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Abstract 
While network query engines make it possible to gather and 
combine data from multiple Web sources, these systems 
primarily focus on efficient query execution and do not 
solve some of the more complicated problems of online 
information gathering.  Such problems require alternative 
types of control flow and better integration with the external 
world; the unique nature of the Web requires query plans be 
expressive enough to accommodate these demands.  In this 
paper, we describe an information gathering plan language 
that is expressive and promotes efficient execution.  
Through its support for subplans, recursion, and a unique set 
of operators, the language allows plans that can interactively 
gather data over a series of pages, monitor remote sources, 
and asynchronously notify users of updates and results.  We 
also present a execution system that efficiently implements 
the plan language using a dataflow-style executor capable of 
pipelining data between operators. 

Introduction   

Current research on network query engines (Ives et al. 
1999, Hellerstein et al. 2000, Naughton et al. 2001) has 
shown that it is possible to gather and combine data from 
multiple Web sources using plans similar to those found in 
traditional database systems.  However, such research has 
focused primarily on the efficiency of plan execution and 
has tended to ignore the problems associated with more 
complicated types of Internet information gathering.     
 The unique nature of the Web is such that certain types 
of queries require a plan language more expressive than 
those capable of only basic integration.  Consider 
collecting the results of a search engine query.  Nearly all 
search engines display query results spread across multiple 
result pages.  To collect all of the data, an automated 
system must be capable of interleaving the collection of 
partial results with navigation to additional results and 
must be able to eventually decide when to stop.  The 
control flow required for such a task is not supported by 
the plan languages of existing network query engines.        
 Another unique aspect of the Web is that it is highly 
dynamic and there is considerable interest in being able to 
monitor sources. However, since the Web has no built-in 
trigger facility, one has to "discover" updates by querying 
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the Web over a period of time that extends beyond that of a 
single interactive query.  To track an integrated set of data 
requires a language capable of managing intermediate 
results and communicating important updates to users 
asynchronously (i.e., via e-mail) as necessary.  Again, most 
network query engines do not support such capabilities. 
 While these examples demonstrate that better plan 
expressivity is desirable, so too is efficient query 
execution.  Gathering data on the Web is an I/O-intensive 
process that renders CPUs idle for periods of seconds 
during plan execution.  Thus, what is needed is a plan 
language that is not only expressive but also very efficient: 
specifically, one that supports highly concurrent execution.  
 A plan language can provide substantial degrees of 
parallelism in two ways.  The first is to support a dataflow 
representation of plans.  The partial ordering of operators 
enabled by a dataflow representation describes execution 
in maximally parallel terms – operators are only limited by 
their own data dependencies.    A second language-level 
strategy is to support operators capable of processing 
pipelined data (i.e.,. tuple-oriented processing).  Pipelining 
refers to the production and consumption of data as soon as 
possible – producers emit incremental results to consumers 
– enabling both to work in parallel on the same relation.           
 In this paper, we present an information gathering plan 
language that is both expressive and efficient.  The 
proposed plan language is modular and supports the notion 
of subplans to encourage reusability and facilitate 
recursion.  In addition, the language consists of operators 
that interact with the external world so that it is possible to 
monitor sources and asynchronously notify users of 
important updates.  While providing better expressivity, 
plans in this language are efficient because they consist of 
a dataflow-style ordering of operators and because those 
operators support the pipelining of data during execution.   
 The rest of this paper is organized as follows.  Section 2 
establishes basic terminology, discusses the details of more 
difficult Web query tasks, and provides an example that we 
will use throughout the rest of the paper.  In Section 3, we 
propose an information gathering plan language and 
describe how it enables us to solve the types of problems 
shown earlier.  In Section 4, we discuss the efficient 
execution of plans generated in this language.   Finally, in 
Section 5, we discuss the related work, both in terms of 
network query engines and intelligent agents.     



Gather ing and Monitor ing Web Data 

In this section, we describe the problem of gathering and 
monitoring data on the Web.  We first describe basic 
integration tasks and how existing information gathering 
plan languages allow these tasks to be completed.  Next, 
we describe more complicated types of information 
gathering tasks and how they necessitate a more expressive 
plan language.  Finally, we provide an example problem 
that will be the basis for discussion throughout the paper.  

Basic information gather ing tasks 
Basic Web-based information consists of retrieving data 
from multiple sources, combining, and then filtering as 
necessary.  For example, the plans described in (Friedman 
& Weld 1997), (Ives et al. 1999), and (Barish et al. 2000) 
query distinct Web sites, combine the data found in both 
(either by unioning or joining that data), and then either 
filter these results or use them to query other web sources.  
These plans have simple control flow and involve the same 
types of operators found in traditional database systems – 
Retrieve, relational operators like Select, Project, Join, and 
set-theoretic operators like Union, Minus, and Intersect.  
 Current technology for querying the Web in this manner 
exists in two forms.  One is that provided by Web-based 
information mediators (Genesereth et al. 1996, Knoblock 
et al. 2001).  These systems use high-level domain models 
to describe how logical entities are related Web sources.  
They utilize Web site wrappers to convert semi-structured 
HTML into structured relations and thus allow web sites to 
be queried as if they were databases.  Mediators have 
largely focused on enabling multiple heterogeneous data 
sources to be integrated (through query reformulation).  
With these systems, it is possible to write queries that are 
answered through information gathering plans that 
combine and filter data from multiple sources.  
 A second, more recent technology for accomplishing 
these types of tasks comes in the form of network query 
engines.  Although these systems enable the Web to be 
queried in the same way that mediators do, they have 
generally focused on the need for efficient execution and 
on the need to process online XML data.  They have been 
mostly concerned with adaptive execution techniques to 
overcome the inherent latency of querying remote web 
sites.     
 In short, existing mediators and network query engines 
allow Web data to be queried in a manner similar to that 
found in traditional database systems.  The control flow of 
the plan and types of operators involved are largely the 
same.  In general, these systems have focused largely on 
the challenges of interoperability and efficiency. 

More complicated tasks 
The nature of the Web is such that the expressivity 
provided by traditional query plans is often insufficient for 
solving other types of common, yet more complicated 
online information gathering tasks.  In particular, the Web 

is unique in at least two major respects: (a) it is primarily a 
visual medium and (b) its highly dynamic nature often 
invites the need for monitoring.  Let us consider how each 
of these aspects independently impacts online querying. 
 As a visual medium, data on the Web is often organized 
in a way that makes sense for visual consumption.  For 
example, querying a web source through an HTTP POST 
or GET often results in answers to that query being 
organized across multiple pages.  For example, a query to a 
search engine can result in hundreds of web pages that 
each contain part of the answer.  To collect the complete 
answer to such queries, it is necessary to navigate to each 
page, collect the results on that page, find the "next page" 
link, navigate to the next page, collect the results on that 
page, and so on.  This manner of alternating retrieval with 
navigation is unique to the Internet does not have an 
equivalent in traditional database systems.    
 Secondly, Web sources can be highly dynamic and often 
need to be monitored.  Unfortunately, the Web lacks a 
database-style trigger facility that notifies users when data 
has changed and does not provide any automated means 
for identifying differences between current results and 
those that existed prior to the update. Instead, updates to its 
data are only realized through a process of repetitive 
querying, collection of new results, and then comparison of 
these new results with prior results to discover the 
differences.  Thus, periodic execution and some sort of 
mechanism for comparison between queries is necessary. 

Example 
To demonstrate how more complicated types of 
information gathering problems require more expressive 
plans, it is useful to describe a detailed example.  Consider 
using the Internet to locate a new home to buy.  Suppose 
we wish to use a site like Yahoo Real Estate to periodically 
locate houses that meet our search criteria.  For example, 
we wish to find houses that meet a certain set of price, 
location, and number of rooms constraints.   
 First, let us discuss how users perform this task 
manually.  Figures 1a, 1b, and 1c show the interface and 
result pages for Yahoo Real Estate.  To query for new 
homes, users first fill the criteria shown in Figure 1a – 
specifically, they enter information that includes city, state, 
maximum price, etc.  Once they fill in this form, they 
submit their query to the site.  The initial results are shown 
in Figure 1b.  However, notice that this page only contains 
results 1 through 15 of 22. To get the remainder of the 
results, a "Next" link must be followed to the page 
containing results 16 through 22.  Finally, to get the details 
of each house, users must follow the link associated with 
each listing.  A sample detail screen is shown in Figure 1c. 
 In practice, performing this task requires manually 
repeating the above process over a period of days, weeks, 
or even months.  The user must both query the site 
periodically and somehow keep track of new results.  This 
latter aspect can require a great deal of work – users must 
note which houses in each result list are new entries.      



 It is possible to automate part of this process with 
current data integration technologies.  For example, we can 
use mediators or network query engines to gather and 
extract data from web pages.  But most of these systems do 
not provide any means for monitoring sources and none 
provide the ability to gather data spread across multiple 
pages.  To accomplish both tasks, we need plans capable of 
expressing other types of control flow (such as looping) 
and operators that facilitate monitoring.  

We can consider how such plans generally might look.  
Figure 2 shows an abstract plan for monitoring Yahoo Real 
Estate.  As the figure shows, search criteria is used to 
generate houses from Yahoo Real Estate.  Houses are 
separated from their "next page" link and compared against 
houses that already existed in a local database.  Then, the 
resulting set of new houses are queried for their details and 
the results are e-mailed to the user.  These new results are 
also appended to the database so that future queries can 
distinguish new results.  Meanwhile, the "next page" link is 
followed and the resulting new houses go through the same 

process.  Next page links are followed until no more pages 
are found (i.e., no more next link). 

Expressive &  Efficient Information Gather ing  

In this section, we describe an information gathering plan 
language that makes it possible to construct plans that can 
accomplish more complicated information gathering tasks, 
such as the type shown in the abstract plan Figure 2.  There 
are several basic aspects of this plan language to consider – 
the dataflow representation of plans, the logical pipelining 
of data during execution, the typing and manipulations on 
data, the set of operators that are provided, support for 
modular design through the notion of subplans, and 
support for information gathering tasks that require looping 
through use of recursion.  

Dataflow representation 
All plans in the language we propose consist of a name, a 
set of input and output variables, and a set of unordered 
operators that represent the dataflow graph of the plan.  A 
dataflow representation of a plan is desirable from an 
efficiency standpoint because it describes the maximally 
parallel mode of execution (Dennis 1974).  In contrast to 
von Neumann models, which rely on an instruction counter 
to sequentially execute a list of instructions (or operators), 
a dataflow model allows execution to occur on any 
operator, whenever its data dependencies are fulfilled.  
This makes execution fully decentralized, independent for 
each operator.  Thus, execution can be highly concurrent. 
 Figure 3 shows an abstract plan.  As shown, a header 
part communicates the name of the plan (P1 in this 
example) and the list of input variables (a and b), and 
output variables (g).  The body section of the plan contains 
the set of operators.  The example below shows four 
operators – Op1, Op2, Op3, and Op4.   Each operator 
instance consumes one or more inputs and produces zero 
or more outputs.  As shown below, the set of inputs for 
each operator appears to the left of the colon delimiter and 
the set of outputs appears to the right of the delimiter.  
 Figure 4 illustrates how edges in the dataflow graph of 
operators are communicated through variable names.  For 
example, as described by Figure 3, operator Op1 produces 

Figures 1a, 1b, &  1c: Querying Yahoo Real Estate 

Figure 3: Sample plan 

PLAN P1 { 
    INPUT: a, b 
    OUTPUT: g 
 
    BODY { 
        Op1 (a, b : c) 
        Op2 (b, c : d, e) 
        Op3 (d : f)  
        Op4 (e, f : g) 
    } 
} 

Figure 2: Abstract plan for  Yahoo Real Estate 
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c, which is consumed by Op2, and Op2 produces d and e, 
which are consumed by Op3 and Op4, respectively.  Figure 
4 shows the corresponding edges that between the 
operators.    
 Although the body part of the plan language lists 
operators in a linear order, this ordering does not affect 
when they are actually executed.  Per the dataflow model 
of processing, operators fire whenever their individual data 
dependencies are fulfilled.  For example, Op2 can execute 
when any of its individual inputs b or c are present.  Thus, 
Op2 executes once at the start of the plan (because b is 
available) and then shortly later on, when c becomes 
available.  In summary, the only ordering of execution that 
exists at the plan level is that which is communicated by 
the producer/consumer relationship between operators 

Logical data pipelining 
Each of the variables in the plan above are logically 
relational data streams.  A stream is a set of tuples in a 
relation, followed by an end of stream (EOS) marker.  
Operators in the plan logically execute when they receive a 
tuple for any of their input streams.  The conditions that 
describe when operators can execute is also known in 
dataflow literature as the firing rule.  
 For example, a set-theoretic Union operator would take 
two input streams – lhs and rhs – and output a stream 
called unioned_result that consists of the unique set of 
tuples defined by the intersection of lhs and rhs  This 
operator can fire whenever a lhs or rhs tuple is present and 
emit a unioned_result tuple for each firing.  In part, this is 
due to the nature of the operator.  A Minus operator, in 
contrast, would take two inputs named lhs and rhs and emit 
a minus_result stream that was based on the subtraction of 
rhs from lhs.  However, even though the Minus operator 
can fire upon receiving a tuple, it cannot emit a 
minus_result tuple until the rhs stream EOS has been 
received.   Both the Union and Minus operator must 
logically maintain state between invocations (both must 
not emit duplicates and Minus must keep all of the rhs in 
memory so that it can be applied to later lhs tuples).   

Data types and common manipulations 
Data in the system is communicated logically as relations 
and physically as tuples (i.e., through pipelining).  Each 
tuple consists of a set of attribute/value pairs.  Each 
attribute can be one of five types: char, number, date, 
relation (embedded), or document (i.e., a DOM object).  
Embedded relations are supported because they reduce the 
amount of data communicated during execution.   
 XML data is supported by the system and is associated  
with the Document attribute type.  The language contains 

specific operators that allow XML to be converted to 
relations, for relations to converted to XML documents, 
and for attributes that are XML documents to be queried in 
their native form using XQuery.  Since XML documents 
are encapsulated by tuples, they can be pipelined between 
operators; when/if it is desirable to pipeline the data 
contained in an XML document, the document is first 
converted to a relation, is streamed through the system, and 
can be put back together again as XML later, if desired.       
 In terms of common manipulations, operators vary on 
how they output their results with respect to the incoming 
data.  In particular, there are two modes of interaction that 
merit discussion: the performing of dependent joins and the 
packing/unpacking of relations. 
 In data integration plans, it is common to use data 
collected from one source as a basis for querying 
additional sources.  However, it is tedious (and sometimes 
impossible because of ordering constraints) to manually 
join the data input to an operator onto the output data it 
produces.  Instead, many of the operators in this language 
perform a dependent join of input tuples onto the output 
tuples that they produce.  For example, if the language 
supported an operator called Round that rounded a floating 
point value in a column to its nearest whole integer value, 
and if the input data consisted of the tuples ((Jack, 89.73), 
(Jill, 98.21)) then the result after the Round operator 
executes would be of ((Jack, 89.73, 90), (Jill, 98.21, 98)).   
Dependent joins simplify plans and solve problems related 
to the joining data when no unique key on the input 
relation exists.     
 A related mode of interaction to discuss involves the 
packing and unpacking of relations.  Packing relations is 
useful when you want to associate a relation with an 
aggregate function, such as count.  Instead of creating and 
managing two distinct results (which often need to be 
joined later), it is cleaner and more space-efficient to 
perform a dependent join on the packed version of an input 
relation with the result output by an aggregate-type 
operator.  For example, if the language supported an 
aggregate operator called Average, then the result of 
processing the input described earlier would be (((Jack, 
89.73), (Jill, 98.21)), 93.97).  Unpacking a relation is 
necessary to get at the original data.  Packing and 
unpacking is a common activity when a conditional 
operator needs to evaluate an aggregate measure of a 
relation and then route it to the proper set of consumer 
operators which then unpack the data. 

Operators 
To accomplish more complicated types of information 
gathering tasks, three basic types of operators are 
necessary; those that: 

� Gather  and manipulate data: These include the 
traditional relational operations as well as those 
capable of processing XML data. 

� Facilitate monitor ing: To effectively monitor data 
sources, the language includes operators that can 
access local databases, so that intermediate results can 

Figure 4: Plan represented as a dataflow graph 
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be stored and then compared against later.  In addition, 
other monitoring operators enable results to be 
communicated asynchronously – for example, through 
e-mail, fax, or cell phone. 

� Promote extensibility: Generally, operating on data 
either involves operating on individual tuples (single-
row functions) or operating on sets of tuples 
(aggregate functions).  The language includes 
operators that allow users to extend the existing plan 
language to meet any kind of single-row or aggregate 
data manipulation necessary. 

 
We now describe the operators in more detail and focus on 
those not found in other types of network query engines. 

Operators for  gather ing and manipulating data.  The 
language supports basic operators for gathering data from 
the Web and manipulating it (filtering, combining, etc.).  
These operators are shown in Table 1. 
 Of these, the Wrapper  operator is the most interesting.  
Its purpose is to use values from an input relation as the 
basis for querying a specified Web source.  In general, 
wrappers are mechanisms for querying a remote semi-
structured Web site as if it were a local relational database.  
Calling a wrapper involves providing input constraints (if 
any), executing the wrapper, and then collecting its results. 
Correspondingly, our Wrapper operator uses values from 
each tuple of an input relation as the input constraints and 
queries the remote site accordingly.  Results generated by 
each input tuple are combined with the input that generated 
them – this is referred to as a dependent join.   The 
language also includes operators for manipulating XML 
data, including XQuery for querying XML and Xml2Rel 
and Rel2Xml for converting XML data to relational and 
vice versa.  The bulk of the remaining manipulation 
operators are familiar and can be found in current network 
query engines and mediators.   

M onitor ing operators.  There are two aspects to the 
monitoring process – the ability to keep track of past 
results and the ability to asynchronously notify users of 
updates.  To accomplish these tasks, the plan language we 
propose supports a set of monitoring-related operators.  
These are shown in Table 2. 
 The DbQuery, DbAppend, DbExport, and DbUpdate 
operators allow plans to interact with local databases.  This 

makes it possible to robustly monitor data sources for long 
periods of time.  The Email, Fax, and Phone operators 
allow data to be accumulated and sent to recipients 
asynchronously.  By its very nature, monitoring is a non-
interactive process between user and agent and thus some 
form of offline propagation of updates is needed. 

Extensibility operators.  To increase the expressive power 
of the language, two additional operators – Apply and 
Aggregate – are included.  Both are shown in Table 3.  
Apply calls user-defined single-row functions on each 
tuple of relational data and performs a dependent join on 
the input tuple with its corresponding result.  For example, 
a user-defined single-row function called SQRT might 
return a tuple consisting of two values: the input value and 
its square root.  The Aggregate operator calls user-defined 
multi-row functions and performs a dependent join on the 
packed form of the input and its result. For example, a 
COUNT function might return a relation consisting of a 
single tuple with two values: the first being the packed 
form of the input and the second being the count of the 
number of distinct rows in that relation.   

Subplans 
To promote language supports references to subplans 
reusability and to facilitate recursion (described later), the.   
Executing a subplan simply refers to the calling of one plan 
from another.   
 Recall that all plans are named and consist of a set of 
input and output streams.  Thus, plans present the same 
interface as operators.  It is thus a simple matter to refer to 
a plan as if it were an operator.  For example, consider the 
example plan P1 introduced earlier.  Figure 5 shows how 
another plan P2 can reference P1as a subplan. 
 Subplans encourage modularity and re-use.  Once 
written, a plan can be used as an operator in any number of 

Figure 5: Calling a subplan 

PLAN P2 { 
    INPUT: w, x 
    OUTPUT: z 
 
    BODY { 
        Op5 (w : y) 
        P1 (x, y : z) 
    } 
} 

Table 2: M onitor ing operators 

Name Purpose

dbquery Fetches relation from DB based on query

dbappend Append to existing relation in DB 

dbexport Export relation to DB

dbupdate Processes an update query (no results returned)

email Emails data to specified e-mail address

fax Faxes data to specified fax number

phone Sends text message to specified cell phone number

null Conditionally routes stream based on if another is empty

Nam e Purpos e

w rapper Extracts w eb page data as relation

xm l2rel Converts XML document into a relation

r el2xm l Converts a relation to an XML document

xquer y Manipulates attributes that are XML documents

s elect Filters relation based on specified criteria

project Extracts specif ied attributes from relation

jo in Combines relations based on specif ied criteria

union Performs set union of  tw o relations

m inus Performs set minus of tw o relations

inter s ect Performs set intersect of tw o relations

pack Embeds relation in single attribute tuple

unpack Expands embedded relation from single attribute tuple

Table1: Data manipulation operators 

Nam e Purpos e

apply Apply single row  function to each relation tuple

aggr egate Apply multi-row  function to relation

Table 3: Extensibility operators 



future plans.  This effectively allows users to build 
whatever operators they need by combining the set of 
existing operators as necessary.  At the same time, 
subplans can be easily scheduled as part of a dataflow-style 
plan and can benefit from data pipelining - just like any 
other typical plan operator does. 
 For example, one could develop a simple subplan called 
Persistent_Diff, shown in Figure 6, that uses the existing 
operators DbQuery, Minus, Null, and DbAppend to take 
any relation, compare it to a named relation stored in a 
local database.  This plan determines if there was an 
update, appends the result, and returns the difference.  
Such a subplan could be as an operator in many types of 
other plans.  Note that executing a subplan does not force 
us to sacrifice the efficiency of dataflow execution and 
data pipelining: the Null and DbAppend operators execute 
at the same time that result is returned to the higher level 
plan; they also execute on data as soon as it becomes 
available from the Minus operator. 

Recursion 
In addition to promoting modularity and re-use, subplans 
make another form of control flow possible: recursion.  As 
described earlier, a number of online information gathering 
tasks require some sort of looping-style control flow.   
 For example, when processing results from a search 
engine query, an automated information gathering system 
needs to collect results from each page, follow the "next 
page" link, collect results from the next page, collect the 
"next page" link on that page, and so on – until it runs out 
of "next page" links.  If we were to express this in von-
Neumann style programming language, we might use a 
Do...While loop to manage this type of information 
gathering need.  However, under a dataflow-model of 
execution, such an approach in practice requires a fair of 
synchronization and additional operators.   
 Instead, this problem can be solved quite elegantly with 
recursion.  We can use subplan reference as a means by 
which to repeat the same body of functionality and we can 
use the Null operator as the basis for the exit condition.   
 As an example of how recursion is used, consider the 
abstract plan for processing the results of a search engine 
query.  A higher level plan called Query_Search_Engine, 
shown in Figure 7, posts the initial query to the search 
engine and retrieves the initial results.  It then processes 
the results with a subplan called Gather_and_Follow.  The 
search results themselves go to a Union operator and the 
next link is eventually used to call Gather_and_Follow 
recursively.  The results of this recursive call are combined 
at the Union operator with the first flow.   
 There are a few notable aspects to the plans shown in  

Figure 7.  First, a recursive approach requires very few 
operators: through the subplan facility, we are able to re-
use the body of the gathering-and-following task.  Second, 
data pipelining is exploited: even though recursive 
execution might go quite deep, results from higher levels 
are streamed out, back to the higher level 
Query_Search_Engine plan as soon as possible via the 
pipelined Union operator.  Third, notice that we continue 
to merely require one type of conditional – the Null 
operator.  When the last page is reached, Null routes the 
EOS to Union (and not to Wrapper, as it normally does).  
This ends the Union at the lowest level of recursion and 
this EOS trickles all the way back to the top of the plan, 
per standard tail-recursive execution.   

Revisiting the example 
Let us now revisit the earlier house search example and see 
how such a plan would be written with the proposed plan 
language.  Figure 8 shows one of the two plans, 
Get_Houses,  required to implement the abstract real estate 
plan in Figure 2. Get_Houses calls the subplan Get_Urls; 
this plan is nearly identical to the recursive subplan 
Gather_And_Follow in Figure 7, so it is omitted for the 
sake of brevity.  The rest of Get_Houses works as follows: 

a. A Wrapper operator fetches the initial set of 
houses and link to the next page (if any) and 
passes it off to the Get_Urls recursive subplan. 

b. A Minus operator determines which houses are 
distinct from those previously seen; new houses 
are appended to the persistent store. 

c. Another Wrapper operator investigates the detail 
link for each house so that the full set of criteria 
(including picture) can be returned. 

d. Using these details, a Select operator filters out 
those that meet the specified search criteria. 

e. The result is aggregated and e-mailed to the user. 

DbQuery Minus DbAppend

relation

external_name

Null

result

Figure 6: The Persistent_Diff subplan 
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Figure 8: The Get_Houses plan 

Figure 7: Example of recursion 
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An Efficient Plan Execution Architecture 

In this section, we describe an architecture that can 
efficiently execute the types of plans described in the last 
section.  This architecture is composed of two parts: the 
language described in the previous section and a dataflow-
style executor that efficiently processes these plans. 

High-level design 
The high-level design of the architecture is shown in 
Figure 9.  The figure shows that the input to the executor is 
a plan; in addition, a schedule for execution (once, daily, 
hourly, etc) is input.  During each execution, the plan may 
interface with a local database (e.g. to store tracking 
information).  The figure also shows that it is possible for 
the plan to communicate updates through a variety of 
asynchronous communication mechanisms. 
 Once an input plan is received by the executor, it 
constructs an internal dataflow graph based on plan 
operators.  At this time, any subplan and recursive 
relationships are resolved, merging in operators from those 
plans as appropriate. The system then feeds in input data 
and execution commences.  The input data triggers a subset 
of plan operators to start firing; their execution and 
subsequent production trigger other operators that consume 
their output and so on.  If the plan is interactive, output 
data will be immediately returned to the user as it is 
produced.  Otherwise, it is assumed that the method of user 
notification (such as email) is already encoded in the plan. 
 Thus, in the Yahoo Real Estate example, a user can 
submit the main part of the plan, a set of input data shown, 
and the schedule of "daily" to the system.  The plan will 
then be executed once (immediately) and an initial set of 
house search results will be e-mailed to the user.  The plan 
will then be automatically run the next day.  

Parallelism dur ing execution 
The executor uses threads to service operator execution, 
and thus functions similar to a threaded dataflow machine 
(Papadapoulous & Traub 1991).  When a tuple becomes 
available (either via input or through operator production), 
a thread is assigned to execute a method on the consuming 
operator with that data. Threads are drawn from a fixed 
pool, to throttle excessive parallelism and prevent machine 
resources from being swamped. 
 The first time that input arrives for a particular operator, 
an initialization method for that operator is called.  During 

this time, stateful data structures are initialized.  All future 
firings may use this state data structure as is appropriate for 
that operator.  For example, the Union operator uses the 
state to save all tuples that it has previously output so that 
it does not output duplicates.  The Minus operator keeps 
this information as well as the entire set of rhs tuples in its 
state – thus, when new lhs tuples arrive, they are first 
compared to the rhs set and, if not in this set, output only if 
they have not been previously output. When EOS markers 
have been received on each of an operators’  inputs, all 
accumulated state is deleted.  State is maintained per level 
of iteration; thus re-entrant, recursive execution is 
guaranteed to be correct.  
 In summary, the executor we describe functions as a 
virtual threaded dataflow machine.  By using threads to 
service operator firings, operator execution can be as 
horizontally parallel as the number of threads in the fixed 
pool.  Furthermore, it is possible for a producer and 
consumer operator to fire concurrently on the same logical 
relation (the consumer operating on an earlier tuple while 
the producer operates on a later tuple in the stream) thus 
implementing a form of pipelined, or vertical parallelism. 

Data color ing for  re-entrancy.  Recursion implies that 
plans are re-entrant and thus introduces an additional 
complexity – distinguishing data between recursive levels.  
To address this, the system assigns a color to all data at a 
particular logical level of execution.  For example, during 
the execution of Get_Houses, the input data and any data 
produced at the same level as a result is assigned the same 
color.  Whenever a subplan like Get_Urls is called 
(including when recursive calls are made), the tuples 
routed to that subplan are assigned a new color. This 
allows tuples at multiple levels of execution to be correctly 
managed by operators in the recursive subplan. 

Related Work 

In this section, we discuss two areas of related work: that 
of efficient Internet querying by network query engines 
and the set of more existing, more general, agent executors. 

Network query engines. Recently, network query engines 
(Ives et al. 1999, Hellerstein et al. 2000, Naughton et al. 
2001), have been proposed as means for efficiently 
gathering information on the Internet.  These systems are 
mostly concerned with the efficiency of query execution. 
and have proposed adaptive execution strategies to reduce 
I/O latencies.  Like the work described here, these systems 
represent plans as dataflow graphs and pipeline data 
between operators.  The major difference between existing 
network query engines and the work described here is in 
terms plan expressivity.  While network query engine 
research has proposed new operators related to XML 
processing and adaptive execution, they do not support 
operators that facilitate monitoring. These systems do not 
support conditional execution and it is not possible to loop 
through query results spread across multiple Web pages.   
In contrast, the plan language here supports conditional 
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PLAN myplan  {
INPUT: x
OUTPUT: y

BODY    {
Op (x : y)

}
}
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Plan

Input Data

Figure 9: Executor  design and inter face 



execution, allows plans themselves to be operators, and 
supports recursion as means for looping during execution.  

General plan executors.  It is also useful to compare the 
work here to existing and more general plan execution 
systems.  These systems have proposed highly concurrent 
execution models similar in spirit to dataflow machines.  
For example, RAPS (Firby 1994) described execution as a 
set of concurrent processes while PRS-Lite (Myers 1996) 
supported concurrent task execution as well as more 
complex synchronization and control flow.  Both projects 
focused on specifying an event-driven mechanism for the 
parallel execution of partially-ordered plans – similar to 
execution of a dataflow graph.  The work described here 
differs from these more generic architectures by focusing, 
like network query engines, specifically on plans that not 
only require the enablement of operators, but the routing of 
information between them. as well.  Thus, our work is 
more closer in spirit to the unified approach of 
(Williamson et al. 1996), yet it extends that work by 
specifying an actual plan language, adding support for 
recursion and subplan execution, and by proposing a 
dataflow execution architecture. 

Conclusion and Future Work  

In this paper, we have described an information gathering 
plan language that promotes better expressivity while 
retaining the efficiency of traditional plan representation.   
Support for subplans and recursive execution allow plans 
to loop through query results that are spread across 
multiple Web pages.  Operators that are extensible and are 
better integrated with the external world facilitate plans 
that are capable of monitoring an integrated set of remote 
sources for an extended period of time. Though expressive, 
the plan language is dataflow in terms of representation 
and its operators support the pipelining of data during 
execution.  Thus, such plans can be efficiently executed.  
 We are currently investigating a method for speculative 
execution for information gathering plans (Barish & 
Knoblock 2002) that uses machine learning techniques to 
analyze data occurring early during execution so that 
predictions can be made about data that will be needed 
later in execution.  The result is a new form of dynamic 
execution parallelism that can lead to significant speedups. 
We are also currently working on an Agent Wizard, which 
allows the user to define agents for monitoring tasks 
simply by answering a set of questions about the task.  The 
Wizard will work similar to the Microsoft Excel Chart 
Wizard, which builds sophisticated charts by asking the 
user a set of simple questions.  The Wizard will generate 
information gathering plans using the language described 
in this paper and schedule them for periodic execution.       
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