
Expert Systems With Applications 53 (2016) 57–74

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Monochromatic and bichromatic reverse top-k group nearest

neighbor queries

Bin Zhang a, Tao Jiang a,∗, Zhifeng Bao b, Raymond Chi-Wing Wong c, Li Chen a

a College of Mathematics Physics and Information Engineering, Jiaxing University, 56 Yuexiu Road (South), Jiaxing 314001, China
b School of Computer Science and Information Technology, RMIT University, GPO Box 2476, Melbourne 3001 Victoria, Australia
c Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

a r t i c l e i n f o

Keywords:

Query processing

Group nearest neighbor

Top-k query

Spatial database

a b s t r a c t

The Group Nearest Neighbor (GNN) search is an important approach for expert and intelligent systems,

i.e., Geographic Information System (GIS) and Decision Support System (DSS). However, traditional GNN

search starts from users’ perspective and selects the locations or objects that users like. Such applications

fail to help the managers since they do not provide managerial insights. In this paper, we focus on solving

the problem from the managers’ perspective. In particular, we propose a novel GNN query, namely, the

reverse top-k group nearest neighbor (RkGNN) query which returns k groups of data objects so that each

group has the query object q as their group nearest neighbor (GNN). This query is an important tool for

decision support, e.g., location-based service, product data analysis, trip planning, and disaster manage-

ment because it provides data analysts an intuitive way for finding significant groups of data objects with

respect to q. Despite their importance, this kind of queries has not received adequate attention from the

research community and it is a challenging task to efficiently answer the RkGNN queries. To this end, we

first formalize the reverse top-k group nearest neighbor query in both monochromatic and bichromatic

cases, and then propose effective pruning methods, i.e., sorting and threshold pruning, MBR property prun-

ing, and window pruning, to reduce the search space during the RkGNN query processing. Furthermore,

we improve the performance by employing the reuse heap technique. As an extension to the RkGNN

query, we also study an interesting variant of the RkGNN query, namely a constrained reverse top-k group

nearest neighbor (CRkGN) query. Extensive experiments using synthetic and real datasets demonstrate the

efficiency and effectiveness of our approaches.

© 2016 Elsevier Ltd. All rights reserved.

1

T

a

o

l

2

Y

o

a

n

h

z

c

∑

E

s

d
∑

2

a

(

r

t

E

h

0

. Introduction

Recently, group nearest neighbor (GNN) queries (Papadias,

ao, Mouratidis, & Hui, 2005) have attracted more and more

ttentions due to its wide usage in many applications, such as ge-

graphic information systems (Gao, Zheng, Chen, Chen, & Li, 2011),

ocation-based services (Wong, Ozsu, Yu, Fu, & Liu, 2009; Yu,

016), navigation systems, mobile computing systems (Mouratidis,

iu, Papadias, & Mamoulis, 2006), and data mining (e.g., clustering

bjects). Specifically, given a set of data objects P = {p1, p2, … , pn}

nd a set of query objects Q = {q1, q2, … , qm}, a group nearest

eighbor (GNN) query returns a data object p in P whereby p

as the smallest sum of distances to all data objects in Q, that is,
∗ Corresponding author. Tel.: +86 159 9031 6256; fax: +86 573 8364 0102.

E-mail addresses: jxtaojiang@gmail.com, tjiangguido@gmail.com (T. Jiang),

hifeng.bao@rmit.edu.au (Z. Bao), raywong@cse.ust.hk (R.C.-W. Wong),

henli20040415@hit.edu.cn (L. Chen).

l

p

{

b

ttp://dx.doi.org/10.1016/j.eswa.2016.01.012

957-4174/© 2016 Elsevier Ltd. All rights reserved.
qi∈Q dist(qi, p)≤ ∑
qi∈Q dist(qi, p′), p′ ∈ P\p, where dist(.) is the

uclidean distance function.

In this paper, we study the GNN queries from a reverse per-

pective. A reverse group nearest neighbor (RGNN) finds all sets of

ata objects (G) that have a query object q as their GNN, i.e.,

∀G⊂P,pi∈G dist(pi, q) ≤ ∑
∀G⊂P,pi∈G,p′∈P\G dist(pi, p′), |G| = m (m ≥

)1. Since there could be many such sets of G while not all of them

re of same interest in applications which will be discussed later

in Section 2.2), we refine the definition of RGNN to RkGNN which

eturns only the k nearest sets to the query object q in terms of

he aggregated distances between G and q (denoted by adist(q, G)).

xample 1. To have a better understanding of the RkGNN query,

et us look at the example shown in Fig. 1 where the black

oints denote a set of objects in a 2-dimensional space, i.e., P =
p1, p2, … , p7}. Consider a RkGNN query with the query object
1 Note that when m = 1, RGNN becomes the well-known reverse nearest neigh-

or (RNN) query.

http://dx.doi.org/10.1016/j.eswa.2016.01.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.01.012&domain=pdf
mailto:jxtaojiang@gmail.com
mailto:tjiangguido@gmail.com
mailto:zhifeng.bao@rmit.edu.au
mailto:raywong@cse.ust.hk
mailto:chenli20040415@hit.edu.cn
http://dx.doi.org/10.1016/j.eswa.2016.01.012

58 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Fig. 1. Monochromatic reverse group nearest neighbor query.

a b

Fig. 2. Bichromatic reverse group nearest neighbor query. (a) Data set A (rescue

teams) (b) Data set B (disaster points).

t

e

r

t

j

e

k

o

n

t

i

l

b

t

J

d

t

p

Z

r

r

o

c

q

t

i

t

p

(

s

l

a

m

s

v

q

d

q

E

w

(

o

t

h

w

s

f

p7, k = 3, and m = 2. It is easy to find that p7 is the GNN of

G1 = {p1, p2} as p7 has the smallest aggregated distance to G1

compared with any other objects in the dataset P, i.e., adist(p7,G1)

= ∑
gi∈G1

dist(gi, p7) <
∑

gi∈G1
dist(gi, p′) (p′ ∈ P\p7). Similarly, we

can find that p7 is also the GNN of sets G2 = {p1, p3}, G3 = {p1,

p4}, G4 = {p1, p5}, G5 = {p2, p3}, G6 = {p2, p4}, G7 = {p2, p5},

G8 = {p3, p5}, and G9 = {p4, p5}. Therefore, G1, G2, … , and G9 are

RGNNs of the object p7 (or say that G1, G2, … , and G9 have p7 as

their GNNs). According to the aggregated distances between p7

and these sets as shown in the table in Fig. 1, G1, G2 and G3 are

the top three closest sets to p7, and hence G1, G2 and G3 are the

answer of this R3GNN query.

Similar to GNN queries, our proposed RkGNN query is very

useful for various applications such as business analysis applica-

tions and decision support systems. For example, GNN queries can

be used in the following scenario: Given multiple supermarket

branches, where would be a good location to set up a warehouse

that has the shortest aggregated distance to all the branches?

While RkGNN can be used to answer the query in a reverse man-

ner: Given a warehouse, where would be the good locations to

open new supermarket branches? More specifically, recall Example

1, object p7 can be considered as a warehouse, and other ob-

jects can be considered as candidate locations for new supermar-

ket branches. Note that the RkGNN query has another important

feature that it can be used to address diversity concerns (Qin,

Yu, & Chang, 2012) simultaneously. Specifically, the supermarket

company wants the new branches to be close to the warehouse

but may not want the new branches to be too close to each

other which would otherwise cause unnecessary competition. The

RkGNN query can return k possible answers to allow the supermar-

ket company to choose the new branches that are far apart from

each other. For example, G1(p1, p2) may not be selected compared

with G2(p1, p3) because G2 contains two locations that are far apart

from each other.

Consider another example of the RkGNN queries in support-

ing decision making. A corporation plans to release a series of m

products, and wants to select these m products from n candidate

designs. The selection criterion is measured by the distance be-

tween the candidate products’ properties and a prototype’s prop-

erties. This problem can be modeled as an RkGNN query by treat-

ing the prototype as the query object and the candidate products

as the data objects. The query results will contain the groups of

candidate products which are most similar to the prototype. Fur-

thermore, if the corporation also desires to have diversity among

the released products, the corporation can filter out the query re-

sults which contain products with similar properties.

It is worth noting that RkGNN query is more suitable for deci-

sion makings in the aforementioned scenarios than the traditional

k nearest neighbor (kNN) queries and range queries. This is because

the RkGNN query not only considers minimizing the overall dis-
ance between the candidate objects and the query object, but also

nsures the diversity of the answers. In contrast, kNN queries or

ange queries will only return answers that are concentrated in

he query region. For example, a 2NN query with the query ob-

ect q (=p7) in Fig. 1 will return p1 and p2 which are too close to

ach other and hence may not be good choices of new supermar-

et branches.

It is a challenging task to perform an efficient RkGNN query

ver a large dataset. A naïve solution can enumerate up to

!/((n−m)!m!) (n 	 m, m ≥ 2) combinations of data objects and

hen check each combination to see whether the query object is

ts GNN. Such an approach is obviously time consuming due to the

arge number of combinations to be verified. Recently, there have

een some algorithms that also consider combinations of objects

o form a query answer (Chuang, Su, & Lee, 2013; Im & Park, 2012;

iang, Zhang, Lin, Gao, & Li, 2015). However, they are essentially

ifferent technologies as they use different pruning conditions and

heir target queries are not exactly the same. Moreover, these ap-

roaches only handle skyline queries (Gao et al., 2014; Jiang, Gao,

hang, Lin, & Li, 2014) that have totally different selection crite-

ia compared with RkGNN. For example, traditional skyline queries

eturns all non-dominated objects whereas our proposed meth-

ds address nearest neighbor problem. Therefore, these algorithms

annot be used to solve the RkGNN problem.

Therefore, in this paper, we propose several efficient RkGNN

uery algorithms by integrating a suite of pruning and reuse

echniques. Specifically, we develop a sorting and threshold prun-

ng (STP) and a lazy outputting (LO) of combinations to reduce

he search space and avoid unnecessary computation. We pro-

ose effective pruning heuristics, including MBR property pruning

MP) and window pruning (WP), which utilize the spatial relation-

hip among data objects to prune the candidate combinations. We

everage the reuse heap (RH) technique to judiciously reuse avail-

ble information and avoid repeated efforts.

Moreover, our algorithms are able to address not only the

onochoromatic reverse top-k group nearest neighbor (MRkGN) as

hown in aforementioned examples, but also the bichromatic re-

erse top-k group nearest neighbor (BRkGN) query. In the MRkGN

uery, both the query object and the data objects are in the same

ataset shown in previous examples. In the BRkGN query, the

uery object and the data objects are from two different datasets.

xample 2. Fig. 2 illustrates an example BRkGN query,

hereby Fig. 2(a) gives a set of rescue teams’ positions

denoted as set A), and Fig. 2(b) shows the positions

f disasters (denoted as set B). Given a disaster’s posi-

ion (i.e., a query object q from B), a BRkGN query can

elp identify a group of nearby rescue teams (from set A)

ith complementary skills to come for rescue. For example, we

hould select a group of rescue teams, that is, {r1, r3} or {r2, r3}

or disaster point q if m = 2 because {r , r } and {r , r } take q
1 3 2 3

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 59

a

r

{

Z

o

f

R

n

c

a

d

e

i

h

t

t

q

a

t

q

q

t

d

2

2

q

e

r

q

(

T

o

f

e

o

(

m

T

s

a

a

t

a

d

w

(

n

m

t

(

n

d

N

t

t

b

p

C

a b

Fig. 3. An example of R-tree. (a) the MBRs (b) the structure.

N

a

o

(

S

w

s

K

c

p

(

b

T

c

i

t

A

a

o

(

e

t

(

g

q

j

e

n

2

a

n

(

c

c

&

t

S

i

c

a

w

a

b

e

g

s their GNN. Note that although q has r1 and r2 as their nearest

escue teams, {r1, r2} cannot be regarded as the RGNN of q since

r1, r2} does not take q but d1 as its GNN.

A preliminary version of this work appeared in Jiang, Gao,

hang, Liu, and Chen (2013), where we present the basic concept

f RkGNN. In this paper, we extend our work by including the

ollowing new contributions: (1) we define two new sub-types of

kGNN, i.e., MRkGN and BRkGN, which are useful in different sce-

arios; (2) we significantly improve the query performance by in-

rementally generate the candidate combinations of data objects,

nd introducing some novel pruning heuristics; (3) we also intro-

uce a new concept, i.e., constrained RkGNN query, which consid-

rs the query in a given constrained region; (4) we have theoret-

cally proved the correctness of our proposed approaches; (5) we

ave conducted a more thorough experimental study that verified

he efficiency of our proposed new approaches.

The rest of the paper is organized as follows. Section 2 outlines

he related work. Section 3 gives the formal definition of RkGNN

uery. Section 4 elaborates the pruning techniques of RkGNN query

nd our proposed processing algorithm. Section 5 further improves

he RkGNN query by reuse heap method. The bichromatic RkGNN

uery is presented in Section 6. Section 7 extends the RkGNN

uery to the constrained setting. Section 8 reports the experimen-

al results and our findings. Section 9 concludes the paper with

irections for future work.

. Related work

.1. Nearest neighbor (NN) queries and reverse neighbor (RNN)

ueries

A nearest neighbor (NN) query retrieves the object that is clos-

st to a query object q in a multidimensional dataset. Many algo-

ithms have been proposed for the NN queries. The original NN

uery algorithm (Roussopoulos, Kelly, & Vincent, 1995) for R-trees

Guttman, 1984) follows the policy of depth-first (DF) traversal.

he DF algorithm starts from the root of the index of the data

bjects, and visits recursively the nodes with the smallest mindist

rom q. During backtracking to the upper levels, DF only visits the

ntries whose minimum distances are smaller than the distance

f the NN already retrieved. Another representative NN algorithm

Hjaltason & Samet, 1999) traverses the index in a best-first (BF)

anner and achieves better performance than the DF algorithm.

he BF algorithm maintains a min-heap H with the entries visited

o far, sorted by their mindist. Similar to DF, BF starts from the root,

nd inserts all its entries into H (together with their mindist). Then,

t each step, BF visits the node in H with the smallest mindist until

he first NN is found. BF is incremental, i.e., it returns the NNs in

n ascending order of their distance to the query object.

Since our algorithms also use the BF retrieval, we provide more

etails of the BF algorithm via an illustrative example in Fig. 3,

here Fig. 3(a) and (b) give the minimum bounding rectangles

MBRs) and the structure of an R-tree, respectively. At the begin-

ing, BF inserts 〈N1, mindist(q, N1)〉 and 〈N2, mindist(q, N2)〉 into a

in-heap H, where mindist(q, Ni), i ∈ [1, 2], is the minimal dis-

ance from query point q to any point on the perimeter of Ni

Roussopoulos et al., 1995). Then the algorithm accesses the top

ode N1 in H, retrieves the content of N1 and inserts all its chil-

ren entries in H. Now, the content of H becomes {〈N2, mindist(q,

2)〉, 〈N4, mindist(q, N4)〉, 〈N3, mindist(q, N3)〉}. Similarly, the next

wo nodes accessed are N2 and N4, in which p1 is discovered as

he current NN. After the node N4 is accessed, the content of H

ecomes {〈p1, mindist(q, p1)〉, 〈N5, mindist(q, N5)〉, 〈p3, mindist(q,

3)〉, 〈N3, mindist(q, N3)〉, 〈N6, mindist(q, N6)〉, 〈p5, mindist(q, p5)〉}.

ontinuing the procedure, the algorithm retrieves the content of
5, and obtains the next NN p2. BF will report other NNs in an

scending order of their distances between the rest of each data

bject and q, i.e., followed by p3, p4, p5, p6, p7 and p8.

Other NN algorithms include optimal multi-step algorithm

Seidl & Kriegel, 1998), Voronoi-based algorithm (Kolahdouzan &

hahabi, 2004), et al. In addition, there are many algorithms,

hich solve the NN queries for different application environments,

uch as continuous NN monitoring over moving objects (Yu, Pu, &

oudas, 2005), road network (Mouratidis et al., 2006), and obsta-

les (Gao et al., 2011).

In addition to the NN query, Korn and Muthukrishnan (2000)

roposed a novel type of query, called reverse nearest neighbor

RNN) query, which identifies the influence of a query object q

y retrieving those objects that have q as their nearest neighbor.

he original RNN algorithm (Korn & Muthukrishnan, 2000) pre-

omputes for each data object p its nearest neighbor to build an

ndex based on the R-tree, called the RNN-tree, and then uses

he RNN-tree to retrieve the RNNs given a query object q. Stanoi,

grawal, and Abbadi (2000) eliminates the need for pre-computing

ll NNs by partitioning a 2D search space centered at the query

bject into six equal-sized sectors. Later, Tao, Papadias, and Lian

2004) proposed the TPL algorithm that exploits a half-plane prop-

rty in space to locate RkNN candidates. However, TPL is restricted

o the Euclidean space. More recently, Tao, Yiu, and Mamoulis

2006) presented a new algorithm for efficient RNN search in

eneric metric spaces. Moreover, there are several variants of RNN

ueries, which consider different application scenarios, such as ob-

ect monitoring (Xia & Zhang, 2006), location-based service (Wong

t al., 2009), ad hoc subspace (Yiu & Mamoulis, 2006), and graph

etwork (Yiu, Papadias, Mamoulis, & Tao, 2006).

.2. Group nearest neighbor (GNN) queries

The GNN query is first introduced by Papadias, Shen, Tao,

nd Mouratidis (2004). They proposed three efficient algorithms,

amely, multiple query method (MQM), simple point method

SPM), and minimum bound method (MBM). MQM performs in-

remental nearest neighbor (NN) queries for each point in Q and

ombines their results using the threshold algorithm (Fagin, Lotem,

Naor, 2001). MQM will terminate the procedure of search if all

he retrieved data objects so far is below the threshold best_dist.

PM calculates the centroid of the query set Q, which is a point

n space with a small sum of distances to all query points. The

entroid is used to prune the search space by exploring the tri-

ngular inequality. MBM is the most related work to our study,

hich is used in our experiments as a part of our basic RkGNN

lgorithm. MBM utilizes a minimum bounding rectangle (MBR) to

ound all the query objects in Q and also explores the triangle in-

quality to reduce the search space. It recursively visits nodes be-

inning from the root of the R-tree and prunes the intermediate

60 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Table 1

Frequently used symbols.

Notation Description

maxdist(e) The maximum distance between the lower left and the upper

right of MBR of entry e

G, m G is a combination from the dataset, and m is the cardinality

of G

adist(q, G) The sum of distances from q to the set G

Grlt A resultant set of the RkGNN query

Grfn A refined set of candidate combinations of the RkGNN query

Ln An ordered list of n data objects sorted in ascending manner

by their weights

CL(n, m) An ordered list that contains all combinations by selecting m

data objects from n data objects in Ln

�CL(n, m)) An ordered list that contains all incremental combinations of

CL(n, m)

CL′(n, m) The updated list of CL(n, m)

best_kdist The k-th aggregated distance of combinations in Grlt in

ascending order

delta_mindist The minimum aggregated distance of currently output

incremental combinations

rfn_mindist The minimum aggregated distance of all combinations in Grfn

i

s

e

d

o

t

i

t

q

i

t

q

3

g

t

b

t

(

j

=
R

d

a

=
d
∑

a

M

D

b

=
D

n

o

k

D

B

nodes that cannot contain any results by sequentially using two

pruning conditions. Let M be the MBR of query objects in Q, N be

the current node (and its MBR) from the R-tree, and bestDist be the

distance of the best GNN found so far. The two pruning conditions

are n∗mindist(N, M) ≥ bestDist, and
∑

qi∈Q mindist(N, qi) ≥ bestDist ,

where mindist(N, M) is the minimum distance between any two

points on the perimeters of N and M, respectively, n is the cardi-

nality of Q, and mindist(N, qi) is the minimum distance between N

and query object qi ∈ Q. Either condition can safely prune the node

N (and its subtree). However, the second condition is applied only

for nodes that pass the first one in order to save unnecessary com-

putations. Later, the GNN query is generalized into aggregate near-

est neighbor (ANN) (Papadias et al., 2005) query to support the max

and min aggregated distance functions. Li, Yao, and Kumar (2010)

explored new geometric insights, such as the minimum enclosing

ball, the convex hull and the furthest Voronoi diagram to prune

intermediate nodes.

Other GNN algorithms can be classified into two main cate-

gories. The first category tackles different user scenarios, such as

probabilistic group nearest neighbor (PGNN) query (Lian & Chen,

2008), group nearest neighbor queries for ensuring user privacy

(Hashem, Kulik, & Zhang, 2010), metric aggregate similarity search

(MASS) (Razente, Barioni, Traina, Faloutsos, & C. T., 2008) based

on metric index, ANN query in road networks (Yiu, Mamoulis,

& Papadias, 2005). Recently, Xiao, Yao, and Li (2011) took the

ANN query as the optimal location query and proposed a unified

solution that addresses all variants of the optimal location query

in road network with several efficient algorithms. The second cat-

egory contains some other variations of ANN queries by loosening

the restrictions on the definitions of the nearest neighbor, such

as flexible aggregate nearest neighbor (FANN) query (Li, Li, Yi, Yao,

& Wang, 2011) and group nearest group (GNG) query (Deng et al.,

2012). Unfortunately, none of these algorithms can be directly

applied to our proposed RkGNN query.

2.3. Combinatorial queries and diversified queries

Another relevant problem to our work is the combinatorial

query (Chuang et al., 2013; Guo, Xiao, & Ishikawa, 2012; Im & Park,

2012; Jiang et al., 2015; Magnani & Assent, 2013), which have some

combinations of objects as the query results. Su, Chuang, and Lee

(2010) first proposed the top-k combinatorial skyline query (kCSQ),

which is to find the top-k combinations of data objects rather than

individual objects that form the skyline. Guo et al. (2012) also

studied the combination skyline query and developed a pattern-

based pruning algorithm to further reduce the search space. Later,

Im, and Park (2012) introduced the group skyline query which gen-

erates all skyline groups rather than k groups in the kCSQ query

(Su et al., 2010). Recently, Magnani and Assent (2013) proposed

aggregate skylines, which merge the functionalities of two basic

database operators, skyline and group by. Jiang et al. (2015) pre-

sented an efficient algorithm for evaluating top-k combinational

metric skyline. However, as pointed out in Section 1, the above al-

gorithms cannot be used to address our problem because the goal

of our algorithm focuses on the computation of nearest neighbors

rather than the skyline objects.

The last related work is the diversified queries (Drosou & Pi-

toura, 2010; Gollapudi & Sharma, 2009), which have applications

in many domains, such as user personalized results and ambigu-

ous keywords searches. Gollapudi and Sharma (2009) developed a

set of natural axioms that a diversified system is expected to sat-

isfy, and show that no diversified function can satisfy all the ax-

ioms simultaneously. Drosou and Pitoura (2010) surveyed various

definitions, algorithms and metrics for result diversification. Vieira,

Razente, and Barioni (2011) described a general framework to eval-

uate and optimize diversified query results. In these methods, an
nitial ranking candidate set produced by a query is used to con-

truct a result set, where elements are ranked with respect to rel-

vance and diversity features. Qin et al. (2012) defined a general

iversified top-k search problem that only considers the similarity

f the search results themselves. They then proposed a framework

hat can extend most existing solutions for top-k query process-

ng to diversified top-k search. Tao, Ding, Lin, and Pei (2009) are

he first one who introduce the concept of diversity into skyline

ueries, and propose a representative skyline. Our algorithm also

ntegrates the concept of diversity. To the best of our knowledge,

his is the first attempt on diversified query over the combinatorial

ueries.

. Problem definition

In this section, we first define the monochoromatic reverse top-k

roup nearest neighbor (MRkGN) query and the bichoromatic reverse

op-k group nearest neighbor (BRkGN) query. Then we present the

aseline algorithms. Table 1 summarizes the key notations used

hroughout the paper.

We assume that the data set P is indexed by an R-tree

Guttman, 1984) and consider the Euclidean distance between ob-

ects in the following discussion. Given a set of query objects Q

{q1, q2, … , qm}, where Q may or may not be a subset of P.

ecall that a group nearest neighbor (GNN) query will return a

ata object p in P where p has the smallest sum of distances to

ll query objects in Q (Papadias et al., 2004). Formally, GNN(Q, P)

argminp∈P{adist(p, Q)}, where adist(p, Q) represents the sum of

istances of p ∈ P from all data objects qi ∈ Q, i.e., adist(p, Q) =
qi∈Q dist(p, qi)and dist(p, qi) is the Euclidean distance between p

nd qi. Based on the definition of the GNN query, we define the

RkGN and BRkGN as follows.

efinition 1 (Monochromatic Reverse Group Nearest Neigh-

or, MRGN). Given a dataset P and a query object q (q ∈ P), a

monochromatic reverse group nearest neighbor (MRGN) query re-

trieves all combinations that have q as their GNN, where each

combination contains m data objects. Formally, MRGN(q, P) = {G|q

GNN(G, P), G⊂P ∧ |G| = m, m ≥ 2}.

efinition 2 (MRkGN). A monochoromatic reverse top-k group

earest neighbor (MRkGN) query returns the top k combinations

btained from the corresponding MRGN query. Formally, MRkGN(q,

, P) = {G∗| G∗ ∈ argminGi∈MRGN(q,P)(
∑k

j=1 adist(G j ∈ Gi, q))}.

efinition 3 (Bichromatic Reverse Group Nearest Neighbor,

RGN). Let A and B denote two datasets respectively. Given a query

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 61

q

q

i

B

m

D

n

f

{

B

t

S

b

t

G

o

W

t

t

fi

i

a

o

p

4

(

t

t

t

c

b

h

r

n

b

p

m

i

a

a

p

f

p

w

c

t

s

l

4

g

d

g

e

m

p

e

w

l

a

(

i

t

p

o

{

o

a

t

f

C

F

C

⊕
2

t

u

o

a

a

m

(

C

F

�

{

s

t

n

E

C

2

t

{

l

a

s

w

2

{

S

p

t

m

b

o

g

o

T

�

n

i

F

t

c

m

S

(q ∈ B), a bichromatic reverse group nearest neighbor (BRGN)

uery retrieves all combinations in A that have q as their GNN

n B, where each combination contains m data objects. Formally,

RGN(q, A, B) = {G|q = GNN(G, B), G ⊂ A ∧ q ∈ B ∧ |G| = m,

≥ 2}.

efinition 4 (BRkGN). A bichromatic reverse top-k group nearest

eighbor (BRkGN) query returns the top k combinations obtained

rom the corresponding BRGN query. Formally, BRkGN(q, k, A, B) =
G∗| G∗ ∈ argminGi∈BRGN(q,A,B)(

∑k
j=1 adist(G j ∈ Gi, q))}.

Naïve Solution to MRkGN and BRkGN: Since the MRkGN and

RkGN queries have not been studied by any previous work, we in-

roduce a naïve solution as the baseline approach for comparison.

pecifically, the naïve algorithm sequentially enumerates all com-

inations using a list of data objects in P sorted by the distance be-

ween a data object and the query object q. For each combination

, the naïve solution will compute its GNN, and check if the GNN

f G is the query object q. If so, this combination will be recorded.

henever the algorithm has identified at least k such combina-

ions, the naïve algorithm will sort them in an ascending order of

heir aggregated distances to q, and then use them to update the

nal results until the top k combinations are found. As discussed

n Section 1, such an approach that uses linear scan (denoted as LS

lgorithm) is very time consuming due to the enormous amount

f combinations to be evaluated. In what follows, we present our

roposed efficient query algorithms.

. Monochoromatic reverse top-k group nearest neighbor

MRkGN) query

Our proposed MRkGN algorithm leverages various techniques

o achieve efficient performance. Its general framework consists of

hree phases, indexing, pruning, and refinement phase. Specifically,

he indexing phase builds up m B+-tree indexes during the pro-

edure of R-tree traversal. The algorithm searches the R-tree in

est-first (BF) manner (Hjaltason & Samet, 1999) until the auxiliary

eap H becomes empty. Each time, whenever a data object p is

emoved from H, the algorithm enumerates all incremental combi-

ations using p and other data objects (or nodes) in H. These com-

inations will be inserted into the corresponding B+-trees and then

rocessed one by one. If a combination contains at least an inter-

ediate node, it will be inserted into a refined set, Grfn. The prun-

ng phase aims to prune the combinations that are not qualified

s the query results. In this phase, we propose a so called sorting

nd threshold pruning, MBR property pruning, and several window

runing methods to significantly reduce the search space. Finally,

or each remaining candidate combinations in Grfn, the refinement

hase extends the combinations by replacing the current entry e

ith its children ei so that the resulting combinations will only

ontain data objects but not any intermediate nodes. Then, the ob-

ained combinations will be processed to find the final query re-

ults. In the rest of this section, we will first introduce the under-

ying techniques and then present the overall query algorithm.

.1. Incremental generation of combinations

In this subsection, we introduce a combinatorial sorting al-

orithm (CSA) based on the dynamic programming, which are

esigned to reduce the number of combinations that need to be

enerated and evaluated. CSA takes advantages of previously gen-

rated combinations to form new combinations in an incremental

anner.

More specifically, let Ln be a list of n data objects, {p1, p2, … ,

n}, where the weight of each data object, w(pi), satisfies the in-

quality, w(p1) < w(p2) < …, < w(pn). We use dist(q, pi) as the

eight of p (i ∈ [1, n]). As a result, Ln can be seen as an ordered
i
ist that contains n objects in an ascending order by dist(pi, q). Let

n m-object combination be a combination of a cardinality of m

i.e., combined by m data objects). For a combination G, its weight

s denoted as adist(q, G). Let CL(n, m) be the ordered list that con-

ains all m-object combinations of a list Ln with n data objects {p1,

2, … , pn}. For example, given L3 = {p1, p2, p3}, we can generate an

rdered list of all 2-object combinations, i.e., CL(3, 2) = {{p1, p2},

p1, p3}, {p2, p3}}.

Next, we introduce ⊕ as an adding operator which adds a data

bject to each combination in a sorted list. For instance, given p3

nd CL(2, 1) = {{p1},{p2}}, CL(2, 1) ⊕ p3 ={{p1, p3}, {p2, p3}}. Note

hat the sets, CL(n, m), CL(n−1, m), and CL(n−1, m−1) satisfy the

ollowing equality:

L(n, m) = CL(n − 1, m) ∪ (CL(n − 1, m − 1) ⊕ pn) (1)

or example, CL(n, m) = CL(3, 2) ={{p1, p2}, {p1, p3}, {p2, p3}},

L(n−1, m) = CL(2, 2)= {{p1, p2}}, CL(n−1, m−1) ⊕ pn = CL(2, 1)

pn = {{p1}, {p2}} ⊕ p3 = {{p1, p3}, {p2, p3}} if n = 3 and m =
. Thus, CL(3, 2) = CL(2, 2)∪ (CL(2, 1) ⊕ p3). Eq. (1) tells us that if

he sets of CL(n−1, m) and CL(n−1, m−1) are derived, then we can

tilize them to construct CL(n, m). This can, in turn, be applied to

btain CL(n−1, m−1) if the sets of CL(n−2, m−2) and CL(n−2, m−1)

re known. Following this, we can enumerate all combinations by

recursive method.

For ease of illustration, we denote the incremental set of CL(n,

), namely, CL(n−1, m−1) ⊕ pn, as �CL(n, m). Thus, the equality

1) can be rewritten into the following equality (2):

L(n, m) = CL(n − 1, m) ∪ �CL(n, m) (2)

or instance, CL(n, m)= CL(3, 2)= CL(2, 2)∪ �CL(3, 2)= �CL(2, 2)∪
CL(3, 2), namely, {{p1, p2}, {p1, p3}, {p2, p3}}={{p1, p2}}∪{{p1},

p2}} ⊕ p3. Note that CL(2, 2) = �CL(2, 2).

Based on Eqs. (1) and (2), we now introduce the combination

orting algorithm (CSA). The main idea is to repeatedly apply the

wo operations: decomposing and re-sorting. We illustrate this tech-

ique by an example shown in Fig. 4.

xample 3. From Fig. 4(a), we easily observe that CL(2, 2) and

L(2, 1) are first obtained. Since the combination {p1, p2} in CL(2,

) has the least weight 23, it will be added to the output. Then,

he algorithm generates the sorted combinations in �CL(3, 2) (i.e.,

p1, p3} and {p2, p3}) by adding p3 to CL(2, 1) at the second

ayer. Thereafter, two parts of the combinations, namely, CL(2, 2)

nd �CL(3, 2), are re-sorted. Thus, the algorithm obtains three

orted combinations, {p1, p2}, {p1, p3}, and {p2, p3}, which have the

eights, 23, 26, and 29, respectively, and are used to generate CL(3,

) at the third layer. Meanwhile, the combinations in �CL(3, 2) =
{p1, p3}, {p2, p3}} are outputted since they are in a global order.

imilarly, the algorithm obtains �CL(4, 2) = {{p1, p4}, {p2, p4}, {p3,

4}}. Although the combinations in �CL(4, 2) are sorted locally,

heir order in the global space (i.e., among all the combinations)

ight be different. In other words, there might exist another com-

ination (i.e., {p1, p5} in �CL(5, 2)) that has a less weight than that

f a combination in �CL(4, 2) (i.e., {p3, p4}). Therefore, we take a

lobal amending step. For example, the algorithm updates the list

f �CL(4, 2) since w({p1, p5}) = 35 is less than w({p3, p4}) = 36.

hus, the algorithm obtains the updated list of �CL(4, 2), namely,

CL′(4, 2) = {{p1, p4}, {p2, p4}, {p1, p5}}, in which the combi-

ations are regarded as the next outputted combinations. Follow-

ng this, the algorithm will terminate until reaching the top layer.

ig. 4(b) shows how to generate the combinations which contain

hree data objects in a recursive graph. Note that the incremental

ombinations are in bold font and the updated combinations are

arked with an underscore in Fig. 4.

We can draw two conclusions from the above example. (1)

ometimes all combinations in CL(n, m) (or �CL(n, m)) are not

62 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Fig. 4. The generated combinations in a recursive graph.

r

t

i

c

m

m

y

y

g

a

d

l

L

I

�

n

p

p

&

n

o

c

t

ϕ
r

∪
t

a

4

b

G

always in a global order. Therefore, we often need to carry up

at least a forward recursive operation, i.e., producing incremental

combinations of CL(n+1, m); (2) The algorithm can incrementally

output |�CL(m+i, m)| (m ≥ 2) combinations at the ith step if all

combinations in �CL(m+i, m) are in a global order. Let CL′(n, m)

and �CL′(n, m) be the updated lists of CL(n, m) and �CL(n, m), re-

spectively. Obviously, all combinations in �CL′(n, m) (or CL′(n, m))

are in a global order since they are updated. Let LBw(�CL(n, m))

and UBw(�CL(n, m)) be the minimum and maximum weights of

combinations in �CL(n, m), respectively. For example, LBw(�CL(3,

2)) = w({p1, p3}) = 26 and UBw(�CL(4, 2)) = w({p3, p4}) = 36

in Fig. 4. Then, we can immediately obtain the following conclu-

sion: the combinations among �CL(n, m) are in a global order if

LBw(�CL(n+1, m)) ≥ UBw(�CL(n, m)); otherwise the combinations

in �CL′(n, m) is in a global order.

Recall Example 3, the combinations in �CL(3, 2) are in a global

order because LBw(�CL(4, 2)) = w({p1, p4}) = 30 is larger than

UBw(�CL(3, 2)) = w({p2, p3}) = 29 according to the above men-

tioned conclusion. However, the combinations in �CL(4, 3) are not

in a global order because LBw(�CL(5, 3)) = w({p1,p2,p5}) = 48 is

less than UBw(�CL(4, 3)) = w({p2, p3, p4}) = 49. If we take a global

amending step for �CL(4, 3), then we will obtain its updated set,

i.e., �CL′(4, 3) = {{p1, p2, p4}, {p1, p3, p4}, {p1, p2, p5}}. Thus, all in-

cremental combinations in �CL′(4, 3) can be outputted since they

are in a global order.

In order to implement the CSA algorithm, we employ m B+-

trees, each of which is referred to as the BCi-tree to store the com-

binations of CL(j, i) (i ≤ j, i ∈ [1, m], j ∈ [1, n]). For example, BC1-

tree is used to store n objects in CL(n, 1) = {{p1}, {p2}, … , {pn}},

BC2-tree is used to store all incremental combinations in �CL(2,

2) = {{p1,p2}}, �CL(3, 2) = {{p1, p3}, {p2, p3}}, … , and �CL(n, 2) if

m = 2. The keys of the BCi-tree are defined by the weights of the

combinations in CL(x, i) (x ∈ [i, n], i ∈ [1, m]). Note that although

there are an exponential number of combinations, all B+-trees only

need to index a small number of combinations since the combina-

tions are generated in an incremental manner and the parameter k

of RkGNN query limits the number of generated combinations.
CSA uses a zig-zag manner to produce the combinations by a

ecursive method and will terminate the procedure once it has ob-

ained at least k combinations. CSA generates the combinations

n an incremental manner. Each time it uses pdelta_maxkey and

delta_minkey to record the maximum weight of previous incre-

ental combinations in �CL(x−1, y) (or �CL′(x−1, y)) and the

inimum weight of current incremental combinations in �CL(x,

), respectively. It inserts all incremental combinations of �CL(x,

) into the corresponding B+-tree (i.e., BCy_tree). After that, the al-

orithm updates the incremental combinations in �CL(x, y), which

re not in a global order. Specifically, in order to obtain the up-

ated set �CL′(x, y), the algorithm forwards λ steps until the fol-

owing inequality (3) no longer holds:

Bw(�CL(x + λ, y)) ≤ pdelta_maxkey (3)

n each step, the algorithm only inserts the combinations Gi ∈
CL(x+λ, y), which have a less weight than pdelta_maxkey and are

ot in the BCy-tree. Whenever the incremental combinations of the

revious step, i.e., �CL′(x, m), are produced, the algorithm will out-

ut them.

Although, the method proposed in Zhang, Chee, Mondal, Tung,

Kitsuregawa (2009) is similar to CSA for generating the combi-

ations of objects, it cannot be used to solve our problem because

f two differences: (1) CSA generates a set of combinations which

ontain y data objects, i.e., �CL(x, y), by the equality (1), whereas

heir method enumerates the candidate item sets of length y (i.e.,

y) from item sets of length y−1 (i.e., φy−1) using priori algo-

ithm where the synthetic formulae is ϕy = {a ∪ {b}|a ∈ φy−1 ∧ b ∈
φy−1 ∧ b /∈ a}. (2) CSA products the combinations in an incremen-

al manner; however their method is not the case although it also

dopts a recursive fashion.

.2. Sorting and threshold pruning

Since the MRkGN query is only interested in the top k com-

inations rather than all the combinations that have q as their

NN, we propose the sorting and threshold pruning (STP) method

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 63

t

c

t

c

y

e

w

�

p

{

l

i

b

r

G

f

T

d

P

o

b

R

t

d

C

b

s

i

r

n

o

T

c

a

P

a

m

h

b

b

i

C

a

w

d

p

3

t

t

p

c

m

t

Fig. 5. Illustration of how to prune the current combination.

a b

Fig. 6. Illustrate the pruning heuristics. (a) pruning a node; (b) pruning a combina-

tion.

4

e

f

t

l

r

t

L

L

t

N

P

d

t

v

a

G

a

S

E

s

p

t

N

q

t

t

G

m

C

w

d

t

hat can stop the search much earlier without examining all the

ombinations.

In the following discussion, we use delta_mindist to denote

he minimum aggregated distance of currently output incremental

ombinations. Note that if �CL(x, y) has been updated to �CL′(x,

), the newly updated weight will be assigned to delta_mindist. For

xample, delta_mindist of �CL(3, 2) and �CL′(5, 2) in Fig. 4(a) are

({p1, p3}) and w({p3, p4}), respectively. Similarly, delta_mindist of

CL(5, 3) in Fig. 4(b) is w({p2, p3, p4}) = 49 rather than w({p1,

2, p5}) = 48 because {p2, p3, p4} in �CL(4, 3) is swapped with

p1, p2, p5} in �CL(5, 3). If a candidate combination contains at

east an intermediate entry, then the combination will be inserted

nto a refined set, called Grfn. These combinations among Grfn will

e expanded when their corresponding entries are visited. Let

fn_mindist be the minimum weight of the combinations among

rfn. Then, we immediately derive Theorem 1 and Corollary 1 as

ollows.

heorem 1. The RkGNN query can terminate the search if

elta_mindist and rfn_mindist are both larger than best_kdist.

roof. Since rfn_mindist is larger than best_kdist, there is not any

ther combination which has a smaller aggregate weight than

est_kdist. Thus, any combination in Grfn is not the result of the

kGNN query. Meanwhile, there is not any other new combina-

ion which has a smaller aggregate weight than best_kdist due to

elta_mindist ≥ best_kdist. �

By Theorem 1, we can easily obtain the following Corollary 1.

orollary 1. The search of RkGNN stops if delta_mindist is larger than

est_kdist when the set of Grfn is empty.

We omit the proof of Corollary 1 here because it is very

traightforward. The RkGNN query processes each combination

n an ascending order according to its weight since the algo-

ithm enumerates all new combinations in an incremental man-

er. Therefore, the current enumeration can be terminated based

n the following Theorem 2.

heorem 2. The RkGNN query does not have to process the rest of

ombinations for each enumeration if the current combination G has

weight larger than best_kdist, i.e., adist(q, G) ≥ best_kdist.

roof. According to CSA, since all new combinations are gener-

ted in an ascending order of their weights for each round of enu-

eration, the combinations after the current combination G must

ave a larger weight. Thus, there will not be any another com-

ination which has a larger weight than G due to adist(q, G) ≥
est_kdist. �

According to Theorem 2, we can immediately derive the follow-

ng Corollary 2.

orollary 2. For the current combination G, it can be pruned if

dist(q, G) ≥ best_kdist.

We omit the proof of Corollary 2 too since it is also straightfor-

ard according to Theorem 2.

Consider the example in Fig. 5 (m = 2, k = 4). The aggregated

istance of {p1, p4} is less than that of {p2, p5} owing to dist(q,

1)+dist(q, p4) = 3.16+4.47 = 7.63 and dist(q, p2)+dist(q, p5) =
.61+5 = 8.61. Thus, {p2, p5} can be pruned because best_kdist is

he aggregated distance of {p1, p4}.

Theorem 1–2 and Corollary 1–2 are very effective in reducing

he search space and saving a large amount of unnecessary com-

utations. For instance, our experiments show that only about 0.1%

ombinations need to be processed for each enumeration, which

eans the STP method helps reduce 99.9% computations. Note that

he STP method can also be adopted in the BRkGN query.
.3. MBR property pruning

Besides the STP method, we also take advantages of the prop-

rty of the MBR (minimum bounding rectangle) in the R-tree to

urther improve the pruning power. We propose a novel and effec-

ive pruning method, namely MBR Property Pruning (MP). Specially,

et maxdist(N) be the distance between the lower left and upper

ight of the MBR of the current node N, and let mindist(q, N) be

he minimum distance between the node N and q. Then, we derive

emma 1 as follows.

emma 1 (Monochoromatic MBR Property Pruning). Any combina-

ions among a node N cannot be the result of MRGN query if the node

contains at least m+1 data objects, and maxdist(N)≤ mindist(q, N).

roof. If any combination G from current node N contains m

ata objects, we have mindist(q, N)∗m ≤ adist(q, G). Assume that

here is another point p′ in N which is not contained in G. Ob-

iously, the sum of distances between p′ and data objects in G,

dist(p′, G), is less than or equal to maxdist(N)∗m. Thus, adist(p′,
) ≤ maxdist(N)∗m ≤ mindist(q, N)∗m ≤ adist(q, G). Then, we have

dist(p′, G) ≤ adist(q, G). This indicates that q is not the GNN of G.

ince this is a general assumption, Lemma 1 is correct. �

xample 4. The basic idea of the MP is illustrated in Fig. 6. As

hown in Fig. 6(a), the MBR of node N contains three data objects,

1, p2, and p5. If m = 2, the node N will produce three combina-

ions, {p1, p2}, {p1, p5}, and {p2, p5}. Since maxdist(N) ≤ mindist(q,

), the three combinations of N are not the results of the MRkGN

uery.

Lemma 1 works well when the MBR is not too large. In case

hat there are some large MBRs, we will utilize the following

ighter condition (equality (4)) to check if the current combination

can be pruned:

axdist(N) ∗ m ≤ adist(q, G) (4)

onsider the combination G1 = {p1, p2} of node N in Fig. 6(b),

here the parameter m is 2. G1 is not the result of MRGN query

ue to maxdist(N)∗2 ≤ adist(q, G1).

Clearly, Lemma 1 assumes that the data objects of all combina-

ions are from the same node. Often this is not the case because

64 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Fig. 7. Illustration of pruning the combinations from two nodes.

C

p

p

C

a

a

c

C

W

p

P

c

R

s

w

t

∧
n

t

R

i

g

t

(

r

r

q

s

d

a

(

a

(

o

b

q

o

d

q

r

t

t

W

(

o

the data objects of a combination may come from multiple nodes

of the R-tree. In such case, we may still prune these combina-

tions according to Corollary 2. At this moment, we need to take

advantage of the characteristics of minimum distances of nodes.

Consider the following example in Fig. 7, where the distances of

q from N1 and N2 are 3 and 4, respectively, and the parameter

m is 2. The best distance, best_kdist, is 2+3.5 = 5.5. Obviously,

mindist(q, N1)∗1+mindist(q, N2)∗(2−1) = 3+4 = 7 is less adist(q,

G) and meanwhile it is greater best_kdist = 5.5. So, adist(q, G) ≥
best_kdist. In other words, any combination from N1 and N2 cannot

be the results of MRGN query.

The MP method improves the query performance significantly

by avoiding a large number of unnecessary computations of GNNs.

4.4. Window pruning

The previous MP method relies on the existence of the MBRs

to compute the pruning conditions. In this subsection, we propose

a more generic pruning method which is called window pruning

(WP). We illustrate the intuition of our window pruning method

in Fig. 8.

Specifically, let q be a query object and G be a candidate combi-

nation in the dataset P. We define the window region of an object

pi as a circle centered at point pi with radius dist(q, pi), and de-

note it as WR(q, pi). For any G, its window region is defined as the

union of the window regions of all the objects in G, i.e., WR∪(q, G)

= WR(q, p1)∪WR(q, p2)…∪WR(q, pm). Let WR∩(q, G) be the inter-

section of the window regions of all objects in G, namely, WR∩(q,

G) = WR(q, p1) ∩WR(q, p2)…∩WR(q, pm). Let WR\(q, G) be the dif-

ference of two sets WR∪(q,G) and WR∩(q, G), namely, WR\(q, G) =
WR∪(q,G)−WR∩(q, G). Let P\G be the difference of P and G, namely,

P\G = P−G. Then, we derive the following Theorem 3 and Corollary

3, immediately.

Theorem 3 (Monochoromatic Window Pruning). The candidate

combination G⊂P (|G| = m) is not the RGNN of the query object q

if ∃p′ ∈ P\G ∧ p′ ∈ WR∩(q, G). G is the RGNN of q if ¬∃p′ ∈ P\G ∧
p′ �∈ WR∪(q,G).

Proof. For any object p′ ∈ P\G, we prove Theorem 3 by analyzing

the following two cases. �
Fig. 8. Illustration of window pruning m
ase 1. p′ ∈ WR∩(q, G). Consider the case in Fig. 8(a), since dist(p5,

1) < dist(q, p1) and dist(p5, p2) < dist(q, p2), we have adist(p5, {p1,

2}) < adist(q, {p1, p2}). Therefore, G is not the RGNN of q.

ase 2: p′ �∈ WR∪(q,G). Consider the case in Fig. 8(b), since there

re not any object p′ �∈ WR∪(q,G), we have dist(p, p3)>dist(q, p3)

nd dist(p, p4) > dist(q, p4). In other words, q is the GNN of the

ombination G = {p3, p4}. So, G is the RGNN of q.

Based on the above two cases, we have Theorem 3 derived. �

orollary 3. The MRGN query only needs to search the objects among

R\(q, G) to judge whether or not G has q as its GNN if ∀p′ ∈ P\G ∧
′�∈WR∩(q, G) and ∃p′′ ∈ P\G ∧ p′′ ∈ WR\(q, G).

roof. Consider the case in Fig. 8(c), the whole search space

onsists of three regions, i.e., R1 = WR∩(q, G), R2 = WR\(q, G) and

3 = ¬WR∪(q, G). According to case 1 of Theorem 3, the algorithm

till needs to search the rest of the space (i.e., R2 and R3) to judge

hether G has q as its GNN if ∀p′ ∈ P\G ∧ p′ �∈ R1. In addition, in

erms of the case 2 of Theorem 3, ∀p′′′ which satisfies p′′′ ∈ P\G
p′′′ ∈ R3 cannot become the GNN of G. In other words, it is not

ecessary to search R3 to judge whether G has q as its GNN. Thus,

he algorithm only needs to search the rest of the data space, i.e.,

2. �

Based on Theorem 3 and Corollary 3, we give the window prun-

ng method (WPM) as Algorithm 1, which can be seamlessly inte-

rated into our RkGNN query. At the beginning, WPM initializes

he distance of best GNN of current combination G found so far

i.e., best_dist) by adist(q, G), and best GNN of G (i.e., best_NN) by q,

espectively. Then, line 2 obtains WR∪(q,G) and WR∩(q, G) by car-

ying out a window query for each pair of pi ∈ G (|G| = m) and

; meanwhile saves the corresponding data objects into an union

et uSet and an intersect set iSet, respectively. If the number of

ata objects in uSet is zero (namely, |uSet| = 0), G is marked as

RGNN of query object q (line 3). If the set of iSet is not empty

i.e., |iSet|>0), WPM sets best_NN to empty to represent G is not

RGNN of q (line 4). If ∃p ∈ WR∪(q,G) ∧ p �∈ G ∧ p �∈ WR∩(q, G)

lines 5–10), WPM computes the aggregated distance for each pair

f p ∈ WR∪(q,G) and G, namely, pG_dist = adist(p, G) to obtain the

est_NN. At last, WPM can judge whether G is a result of RkGNN

uery by the following method. If best_NN is q, G is a RGNN of q;

therwise, G is not a RGNN of q.

Theorem 3 and Corollary 3 enable the MRkGN algorithm to re-

uce the search space when it cannot quickly judge whether G has

as its GNN. On the other hand, they guarantee that our algo-

ithm does not have to invoke MBM in Papadias et al. (2004) for

he GNN query. It is worth noting that the saved cost come from

he WP method cannot be dominated by the cost for performing

PM although WPM needs to perform multiple window queries

i.e., m window queries) for each combination. This is because, in

rder to judge whether the current combination G has q as its

GNN, (i) a window query generally has a smaller search space than
ethod in MRkGN query (m = 2).

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 65

M

s

i

w

p

p

o

p

C

c

m

w

A

4

n

t

c

m

g

o

o

h

n

s

o

d

t

fi

w

s

o

r

c

t

n

C

w

i

o

A

R

(

(

a

r

b

c

n

I

1

r

a

o

i

I

a

1

i

i

(

d

G

r

A

c

T

e

l

t

n

|

|

S

a

p

c

d

t

M

L

n

BM since MBM prunes data objects (or nodes) in the whole data

pace, whereas WPM only need to search a smaller limited space,

.e., WR(q, G); (ii) the use of CSA and BF retrieval makes that a

indow query in WPM has a smaller radius. In other words, WR(q,

i ∈ G) generally contains a few of data objects; (iii) a substantial

roportion of the window queries fall in Theorem 3 as shown in

ur experiments; (iv) the inclusive property of CSA (i.e., CL(3, 2) ⊕
4 ⊂ CL(4, 3)) makes that a father combination (i.e., {p1, p3, p4} in

L(4, 3)) might usually be a result of the RkGNN query if a child

ombination (i.e., {p1, p3} in CL(3, 2)) is a answer. In other words,

window queries are almost no additional cost relative to a single

indow query.

lgorithm 1 Window pruning method (root, q, G, m)

.5. Lazy MRkGN query processing

We now introduce the technique, the lazy outputting of combi-

ations, called LO, and then present a lazy MRkGN query algorithm

hat integrates all the proposed techniques.

Unlike the simple solution that immediately enumerate the

ombinations for each popped object, LO method starts to enu-

erate combinations until there are enough data objects so as to

enerate at least k orderly combinations in a global space. At the

ther hand, LO approach also avoids accumulating too many data

bjects to give free play to the pruning capacity of other pruning

euristics. Next, we will give the lazy MRkGN query algorithm.

In particular, we search the R-tree index in a best-first man-

er (Hjaltason & Samet, 1999). We maintain a minimum heap H to

tore the entries in the form of (e, key), where e contains the MBR

f the node in the R-tree, and the key is the minimum Euclidean

istance between e and q. By enumerating the combinations and

he aforementioned pruning heuristics, the algorithm can quickly

nish the MRkGN computation. We use a temporary min-heap Ht

hich is used to generate the first k incremental combinations, to

tore the data objects popped from H. In addition, we make use

f another min-heap Ha to store all the data objects in Ht and the

est of data objects or entries in H. In order to produce at least k

ombinations and meanwhile avoid generating too many combina-

ions, we take advantage of the following inequality (5) to limit the

umber of entries in Ht:

m
|Ht | ≤ k ≤ Cm

|Ht |+1, |Ht | ≥ m + 1 (5)

here |Ht| represents the size of Ht, i.e., the number of data objects

n Ht, and Cm|Ht | (Cm|Ht |+1
) is the number of combinations selecting m

bjects from |Ht| (|Ht|+1) objects, respectively.

The detailed description of lazy MRkGN query is given in

lgorithm 2. At the beginning, we insert the root (root(I)) of the

-tree into heap H (line 2). Then, each time we remove an entry

e, key) from heap H (line 4) and process e until H becomes empty

lines 5∼27). Lines 5–7 check whether delta_mindist ≥ best_kdist

nd the refined set Grfn is empty, or delta_mindist ≥ best_kdist and
fn_mindist ≥ best_kdist. If so, the MRkGN query will be terminated

y Theorem 1 and Corollary 1. Otherwise, the algorithm will pro-

ess the current entry e as follows.

If the current entry e is a data object, we compute whether the

umber of current group of incremental combinations exceeds k.

f not, the algorithm continues to pop the top entry of H (lines 9–

0). Otherwise, line 11 takes advantage of CSA to generate the cur-

ent group of incremental combinations, using the entries in Ha in

n ascending order. This guarantees that the algorithm can quickly

btain the first k query results. For the current combination G, if it

s marked as a false positive, the algorithm will discard it (line 12).

f adist(q, G)≥ best_kdist, our method will exit the current round

nd fetch next entry of H by taking advantage of Theorem 2 (line

3); otherwise, we process it as follows. If it contains at least an

ntermediate entry e′, it is inserted into the refined set Grfn so that

t can be processed afterwards (line 16); If G only has data objects

line 14), a GNN query using MBM (Papadias et al., 2005) or win-

ow pruning method (WPM) is invoked to judge whether q is its

NN by Theorem 3 and Corollary 3. When the answer is true, the

esult set Grlt is updated by the procedure of UpdateRlt (line 15).

lgorithm 2 Lazy_MRkGN(root, P, q, m, k)

If the current entry e is an intermediate entry, we insert each

hild ei of e into H, and maintain the content of Ha (lines 18–19).

hen, the algorithm uses Lemma 1 to prune the combinations of

, and marks those being pruned as false positives (line 20). At

ast, the algorithm updates the corresponding combinations of Grfn

hat contains the current entry e by replacing e in each combi-

ation with each child ei. Thus, each combination G will produce

e| updated combinations, each of which is denoted as G′, where

e| is the number of children of e. Line 22 removes G from Grfn.

ubsequently, we process each combination G′ at lines 25–27, in

similar way as lines 14–16. However, note that we cannot ap-

ly Theorem 2 for line 24 because the algorithm does not sort all

ombinations in Grfn. If we sort these combinations, it will intro-

uce too much overhead. Next, the procedure UpdateRlt is used

o update the results set Grlt and the variable best_kdist when the

RkGN query obtains a new query result.

In what follows, we prove the correctness of the algorithm.

emma 2. The lazy MRkGN query algorithm will generate all combi-

ations.

66 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Table 2

The content of heap H and reuse heap Hr during the procedure of MRkGN query.

Action Heap content(H) Reuse heap content (Hr)

Access root N1, N2 N1, N2

Expand N1 N2, N4, N3 N2, N4, N3

Expand N2 N4, N5, N3, N6 N4, N5, N3, N6

Expand N4 p1, N5, p3, N3, N6, p5 p1, N5, p3, N3, N6, p5

Access p1 N5, p3, N3, N6, p5 p1, N5, p3, N3, N6, p5

Expand N5 p2, p3, N3, N6, p5, p8 p1, p2, p3, N3, N6, p5, p8

Access p2 p3, N3, N6, p5, p8 p1, p2, p3, N3, N6, p5, p8

Access p3 N3, N6, p5 p1, p2, p3, N3, N6, p5

5

a

R

f

a

q

w

t

C

i

s

o

n

p

t

o

M

i

t

u

A

t

r

r

c

w

t

t

i

w

n

t

t

t

r

s

T

T

s

o

P

t

I

Proof. Since the algorithm will pop each entry in H and expands

the entry if it is an intermediate entry, the algorithm will process

each object eventually. Specifically, each time the algorithm pro-

duces all incremental combinations of the currently popped data

object using the data objects/entries in Ha. The combinations that

contain intermediate entry/entries will be inserted into the re-

fined set Grfn. If the corresponding entry is popped, the combi-

nation(s) will be expanded. The updated combinations will again

be expanded if they contain intermediate entry/entries. Therefore,

Lemma 2 is correct. �

By integrating Lemma 1–2, Theorem 1–3 and Corollary 1–2, we

have the following Theorem 4.

Theorem 4. The lazy MRkGN query algorithm correctly returns all

query results and does not produce any false positives or false neg-

atives.

Proof. By Lemma 2, we know that the query algorithm will

enumerate all combinations and check whether q is their GNN.

Clearly, this procedure does not produce false negatives. In addi-

tion, Lemma 1, Theorem 1–3 and Corollary 1–2 guarantee the cor-

rectness of pruning the combinations and do not produce false

positives. �

4.6. Discussion

Although we have developed many pruning heuristics for the

RkGNN query, there may be room for further improvement. At

present, there are many research effects on parallel computation

over massive data or cloud data (Fu et al., 2015; Xia, Wang, Sun,

& Wang, 2015). In fact, we can also take the parallelization of

the proposed techniques into consideration, i.e., using MapReduce

(Park, Min, & Shim, 2013; Zhou, Wu, Chen, & Shou, 2014) and ex-

tending to multi-cores. Since it is our future work, we only pro-

vide some basic ideas of parallelization for the RkGNN query as

follows.

(1) For the multi-core CPU, we can develop a multi-thread pro-

cedure to compute the query results of RkGNN by using

multiple threads. For example, a main thread incrementally

produces combinations and allocates these combinations to

other sub-threads. Each sub-thread receives a part of combi-

nations and then determines whether q is the GNN of each

combination G by MBM or WPM in parallel independently.

At last, each sub-thread sends its results to the main thread.

Whenever the main thread has collected all results from the

sub-threads, it will continue to enumerate the rest combi-

nations until it has obtained the top-k results of RkGNN

query.

(2) For the processing based on MapReduce, a master func-

tion incrementally produces the combinations by invoking

the CSA, where the key is the distance between the point

p and the query point q. In addition, the master function

also takes charge of allocating the combinations with some

necessary data points to some map functions and receiving

the query results from a reduce function. When there are

at least k combinations, it processes these combinations by

MapReduce. When it has obtained the top-k query results

of RkGNN, it will notify all map functions and the reduce

function so that they can stop the computation. Each map

function judges if q is the GNN of each combination G by

WPM method. If it is yes, the form of output is 〈G, 1〉; oth-

erwise, 〈G, 0〉. At last, a reduce function obtains all combina-
tions which have the form of 〈G, 1〉 from the map functions

and sends them the master function.

. Improving query performance by reducing redundant I/O

ccesses

We observe that the lazy MRkGN algorithm needs to traverse

-tree multiple times to generate combinations and find GNNs

or the candidate combinations. There are many redundant I/O

ccesses during the query processing. For example, consider the

uery in Fig. 3, where m = 2 and k = 2. According to Eq. (5),

e have |Ht| = 3, and hence the algorithm sequentially outputs

hree combinations, {p1, p2}, {p1, p3} and {p2, p3}. By utilizing the

orollary 3, the algorithm obtains the first result of MR2GN query,

.e., {p1, p2}. The combination {p1, p3} is pruned by Theorem 3

ince p5 ∈ WR∩(q,{p1, p3}). Assume that each tree node is stored

n one disk page, the algorithm requires 4 I/O accesses to visit the

odes, N2, N5, N1, and N4 when generating the combination {p2,

3}. Similarly, the algorithm still needs to visit the node N6 two

imes for the window queries of WR(q, p2) and WR(q, p3) based

n Theorem 3. Then, the algorithm obtains the second result of

R2GN query, namely, {p2, p3}.

In order to further improve the query performance by avoid-

ng repeated visits to the same tree nodes, we take advantage of

he reuse heap method (RH) in Jiang et al. (2014). Specifically, we

se a reuse heap Hr to store the entries that have been accessed.

lgorithm 2 can be revised by inserting a line code before line 20

o maintain the entries in Hr. The code inserts all children of cur-

ent entry e into Hr and deletes e from Hr. As a result, the algo-

ithm will no longer incur extra I/O cost if the entry being accessed

an be found in Hr. Reconsider the example in Fig. 3, our approach

ill decrease 10 I/O accesses by using the information stored in

he reuse heap Hr. Table 2 gives the content of H and Hr during

he procedure of the query.

In our reuse heap method, we do not expand the correspond-

ng entry to the leaf level that stores data objects because other-

ise, the heap may grow too large resulting in too much mainte-

ance cost. Moreover, we leverage the binary search to speed up

he information update in the heap. In addition, it is worth noting

hat our proposed reusing heap technique is different from caching

echniques adopted in most DBMS. The caching typically keeps the

ecent entries, whereas our reusing heap technique preserves the

pecific entries which are not changed during the search.

Based on the above analysis, we can easily obtain the following

heorem 5.

heorem 5. Given a MRkGN query, the reuse heap method en-

ures that each intermediate index node will be accessed at most

nce.

roof. Since each visited node will be stored in the reuse heap,

he query algorithm based on the reuse heap will not produce any

/O access when processing the GNN query. �

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 67

6

q

p

B

6

m

m

a

o

i

a

L

a

m

m

n

T

n

p

C

W

i

B

q

f

e

j

B

A

6

r

a

d

t

i

d

i

s

i

b

Fig. 9. Illustration of the constrained reverse group nearest neighbor.

7

d

p

a

w

v

t

i

t

v

b

c

t

n

t

T

r

t

g

i

d

i

G

a

d

S

R

8

M

d

J

d

8

d

w

p

. Bichoromatic reverse top-k group nearest neighbor (BRkGN)

uery

In this section, we first discuss how to adapt the MRkGN’s

runing technique for the BRkGN query, and then present the

RkGN query algorithm.

.1. Differences between MRkGN and BRkGN

Although the BRkGN query involves two data sets and hence

ore complex, some MRkGN’s pruning techniques can still be

odified to be adopted by BRkGN query.

Firstly, the pruning methods in Section 4.2 can be directly

dopted by BRkGN. In particular, we check whether or not a query

bject q is the GNN of a combination G. If so, G will be inserted

nto the result set Grlt; otherwise, G can be safely pruned.

Secondly, we can also develop the bichromatic MBR property

nd window pruning methods for BRkGN as follows.

emma 3 (Bichromatic MBR Property Pruning). Any combinations

mong N cannot be the result of BRGN query if maxdist(N)≤
indist(q, N) ∧ p′ ∈ B ∧ p′ ∈ BR(N) and the node N contains at least

data objects, where BR(N) denotes the boundary region of MBR of

ode N.

heorem 6 (Bichromatic Window Pruning). The candidate combi-

ation G⊂A (|G| = m) is not the RGNN of query object q if ∃p′ ∈ B ∧
′ ∈ WR∩(q, G). G is the RGNN of q if ¬∃p′ ∈ B ∧ p′ �∈WR∪(q,G).

orollary 4. The BRGN query only needs to search the objects among

R\(q, G) over dataset B to judge whether or not G has q as its GNN

f ∀p′ ∈ B ∧ p′ �∈WR∩(q, G) and ∃p′′ ∈ B∧ p′′ ∈ WR\(q, G).

Note that the MBR property pruning technique used by the

RkGN query is a little different from that used by the MRkGN

uery. The MRkGN query may use the information of data objects

rom the same index as the combination G to prune itself. How-

ver, the BRkGN query must utilize the information of data ob-

ects from another index over dataset B to prune G. In addition, the

RkGN query needs to traverse the index of dataset B (not dataset

) for the bichromatic window pruning method.

.2. BRkGN query processing

In this subsection, we integrate the pruning heuristics and the

euse technology into the procedure of the BRkGN query. Consider

query object q and two data sets, A and B. We assume that the

ata sets A and B are indexed by two R-trees, TA and TB, respec-

ively. The BRkGN query algorithm conducts two main tasks: (1)

ncrementally producing combinations Gs in TA to obtain the can-

idate sets of possible query results, and (2) verifying each set G

n the candidate sets whether or not it has q as its GNN in data

et B′ = (B ∪ {q}). The overall query processing for BRkGN is sim-

lar to MRkGN. Therefore, we only present mainly the differences

etween the two query algorithms in the following:

(1) BRkGN traverses TA in a BF manner according to the min-

imum distance between the current node of TA and q, and

produces the combinations Gs incrementally by the method

in Section 4.1. Meanwhile, BRkGN prunes unqualified com-

binations by sorting and threshold pruning techniques men-

tioned in Section 4.2.

(2) For each current combination G, BRkGN needs to traverse

TB. BRkGN first uses the bichromatic MBR property pruning

method (i.e., Lemma 3) to prune G. If G cannot be pruned,

the algorithm will further take advantage of bichromatic

window pruning method (e.g., Theorem 6 and Corollary 4)

to prune G.
(3) Similary, BRkGN also utilizes the reuse heap method to re-

duce the redundant I/O accesses and saves all entries in TB

into the reuse heap Hr.

. Constrained reverse top-k group nearest neighbor query

In some scenarios, users may have additional constraints (e.g.,

istance, spatial region, etc.) on RkGNN queries. For example, a su-

ermarket chain company may want to specify a residence area

nd select new branches within this area. To handle such cases,

e define a variant of the RkGNN query, namely, constrained re-

erse top-k group nearest neighbor (CRkGN) query, which computes

he reverse top-k group nearest neighbor in a specified region.

If only the top k combinations are returned to the user accord-

ng to the sum distance of q and each object p ∈ G, we denote

his query over a single dataset as monochoromatic constrained re-

erse top-k group nearest neighbor query and over two datasets as

ichromatic constrained reverse top-k group nearest neighbor query.

Consider the example in Fig. 9. When m = 2 and k = 2, the

ombinations of {p1, p3} and {p2, p3} constitute the constrained

op-k group nearest neighbor. Note that {p1, p4} and {p2, p4} are

ot the constrained reverse top-k group nearest neighbors of q al-

hough they are the reverse top-k group nearest neighbors of q.

his is because the point p4 is not located inside the constrained

egion.

To efficiently answer this new type of query, we propose to in-

egrate the checking of additional conditions (i.e., constrained re-

ion, CR) into the execution of the regular RkGNN query. The main

deas include (i) discarding all combinations which contain the

ata objects or entries outside the constrained region; (2) only us-

ng the data objects inside the constrained region to compute the

NN of the current combination G. Therefore, for monochromatic

nd bichromatic cases, we only need to process the entries in in-

ex (or indexes) which intersecting with the constrained region.

ince our proposed algorithm for answering CRkGN is similar to

kGNN query processing algorithms, we omit the details here.

. Experimental evaluation

In this section, we evaluate the performance of our proposed

RkGN query algorithm and BRkGN query algorithm. We con-

uct some additional experiments for the previous approaches in

iang et al. (2013), and provide a more comprehensive analysis and

iscussion.

.1. Experimental setup

In our experiments, we use both real and synthetic

atasets. The two real datasets, namely, PP and NE, are from

ww.rtreepotral.org. Specifically, PP consists of the populated

laces of the North America with 24,493 points. NE represents

68 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Table 3

Parameter ranges and default values.

Parameter Range Default

k for MRkGN 10, 20, 30, 40, 50 30

k for BRkGN 5, 10, 15, 20, 25 15

m 2, 3, 4, 5 3

N (cardinality) 20 K, 40 K, 60 K, 80 K, 100 K or

3 K, 6 K, 9 K, 12 K, 15 K for PP

60 K, or 9 K for PP

CR (% of the space) 4, 8, 16, 32, 64 16

j

n

b

w

c

d

H

b

r

c

a

l

d

o

w

b

p

o

t

a

s

t

c

(

N

M

p

E

s

l

m

t

n

n

t

h

a

i

m

G

t

s

d

f

S

t

t

2

c

o

v

r

t

b

w

a

i

b

b

m

o

d

w

three metropolitan areas (New York, Philadelphia, and Boston)

containing 123,593 postal addresses (points). We also generate

Independent (IN) and Correlated (CO) datasets with dimensionality

dim = 2 and cardinality N in the range [20 K, 100 K] (PP is in the

range [3 K, 15 K]). Specifically, IN consists of random points from

the unit square. CO follows correlated distributions. All datasets is

normalized to range [0, 1]. Each dataset is indexed by an R-tree

(Guttman, 1984) with a page size of 4096 bytes.

We evaluate the effects of several parameters including param-

eters k and m, and the cardinality N for the following four al-

gorithms. (1) The baseline algorithm (naive solution) is the brute

force approach using the linear scan (denoted as LS in figures). Ac-

cording to the type of the GNN query, other algorithms include

(2) lazy RkGNN with MBM query method in Papadias et al. (2004)

(denoted as basic RkGNN or M in figures), (3) lazy RkGNN with

window pruning (denoted as RkGNN+W or W in figures), and (4)

lazy RkGNN with window pruning and reuse technology (denoted

as RkGNN+WR or WR in figures). Each type of algorithms can also

be divided into monochromatic RkGNN query, bichromatic RkGNN

query, and constrained RkGNN query. Note that the basic RkGNN

and RkGNN+W correspond to the previous algorithms, LRkGNN and

SLRkGNN in Jiang et al. (2013), respectively. Since other related ap-

proaches (i.e., GNN algorithms) cannot be adopted to address the

RkGNN queries, we do not compare them with our algorithms in

the following experiments. In each experiment, only one parame-

ter is varied, whereas the others are fixed to their default values.

The settings of the parameters and their default values are listed

in Table 3.

The wall clock time (i.e., the sum of I/O time and CPU time),

where the I/O time is computed by charging 10 ms for each page

access, as with Papadias et al. (2005), the number of node/page ac-

cesses (NA), the number of enumerating combinations (EC) which

reflects the performance of early stopping, the maximum number

of entries in the reuse heap (MH), are used as the major perfor-

mance metrics. Each reported value in the diagrams is the average

of 50 queries, where the query object q of each query is randomly

selected from the corresponding dataset. In order to adequately

show the efficiency of RkGNN+WR, we also measure the speed-up

ratio of our approaches as the wall clock time of basic RkGNN di-

vided by that of RkGNN+WR. Note that the columns in figures in-

dicate the wall clock time, whereas the curves represent NA. All

algorithms were implemented in C++ programming language, and

all experiments were conducted on an Intel 2.0 GHz single-CPU PC

with 4GB RAM.

8.2. Performance of MRkGN queries

Effect of k on MRkGN. In the first set of experiments, we test

the effect of k on the performance of the MRkGN queries. Fig. 10

illustrates the experimental results of four algorithms by setting m

= 3 and varying the parameter k from 10 to 50. The data size is

N = 9 K for the data set of PP, and N = 60 K for the data sets of

NE, CO and IN. From figures, we can see that RkGNN+WR achieves

the best performance and outperforms the baseline approach LS

by about 3–4 orders of magnitude. Since MBM prunes data ob-
ects (or nodes) in the whole data space, whereas WP method only

eeds to search a smaller limited space, i.e., WR(q, G), this makes

asic RkGNN with MBM slower than RkGNN+W. As expected, the

all clock time and NA of the four algorithms increase when k in-

reases from 10 to 50. This is because that the number of can-

idate combinations increases with the growth of k accordingly.

owever, the rate of increase for RkGNN+WR is slower which can

e attributed to the use of window pruning heuristic (WP) and

euse heap technology (RH). WP has a less number of node ac-

esses than MBM on checking whether the current combination is

result of RkGNN query since WP only requires searching a small

imited search range by Theorem 3 and Corollary 3. RH further cuts

own the number of node accesses because it traverses the R-tree

nly once. In addition, we also observe that EC increases very fast

ith the growth of k, whereas MH increases much slower. This is

ecause a big k causes an increase of visiting index nodes, and thus

roduces more combinations. Meanwhile, it also enlarges the size

f the reuse heap. Since the baseline approach LS is thousands of

imes slower than our best algorithm due to the need to generate

n exponential number of combinations, we will not report the re-

ults of LS in the subsequent experiments.

Effect of m on MRkGN. Fig. 11 illustrates the performance of

he MRkGN queries by varying the number of data objects in a

ombination, where k is set to 30 and the data size N = 100 K

N = 9 K for PP). As shown in the figure, the wall clock time and

A decrease across all datasets when the parameter m increases.

oreover, EC and MH also decrease in most cases for a bigger

arameter m. For example, EC is 623 on PP for m = 2, whereas

C becomes 256 on PP for m = 4. The speed-up ratio follows the

ame trend on all datasets. In fact, a bigger parameter m causes a

arger search space. Why does this phenomenon take place? This is

ainly because the MRkGN candidates are more likely to become

he query results when the number of data objects in a combi-

ation is large. Consequently, MRkGN needs to visit fewer index

odes. In particular, RkGNN+WR obtains the highest speed-up ra-

io on the dataset CO, i.e., 533.32. On the contrary, the basic RkGNN

as the worst performance among three algorithms owing to the

doption of MBM. The reason lies in the fact that the goal of MBM

s to find the GNN of a combination G whereas the target of WP

ethod is to determine whether the query object q is the GNN of

. Thus, WP method can take advantage of some useful informa-

ion of q so as to accelerate the search.

Effect of N on MRkGN. In this set of experiments, we demon-

trate the scalability of the MRkGN query algorithm by varying the

ata size N (the cardinality of dataset). The cardinality of PP is

rom 3 K to 15 K, and the cardinality of NE is from 20 K to 100 K.

ince the real dataset with 100 K objects is too small to show that

he proposed method is scalable, we also generate two bigger syn-

hetic datasets, CO and IN, where their cardinality are from 128 K to

048 K. By default, m = 3 and k = 30. As shown in Fig. 12, the wall

lock time, NA, EC and MH are relatively constant with the increase

f N. The main reason is that the larger data set often brings more

alid combinations than a smaller data set. Thus, the MRkGN algo-

ithm is still able to quickly obtain the top k query results although

here is a larger search space for a bigger dataset. In most cases,

asic MRkGN algorithm has a slower decrease of performance on

all clock time and NA with the increase of N. However RkGNN+W

nd RkGNN+WR show a better performance with the increase of N

n most cases. This indicates that window pruning method wins a

etter efficiency than MBM for judging whether the current com-

ination G is a RGNN of query object q owing to the same reason

entioned above the experiments of MRkGN about the parameters

f k and m. This confirms the nice scalability of our approaches on

ata size.

The memory usages of RkGNN+WR. In this set of experiments,

e report the memory usages of RkGNN+WR by varying the

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 69

Fig. 10. The performance of MRkGN vs. k.

Fig. 11. The performance of MRkGN vs. m.

70 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Fig. 12. The performance of MRkGN vs. N.

Fig. 13. The memory usages of MRkGN w.r.t. k. Fig. 14. The memory usages of MRkGN w.r.t. N.

8

B

r

r

t

4

o

t

a

a

c

a

parameter k and the data size N, where the other parameter

settings follow the settings of above experiments in Fig. 10 and

Fig. 12, respectively, since RkGNN+WR maintains the expanded

points in memory instead of discarding them. Figs. 13 and 14

show the experimental results. From the figures, we can observe

that the two parameters exert a little impact on memory usages

of RkGNN+WR. In fact, the maximum memory usages are less than

70 KB over all experiments. The main reason is that RkGNN+WR

with CSA can quickly obtain top-k results and then it only need

to traverse a few of intermediate index nodes. On the other

hand, the window queries in WP approach only require a little

of memory since the pruning region is smaller at the beginning

stage of incremental evaluation. Below, we will not present the

experimental results because all the subsequent experimental

results show similar trends for other parameters.
.3. Performance of BRkGN queries

In this subsection, we study the query performance of the

RkGN query processing. Since BRkGN involves two datasets, we

andomly extract 6 K data objects from PP as dataset A, and the

est of PP as dataset B. For the datasets of NE, CO and IN, we split

hem into the datasets A and B in a similar way, which contain

0 K and 60 K data objects, respectively.

Effect of k on BRkGN. Fig. 15 illustrates the query performance

f BRkGN by letting m = 3 and varying the parameter k from 5

o 25. From Fig. 15, we can see that when k increases, although

ll algorithms take more time to process the query, BRkGN+W

nd BRkGN+WR are much faster than the basic BRkGN. This indi-

ates the effectiveness of our bichromatic window pruning method

nd reuse heap technology. In addition, we also find that BRkGN

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 71

Fig. 15. The performance of BRkGN vs. k.

Fig. 16. The performance of BRkGN vs. m.

72 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

Fig. 17. The performance of MRkGN vs. CR (constrained region).

f

f

P

e

c

t

a

t

t

8

t

o

o

t

t

r

o

a

i

k

d

m

c

u

i

r

is slower than MRkGN. The reason is straightforward, i.e., BRkGN

needs to traverse two R-trees whereas MRkGN only needs to tra-

verse one.

Effect of m on BRkGN. Furthermore, we study the effect of m

on our BRkGN query processing in Fig. 16, where k = 15. The ex-

perimental results show that, when the number of data objects in

a combination increases, the required number of node accesses in-

creases slightly in most of cases. This is because the bigger m is,

the more candidate combinations will be. However, the wall clock

time is nearly unchanged for m = 3, 4 and 5. The reason is that

a bigger m brings more candidate combinations which have q as

their GNN objects. Overall, BRkGN+WR has a better performance

than basic BRkGN and BRkGN+W for all cases. Moreover, when m

increases, the wall clock time also goes up.

8.4. Performance of constrained queries

In this subsection, we evaluate the performance of the con-

strained RkGNN. Due to space limitations, we only give the exper-

imental results of MRkGN w.r.t. CR and k.

Effect of CR on MRkGN. First, we examine the influence of CR

on the performance of the MRkGN query by varying CR from 4% to

64% (of the data space), where m = 3, k = 30, and the data size

N = 60 K (N = 9 K for PP). The results are shown in Fig.17. It is

obvious that, all the algorithms are I/O bounded, and both the wall

clock time and NA smoothly decrease with CR in most cases. The

reason is that, we generate the constrained region according to the

center point of root node’s MBR, and a larger constrained region

usually contains more qualified combinations. Thus, the algorithm

will more easily obtain the top k query results. The experimental

results confirm the nice scalability on CR.
Effect of k on constrained MRkGN. Then, we evaluate the ef-

ect of k on the efficiency of the MRkGN algorithms by varying k

rom 10 to 50 with m = 3, the data size N = 60 K (N = 9 K for

P). Fig. 18 reports the results. As expected, the larger the param-

ter k, the higher the cost since the number of combinations in-

reases with k. CSA greatly reduces the number of combinations

o be evaluated. In all cases, the constrained MRkGN+WR always

chieves the best performance. The experimental results indicate

hat, the constrained MRkGN algorithm has the same characteris-

ics as the regular MRkGN algorithm.

.5. The potential of our system

As we can see from the experiments, our system can output

he answer for a small k (k ≤ 30) in a few seconds (i.e., 12 sec-

nds) even when the database size (namely, the number of data

bjects in a dataset) is increased to two million (i.e., 2048 K). For

he most parameters, i.e., m, N, and CR, they have a little impact on

he wall clock time and the number of node access. As for the pa-

ameter k, the processing time slightly increases with the increase

f k. Therefore, this indicates that our system has good scalability

nd its time complexity is relatively low.

In addition, our system also shows some performance merits

n term of scalability. For example, (i) in order to obtain the top-

query results, it only needs to incrementally produce only hun-

reds of combinations. for example, the maximum of EC is 1371 for

= 5 in bichromatic case; (ii) the number of MH is also very ac-

eptable because it is less than 1000; (iii) the maximum memory

sages are less than 70 KB over all experiments. From managerial

nsights, our system can apply to many important fields, including

esource allocation, tripping planning, product design, and so on.

B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74 73

Fig. 18. The performance of constrained MRkGN vs. k.

9

b

t

b

o

a

t

d

t

a

c

i

t

W

s

T

a

e

d

c

f

t

R

t

R

A

T

C

R

C

D

D

F

F

G

G

G

G

G

H

H

. Conclusion

For some expert and intelligent systems, group nearest neigh-

or (GNN) query can be regarded as an important tool to capture

heir geographic information. These applications include location-

ased service (LBS) and business support systems. However, they

nly process the query from users’ perspective; we focus on man-

gers’ perspective in this paper. Our proposed system is applicable

o many important domains, such as resource allocation, product

ata analysis, tripping planning, and disaster management.

To this end, we present a new type of query, namely, reverse

op-k group nearest neighbor (RkGNN) query for monochromatic

nd bichromatic cases. But, this query needs a large number of

omputations owing to its exponential time and space complex-

ties although it is very useful. We develop efficient algorithms

o address the RkGNN query. In theory, we propose STP, MP, and

P techniques to incrementally generate combinations for con-

ideration and quickly prune unqualified candidate combinations.

he proposed techniques result in a significant improvement of

nswering the RkGNN query. At last, we have also conducted an

xtensive experimental evaluation over both real and synthetic

atasets, and the results demonstrate the effectiveness and effi-

iency of our proposed algorithms.

In the future, we intend to devise more efficient algorithm(s)

or answering RkGNN queries. Another interesting direction for fu-

ure work is to extend our approaches to tackle other variants of

kGNN queries, i.e., the RkGNN queries with parallelization and

he RkGNN queries in metric spaces. Finally, we plan to solve the

kGNN queries in road networks.
cknowledgment

Bin Zhang was supported in part by ZJNSF Grant LY14F020038.

ao Jiang was supported in part by ZJNSF Grant LY16F020026. Li

hen was supported in part by ZJNSF Grant LY15F020040.

eferences

huang, Y.-C., Su, I.-F., & Lee, C. (2013). Efficient computation of combinatorial sky-

line queries. Information Systems, 38(3), 369–387.
eng, K., Sadiq, S., Zhou, X., Xu, H., Fung, G. P. C., & Lu, Y. (2012). On group near-

est group query processing. IEEE Transaction on Knowledge and Data Engineering,
24(2), 295−308.

rosou, M., & Pitoura, E. (2010). Search result diversification. SIGMOD Record, 39(1),

41–47.
agin, R., Lotem, A., & Naor, M. (2001). Optimal aggregation algorithms for mid-

dleware. In Proceedings of the 20th symposium on principles of database systems
(p. 102−113).

u, Z., Sun, X., Liu, Q., Zhou, L., & Shu, J. (2015). Achieving efficient cloud search
services: multi-keyword ranked search over encrypted cloud data supporting

parallel computing. IEICE Transactions on Communications, E98-B(1), 190–200.
ao, Y., Liu, Q., Zheng, B., & Chen, G. (2014). On efficient reverse skyline query pro-

cessing. Expert Systems with Applications, 41(7), 3237–3249.

ao, Y., Zheng, B., Chen, G., Chen, C., & Li, Q. (2011). Continuous nearest-neighbor
search in the presence of obstacles. ACM Transaction on Database System, 36(2),

Article No. 9.
ollapudi, S., & Sharma, A. (2009). An axiomatic approach for result diversification.

In Proceedings of WWW Conference (p. 381−390).
uo, X., Xiao, C., & Ishikawa, Y. (2012). Combination skyline queries. Transaction on

Large-Scale Data- and Knowledge-Centered System, 6, 1–30.

uttman, A. (1984). R-Trees: a dynamic index structure for spatial searching. In Pro-
ceedings of ACM SIGMOD Conference (p. 47−57).

ashem, T., Kulik, L., & Zhang, R. (2010). Privacy preserving group nearest neigh-
bor queries. In Proceedings of the international conference on extending database

technology (p. 489−500).
jaltason, G., & Samet, H. (1999). Distance browsing in spatial databases. ACM Trans-

action on Database Systems, 24(2), 265−318.

http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0001
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0002
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0003
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0004
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0005
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0006
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0007
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0008
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0009
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0010
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0011
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0012
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0012

74 B. Zhang et al. / Expert Systems With Applications 53 (2016) 57–74

S

S

T

T

T

V

W

X

X

X

Y

Y

Y

Y

Y

Z

Z

Im, H., & Park, S. (2012). Group skyline computation. Information Science, 188,
151−169.

Jiang, T., Gao, Y., Zhang, B., Lin, D., & Li, Q. (2014). Monochromatic and bichromatic
mutual skyline queries. Expert Systems with Applications, 41(4), 1885−1900.

Jiang, T., Gao, Y., Zhang, B., Liu, Q., & Chen, L. (2013). Reverse top-k group nearest
neighbor search. In Proceedings of the 14th international conference on web-age

information management. (p. 429−439).
Jiang, T., Zhang, B., Lin, D., Gao, Y., & Li, Q. (2015). Incremental evaluation of top-k

combinatorial metric skyline query. Knowledge-Based Systems, 74(1), 89−105.

Kolahdouzan, M., & Shahabi, C. (2004). Voronoi-based k nearest neighbor search for
spatial network databases. In Proceedings of the international conference on very

large data base (pp. 840–851).
Korn, F., & Muthukrishnan, S. (2000). Influence sets based on reverse nearest neigh-

bor queries. In Proceedings of ACM SIGMOD conference (pp. 201–212).
Li, Y., Li, F., Yi, K., Yao, B., & Wang, M. (2011). Flexible aggregate similarity search. In

Proceedings of ACM SIGMOD conference (pp. 1009–1020).

Li, F., Yao, B., & Kumar, P. (2010). Group enclosing queries. IEEE Transaction on Knowl-
edge and Data Engineering, 23(10), 1526−1540.

Lian, X., & Chen, L. (2008). Probabilistic group nearest neighbor queries in uncertain
databases. IEEE Transaction on Knowledge and Data Engineering, 20(6), 809−824.

Magnani, M., & Assent, I. (2013). From stars to galaxies: Skyline queries on aggre-
gate data. In Proceedings of the international conference on extending database

technology (pp. 477–488).

Mouratidis, K., Yiu, M. L., Papadias, D., & Mamoulis, N. (2006). Continuous nearest
neighbor monitoring in road networks. In Proceedings of the international confer-

ence on very large data base (pp. 43–54).
Papadias, D., Shen, Q., Tao, Y., & Mouratidis, K. (2004). Group nearest neigh-

bor queries. In Proceedings of the international conference on data engineering
(p. 301−312).

Papadias, D., Tao, Y., Mouratidis, K., & Hui, C. K. (2005). Aggregate nearest neighbor

queries in spatial databases. ACM Transaction on Database Systems, 30(2), 529–
576.

Park, Y., Min, J.-K., & Shim, K. (2013). Parallel computation of skyline and reverse
skyline queries using MapReduce. Proceeding of the VLDB Endowment, 6(14),

2002–2013.
Qin, L., Yu, Jeffrey, X., & Chang, L. (2012). Diversifying top-k results. Journal Proceed-

ings of the VLDB Endowment, 5(11), 1124–1135.

Razente, H. L., Barioni, M. C. N., Traina, A. J. M., Faloutsos, C., Jr., & C. T. (2008). A
novel optimization approach to efficiently process aggregate similarity queries

in metric access methods. In Proceedings of the 17th ACM conference on informa-
tion and knowledge management (p. 193−202).

Roussopoulos, N., Kelly, S., & Vincent, F. (1995). Nearest neighbor queries. In Pro-
ceedings of ACM SIGMOD conference (pp. 71–79).

Seidl, T., & Kriegel, H.-P. (1998). Optimal multi-step k-nearest neighbor search. In

Proceedings of ACM SIGMOD conference (pp. 154–165).
tanoi, I., Agrawal, D., & Abbadi, A. (2000). Reverse nearest neighbor queries for
dynamic databases. In Proceedings of SIGMOD workshop on research issues in data

mining and knowledge discovery (pp. 44–53).
u, I.-F., Chuang, Y.-C., & Lee, C. (2010). Top-k combinatorial skyline queries. In Pro-

ceedings of the international conference on database systems for advanced applica-
tions (pp. 79–93).

ao, Y., Ding, L., Lin, X., & Pei, J. (2009). Distance-based representative skyline. In
Proceedings of the international conference on data engineering (pp. 892–903).

ao, Y., Papadias, D., & Lian, X. (2004). Reverse kNN search in arbitrary dimen-

sionality. In Proceedings of the international conference on very large data base
(p. 744−755).

ao, Y., Yiu, M. L., & Mamoulis, N. (2006). Reverse nearest neighbor search in metric
spaces. IEEE Transaction on Knowledge and Data Engineering, 18(9), 1239–1252.

ieira, M. R., Razente, H. L., & Barioni, M. C. N. (2011). On query result diversifica-
tion. In Proceedings of the international conference on data engineering (pp. 1163–

1174).

ong, R. C.-W., Ozsu, M. T., Yu, P. S., Fu, A. W.-C., & Liu, L. (2009). Efficient method
for maximizing bichromatic reverse nearest neighbor. PVLDB, 2(1), 1126–1137.

ia, Z., Wang, X., Sun, X., & Wang, Q. (2015). A secured and dynamic multi-keyword
ranked search scheme over encrypted cloud data. IEEE Transactions on Parallel

and Distributed Systems, 27(2) 2015. doi:10.1109/TPDS.2015.2401003.
ia, T., & Zhang, D. (2006). Continuous reverse nearest neighbor monitoring. In Pro-

ceedings of the 22nd international conference on data engineering (p. 77).

iao, X., Yao, B., & Li, F. (2011). Optimal location queries in road network databases.
In Proceedings of the international conference on data engineering (p. 804−815).

iu, M. L., & Mamoulis, N. (2006). Reverse nearest neighbors search in ad-hoc sub-
spaces. In Proceedings of the 22nd international conference on data engineering

(p. 76).
iu, M. L., Mamoulis, N., & Papadias, D. (2005). Aggregate nearest neighbor queries

in road networks. IEEE Transaction on Knowledge and Data Engineering, 17(6),

820–833.
iu, M. L., Papadias, D., Mamoulis, N., & Tao, Y. (2006). Reverse nearest neigh-

bors in large graphs. IEEE Transaction on Knowledge and Data Engineering, 18(4),
540−553.

u, W. (2016). Spatial co-location pattern mining for location-based services in
road networks. Expert Systems with Applications, 46, 324–335. doi:10.1016/j.eswa.

2015.10.010.

u, X., Pu, K. Q., & Koudas, N. (2005). Monitoring k-nearest neighbor queries over
moving objects. In Proceedings of the 21nd international conference on data engi-

neering (p. 631−642).
hang, D., Chee, Y. M., Mondal, A., Tung, A. K. H., & Kitsuregawa, M. (2009). Keyword

search in spatial databases: towards searching by document. In Proceedings of
the international conference on data engineering (pp. 688–699).

hou, X., Wu, S., Chen, G., & Shou, L. (2014). kNN processing with co-space distance

in SoLoMo systems. Expert Systems with Applications, 41(16), 6967–6982.

http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0013
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0014
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0015
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0016
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0017
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0018
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0019
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0020
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0021
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0022
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0023
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0024
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0025
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0026
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0027
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0028
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0029
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0030
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0031
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0032
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0033
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0034
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0035
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0036
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0037
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0039
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0040
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0041
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0042
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0043
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0043
http://dx.doi.org/10.1016/j.eswa.2015.10.010
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0045
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0046
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0047
http://refhub.elsevier.com/S0957-4174(16)00022-1/sbref0047

	Monochromatic and bichromatic reverse top-k group nearest neighborqueries
	1 Introduction
	2 Related work
	2.1 Nearest neighbor (NN) queries and reverse neighbor (RNN) queries
	2.2 Group nearest neighbor (GNN) queries
	2.3 Combinatorial queries and diversified queries

	3 Problem definition
	4 Monochoromatic reverse top-k group nearest neighbor (MRkGN) query
	4.1 Incremental generation of combinations
	4.2 Sorting and threshold pruning
	4.3 MBR property pruning
	4.4 Window pruning
	4.5 Lazy MRkGN query processing
	4.6 Discussion

	5 Improving query performance by reducing redundant I/O accesses
	6 Bichoromatic reverse top-k group nearest neighbor (BRkGN) query
	6.1 Differences between MRkGN and BRkGN
	6.2 BRkGN query processing

	7 Constrained reverse top-k group nearest neighbor query
	8 Experimental evaluation
	8.1 Experimental setup
	8.2 Performance of MRkGN queries
	8.3 Performance of BRkGN queries
	8.4 Performance of constrained queries
	8.5 The potential of our system

	9 Conclusion
	 Acknowledgment
	 References

