Computer Science
The University of Western Ontario
London, Ontario N6A 5B7, Canada

cling@csd.wuo.ca

Abstract

Inductive learning techniques such as the naive Bayes
and decision tree algorithms have been extended in the past
to handle different types of costs mainly by distinguishing
different costs of classification errors. However, it is an
equally important issue to consider how to handle the test
costs associated with querying the missing values in a test
case. When the value of an attribute is missing in a test
case, it may or may not be worthwhile to take the effort to
obtain its missing value, depending on how much the value
will result in a potential gain in the classification accuracy.
In this paper, we show how to obtain a test-cost sensitive
naive Bayes classifier (csNB) by including a test strategy
which determines how unknown attributes are selected to
perform test on in order to minimize the sum of the mis-
classification costs and test costs. We propose and evaluate
several potential test strategies including one that allows
several tests to be done at once. We empirically evaluate
the csNB method, and show that it compares favorably with
its decision tree counterpart.

1. Introduction

Inductive learning techniques such as the naive Bayes
and decision tree algorithms, have met great success in
building classification models with the aim to minimize the
classification errors [9][12]. As an extension, much pre-
vious inductive learning research has also considered how
to minimize the costs of classification errors, such as the
cost of false positive (FP) and the cost of false negative
(FN) in binary classification tasks. The misclassification
costs are useful in deciding whether a learned model tends
to make correct decisions on assigning class labels for new
cases, but they are not the only costs to consider in prac-
tice. When performing classification on a new case, we of-
ten consider the “test costs” when missing values must be
obtained through physical “tests” which incur costs them-

selves. These costs are often as important as the misclassi-
fication costs.

As an example, consider the task of a medical practice
that examines incoming patients for a certain illness. Sup-
pose that the doctors’ previous experience has been com-
piled into a classification model such as a naive Bayes
classifier. When diagnosing a new patient, it is often the
case that certain information for this patent may not yet be
known; for example, the blood test or the X-ray test may
not have been done yet. Performing these tests will incur
certain extra costs, but different tests may provide different
informational values towards minimizing the misclassifica-
tion costs. It is the balancing act of the two types of costs
– namely the misclassification costs and the test costs – that
determines which tests will be done.

Tasks that incur both misclassification and test costs
abound in practice ranging from medical diagnosis to sci-
entific research to drug design. One possible approach is to
use the strategy in naive Bayes classification in dealing with
missing values. That is, when a test case is classified by a
naive Bayes classifier, and an attribute is found to have a
missing value, no test will be performed to obtain its value;
instead, the attribute is simply ignored in the posterior com-
putation. The problem with this approach is that it ignores
the possibility of obtaining the missing value with a cost,
and thus reducing the misclassification cost and the total
cost.

Inductive learning methods that consider a variety of
costs are often referred to as cost-sensitive learning [15][5].
In this paper, we refer to cost-sensitive learning that specifi-
cally considers test costs as test-cost sensitive learning. We
propose a test-cost sensitive naive Bayes algorithm (csNB
for short) to minimize the sum of the misclassification
costs and the test costs. The naive Bayes algorithm can
be extended straightforwardly to incorporate the concept of
“costs” by minimizing the risk instead of the classification
error [4]. However, we observe that so far, few extensions
have been made to consider naive Bayes classification with
associated test costs for obtaining the missing values. In ad-

dition, different test strategies will result in different deci-
sions on how the tests are performed. In this paper we con-
sider two types of test strategies: the sequential test strat-
egy and the batch test strategy. The former takes tests for
missing values sequentially. Decisions on whether an addi-
tional test is needed or which unknown attribute should be
tested next are made sequentially based on the outcome of
the previous tests. The latter, the batch test strategy, requires
several tests to be done at once rather than in a sequential
manner. This scenario is more practical. For example, it
is often the case that doctors need to have a number of test
results all at once before making a diagnosis.

The novelty of our work can be seen as follows:

1. Previous work on naive Bayes classification has mostly
considered how to reduce the misclassification costs by
considering different classification risks. In our csNB
framework, we additionally consider the test costs and
aims to minimize the sum of them.

2. Previous work on test-cost sensitive learning has con-
sidered how to use decision trees, coupled with a se-
quential test strategy, to decide which attributes to per-
form test on one by one. In contrast, we consider a
natural extension in csNB by which a batch test strat-
egy can be easily derived and performed effectively.

2. Related Work

Much work has been done in machine learning on mini-
mizing the classification errors. This is equivalent to assign-
ing the same cost to each type of classification errors, and
then minimizing the total misclassification costs. In Tur-
ney’s survey article [15], a whole variety of costs in ma-
chine learning are analyzed, and the test cost is singled out
as one of the least considered. In particular, two types of
costs are considered:

• Misclassification costs: these are the costs incurred
by classification errors. Works such as [2][5][7] con-
sidered classification problems with non-uniform mis-
classification costs.

• Test costs: these are the costs incurred for obtaining at-
tribute values. Previous work such as [10][13] consid-
ered the test costs alone without incorporating misclas-
sification cost. As pointed out in [15], it is obviously
an oversight.

As far as we know, the only works that considered both mis-
classification and test costs include [8][16][6][14]. Of these
works, [8] proposed a decision tree based method that ex-
plicitly considers how to directly incorporate both types of
costs in decision tree building processes and in determin-
ing the next attribute to test, should the attributes contain

missing values. Their method naturally extends the deci-
sion tree construction algorithm by using minimal cost as
the splitting criterion and builds a sequential test strategy in
a local search framework. Through experimentation with
this method, however, we have also found some shortcom-
ings. Because a decision tree places different levels of im-
portance on the attributes by the natural organization of the
tree, it cannot be easily fitted to make flexible decisions on
selecting unknown attributes for tests. Furthermore, a de-
cision tree is not well-suited for performing batch tests that
involve a number of tests to be done together, since it is
aimed at serializing attribute tests along its paths. In con-
trast, the naive Bayes based algorithms overcome these dif-
ficulties more naturally. As we will see, the performance
offered by the test-cost sensitive naive Bayes is significant
over its decision-tree counterpart.

In [16], the cost-sensitive learning problem is cast as a
Markov Decision Process (MDP), and solutions are given
as searches in a state space for optimal policies. For a given
new case, depending on the values obtained so far, the re-
sulting policy can suggest a best action to perform in order
to minimize both the misclassification and test costs. How-
ever, it may take very high computational cost to conduct
the search process. In contrast, we adopt the local search
algorithm using the concepts of utility and gain, which is
more efficient and also offers high quality solutions.

Similar in the interest in constructing an optimal learner,
[6] studied the theoretical aspects of active learning with
test costs using a PAC learning framework. [14] presented
a system called ICET, which uses a genetic algorithm to
build a decision tree to minimize the sum of both costs. In
contrast, because our algorithm essentially adopts the con-
ditional probability based framework, which requires only
a linear scan through the dataset, our algorithm is expected
to be more efficient than Turney’s genetic algorithm based
approach.

3. Test-cost sensitive naive Bayes

Naive Bayes classifier is shown to perform very well in
practice to minimize classification errors, even in many do-
mains containing clear attribute dependences [3]. For clas-
sification, the standard naive Bayes algorithm computes the
posterior probability P (cj |x) of sample x belonging to class
cj according to the Bayes’ rule:

P (cj |x) =
P (x|cj)P (cj)

P (x)
.

x is predicted to belong to the class cj∗ where j∗ =
arg maxj P (cj |x). When there exist missing values in sam-
ple x, the corresponding attributes are simply left out in
likelihood computation and the posterior probability is com-
puted only based on the known attributes.

However, classification errors are not the only criteria
in evaluating a learned model. In practice, costs involved
during classification are even more important in deciding
whether the model is effective in making correct decisions.
Therefore, a naive Bayes classifier should be extended to be
cost-sensitive.

3.1. Costs in Naive Bayes Classification

In this paper, we consider two types of costs in naive
Bayes classification: the misclassification cost and the test
cost.

The misclassification cost is considered when there are
different types of classification errors, and the costs they
bring are different. The standard naive Bayes algorithm
(NB) can be extended to take the misclassification cost
into account. Suppose that Cij is the cost of predicting a
sample of class ci as belonging to class cj . The expected
misclassification cost of predicting sample x as class cj is
also known as the conditional risk [4], which is defined as:
R(cj |x) =

∑
i Cij × P (ci|x), where P (ci|x) is the poste-

rior probability given by a NB classifier. Sample x is then
predicted to belong to class cj∗ which has the minimal con-
ditional risk R(cj∗ |x) = minj R(cj |x).

To consider the test cost, take medical diagnosis as an
example. Suppose that in diagnosing the disease of hep-
atitis, 21% of patients are positive (have hepatitis, c1) and
79% are negative (healthy, c2). Therefore, the priors are
P (c1) = 21% and P (c2) = 79%, respectively. The costs of
different classification errors can be specified by setting the
corresponding Cij . Assume that the costs (conditional risk)
are C12 = 450, C21 = 150, and C11 = C22 = 0.

Suppose there are four attributes to characterize a pa-
tient, and testing the value (positive or negative) of each
attribute brings a certain amount of cost. The test costs of
the four attributes and their likelihoods are listed in Table 1
below.

Attri- Test Hepatitis (c1) healthy (c2)
butes Cost Pos Neg Pos Neg

liver firm 18 51.7% 48.3% 61.8% 38.2%
spleen 24 56.9% 43.1% 81.9% 18.1%
spiders 26 29.0% 71.0% 75.6% 24.4%
ascites 32 54.8% 45.2% 95.0% 5.0%

Table 1. Likelihoods of attributes

When a patient first comes, values of these four attributes
are unknown. To diagnose whether the patient has hepatitis
or not, a doctor must decide whether a medical test is worth-
while to perform and if so, which one. Each test has its own
discriminating power on disease and meanwhile, brings a
certain amount of cost. Therefore, decisions must be made

by considering both factors. After a test is selected and per-
formed, based on its outcome, similar decisions are made
subsequently on the unknown attributes left. As a conse-
quence, during the process of diagnosis, the doctor adopts a
sequential test strategy with the aim to minimize the sum of
the misclassification cost and test costs.

In practice, the situation is even more complicated when
more attributes are involved and some tests are with delayed
results. For example, the blood tests are usually shipped to
a laboratory and the results are sent back to doctors the next
day. In these cases, for the sake of patients, doctors often
ask for a batch of tests simultaneously. Therefore, a batch
test strategy must consider the costs of the several tests done
in one shot.

3.2. Problem Formulation

The classification problem of Test-Cost Sensitive Naive
Bayes is formulated as follows:

Given: (D,C, T), where

• D is a training dataset consisting of N samples
(x1, x2, · · · , xN) from P classes (c1, c2, · · · , cP).
Each sample xi is described by M attributes
(A1, A2, · · · , AM) among whom there can be missing
values.

• C is a misclassification cost matrix. Each entry Cij �
C(i, j) specifies the cost of classifying a sample from
class ci as belonging to class cj (1 ≤ i, j ≤ P). Usu-
ally, Cii = 0.

• T is a test-cost vector. Each entry Tk � T (k) specifies
the cost of taking a test on attribute Ak (1 ≤ k ≤M);

Build: a test-cost sensitive naive Bayes classifier csNB
and for every test case, a test strategy (see Section 4) with
the aim to minimize the sum of the misclassification cost
Cmc and test cost Ctest.

The above formulation provides a more general framework
than the traditional naive Bayes does. Actually, the latter
is just a special case of csNB where the test costs Tk are
sufficiently large so that no test will be performed. Also,
the conditional risk [4] can be equivalently implemented by
setting the misclassification cost matrix C.

csNB classification consists of two procedures: First, a
csNB classifier is learned from the training dataset D. Sec-
ond, for each test case, a test strategy is designed to mini-
mize the total cost based on the csNB obtained.

Learning a csNB classifier is basically the process of es-
timating the distribution parameters as in traditional NB.
Let cj ∈ {c1, c2, · · · , cP } be the jth predefined class and
vm,k ∈ {vm,1, vm,2, · · · , vm,|Am|} be one of the possible

values attribute Am can take. The learning procedure is ex-
actly the estimation of prior probabilities P̂ (cj) and likeli-
hoods P̂ (Am = vm,k|cj) from the training dataset D. In
addition, when there are missing values in the training ex-
amples, the corresponding attributes are just ignored in the
likelihood computation.

The real intriguing problem is how to design a test strat-
egy for each test case with the aim to minimize the sum of
the misclassification cost Cmc and test cost Ctest. It is es-
sentially an optimization problem that minimizes the total
cost. However, to find an optimal test strategy given a test
case is computationally difficult, since the problem can also
be equivalently formulated as a MDP as in [16] which is
shown to be NP-hard [11]. The problem is more compli-
cated when different types of test strategies are demanded,
such as the sequential test strategy (Section 4) and batch
test strategy (Section 5). In this paper, we are interested in
finding approximation solutions.

4. Prediction with Sequential Test Strategy

When a new test case with missing values comes, a csNB
classifier need to design a test strategy as to how and which
unknown attributes are selected to test. In this section, we
consider sequential test strategies and leave batch test strate-
gies to Section 5.

A sequential test strategy is as follows. During the pro-
cess of classification, based on the results of previous tests,
decisions are made sequentially on whether a further test on
an unknown attribute should be performed, and if so, which
attribute to select. More specifically, the selection of a next
unknown attribute to test is not only dependent on all the
values of initially known attributes, but also dependent on
the values of those unknown attributes previously tested.

Suppose that x = (a1, a2, · · · , aM) is a test example.
Each attribute ai can be either known or unknown. Let Ã
denote the set of known attributes among all the attributes
A and A the unknown attributes. The expected misclassifi-
cation cost of classifying x as class cj based on Ã is:

R(cj |x) = R(cj |Ã) =
P∑

i=1

Cij×P (ci|Ã), 1 ≤ j ≤ P (1)

where P (cj |Ã) = P (Ã|cj)P (cj)

P (Ã)
is the posterior probability

obtained using Bayes’ rule.
Prediction can be made based on Ã. cj∗ with the mini-

mum expected cost is predicted as the class label. Finally,
the misclassification cost Cmc is Cij∗ if ci is the actual class
label of x. The test cost Ctest is 0, since no test is per-
formed. However, a sequence of tests on some unknown
attributes may be more preferable to reduce the misclassi-
fication cost and thus to minimize the total cost. To decide

whether a test is needed and if so, which attribute Ai ∈ A
to select, we introduce the utility of testing an unknown at-
tribute Ai as follows:

Util(Ai) = Gain(Ã, Ai)− Ctest(Ai) (2)

Ctest(Ai) is the test cost of Ai given by Ti. Gain(Ã, Ai) is
the reduction in the expected misclassification cost obtained
from knowing Ai’s true value, which is given by:

Gain(Ã, Ai) = Cmc(Ã)− Cmc(Ã ∪Ai) (3)

Cmc(Ã) = minj R(cj |Ã) is easily obtained using (1).
What is not trivial is the calculation of Cmc(Ã ∪Ai), since
the value of Ai is not revealed until the test is performed.
We calculate it by taking expectation over all possible val-
ues of Ai as follows:

Cmc(Ã ∪Ai) = EAi

[
min

j

(
R(cj |Ã ∪Ai)

)]
(4)

=
||Ai||∑
k=1

P (Ai = vi,k|Ã)×min
j

R(cj |Ã, Ai = vi,k) (5)

In Equation (4), the expected minimum misclassification
cost is conditional on the values of attributes Ã known so
far. In the expended form (5), the minimum misclassifica-
tion cost given Ai = vi,k is weighted by the conditional
probability P (Ai = vi,k|Ã) which can be obtained using
Bayes’ rule.

Overall, an attribute Ai is worth testing on if testing it
offers more gain than the cost it brings. Therefore, by using
Equation (2) to calculate all the utilities of testing unknown
attributes in A, we can decide whether a test is needed (
∃iUtil(Ai) > 0) and which attribute Ai∗ to test (i∗ =
arg maxi Util(Ai)).

After the attribute Ai∗ is tested, its true value is revealed.
The set of known attributes Ã is expanded to Ã ∪ {Ai∗}
and correspondingly, A is reduced to A/{Ai∗}. Such a se-
lection process is repeated until the utility of testing any
unknown attribute is non-positive or there is no unknown
attribute left. A class label is then predicted based on the
expanded known attribute set Ã.

Finally, the misclassification cost Cmc is Cij if example
x predicted as class cj is actually from class ci. All the costs
brought by the attribute tests comprise the test cost Ctest.
Consequently, the total cost Ctotal = Cmc + Ctest. The
details of the csNB-sequential prediction are given in Algo-
rithm 1. As the output, the algorithm gives the prediction of
a test example x as well as the test cost Ctest included.

Back to the example in Section 3.1, initially Ã = φ and
A = A since all the four attributes are unknown. At step 5,
the utilities of the four attributes are calculated, which are
-6.5, 8.6, 22.2 and 24.1, respectively. Consequently, at step
10, the attribute “ascites” with the maximum utility 24.1 is

selected to test and its true value is revealed. “ascites” is
then removed from A to Ã. Attribute selection for testing
in the next round will be different depending on the out-
come of the test on “ascites”. If it is positive, the attribute
“spleen” is chosen for testing; otherwise, the attribute “spi-
ders” is selected. The same process continues and finally
a sequential test strategy can be obtained during classifica-
tion.

Algorithm 1 csNB-sequential-predict(x, cl)
Input: x — a test example, cl — a csNB classifier;
Output:Label — the predicted class, Ctest — the test cost;
Steps:

1: Let Ã and A denote the set of known attributes and the
set of unknown attributes of x.

2: Set Ctest = 0.
3: while A is not empty do
4: for all Ai ∈ A do
5: Calculate Util(Ai) using Equation (2);
6: end for
7: if not ∃iUtil(Ai) > 0 then
8: break;
9: end if

10: Ai∗ = maxi Util(Ai)
11: Reveal Ai∗ ’s missing value v.
12: Ctest = Ctest + TAi∗

13: Ã← Ã ∪ {Ai∗ = v}
14: A← A/{Ai∗}
15: end while
16: Calculate the expected misclassification costs R(cj |Ã)

by Equation (1).
17: Label = arg minj R(cj |Ã).

A desirable property is that even when all the test costs
are zero, csNB may not do tests for all the missing attributes.
One reason is that the gain from knowing the missing value
of an attribute Ai is not always positive. According to Equa-
tion (3), if the expected misclassification cost Cmc(Ã∪Ai)
is equal to or even larger than the original cost Cmc(Ã),
the gain is non-positive. This creates a paradox: adding
new features (especially unrelated features) to a naive Bayes
classifier may actually lead to more misclassification cost.
The basic source can be traced back to the wrong indepen-
dent assumption of naive Bayes [4]. For the same reason,
adding these features to csNB can increase the misclassifi-
cation cost and is therefore not preferred. Another possible
reason is that the characteristics of the misclassification cost
matrix C can affect the test strategy. As an example, sup-
pose the entries C·j0 in the j0th column of matrix C is much
smaller than other entries in C, so that the minimizing func-
tions, arg minj R(cj |Ã) and arg minj R(cj |Ã∪Ai), always
have j0 returned. In this case, the gain from any unknown

attribute Ai may be zero and csNB will not do any test even
if no cost is brought.

5. Prediction with Batch Test Strategy

A sequential test strategy is optimal in the sense that (1)
it takes expectation over all possible outcomes of attribute
tests, and (2) decisions are made in a sequential manner
such that the next selection is dependent on the test results
of the previous ones. However, in many situations, tests are
required to be done all at once due to some practical con-
straints, such as time. In these situations, several unknown
attributes are tested simultaneously and a batch test strategy
is needed instead.

Specifically, while both batch test strategies and sequen-
tial test strategies aim to minimize the total cost, they are
different in that: In batch test, tests on unknown attributes
must be determined in advance before any one of them is
carried out; therefore, strategies are designed beforehand.
In sequential test, as discussed in Section 4, strategies are
designed on the fly during prediction.

To find an optimal batch test strategy for a new test ex-
ample, one possible way is to examine all possible subsets
of unknown attributes A by calculating the utilities, and
choose the one with the maximum utility. Let A

′
denote

a subset of A (A
′ ⊆ A). Cmc(Ã ∪ A

′
), the expected mini-

mum misclassification cost is calculated to obtain its utility.
To achieve it, expectation is taken over all possible value
combinations of the unknown attributes in A

′
. However, it

is computationally difficult to do so.
By assuming the conditional independence among at-

tributes, we can extend the sequential test algorithm using
a greedy method. The idea is that in each round, after the
best unknown attribute is selected (the one with maximum
utility), its test cost is counted. However, its true value is
not revealed. After that, this attribute is removed from A
to Ã and the selection process continues. Equivalently, all
unknown attributes with non-negative utility are selected.

Again, let A
′

denote the batch of attributes selected and
Ctest the test cost. They are computed as follows:

A
′

= {Ai|Util(Ai) > 0, Ai ∈ A} (6)

Ctest = Ctest(A
′
) =

∑
Ai∈A

′
Ctest(Ai) (7)

In the above equations, the utility of an unknown attribute
Ai is calculated as in Section 4, and the costs of testing the
attributes in A

′
comprise the overall test cost Ctest. The

batch tests on A
′

are then taken, and the values of attributes
in A

′
are revealed and added into Ã. Finally, the class label

is predicted as in the csNB-sequential prediction algorithm
(Step 16-17).

Back to the example in Section 3.1, A
′
={“spleen”, “spi-

ders”, “ascites”}, since these three unknown attributes have
non-negative utilities. The test cost Ctest is 24+26+32 =
82 and the batch test strategy is to perform tests on these
three attributes in one shot.

6. Experiments

In order to evaluate the performance of csNB with both
sequential and batch test strategies, experiments were car-
ried out on eight datasets from the UCI ML repository [1].
For comparison, two variations of traditional naive Bayes
classifiers were used as the baselines. The first one is the
naive Bayes classifier augmented to minimize the misclassi-
fication cost (conditional risk) as given in [4]. This classifier
is termed Lazy Naive Bayes (LNB) since it simply predicts
class labels based on the known attributes and requires no
further tests to be done on any unknown one. The second
variation is the naive Bayes classifier extended further from
LNB. It requires all the missing values to be made up before
prediction. Since this classifier allows no missing values, it
is termed Exacting Naive Bayes (ENB).

Comparisons were also made between csNB and the
Cost-Sensitive Decision Tree (csDT) proposed in [8]. The
latter is a novel and effective method for building and test-
ing decision trees that also aims to minimize the sum of the
misclassification cost and the test costs. The algorithm was
shown to significantly outperform C4.5 and its variations.

In summary, four methods were examined: (1) Lazy
Naive Bayes (LNB), (2) Exacting Naive Bayes (ENB),
(3) Test-Cost Sensitive Naive Bayes (csNB), and (4) Cost-
Sensitive Decision Trees (csDT).

The eight datasets used are listed in Table 2. These
datasets were chosen because they have discrete attributes,
binary class, and a sufficient number of examples. We only
consider binary class problems in the following experiments
to be consistent with the csDT algorithm, although our csNB
algorithm can be used in multiple class problems naturally.
Also, the numerical attributes in datasets were discretized
using minimal entropy method as in [8].

Name of No. of Name No. of
datasets attributes of datasets attributes

Ecoli 6 Breast 9
Heart 8 Thyroid 24

Australia 15 Cars 6
Voting 16 Mushroom 22

Table 2. Datasets used in the experiments

We ran a 3-fold cross validation on these data sets. In
the experiments, no missing value is assigned in the train-
ing examples and for the testing examples, a certain per-

centage (missing rate) of attributes are randomly selected
and marked as unknown. If during classification, an algo-
rithm decides to perform a test on an unknown attribute,
its true value is revealed and the test cost is accumulated.
Finally, the misclassification cost Cmc can be obtained by
comparing the predicted label with the true class label, and
Ctest is the accumulated test cost. The performance of
the algorithms is then measured in terms of the total cost
Ctotal = Cmc + Ctest. To the binary class problems, let c1

be the positive class and c2 the negative class. The mis-
classification matrix was set as C12 = C21 = 600 and
C11 = C22 = 0, where C12 can be interpreted as false neg-
ative and C21 false positive. The test cost of each attribute
is set randomly between 0 and 100.

6.1. Sequential Test Strategy

Figures 1 and 2 show the results of different algorithms
with sequential test strategy on all the eight datasets. In
these experiments, the percentage of unknown attributes is
40%. Each group of four bars represents the runs of four
algorithms on one particular dataset. The height of a bar
represents the average total cost, and therefore the lower
the better. Each bar consists of two parts: the lower dark
portion standing for the average misclassification cost and
the upper light portion standing for the average test costs.

There are several interesting observations from these ex-
periments. First, although the misclassification costs of
ENB are almost always the lowest among the four meth-
ods, the average total costs of it are the highest. This is
because the low misclassification costs are achieved at the
cost of testing all unknown attributes, which is costly when
the missing rate is high.

Second, despite of its lazy nature, LNB performs well,
even better than csDT. This can be explained by the fact
that, while csDT uses the splitting criterion of minimal costs
for attribute selection in tree building, whenever trees are
built, the test sequences are fixed. Only the attributes along
a tree path are examined and the others are ignored. How-
ever, those attributes not examined can still be informative
in classification. LNB, on the other hand, is capable of mak-
ing use of these attributes.

Third, our csNB method performs the best overall be-
cause of its ability in selecting unknown attributes for test-
ing. As we can see from the figures, csNB not only low-
ers the misclassification costs compared with LNB, but also
maintains a low level of test costs compared with ENB.

To investigate the impact of the percentage of unknown
attributes on the average total costs, experiments were car-
ried out on the performance with the increasing percentage
of unknown attributes. Figure 3 shows the results on the
Mushroom dataset (other figures are spared for space). As
we can see, when the percentage increases (> 40%), the

LNB ENBcsNBcsDT LNB ENBcsNBcsDT LNB ENBcsNBcsDT LNB ENBcsNBcsDT
0

25

50

75

100

125

150

175

200

Experiments on the first four datasets

Av
er

ag
e

to
ta

l c
os

t

Misclassification Cost
Test Cost

Ecoli Breast Heart Thyroid

Figure 1. Average total cost comparisons of four
methods on datasets: Ecoli, Breast, Heart and
Thyroid.

LNB ENBcsNBcsDT LNB ENBcsNBcsDT LNB ENBcsNBcsDT LNB ENBcsNBcsDT
0

25

50

75

100

125

150

175

200

Experiments on the other four datasets

Av
er

ag
e

to
ta

l c
os

t

Misclassification Cost
Test Cost

Australia Cars Voting Mushroom

Figure 2. Average total cost comparisons of four
methods on datasets: Australia, Cars, Voting
and Mushroom.

0% 20% 40% 60% 80%
0

20

40

60

80

100

120

140

Percentage of unknown attributes

Av
er

ag
e

to
ta

l c
os

t

LNB
csNB
csDT

Figure 3. Comparisons with varying missing
rates.

0 20 40 60 80 100
0

20

40

60

80

100

Range of test cost

Av
er

ag
e

to
ta

l c
os

t

csDT (20%)
csDT (60%)
csNB (20%)
csNB (60%)

Figure 4. Comparisons with varying test costs.

average total cost of LNB increases significantly and sur-
passes that of csDT. Again, csNB is the best overall.

Another set of experiments was conducted to compare
two cost-sensitive algorithms csDT and csNB in terms of
varying test costs. Figure 4 shows the results on the Mush-
room dataset with both the missing rates 20% and 60%.
Still, csNB outperforms csDT overall. Also, as we can see,
csNB is less sensitive to the test costs than csDT as the in-
creasing of test costs. This reveals that the csNB method is
effective at balancing the misclassification and test costs.

6.2. Batch Test Strategy

Batch test is another important scenario we want to in-
vestigate. In order to compare csNB with csDT in terms
of their abilities with batch test strategy, we extended the
csDT algorithm as suggested in [8]. The basic idea is that
during classification, when a test case is stopped at the first

attribute whose value is unknown, this attribute, together
with all unknown attributes in the sub-tree will be tested.

The results of average total cost on the 8 datasets with
40% missing rate are shown in Figure 5. Again, the test cost
of each attribute is set randomly between 0 and 100, and
C12 = C21 = 400 while C11 = C22 = 0. Overall, csNB
outperforms csDT greatly. On average, csNB incurs 29.6%
less total cost than csDT. This reveals that although both
algorithms aim to minimize the total cost, csNB trades off
the misclassification cost and the test costs much better than
csDT. Besides the same reasons as explained in sequential
test (Section 6.1), in batch test, the advantage of csNB over
csDT can also be explained as follows. By the nature of
decision trees in tree-building, attributes are considered se-
quentially and conditionally one by one. Therefore, csDT is
inflexible to derive batch test strategies. On the other hand,
csNB has no such constraint and all the attributes can be
evaluated at the same level.

Ecoli Breast heart Thyroid Australia Cars Voting Mushroom
0

25

50

75

100

125

150

Experiments on 8 datasets

A
ve

ra
ge

 to
ta

l c
os

t

csDT−batch
csNB−batch

Figure 5. Comparisons in batch test on all the
8 datasets.

Figure 6 shows the two runs on the Breast and Mush-
room datasets with the variation of percentage of unknown
attributes. As we can see, csNB exhibits less sensitivity to
the missing rate and performs mush better than csDT.

0% 20% 40% 60% 80%
0

20

40

60

80

100

120

140

160

180

200

Percentage of unknown attributes

Av
er

ag
e

to
ta

l c
os

t

csDT−batch (Breast)
csNB−batch (Breast)
csDT−batch (Mushroom)
csNB−batch (Mushroom)

Figure 6. Comparisons in batch test with vary-
ing missing rates.

7. Conclusions and future work

In this paper, we proposed a test-cost sensitive naive
Bayes algorithm for designing classifiers that minimize the
sum of the misclassification cost and the test costs. In the
framework of csNB , attributes are intelligently selected for
testing to get both sequential test strategies and batch test
strategies. Experiments show that our method outperforms
other competing algorithms, including the cost-sensitive de-
cision tree algorithm.

In the future, we plan to consider several extensions of
our work. One direction to generalize the ideas to design
testing strategies for other classifiers, such as Neural Nets,

SVMs. It is also interesting to consider the cost of finding
the missing values for training data. Another direction is
to develop more effective algorithms for batch test strate-
gies. In addition, it is worth considering the conditional test
costs [15] in which the cost of a certain test is conditional
on the other attributes. For example, in medical diagnosis,
the cost of an exercise stress test on a patient may be condi-
tional on whether the patient has heart disease or not.

8 Acknowledgments

This work is supported by Hong Kong Research Grant
Committee (RGC) and Innovation and Technology Fund
(ITF).

References

[1] C. L. Blake and C. J. Merz. UCI repository of machine learn-
ing databases, 1998.

[2] P. Domingos. Metacost: A general method for making clas-
sifiers cost-sensitive. In KDD99, pages 155–164, 1999.

[3] P. Domingos and M. Pazzani. On the optimality of the sim-
ple bayesian classifier under zero-one loss. Machine Learn-
ing, 29:103–130, 1997.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-
tion. Willey and Sons, Inc., New York, 2nd edition, 2001.

[5] C. Elkan. The foundations of cost-sensitive learning. In
Proc. of the IJCAI01, pages 973–978, 2001.

[6] R. Greiner, A. Grove, and D. Roth. Learning cost-
sensitive active classifiers. Artificial Intelligence Journal,
139(2):137–174, 2002.

[7] M. T. Kai. Inducing cost-sensitive trees via instance weight-
ing. In Springer-Verlag, editor, Principles of Data Mining
and Knowledge Discovery, Second European Symposium,
pages 139–147, 1998.

[8] C. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees
with minimal costs. In Proc. of ICML04, 2004.

[9] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
[10] M. Nunez. The use of background knowledge in decision

tree induction. Machine Learning, 6:231–250, 1991.
[11] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity

of markov decision processes. Mathematics of operations
research, 12(3):441–450, 1987.

[12] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers, 1993.

[13] M. Tan. Cost-sensitive learning of classification knowledge
and its applications in robotics. Machine. Learning Journal,
13:7–33, 1993.

[14] P. D. Turney. Cost-sensitive classification: Empirical evalu-
ation of a hybrid genetic decision tree induction algorithm.
Journal of Artificial Intelligence Research, 1995.

[15] P. D. Turney. Types of cost in inductive concept learning.
In Workshop on Cost-Sensitive Learning at the 17th Inter-
national Conference on Machine Learning, 2000.

[16] V. B. Zubek and T. G. Dietterich. Pruning improves heuristic
search for cost-sensitive learning. In Proc. of ICML02, pages
27–34, Sydney, Australia, 2002.

