
An Expressive and Efficient Language for Information Gather ing on the Web

Greg Bar ish and Craig A. Knoblock

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

{ barish, knoblock} isi.edu

Abstract
While network query engines make it possible to gather and
combine data from multiple Web sources, these systems
primarily focus on efficient query execution and do not
solve some of the more complicated problems of online
information gathering. Such problems require alternative
types of control flow and better integration with the external
world; the unique nature of the Web requires query plans be
expressive enough to accommodate these demands. In this
paper, we describe an information gathering plan language
that is expressive and promotes efficient execution.
Through its support for subplans, recursion, and a unique set
of operators, the language allows plans that can interactively
gather data over a series of pages, monitor remote sources,
and asynchronously notify users of updates and results. We
also present a execution system that efficiently implements
the plan language using a dataflow-style executor capable of
pipelining data between operators.

Introduction

Current research on network query engines (Ives et al.
1999, Hellerstein et al. 2000, Naughton et al. 2001) has
shown that it is possible to gather and combine data from
multiple Web sources using plans similar to those found in
traditional database systems. However, such research has
focused primarily on the efficiency of plan execution and
has tended to ignore the problems associated with more
complicated types of Internet information gathering.
 The unique nature of the Web is such that certain types
of queries require a plan language more expressive than
those capable of only basic integration. Consider
collecting the results of a search engine query. Nearly all
search engines display query results spread across multiple
result pages. To collect all of the data, an automated
system must be capable of interleaving the collection of
partial results with navigation to additional results and
must be able to eventually decide when to stop. The
control flow required for such a task is not supported by
the plan languages of existing network query engines.
 Another unique aspect of the Web is that it is highly
dynamic and there is considerable interest in being able to
monitor sources. However, since the Web has no built-in
trigger facility, one has to "discover" updates by querying

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

the Web over a period of time that extends beyond that of a
single interactive query. To track an integrated set of data
requires a language capable of managing intermediate
results and communicating important updates to users
asynchronously (i.e., via e-mail) as necessary. Again, most
network query engines do not support such capabilities.
 While these examples demonstrate that better plan
expressivity is desirable, so too is efficient query
execution. Gathering data on the Web is an I/O-intensive
process that renders CPUs idle for periods of seconds
during plan execution. Thus, what is needed is a plan
language that is not only expressive but also very efficient:
specifically, one that supports highly concurrent execution.
 A plan language can provide substantial degrees of
parallelism in two ways. The first is to support a dataflow
representation of plans. The partial ordering of operators
enabled by a dataflow representation describes execution
in maximally parallel terms – operators are only limited by
their own data dependencies. A second language-level
strategy is to support operators capable of processing
pipelined data (i.e.,. tuple-oriented processing). Pipelining
refers to the production and consumption of data as soon as
possible – producers emit incremental results to consumers
– enabling both to work in parallel on the same relation.
 In this paper, we present an information gathering plan
language that is both expressive and efficient. The
proposed plan language is modular and supports the notion
of subplans to encourage reusability and facilitate
recursion. In addition, the language consists of operators
that interact with the external world so that it is possible to
monitor sources and asynchronously notify users of
important updates. While providing better expressivity,
plans in this language are efficient because they consist of
a dataflow-style ordering of operators and because those
operators support the pipelining of data during execution.
 The rest of this paper is organized as follows. Section 2
establishes basic terminology, discusses the details of more
difficult Web query tasks, and provides an example that we
will use throughout the rest of the paper. In Section 3, we
propose an information gathering plan language and
describe how it enables us to solve the types of problems
shown earlier. In Section 4, we discuss the efficient
execution of plans generated in this language. Finally, in
Section 5, we discuss the related work, both in terms of
network query engines and intelligent agents.

Gather ing and Monitor ing Web Data

In this section, we describe the problem of gathering and
monitoring data on the Web. We first describe basic
integration tasks and how existing information gathering
plan languages allow these tasks to be completed. Next,
we describe more complicated types of information
gathering tasks and how they necessitate a more expressive
plan language. Finally, we provide an example problem
that will be the basis for discussion throughout the paper.

Basic information gather ing tasks
Basic Web-based information consists of retrieving data
from multiple sources, combining, and then filtering as
necessary. For example, the plans described in (Friedman
& Weld 1997), (Ives et al. 1999), and (Barish et al. 2000)
query distinct Web sites, combine the data found in both
(either by unioning or joining that data), and then either
filter these results or use them to query other web sources.
These plans have simple control flow and involve the same
types of operators found in traditional database systems –
Retrieve, relational operators like Select, Project, Join, and
set-theoretic operators like Union, Minus, and Intersect.
 Current technology for querying the Web in this manner
exists in two forms. One is that provided by Web-based
information mediators (Genesereth et al. 1996, Knoblock
et al. 2001). These systems use high-level domain models
to describe how logical entities are related Web sources.
They utilize Web site wrappers to convert semi-structured
HTML into structured relations and thus allow web sites to
be queried as if they were databases. Mediators have
largely focused on enabling multiple heterogeneous data
sources to be integrated (through query reformulation).
With these systems, it is possible to write queries that are
answered through information gathering plans that
combine and filter data from multiple sources.
 A second, more recent technology for accomplishing
these types of tasks comes in the form of network query
engines. Although these systems enable the Web to be
queried in the same way that mediators do, they have
generally focused on the need for efficient execution and
on the need to process online XML data. They have been
mostly concerned with adaptive execution techniques to
overcome the inherent latency of querying remote web
sites.
 In short, existing mediators and network query engines
allow Web data to be queried in a manner similar to that
found in traditional database systems. The control flow of
the plan and types of operators involved are largely the
same. In general, these systems have focused largely on
the challenges of interoperability and efficiency.

More complicated tasks
The nature of the Web is such that the expressivity
provided by traditional query plans is often insufficient for
solving other types of common, yet more complicated
online information gathering tasks. In particular, the Web

is unique in at least two major respects: (a) it is primarily a
visual medium and (b) its highly dynamic nature often
invites the need for monitoring. Let us consider how each
of these aspects independently impacts online querying.
 As a visual medium, data on the Web is often organized
in a way that makes sense for visual consumption. For
example, querying a web source through an HTTP POST
or GET often results in answers to that query being
organized across multiple pages. For example, a query to a
search engine can result in hundreds of web pages that
each contain part of the answer. To collect the complete
answer to such queries, it is necessary to navigate to each
page, collect the results on that page, find the "next page"
link, navigate to the next page, collect the results on that
page, and so on. This manner of alternating retrieval with
navigation is unique to the Internet does not have an
equivalent in traditional database systems.
 Secondly, Web sources can be highly dynamic and often
need to be monitored. Unfortunately, the Web lacks a
database-style trigger facility that notifies users when data
has changed and does not provide any automated means
for identifying differences between current results and
those that existed prior to the update. Instead, updates to its
data are only realized through a process of repetitive
querying, collection of new results, and then comparison of
these new results with prior results to discover the
differences. Thus, periodic execution and some sort of
mechanism for comparison between queries is necessary.

Example
To demonstrate how more complicated types of
information gathering problems require more expressive
plans, it is useful to describe a detailed example. Consider
using the Internet to locate a new home to buy. Suppose
we wish to use a site like Yahoo Real Estate to periodically
locate houses that meet our search criteria. For example,
we wish to find houses that meet a certain set of price,
location, and number of rooms constraints.
 First, let us discuss how users perform this task
manually. Figures 1a, 1b, and 1c show the interface and
result pages for Yahoo Real Estate. To query for new
homes, users first fill the criteria shown in Figure 1a –
specifically, they enter information that includes city, state,
maximum price, etc. Once they fill in this form, they
submit their query to the site. The initial results are shown
in Figure 1b. However, notice that this page only contains
results 1 through 15 of 22. To get the remainder of the
results, a "Next" link must be followed to the page
containing results 16 through 22. Finally, to get the details
of each house, users must follow the link associated with
each listing. A sample detail screen is shown in Figure 1c.
 In practice, performing this task requires manually
repeating the above process over a period of days, weeks,
or even months. The user must both query the site
periodically and somehow keep track of new results. This
latter aspect can require a great deal of work – users must
note which houses in each result list are new entries.

 It is possible to automate part of this process with
current data integration technologies. For example, we can
use mediators or network query engines to gather and
extract data from web pages. But most of these systems do
not provide any means for monitoring sources and none
provide the ability to gather data spread across multiple
pages. To accomplish both tasks, we need plans capable of
expressing other types of control flow (such as looping)
and operators that facilitate monitoring.

We can consider how such plans generally might look.
Figure 2 shows an abstract plan for monitoring Yahoo Real
Estate. As the figure shows, search criteria is used to
generate houses from Yahoo Real Estate. Houses are
separated from their "next page" link and compared against
houses that already existed in a local database. Then, the
resulting set of new houses are queried for their details and
the results are e-mailed to the user. These new results are
also appended to the database so that future queries can
distinguish new results. Meanwhile, the "next page" link is
followed and the resulting new houses go through the same

process. Next page links are followed until no more pages
are found (i.e., no more next link).

Expressive & Efficient Information Gather ing

In this section, we describe an information gathering plan
language that makes it possible to construct plans that can
accomplish more complicated information gathering tasks,
such as the type shown in the abstract plan Figure 2. There
are several basic aspects of this plan language to consider –
the dataflow representation of plans, the logical pipelining
of data during execution, the typing and manipulations on
data, the set of operators that are provided, support for
modular design through the notion of subplans, and
support for information gathering tasks that require looping
through use of recursion.

Dataflow representation
All plans in the language we propose consist of a name, a
set of input and output variables, and a set of unordered
operators that represent the dataflow graph of the plan. A
dataflow representation of a plan is desirable from an
efficiency standpoint because it describes the maximally
parallel mode of execution (Dennis 1974). In contrast to
von Neumann models, which rely on an instruction counter
to sequentially execute a list of instructions (or operators),
a dataflow model allows execution to occur on any
operator, whenever its data dependencies are fulfilled.
This makes execution fully decentralized, independent for
each operator. Thus, execution can be highly concurrent.
 Figure 3 shows an abstract plan. As shown, a header
part communicates the name of the plan (P1 in this
example) and the list of input variables (a and b), and
output variables (g). The body section of the plan contains
the set of operators. The example below shows four
operators – Op1, Op2, Op3, and Op4. Each operator
instance consumes one or more inputs and produces zero
or more outputs. As shown below, the set of inputs for
each operator appears to the left of the colon delimiter and
the set of outputs appears to the right of the delimiter.
 Figure 4 illustrates how edges in the dataflow graph of
operators are communicated through variable names. For
example, as described by Figure 3, operator Op1 produces

Figures 1a, 1b, & 1c: Querying Yahoo Real Estate

Figure 3: Sample plan

PLAN P1 {
 INPUT: a, b
 OUTPUT: g

 BODY {
 Op1 (a, b : c)
 Op2 (b, c : d, e)
 Op3 (d : f)
 Op4 (e, f : g)
 }
}

Figure 2: Abstract plan for Yahoo Real Estate

GET house
results page

FILTER OUT
thos e houses
previousl y s een

LOAD DATAB ASE
of hous es

previousl y s een

EXTRACT
"next page" link

EXTRACT
hous e URLs

SEND E-MAIL
to the user

UPDATE D ATAB ASE
with new houses

search
criteria

GET house
detail page

c, which is consumed by Op2, and Op2 produces d and e,
which are consumed by Op3 and Op4, respectively. Figure
4 shows the corresponding edges that between the
operators.
 Although the body part of the plan language lists
operators in a linear order, this ordering does not affect
when they are actually executed. Per the dataflow model
of processing, operators fire whenever their individual data
dependencies are fulfilled. For example, Op2 can execute
when any of its individual inputs b or c are present. Thus,
Op2 executes once at the start of the plan (because b is
available) and then shortly later on, when c becomes
available. In summary, the only ordering of execution that
exists at the plan level is that which is communicated by
the producer/consumer relationship between operators

Logical data pipelining
Each of the variables in the plan above are logically
relational data streams. A stream is a set of tuples in a
relation, followed by an end of stream (EOS) marker.
Operators in the plan logically execute when they receive a
tuple for any of their input streams. The conditions that
describe when operators can execute is also known in
dataflow literature as the firing rule.
 For example, a set-theoretic Union operator would take
two input streams – lhs and rhs – and output a stream
called unioned_result that consists of the unique set of
tuples defined by the intersection of lhs and rhs This
operator can fire whenever a lhs or rhs tuple is present and
emit a unioned_result tuple for each firing. In part, this is
due to the nature of the operator. A Minus operator, in
contrast, would take two inputs named lhs and rhs and emit
a minus_result stream that was based on the subtraction of
rhs from lhs. However, even though the Minus operator
can fire upon receiving a tuple, it cannot emit a
minus_result tuple until the rhs stream EOS has been
received. Both the Union and Minus operator must
logically maintain state between invocations (both must
not emit duplicates and Minus must keep all of the rhs in
memory so that it can be applied to later lhs tuples).

Data types and common manipulations
Data in the system is communicated logically as relations
and physically as tuples (i.e., through pipelining). Each
tuple consists of a set of attribute/value pairs. Each
attribute can be one of five types: char, number, date,
relation (embedded), or document (i.e., a DOM object).
Embedded relations are supported because they reduce the
amount of data communicated during execution.
 XML data is supported by the system and is associated
with the Document attribute type. The language contains

specific operators that allow XML to be converted to
relations, for relations to converted to XML documents,
and for attributes that are XML documents to be queried in
their native form using XQuery. Since XML documents
are encapsulated by tuples, they can be pipelined between
operators; when/if it is desirable to pipeline the data
contained in an XML document, the document is first
converted to a relation, is streamed through the system, and
can be put back together again as XML later, if desired.
 In terms of common manipulations, operators vary on
how they output their results with respect to the incoming
data. In particular, there are two modes of interaction that
merit discussion: the performing of dependent joins and the
packing/unpacking of relations.
 In data integration plans, it is common to use data
collected from one source as a basis for querying
additional sources. However, it is tedious (and sometimes
impossible because of ordering constraints) to manually
join the data input to an operator onto the output data it
produces. Instead, many of the operators in this language
perform a dependent join of input tuples onto the output
tuples that they produce. For example, if the language
supported an operator called Round that rounded a floating
point value in a column to its nearest whole integer value,
and if the input data consisted of the tuples ((Jack, 89.73),
(Jill, 98.21)) then the result after the Round operator
executes would be of ((Jack, 89.73, 90), (Jill, 98.21, 98)).
Dependent joins simplify plans and solve problems related
to the joining data when no unique key on the input
relation exists.
 A related mode of interaction to discuss involves the
packing and unpacking of relations. Packing relations is
useful when you want to associate a relation with an
aggregate function, such as count. Instead of creating and
managing two distinct results (which often need to be
joined later), it is cleaner and more space-efficient to
perform a dependent join on the packed version of an input
relation with the result output by an aggregate-type
operator. For example, if the language supported an
aggregate operator called Average, then the result of
processing the input described earlier would be (((Jack,
89.73), (Jill, 98.21)), 93.97). Unpacking a relation is
necessary to get at the original data. Packing and
unpacking is a common activity when a conditional
operator needs to evaluate an aggregate measure of a
relation and then route it to the proper set of consumer
operators which then unpack the data.

Operators
To accomplish more complicated types of information
gathering tasks, three basic types of operators are
necessary; those that:

� Gather and manipulate data: These include the
traditional relational operations as well as those
capable of processing XML data.

� Facilitate monitor ing: To effectively monitor data
sources, the language includes operators that can
access local databases, so that intermediate results can

Figure 4: Plan represented as a dataflow graph

Op1 Op2 Op3 Op4

a

b

c d g

e

be stored and then compared against later. In addition,
other monitoring operators enable results to be
communicated asynchronously – for example, through
e-mail, fax, or cell phone.

� Promote extensibility: Generally, operating on data
either involves operating on individual tuples (single-
row functions) or operating on sets of tuples
(aggregate functions). The language includes
operators that allow users to extend the existing plan
language to meet any kind of single-row or aggregate
data manipulation necessary.

We now describe the operators in more detail and focus on
those not found in other types of network query engines.

Operators for gather ing and manipulating data. The
language supports basic operators for gathering data from
the Web and manipulating it (filtering, combining, etc.).
These operators are shown in Table 1.
 Of these, the Wrapper operator is the most interesting.
Its purpose is to use values from an input relation as the
basis for querying a specified Web source. In general,
wrappers are mechanisms for querying a remote semi-
structured Web site as if it were a local relational database.
Calling a wrapper involves providing input constraints (if
any), executing the wrapper, and then collecting its results.
Correspondingly, our Wrapper operator uses values from
each tuple of an input relation as the input constraints and
queries the remote site accordingly. Results generated by
each input tuple are combined with the input that generated
them – this is referred to as a dependent join. The
language also includes operators for manipulating XML
data, including XQuery for querying XML and Xml2Rel
and Rel2Xml for converting XML data to relational and
vice versa. The bulk of the remaining manipulation
operators are familiar and can be found in current network
query engines and mediators.

M onitor ing operators. There are two aspects to the
monitoring process – the ability to keep track of past
results and the ability to asynchronously notify users of
updates. To accomplish these tasks, the plan language we
propose supports a set of monitoring-related operators.
These are shown in Table 2.
 The DbQuery, DbAppend, DbExport, and DbUpdate
operators allow plans to interact with local databases. This

makes it possible to robustly monitor data sources for long
periods of time. The Email, Fax, and Phone operators
allow data to be accumulated and sent to recipients
asynchronously. By its very nature, monitoring is a non-
interactive process between user and agent and thus some
form of offline propagation of updates is needed.

Extensibility operators. To increase the expressive power
of the language, two additional operators – Apply and
Aggregate – are included. Both are shown in Table 3.
Apply calls user-defined single-row functions on each
tuple of relational data and performs a dependent join on
the input tuple with its corresponding result. For example,
a user-defined single-row function called SQRT might
return a tuple consisting of two values: the input value and
its square root. The Aggregate operator calls user-defined
multi-row functions and performs a dependent join on the
packed form of the input and its result. For example, a
COUNT function might return a relation consisting of a
single tuple with two values: the first being the packed
form of the input and the second being the count of the
number of distinct rows in that relation.

Subplans
To promote language supports references to subplans
reusability and to facilitate recursion (described later), the.
Executing a subplan simply refers to the calling of one plan
from another.
 Recall that all plans are named and consist of a set of
input and output streams. Thus, plans present the same
interface as operators. It is thus a simple matter to refer to
a plan as if it were an operator. For example, consider the
example plan P1 introduced earlier. Figure 5 shows how
another plan P2 can reference P1as a subplan.
 Subplans encourage modularity and re-use. Once
written, a plan can be used as an operator in any number of

Figure 5: Calling a subplan

PLAN P2 {
 INPUT: w, x
 OUTPUT: z

 BODY {
 Op5 (w : y)
 P1 (x, y : z)
 }
}

Table 2: M onitor ing operators

Name Purpose

dbquery Fetches relation from DB based on query

dbappend Append to existing relation in DB

dbexport Export relation to DB

dbupdate Processes an update query (no results returned)

email Emails data to specified e-mail address

fax Faxes data to specified fax number

phone Sends text message to specified cell phone number

null Conditionally routes stream based on if another is empty

Nam e Purpos e

w rapper Extracts w eb page data as relation

xm l2rel Converts XML document into a relation

r el2xm l Converts a relation to an XML document

xquer y Manipulates attributes that are XML documents

s elect Filters relation based on specified criteria

project Extracts specif ied attributes from relation

jo in Combines relations based on specif ied criteria

union Performs set union of tw o relations

m inus Performs set minus of tw o relations

inter s ect Performs set intersect of tw o relations

pack Embeds relation in single attribute tuple

unpack Expands embedded relation from single attribute tuple

Table1: Data manipulation operators

Nam e Purpos e

apply Apply single row function to each relation tuple

aggr egate Apply multi-row function to relation

Table 3: Extensibility operators

future plans. This effectively allows users to build
whatever operators they need by combining the set of
existing operators as necessary. At the same time,
subplans can be easily scheduled as part of a dataflow-style
plan and can benefit from data pipelining - just like any
other typical plan operator does.
 For example, one could develop a simple subplan called
Persistent_Diff, shown in Figure 6, that uses the existing
operators DbQuery, Minus, Null, and DbAppend to take
any relation, compare it to a named relation stored in a
local database. This plan determines if there was an
update, appends the result, and returns the difference.
Such a subplan could be as an operator in many types of
other plans. Note that executing a subplan does not force
us to sacrifice the efficiency of dataflow execution and
data pipelining: the Null and DbAppend operators execute
at the same time that result is returned to the higher level
plan; they also execute on data as soon as it becomes
available from the Minus operator.

Recursion
In addition to promoting modularity and re-use, subplans
make another form of control flow possible: recursion. As
described earlier, a number of online information gathering
tasks require some sort of looping-style control flow.
 For example, when processing results from a search
engine query, an automated information gathering system
needs to collect results from each page, follow the "next
page" link, collect results from the next page, collect the
"next page" link on that page, and so on – until it runs out
of "next page" links. If we were to express this in von-
Neumann style programming language, we might use a
Do...While loop to manage this type of information
gathering need. However, under a dataflow-model of
execution, such an approach in practice requires a fair of
synchronization and additional operators.
 Instead, this problem can be solved quite elegantly with
recursion. We can use subplan reference as a means by
which to repeat the same body of functionality and we can
use the Null operator as the basis for the exit condition.
 As an example of how recursion is used, consider the
abstract plan for processing the results of a search engine
query. A higher level plan called Query_Search_Engine,
shown in Figure 7, posts the initial query to the search
engine and retrieves the initial results. It then processes
the results with a subplan called Gather_and_Follow. The
search results themselves go to a Union operator and the
next link is eventually used to call Gather_and_Follow
recursively. The results of this recursive call are combined
at the Union operator with the first flow.
 There are a few notable aspects to the plans shown in

Figure 7. First, a recursive approach requires very few
operators: through the subplan facility, we are able to re-
use the body of the gathering-and-following task. Second,
data pipelining is exploited: even though recursive
execution might go quite deep, results from higher levels
are streamed out, back to the higher level
Query_Search_Engine plan as soon as possible via the
pipelined Union operator. Third, notice that we continue
to merely require one type of conditional – the Null
operator. When the last page is reached, Null routes the
EOS to Union (and not to Wrapper, as it normally does).
This ends the Union at the lowest level of recursion and
this EOS trickles all the way back to the top of the plan,
per standard tail-recursive execution.

Revisiting the example
Let us now revisit the earlier house search example and see
how such a plan would be written with the proposed plan
language. Figure 8 shows one of the two plans,
Get_Houses, required to implement the abstract real estate
plan in Figure 2. Get_Houses calls the subplan Get_Urls;
this plan is nearly identical to the recursive subplan
Gather_And_Follow in Figure 7, so it is omitted for the
sake of brevity. The rest of Get_Houses works as follows:

a. A Wrapper operator fetches the initial set of
houses and link to the next page (if any) and
passes it off to the Get_Urls recursive subplan.

b. A Minus operator determines which houses are
distinct from those previously seen; new houses
are appended to the persistent store.

c. Another Wrapper operator investigates the detail
link for each house so that the full set of criteria
(including picture) can be returned.

d. Using these details, a Select operator filters out
those that meet the specified search criteria.

e. The result is aggregated and e-mailed to the user.

DbQuery Minus DbAppend

relation

external_name

Null

result

Figure 6: The Persistent_Diff subplan

WRAPPER
house-list

GET_URLS WRAPPER
house-details

SELECT EMAIL

FORMAT
"price < %s AND beds = $s"

� � � � � � � �

DBQUERY
already-seen

MINUS
already-seen

DBAPPEND
already-seen

Figure 8: The Get_Houses plan

Figure 7: Example of recursion

WRAPPER
initia l-results

GATHER_AND_FOLLOW

UNION

NULL

WRAPPER
next-results

GATHER_AND_FOLLOW

false

true

keywords

QUERY_SEARCH_ENGINE

PROJECT
web_page

DISTINCT
next_pa ge

results

web pages

GATHER_AND_FOLLOW

An Efficient Plan Execution Architecture

In this section, we describe an architecture that can
efficiently execute the types of plans described in the last
section. This architecture is composed of two parts: the
language described in the previous section and a dataflow-
style executor that efficiently processes these plans.

High-level design
The high-level design of the architecture is shown in
Figure 9. The figure shows that the input to the executor is
a plan; in addition, a schedule for execution (once, daily,
hourly, etc) is input. During each execution, the plan may
interface with a local database (e.g. to store tracking
information). The figure also shows that it is possible for
the plan to communicate updates through a variety of
asynchronous communication mechanisms.
 Once an input plan is received by the executor, it
constructs an internal dataflow graph based on plan
operators. At this time, any subplan and recursive
relationships are resolved, merging in operators from those
plans as appropriate. The system then feeds in input data
and execution commences. The input data triggers a subset
of plan operators to start firing; their execution and
subsequent production trigger other operators that consume
their output and so on. If the plan is interactive, output
data will be immediately returned to the user as it is
produced. Otherwise, it is assumed that the method of user
notification (such as email) is already encoded in the plan.
 Thus, in the Yahoo Real Estate example, a user can
submit the main part of the plan, a set of input data shown,
and the schedule of "daily" to the system. The plan will
then be executed once (immediately) and an initial set of
house search results will be e-mailed to the user. The plan
will then be automatically run the next day.

Parallelism dur ing execution
The executor uses threads to service operator execution,
and thus functions similar to a threaded dataflow machine
(Papadapoulous & Traub 1991). When a tuple becomes
available (either via input or through operator production),
a thread is assigned to execute a method on the consuming
operator with that data. Threads are drawn from a fixed
pool, to throttle excessive parallelism and prevent machine
resources from being swamped.
 The first time that input arrives for a particular operator,
an initialization method for that operator is called. During

this time, stateful data structures are initialized. All future
firings may use this state data structure as is appropriate for
that operator. For example, the Union operator uses the
state to save all tuples that it has previously output so that
it does not output duplicates. The Minus operator keeps
this information as well as the entire set of rhs tuples in its
state – thus, when new lhs tuples arrive, they are first
compared to the rhs set and, if not in this set, output only if
they have not been previously output. When EOS markers
have been received on each of an operators’ inputs, all
accumulated state is deleted. State is maintained per level
of iteration; thus re-entrant, recursive execution is
guaranteed to be correct.
 In summary, the executor we describe functions as a
virtual threaded dataflow machine. By using threads to
service operator firings, operator execution can be as
horizontally parallel as the number of threads in the fixed
pool. Furthermore, it is possible for a producer and
consumer operator to fire concurrently on the same logical
relation (the consumer operating on an earlier tuple while
the producer operates on a later tuple in the stream) thus
implementing a form of pipelined, or vertical parallelism.

Data color ing for re-entrancy. Recursion implies that
plans are re-entrant and thus introduces an additional
complexity – distinguishing data between recursive levels.
To address this, the system assigns a color to all data at a
particular logical level of execution. For example, during
the execution of Get_Houses, the input data and any data
produced at the same level as a result is assigned the same
color. Whenever a subplan like Get_Urls is called
(including when recursive calls are made), the tuples
routed to that subplan are assigned a new color. This
allows tuples at multiple levels of execution to be correctly
managed by operators in the recursive subplan.

Related Work

In this section, we discuss two areas of related work: that
of efficient Internet querying by network query engines
and the set of more existing, more general, agent executors.

Network query engines. Recently, network query engines
(Ives et al. 1999, Hellerstein et al. 2000, Naughton et al.
2001), have been proposed as means for efficiently
gathering information on the Internet. These systems are
mostly concerned with the efficiency of query execution.
and have proposed adaptive execution strategies to reduce
I/O latencies. Like the work described here, these systems
represent plans as dataflow graphs and pipeline data
between operators. The major difference between existing
network query engines and the work described here is in
terms plan expressivity. While network query engine
research has proposed new operators related to XML
processing and adaptive execution, they do not support
operators that facilitate monitoring. These systems do not
support conditional execution and it is not possible to loop
through query results spread across multiple Web pages.
In contrast, the plan language here supports conditional

Executor

PLAN myplan {
INPUT: x
OUTPUT: y

BODY {
Op (x : y)

}
}

10101010100101
01010101010110
00011101101011
11010101010101

Local Database

Plan

Input Data

Figure 9: Executor design and inter face

execution, allows plans themselves to be operators, and
supports recursion as means for looping during execution.

General plan executors. It is also useful to compare the
work here to existing and more general plan execution
systems. These systems have proposed highly concurrent
execution models similar in spirit to dataflow machines.
For example, RAPS (Firby 1994) described execution as a
set of concurrent processes while PRS-Lite (Myers 1996)
supported concurrent task execution as well as more
complex synchronization and control flow. Both projects
focused on specifying an event-driven mechanism for the
parallel execution of partially-ordered plans – similar to
execution of a dataflow graph. The work described here
differs from these more generic architectures by focusing,
like network query engines, specifically on plans that not
only require the enablement of operators, but the routing of
information between them. as well. Thus, our work is
more closer in spirit to the unified approach of
(Williamson et al. 1996), yet it extends that work by
specifying an actual plan language, adding support for
recursion and subplan execution, and by proposing a
dataflow execution architecture.

Conclusion and Future Work

In this paper, we have described an information gathering
plan language that promotes better expressivity while
retaining the efficiency of traditional plan representation.
Support for subplans and recursive execution allow plans
to loop through query results that are spread across
multiple Web pages. Operators that are extensible and are
better integrated with the external world facilitate plans
that are capable of monitoring an integrated set of remote
sources for an extended period of time. Though expressive,
the plan language is dataflow in terms of representation
and its operators support the pipelining of data during
execution. Thus, such plans can be efficiently executed.
 We are currently investigating a method for speculative
execution for information gathering plans (Barish &
Knoblock 2002) that uses machine learning techniques to
analyze data occurring early during execution so that
predictions can be made about data that will be needed
later in execution. The result is a new form of dynamic
execution parallelism that can lead to significant speedups.
We are also currently working on an Agent Wizard, which
allows the user to define agents for monitoring tasks
simply by answering a set of questions about the task. The
Wizard will work similar to the Microsoft Excel Chart
Wizard, which builds sophisticated charts by asking the
user a set of simple questions. The Wizard will generate
information gathering plans using the language described
in this paper and schedule them for periodic execution.

Acknowledgements

The research here was supported in part by the Defense
Advanced Research Projects Agency (DARPA) and Air

Force Research Laboratory under contract/agreement
numbers F30602-01-C-0197, F30602-00-1-0504, F30602-
98-2-0109, in part by the Air Force Office of Scientific
Research under grant number F49620-01-1-0053, and in
part by the Integrated Media Systems Center, a National
Science Foundation Engineering Research Center,
cooperative agreement number EEC-9529152. The U.S.
Government is authorized to reproduce and distribute
reports for Governmental purposes notwithstanding any
copy right annotation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any of the
above organizations or any person connected with them.

References

Barish, Greg; Chen, Yi-Shin; Knoblock, Craig A.; Minton,
Steven; and Shahabi, Cyrus. The TheaterLoc Virtual Application.
Innovative Applications in Artificial Intelligence (IAAI). 2000

Barish, Greg and Knoblock, Craig A. Speculative Execution for
Information Gathering Plans. To appear, AIPS-2002.

Dennis, Jack B. First version of a data-flow procedure language,
Lecture Notes in Computer Science 19, pp362-376. 1974.

Firby, R.J. Task Networks for Controlling Continuous Processes.
AIPS-1994.

Friedman, Marc and Weld, Daniel S. Efficient execution of
information gathering plans. IJCAI-1997.

Genesereth, Michael R.; Keller, Arthur M.; and Duschka, Oliver
M. Infomaster: An information integration system. SIGMOD-97.

Hellerstein, Joseph M.; Franklin, Michael J.; Chandrasekaran,
Sirish; Deshpande, Amol; Hildrum, Kris; Madden, Sam; Raman,
Vijayshankar; and Shah, Mehul A. Adaptive query processing:
technology in evolution. IEEE Data Eng Bulletin 23(2). 2000.

Ives, Zachary G.; Florescu, Daniela; Friedman, Marc; Levy, Alon
Y.; and Weld, Daniel S. An adaptive query execution system for
data integration. SIGMOD-1999.

Knoblock, Craig A.; Minton, Steven; Ambite, Jose Luis ; Ashish,
Naveen; Muslea, Ion; Philpot, Andrew G.; and Tejada, Sheila.
The Ariadne Approach to Web-based Information Integration.
International Journal on Cooperative Information Systems
(IJCIS) Special Issue on Intelligent Information Agents: Theory
and Applications. Vol 10 (1-2): 145-169. 2001.

Myers, Karen. A procedural knowledge approach to task-level
control. AIPS-1996.

Naughton, Jeffrey F.; DeWitt, David J.; Maier, David.; et al. The
Niagara Internet query system. IEEE Data Engineering Bulletin,
24(2). 2001

Papadopoulos, Gregory M. and Traub, Kenneth R.
Multithreading: A revisionist view of dataflow architectures. In
Proc of the 18th Intl Symposium on Computer Architecture. 1991

Williamson, Mike; Decker, Keith; and Sycara, Katia. Unified
Information and Control Flow in Hierarchical Task Networks.
AAAI Workshop: Theories of Action, Planning, and Ctrl. 1996.

