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Abstract Optimal location query in road networks is a basic
operation in the location intelligence applications. Given a set
of clients and servers on a road network, the purpose of optimal
location query is to obtain a location for a new server, so that
a certain objective function calculated based on the locations
of clients and servers is optimal. Existing works assume no la-
bels for servers and that a client only visits the nearest server.
These assumptions are not realistic and it renders the existing
work not useful in many cases. In this paper, we relax these
assumptions and consider the k nearest neighbours (KNN) of
clients. We introduce the problem of KNN-based optimal lo-
cation query (KOLQ) which considers the k nearest servers of
clients and labeled servers. We also introduce a variant problem
called relocation KOLQ (RKOLQ) which aims at relocating an
existing server to an optimal location. Two main analysis algo-
rithms are proposed for these problems. Extensive experiments
on the real road networks illustrate the efficiency of our pro-
posed solutions.

Keywords optimal location query, k nearest neighbours, road
network

1 Introduction
Location intelligence is the process of deriving meaningful in-
sight from geospatial data relationships to solve a particular
problem (please see Wikipedia). By Google Map and other
online information sources, nearly everyone is familiar with a
multitude of consumer uses for location data, such as, getting
directions and finding restaurants, hotels, and gas stations in a
particular geographic area. Moreover, location data is already
and will continue to be a growing component of all business
data. Location intelligence is becoming a core part of most en-
terprise business’ strategies. At present, lots of location intelli-
gence tools have been developed. A fast response is expected
in an interactive setting of these tools. At the same time, many
mobile devices with limited memory are installed with various
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mobile applications for location intelligence.
Location analysis also called optimal location query, is a ba-

sic operation in the location intelligence applications such as lo-
cation planning, location-based service, and profile-based mar-
keting [1–13]. In this paper, we consider location analysis in
a road network that is an important setting for location intelli-
gence applications.

Consider a road network on which a set of clients and a set of
servers are located, the goal of optimal location query (OLQ) in
road networks is to obtain a location to build a new server, so
that a certain objective function calculated based on the clients
and servers is optimal, after the server is established at this lo-
cation. The MaxSum objective [5, 7, 10, 11] is a function for an
optimal location at which a new server can attract the greatest
number of clients. Recently, researchers are paying attention to
this problem because of its broad applications. However, there
are some limitations on existing work.

For example, consider a manager named Tom who runs
the McDonald’s in Guangzhou city. He plans to build a new
branch of McDonald’s and wants to maximize the benefit of
all branches of McDonald’s (which includes the new branch).
The benefit is measured by the expected number of attracted
clients. Note that there are other fast food brands such as KFC
which have a competitive relationship with McDonald’s. The
existing work cannot be used to find such an optimal location
for the new branch of McDonald’s. This is because class la-
bels such as the fast food brands KFC and McDonald’s are not
given to the servers. In addition to the fast food chains, there
are lots of goods which are associated with different brands,
such as Huawei and Xiaomi mobile phones. The goods with the
same brand may have a collaborative relationship, but goods
with different brands have a competitive relationship. On the
other hand, as shown in [14], the fast food consumption pattern
shows that clients care about time and also taste. Thus, clients
may choose the fast food servers that are not too far. Clearly,
the k nearest neighbours (KNN) of clients can provide better
opportunity to choose. But, this case cannot be supported by
the existing work. This is because clients are assumed to visit
the servers nearest to them.

Motivated by the above observations, in this work, we allow
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a client to have a tolerance range defined by a number k for se-
lecting servers. A client may visit any of its k nearest servers
with a certain probability, and such probabilities for a client
sum up to 1. The probability of visiting the ith nearest server
can vary from clients to clients. The assumption of previous
work that a client visits only its closest server is a special case
where the probability of visiting the nearest server is 1, and that
for the next k − 1 nearest neighbors is 0.

With the consideration of class labels and the visiting prob-
abilities, we introduce a new objective called KMaxSum which
denotes the expected weighted sum of the clients attracted by
all servers with the same class label. The problem of KNN-
based optimal location query (KOLQ) in road networks with
the KMaxSum objective is called KMaxSum querying. An ap-
plication scenario for KOLQ problem is shown in example ap-
plication 1 as follows.

Example application 1 Let C and S denote a set of resi-
dential estates and a set of branches of fast food service restau-
rant chains, respectively. There are different brands of fast food
chains (e.g., KFC and McDonald’s) and each chain consists of
a lot of service branches. Assume that customers in C would
visit any of their k nearest branches of restaurants in S , with
a certain probability for each of such branches. A KMaxSum
querying may be used to return an optimal location for a new
branch of a certain fast food chain, such that this fast food chain
(including the new branch) can attract the greatest number of
customers.

In addition, we investigate a variant of KOLQ problem,
which is useful in reality as shown in example application 2
below.

Example application 2 Consider the example application
1 again. Due to limited resources, a fast food chain may want
to keep the same number of service branches, but move an ex-
isting service branch to a new location in order to maximize the
KMaxSum objective (i.e., the expected number of customers at-
tracted by the branches of the restaurant).

We refer to such a relocation problem as relocation KNN-
based optimal location query (RKOLQ) and call the corre-
sponding querying RKMaxSum querying. Note that the solu-
tion involves choosing both the new location and the existing
server to be moved.

To the best of our knowledge, this is the first study consider-
ing both server labels and KNN servers in road networks. Since
the existing solutions are not applicable to our problem, we
need to design new algorithms for this problem. The contribu-
tions of this paper can be summarized as follows.

• We propose the problem of KOLQ with the KMaxSum
objective, which is more natural compared with the ex-
isting OLQ. An algorithm called MAS is designed for the
KMaxSum querying, in which pruning techniques are in-
troduced based on the idea of the k nearest location com-
ponent (KNLC).
• We propose the relocation problem of RKOLQ. An

algorithm called RMAS is introduced for Relocation
KMaxSum querying, which utilizes pruning techniques
for reducing the servers that are examined.
• We conducted extensive experiments on the real world

road networks of San Francisco (SF) and Colorado (COL)
to show the efficiency of our proposed algorithms.

Compared with the initial version [15], the Relocation
KMaxSum query and its related experiments are the new con-
tribution. The difficulty for RKOLQ is that no heuristic strategy
can be applied to decide which existing server should be relo-
cated. So we have to enumerate the server to be relocated. The
contribution is that instead of calling the MAS algorithm mul-
tiple times, we save some intermediate results to reduce lots of
duplicated computation.

The rest of this paper is organized as follows. Section 2 re-
views the related work and point out the difficulties of adopt-
ing existing OLQ methods to KOLQ. Section 3 gives the prob-
lem definition. Section 4 and Section 5 introduce our proposed
query algorithms. Section 6 reports on the empirical study and
Section 7 concludes the paper.

2 Related work
The location analysis also called optimal location query, origi-
nating from the facility location problem [1–4], has been exten-
sively studied. Recently, researchers are paying attention to this
problem because of its broad applications, especially for road
networks. We highlight some of the related work below.

Various topics on road network are studied in recent years.
Some works focus on the efficiency of the shortest paths cal-
culation, [16] proposes a well-separated pair decomposition
method, based on which a path oracle is built to help retrieve
an intermediated link in the shortest path. [17] proposes an ef-
ficient index, called distance signature, for distance computa-
tion and query processing over long distances. Some works fo-
cus on querying on the network, for example, the processing
of KNN, continuous KNN queries, and reverse KNN on spa-
tial network [18–20]. Among all kinds of querying, the optimal
meeting point (OMP) query [21], is also a location determina-
tion problem, but with target different to ours. Its goal is to find
a location that minimizes the sum of network distance from a
given set of points. One important discover of OMP is the loca-
tion should be one of the split points. For a point p in the given
point set, a point x on edge (u, v) is called a split point if the
shortest path from p to x going through u has the same length
as the one going through v. However, this discover can not be
applied in our problem. J. Qi et al. [22] study the Min-dist loca-
tion problem and Huang et al. [23] study the top-k most influen-
tial location selection query , they both find an optimal facility
from a candidate set, and propose branch and bound algorithms
making use of geometric properties. However, we do not have a
candidate set to limit the search space, and their techniques on
Euclidean space are not suitable on road network, neither the
techniques in [24] aiming at metric spaces instead of Euclidean
spaces.

The goal of MaxBRNN problem [1] is to obtain an optimal
area to establish a new server to attract the maximum clients.
The first polynomial-time complexity algorithm for the prob-
lem was introduced in [25] and some extensions of this algo-
rithm were studied in [26]. An approximation approach was
introduced for the MaxBRNN problem in [27]. An improved
algorithm for MaxBRNN was given in [28].
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Zhou et al. [29] first pointed out that clients may have
different probabilities visiting their k nearest servers, and
MaxBRkNN, a generalization of MaxBRNN, in the Lp-norm
space was studied. A region partition based algorithm, Max-
First, was proposed to solve MaxBRkNN effectively. However,
this work is very different from ours. We explain as follows.
Firstly, the objective functions are different since we consider
class labels of servers. In KOLQ, clients attracted by the servers
similar to the new server (i.e., all servers with the query label)
are considered. With the query label, the relationship between
the clients and the servers becomes more complicated. For ex-
ample, supposed k = 2, a client has equal probability to visit his
nearest server and second nearest server, i.e., ˜P1 = ˜P2 = 0.5,
and there is only one client with KFC as his nearest server
and McDonald’s as second. The solution for MaxBRkNN is to
make the new server the nearest server. Consider two queries of
KOLQ. Query 1: The query label is KFC. In this case, whether
the new KFC becomes the nearest server or the second, KFC
will attract the client totally. Query 2: The query label is Mc-
Donald’s. Wherever the new McDonald’s is, McDonald’s can-
not totally attract the client, hence the best solution is anywhere.
We can see that the solutions of KOLQ are totally different
from MaxBRkNN. Secondly, our KOLQ problem is based on
the road network environment instead of the Lp-norm space.
MaxFirst benefits from the easy judgement of the intersection
between a rectangle partition and an NLC (Nearest Location
Component), which is a circle in Lp-norm space. However, sim-
ilar judgement will be complex in road network since an NLC
becomes a set of line segments. Another problem for adapting
MaxFirst to road networks is that the lower bound of a rectangle
partition is not achievable since an NLC in road network cannot
cover a rectangle partition.

The OLQ problem with road network setting was firstly stud-
ied by Xiao et al. [5], and an efficient algorithm was presented.
An extension of the OLQ problem with dynamic clients and
servers was studied in [7]. Recently, a more efficient algorithm
for the OLQ problem was proposed in [10, 11]. [30] first stud-
ied the exact solution for the OLQ problem with multiple new
servers. [31] studied a static version and a dynamic version
of OLQ with the MaxSum objective. There is a study about
isochrone queries in a multimodal network [32], which is simi-
lar to the OLQ query. Xu and Jacobsen [33] studied the problem
of proximity queries among sets of moving objects in road net-
works. The OLQ without the customer locations was studied
in [34].

The existing OLQ does not consider server labels. Even if
OLQ considers server labels, it is still different from KOLQ.
First we explain how OLQ may handle labels. Given a query
server label l, our target is to build a new server with the query
label l to maximize the number of clients attracted by all the
servers with label l. Then we can simply remove those clients
which have already been attracted by the existing servers with
the query label. After that, we build a new server that can at-
tract the most remaining clients, which becomes the problem
of OLQ without label. However, in KOLQ, clients are attracted
to servers with probabilities, which may change after the new
server is built, therefore, we cannot easily transform KOLQ
with server labels to OLQ without server labels.

The algorithm in [35] was proposed to find an optimal loca-
tion instead of an optimal region for the L1-norm space. The al-
gorithm in [36] was to obtain a location to build up a new server
so that the average distance from each client to its nearest server
is minimized. The problem studied in [8, 9] was to choose a lo-
cation from a given set of potential locations to build up a new
server, in order to minimize the average distance between the
client and its nearest server. Compared to the aggregate near-
est neighbor queries [37–39], we try to find an optimal location
for a new object instead of a set of given objects. Though the
objectives for the BRNN problem [40] and the reverse top-k
problem [41] are similar to ours in some way, their algorithms
cannot handle road network. The probabilistic reverse nearest
neighbor queries studied in [42,43] is also related to BRNN but
they consider uncertain databases.

Our discussion in the above shows that KOLQ cannot be
solved by existing algorithms for OLQ or BRkNN. We need to
design new algorithms for this problem. The candidate points
for the optimal location can be limited by only considering a
small set of clients for the MinMax objective [10] and can be
limited to the vertices for the MinSum objective [5, 44]. Such
nice properties for the candidate points do not apply to our
problem, it is challenging to find the optimal location efficiently
for KOLQ.

3 Problem definition
Given a road network G = (V, E), V is a set of vertices and E
is a set of edges. For each edge e = 〈vl, vr〉 of G, vl is the left
vertex of e and vr is the right vertex of e. We define the distance
between two locations on the road network as the network dis-
tance metric, which is represented by d(·, ·). We use a positive
weight w(c) to indicate the importance of the client c, (e.g., w(c)
is the population while c is a residential estate). For simplicity,
we assume that each client weight is equal to 1 and the proba-
bility for visiting the ith nearest server of each client is the same
in all the example. Table 1 lists the notations used in this paper.

Example 1 As shown in Fig. 1(a), there is an example of a
road network G with five vertices, namely v1, v2, . . . , v5, six
servers, namely s1, s2, . . . , s6, and three clients, namely c1, c2

Table 1 Some notations used

Notation Description

NNi(p, S ) ith nearest server in S for point p

KNN(c) the set of k nearest servers of c
˜Pi the probability that a client is attracted by the ith nearest

server of the client
f (NNi(p, S )) equals 1 if NNi(p, S ) is a server similar to new server, 0 oth-

erwise
x.disti the distance between x and its ith nearest server
P(c, S )

∑k
i=1
˜Pi · f (NNi(c, S ))

P(c, i) equals P(c, S ∪ {p}) if the new server at p becomes the ith
nearest server for c

B(c, i) w(c) · P(c, i)
Bo(c) w(c) · P(c, S )
C(e) set of clients whose KNLCs cover the edge e

VC(e) set of virtual clients whose KNLC’s cover the edge e

vce virtual client associated with edge e

Ce set of clients on edge e

B(vce, i)
∑

c∈Ce B(c, i)
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Fig. 1 A running example. (a) G(V, E); (b) KNLC

and c3. The distance between the two end-points of the line
segment is shown by the number nearby. v1/c1 shows that c1

locates at v1, and so do v2/c2 and v3/s3. Each client (server) is
assigned to one edge in G.

Given a set L of class labels, each server is associated with
a class label l ∈ L. For example, in Fig. 1, L = {white, black},
where a white (black) server is represented by a white (black)
dot. Servers with the same (different) label are called similar
(dissimilar) servers, and have a collaborative (competitive) re-
lationship. For example, in Fig. 1, s1 and s3 are similar, but s1

and s2 are dissimilar. In particular, the query label is the class
label of the new server to be built in MAS or the existing server
to be moved in RMAS.

Given any point p on G, we denote the ith nearest server of p
in S by NNi(p, S ), and the distance between p and NNi(p, S ) is
denoted as p.disti, i.e., p.disti = d(p,NNi(p, S )). For example,
in Fig. 1(a), NN1(c1, S ) = s1 and c1.dist1 = d(c1, s1) = 2.

Assume that each client c ∈ C may be attracted by its ith
(1 � i � k) nearest server with probability ˜Pi (0 � ˜Pi � 1) such
that
∑k

i=1
˜Pi = 1. In practice, we can set the probability to be

inversely proportional to the distance among the client and its
ith nearest server.

Definition 1 Given a server set S and a label l of server, the
class probability of a client c, P(c, S , l), is the total probability
of c attracted by servers in S with label l.

Let f (NNi(c, S ), l) return 1 if NNi(c, S ) has label l and 0
otherwise, then P(c, S , l) =

∑k
i=1
˜Pi · f (NNi(c, S ), l). By de-

fault, l is the query label (the label of the new server), and
we write P(c, S ) and f (NNi(c, S )) without specification for l.
For example, in Fig. 1, let’s say the query label is white, then
f (NN2(c1, S )) = f (s2) = 0, since s2 is black. For simplicity,
we sometimes use a location p on the road network to represent
the server located at p. Accordingly, if we build a new server at
location p, P(c, S ∪ {p}) denotes the class probability of c af-
ter building the new server. P(c, S ∪ {p}) is simplified as P(c, i)

when the new server at p was the ith nearest server of c. We use
both notations P(c, S ∪ {p}) and P(c, i) interchangeably in the
following.

Problem 1 Given a road network G = (V, E), a set C (S )
of clients (servers with labels L) on G, a positive integer k,
the visiting probabilities ˜Pi (1 � i � k), and a query label l
in L, the KOLQ problem with the KMaxSum objective func-
tion is to find an optimal location po for a new server with
the given query label such that the objective KMaxSum(po) =
∑

c∈C w(c) · P(c, S ∪ {po}) is maximized.

Intuitively, the purpose of the KMaxSum query is to find
an optimal location such that the expected weighted sum of
clients attracted by the servers (including the new server) with
the query label is the greatest.

Example 2 Consider Fig. 1. Given k = 3, ˜P1 = 0.5, ˜P2 = 0.3
and ˜P3 = 0.2. Suppose that the query label is white. In this fig-
ure, c1 is attracted by s1 with ˜P1, s2 with ˜P2, and s3 with ˜P3.
Similarly, c2 (c3) is attracted by s4 (s6) with ˜P1, s5 (s4) with ˜P2,
s6 (s3) with ˜P3. Consider a new white server at a point p which
is between p3 and p4 in Fig. 1(b). Then, KNN(c1) includes s1,
the new white server at p and s2. P(c1, S ∪{p}) = ˜P1+˜P2 = 0.8.
Similarly, P(c2, S ∪ {p}) and P(c3, S ∪ {p}) are obtained. Then,
KMaxSum(p) = w(c1) · P(c1, S ∪ {p})+w(c2) · P(c2, S ∪ {p})+
w(c3) · P(c3, S ∪ {p}) = 0.8 + 0.8 + 0.5 = 2.1. By calcu-
lating the objective values of other locations, we can see that
KMaxSum(p) is the greatest. So, the point p is an optimal lo-
cation for a new white server.

Consider a special case of the KMaxSum query in which
there are only two class labels l1 and l2 and the parameters are
set to be k = 1 and ˜P1 = 100%. There are no class labels in
OLQ [5, 7, 10, 11]. But, the new server can be treated as having
l1 and all existing servers can be treated as having another label
l2. Then, the OLQ with the objective MaxSum is equivalent to
the special case of the KMaxSum query. Thus, the KOLQ with
the KMaxSum objective is a generalization of OLQ with the
objective MaxSum.

The relocation variant of KMaxSum query is to find an opti-
mal location and an existing server such that if we move this
server to the optimal location found, we can maximize the
KMaxSum objective.

Problem 2 Given a road network G = (V, E), a set C (S )
of clients (servers with labels L) on G, a weight w(c) for
each c ∈ C, a positive integer k, the visiting probabilities ˜Pi

(1 � i � k), a query label l in L, the variant of KOLQ with the
KMaxSum objective function is to find an optimal location po

and an existing server s j with the given query label such that the
objective KMaxSum(s j, po) =

∑

c∈C w(c) · P(c, S − {s j} ∪ {po})
is maximized.

Example 3 Consider Fig. 1. Given C = c1, c2, k = 2, ˜P1 =

0.6 and ˜P2 = 0.4 and white query label. In this example, the
existing white server s3 should be moved since it attracts no
clients. Let us move s3 to a point p between p3 and p4 in
Fig. 1(b). Then, KMaxSum(s3, p) = w(c1) · P(c1, S − {s3} ∪
{p}) + w(c2) · P(c2, S − {s3} ∪ {p}) = 1 + 1 = 2. Obviously,
KMaxSum(s3, p) is the greatest. So, moving s3 to p is an opti-
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mal solution.

4 KMaxSum querying
For KMaxSum querying, we give some basic definitions in Sec-
tion 4.1, a baseline algorithm is described in Section 4.2, and
the main algorithm MAS is proposed in Section 4.3.

4.1 Basic definitions
Firstly, we introduce a key concept called k nearest location
component (KNLC).

Definition 2 (KNLC) Given any client c on road network G,
the k nearest location component of c, KNLC(c), is made up of
k levels, where the ith level, denoted by KNLC(c, i), is the set
of points on the edges in G with a distance of at most c.disti
from c. Formally, KNLC(c, i) = {p|d(p, c) � c.disti and p is a
point on the edges of G}.

We call c.disti the radius of KNLC(c, i). For example, in Fig.
1(b), the radius of KNLC(c1, 1) is equal to c1.dist1 = d(c1, s1) =
2. KNLC(c1, 1) corresponds to the interval [c1, s1] on the edge
〈v1, v3〉 and the interval [c1, p2] on the edge 〈v1, v2〉.

We say that KNLC(c, i1) is lower than KNLC(c, i2) if i1 < i2;
if i1 > i2, KNLC(c, i1) is higher than KNLC(c, i2). From
the definition of KNLC, we can see that KNLC(c, i1) ⊆
KNLC(c, i2), if i1 < i2. Also, KNLC(c, k) includes each level
of KNLC(c). [10, 11] introduce the concept of nearest location
components (NLC) to enhance the efficiency of OLQ. For each
client c, NLC(c) is a set of points in G with a distance to c no
more than c.dist1. Intuitively, NLC(c) just corresponds to the
first level of KNLC(c), i.e., KNLC(c, 1). Thus, the concept of
KNLC is a generalization of the concept of NLC.

Next, we introduce the concepts of boundary point and slot,
which are used in our algorithms.

Definition 3 (boundary points and slots) For each client
c ∈ C, we say that a point p on G is a boundary point of
KNLC(c) if d(p, c) = c.disti (1 � i � k). Given boundary
points p1, p2, . . . , pi on an edge e = 〈vl, vr〉 with increasing
distances from vl. Then, we define each of the intervals (vl, p1),
(p1, p2), . . . , (pi−1, pi), (pi, vr) as a slot. If there is no boundary
point on e, then the edge of e (i.e., the interval (vl, vr)) itself is
a slot.

Note that a slot (excluding the end-points of the slot) contains
no boundary point.

For example, in Fig. 1(b), p2, p4, s1 and s2 are boundary
points of KNLC(c1). If k = 3, then the edge 〈v1, v3〉 can be
divided into three slots by the boundary points s1, s2 and s3,
namely (v1, s1), (s1, s2) and (s2, s3). Here s3 coincides with v3.
Note that the interval is not a slot because it contains a boundary
point p2.

4.2 The baseline algorithm
The first algorithm we introduce is a baseline algorithm which
is based on some properties that are described by two lemmas
in the following.

Lemma 1 For any two points p1 and p2 in a slot,
KMaxSum(p1) =KMaxSum(p2).

Proof Let p1 and p2 be in the same slot ξ. For any client c,
there are three cases.

Case 1: KNLC(c) cannot cover ξ. Namely, the new server
established at p1 or p2 cannot affected the client c. Thus,
f (NNi(c, S ∪ {p1})) = f (NNi(c, S )) = f (NNi(c, S ∪ {p2})) for
each 1 � i � k.

Case 2: KNLC(c) partly covers ξ. For this case, there exists
a point p in S which is a boundary point. This contradicts the
fact ξ is a slot.

Case 3: KNLC(c) entirely covers ξ. For this case, we assume
that the k nearest servers of c are s1, s2, . . . , sk before building
the new server. Assume that the new server built at the loca-
tions p1(p2) becomes the tth (t′th) nearest server of client c. We
assume that t is not equal to t′ and t < t′ without loss of gen-
erality. Since the new server at p1 is the t-nearest server of c,
the original t-nearest server of c, st (1 � t < k) should be the
(t + 1)-nearest server of c after the new server is built. Then we
have d(c, p1) < d(c, st) � d(c, p2). Thus, we can find a point p
in the segment [p1,p2] such that d(c, p) = d(c, st) = c.distt.
This means p is a boundary point of KNLC(c), which con-
tracts to the fact that B is a slot. Thus, we have t = t′. For
i < t, we have NNi(c, S ∪ {p1}) = NNi(c, S ∪ {p2}) = si and
then f (NNi(c, S ∪ {p1})) = f (NNi(c, S ∪ {p2})). For i > t,
we have NNi(c, S ∪ {p1}) = NNi(c, S ∪ {p2}) = si−1 and
then f (NNi(c, S ∪ {p1})) = f (NNi(c, S ∪ {p2})). For i = t,
we have NNi(c, S ∪ {p1}) = p1 and NNi(c, S ∪ {p2}) = p2.
Then f (NNi(c, S ∪ {p1})) = f (NNi(c, S ∪ {p2})) = 1. Thus,
f (NNi(c, S ∪ {p1})) = f (NNi(c, S ∪ {p2})) for each 1 � i �
k. KMaxSum(p1) − KMaxSum(p2) =

∑

c∈C w(c) · ∑k
i=1
˜Pi ·

( f (NNi(c, S ∪ {p1}) − f (NNi(c, S ∪ {p2})) = 0.
This lemma holds. �

Lemma 1 shows that any two points in a slot have the same
objective value. We define the objective value of a slot to be that
of any point in this slot.

The purpose of KMaxSum query is to find a location p on
G such that KMaxSum(p) is the greatest. The computation of
KMaxSum(p) requires the value of P(c, S ∪ {p}) for each client
c, which can be computed based on Lemma 2.

Lemma 2 If p is not inside KNLC(c) then P(c, S ∪ {p}) =
P(c, S ). Otherwise, if p is inside KNLC(c) and the new server
at p is the ith nearest server of c, then

P(c, S ∪ {p}) =
∑

1� j<i

˜P j × f (NNj(c, S )) + ˜Pi +

∑

i< j�k

˜P j × f (NNj−1(c, S )).

Proof Let S ′ = S ∪ {p}. If p is not inside KNLC(c)
then the client c is not affected by the new server at p. It
is easy to know P(c, S ′) = P(c, S ). Otherwise p is inside
KNLC(c) and the new server is the ith nearest server of c
(1 � i � k). For any j < i, NNj(c, S ′) = NNj(c, S ). For
any j > i, NNj(c, S ′) = NNj−1(c, S ). P(c, S ′) =

∑

1� j<i
˜P j ×

f (NNj(c, S ′))+˜Pi× f (NNi(c, S ′))+
∑

i< j�k
˜P j× f (NNj(c, S ′)) =

∑

1� j<i
˜P j× f (NNj(c, S ))+˜Pi+

∑

i< j�k
˜P j× f (NNj−1(c, S )). The

lemma holds. �
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With Lemma 1 and Lemma 2, we derive a baseline algorithm
which includes three key steps. (1) The first step is to find all
slots on edges. (2) The second step is to compute the objective
value for each slot. We need to pick a location p inside the slot
and calculate kMaxSum(p), by running a naive Dijkstra’s algo-
rithm, we may get the clients attracted by the new server locates
at p. We can get kMaxSum(p) in O(|V |log|V | + k|C|) time. (3)
The third step is to select the slot or the vertex (not boundary
point) with the greatest objective value and return it as the op-
timal location. The time complexity of these three key steps is
O(k|C||E|(|V |log|V |+ k|C|)).

For any point p on G, p is either in a slot or not. If p is not
in any slot, p is a boundary point or a vertex. Since a boundary
point is not considered for the new server, the baseline algo-
rithm has computed the objective values for each possible point
for the new server. Thus, the correctness of this algorithm is
easy to verify.

4.3 The MAS algorithm
The baseline algorithm needs to compute the objective values
for each possible point. This is costly. In this section, we in-
troduce an improved algorithm called MAS for the KMaxSum
query. Let Xo denote the possible weighted sum of the attracted
clients before the new server is built. Then, KMaxSum(p) − Xo

is the incremental weighted sum after the new server is built
at p. If p is outside KNLC(c), then there is no increase from
the client c. This means if we compute KMaxSum(p) − Xo in-
stead of KMaxSum(p), then we need not consider any client c
whose KNLC does not contain the location p, that is p is out-
side KNLC(c). Moreover, we use the upper bounds for each
edge of road network to reduce the number of edges to be fur-
ther scanned. Then, the method of edge scanning is used to find
the optimal location from the remaining edges. As shown in the
experiments, the MAS algorithm can enhance dramatically the
KMaxSum query performance.

4.3.1 Upper bound and fine-grained pruning

Definition 4 The benefit of client c with the new server,
which becomes the ith nearest server of c, is defined to be
B(c, i) = w(c) · P(c, i) (1 � i � k).

Definition 5 The benefit of c before building the new server
is defined to be Bo(c) = w(c) · P(c, S ).

Let C(e) denote the set of clients whose KNLCs overlap
with the edge e. For each client c ∈ C(e), t(c) is one level
of KNLC(c) that overlaps with the edge e and maximizes
B(c, t(c)), namely t(c) = argmaxi{B(c, i)|KNLC(c, i) overlaps
with e}.

Definition 6 For each edge e ∈ E, we define Upp(e) =
∑

c∈C(e)(B(c, t(c))− Bo(c)).

Lemma 3 Upp(e) is an upper bound on the maximum in-
crease for the total benefit of all clients if the new server is
built on e.

Proof Given any client c ∈ C(e), we assume that there are j
levels of KNLC(c) covering the edge e, namely KNLC (c, i1),
KNLC(c, i2), . . . ,KNLC(c, i j), where P(c, i1) � P(c, i2) · · · �
P(c, i j). Then t(c) = i1. By Definition 4, B(c, i1) � B(c, i2) · · ·

� B(c, i j). If the new server is on e, B(c, t(c)) is the greatest
benefit for the client c with the new server. Since Bo(c) is the
benefit for c without the new server, the largest increase of the
benefit for c is at most equal to B(c, t(c)) − Bo(c). Thus, the
lemma holds. �

The computation of Upp(e) for each edge e is shown in Al-
gorithm 1. The key idea of this algorithm is to accumulate the
contribution of each client to the upper bound for each edge
overlapping with its KNLC. The main algorithm process cor-
responds to Lines 3–18. For each client c, we use Dijkstra’s
algorithm to traverse the vertices in G in ascending order of
their distances to c. For an edge e′ that overlaps with KNLC(c),
we need to figure out with which layers of KNLC(c) it overlaps.
Note that by Dijkstra’s algorithm, there are at most two chances
to access e′ (i.e., via its two vertices). Lines 9–11 show the first
visit to e′. We know the lowest layer of KNLC(c) that overlaps
with e′ is the ith layer, so we update Upp(e′) in Line 10 where t
is the layer higher than i and has the highest benefit. Lines 12–
14 show the second visit to e′. We know that s is the lowest layer
of KNLC(c) that overlaps with e′ in Line 8, and i is the highest
layer, then we get the layer t′ with the highest benefit between
the sth layer and the ith layer in Line 13, and update Upp(e′)
in Line 14. Dijkstra’s algorithm is the main cost for Algor-
ithm 1. Since Dijkstra’s algorithm takes O(|V | log |V |) time [45],
we suppose E = O(V), so Algorithm 1 needs O(|C||V | log |V |)
time in the worst case of traversing the whole road network.

Based on the upper bound for each edge, we propose a fine-
grained pruning strategy as follows. Edges are examined in
non-ascending order of their upper bounds. Then, the method
of edge scanning, which will be introduced later, is used to find
the optimal objective value for each examined edge. After that,
we can prune the unexamined edges whose upper bounds are
less than the largest increase of benefits for the clients found so
far.
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4.3.2 Virtual client and coarse-grained pruning
Next we introduce a coarse-grained pruning strategy which is
based on the concept of virtual clients. With this strategy, we
obtain a relaxed new upper bound NewUpp(e) by less compu-
tation.

Consider the edge e = 〈vl, vr〉 containing some clients. The
virtual client associated with the edge e, denoted by vce, is de-
fined as follows. (1) vce.disti = max{maxc∈Ce {c.disti − d(vl, c)},
0, max{c.disti−d(vr, c)}}, where Ce is the set of clients on e. (2)
if p is any point on the edge e, then d(vce, p) = 0, otherwise,
d(vce, p) = min{d(vl, p), d(vr, p)}. Intuitively, the whole of edge
e is viewed as the virtual client vce.

The definitions related to a real client are adopted for a
virtual client. By Definition 2, we define KNLC(vce) based
on the above vce.disti. Then, KNLC(vce, i1) ⊆ KNLC (vce, i2)
(1 � i1 < i2 � k), ∪k

i=1KNLC(vce, i) = KNLC(vce, k). Note that
if the k nearest servers of the client c are on e, c.disti − d(vl, c)
and c.disti − d(vr, c) may be less than 0. Then we may have
vce.disti = 0. Since d(vce, p) = 0 for any point p on e, in
the case that vce.disti � 0, the edge e is defined to be in-
cluded in KNLC(vce, 1). In particular, if there is only one client
c on e, KNLC(vce) is regarded the same as KNLC(c), i.e.,
KNLC(vce, i) = KNLC(c, i).

Lemma 4 For any client c on the edge e, KNLC(c, i) ⊆
KNLC(vce, i) for 1 � i � k.

Proof For any point p ∈ KNLC(c, i), there are two cases.
Case 1: p is on the edge e. Case 2: p is not on the edge e. For
Case 1, since p is on e, and e is included in KNLC(vce, 1).
Thus, p is in KNLC(vce, 1). This lemma holds. For Case 2,
since p is not on the edge e = 〈vl, vr〉, d(c, p) = d(vl, c) +
d(vl, p) or d(c, p) = d(vr, c) + d(vr, p). W.l.o.g., suppose that
d(c, p) = d(vl, c) + d(vl, p). Since d(c, p) � c.disti, d(vl, c) +
d(vl, p) � c.disti, d(vl, p) � c.disti −d(vl, c) � vce.disti. Then,
d(vce, p) =min{d(vl, p), d(vr, p)}� vce.disti. Thus, p ∈ KNLC
(vce, i). This lemma holds. �

Lemma 4 tells us that the ith level of KNLC(vce) includes
the ith level of KNLC(c) for each client c on the edge e. Thus,
KNLC(c) ⊆ KNLC(vce).

Different from Definition 4, the benefit of virtual client vce

with the new server is defined as B(vce, i) =
∑

c∈Ce
maxi� j�k

B(c, j), where Ce is the set of clients on the edge e, and we can
see the monotonicity of B(vce, i)(i.e., B(vce, i1) � B(vce, i2) if
i1 < i2). Similar to Definition 5, the benefit of virtual client vce

without the new server is defined to be Bo(vce) =
∑

c∈Ce
Bo(c).

Besides, we denote by VC(e) the set of virtual clients whose
KNLCs overlap with the edge e. Similar to t(c), for any vc ∈
VC(e), t(vc) = argmaxi{B(vc, i)| KNLC(vc, i) overlaps with e}.
Due to the monotonicity of B(vc, i), we can see t(vc) =
min{i|KNLC(vc, i) overlaps with e}.
Definition 7 For each edge e ∈ E, we define NewUpp(e)
=
∑

vc∈VC(e) (B(vc, t(vc)) −Bo(vc)).

The computation for NewUpp(e) for each edge e is similar to
the computation for Upp(e) (i.e., Algorithm 1). In general, the
computation of NewUpp(e) for each edge e takes O(ε|V | log |V |)
time, where ε is the number of edges containing at least one
client. Notice that ε is typically smaller than |E| or |C|.

Lemma 5 Upp(e) � NewUpp(e).

Proof Let C(e, e′) denote the set of clients on the edge e′
whose KNLCs overlap with the edge e. Let Ce′ denote the set
of clients on the edge e′. Let E′ denote the set of edge e′ where
C(e, e′) � ∅.

(1) For any client c ∈ C(e, e′), c is on e′ and KNLC(c) over-
laps with the edge e. Since c is on e′, KNLC(c) ⊆ KNLC(vce′ )
by Lemma 4. Then, KNLC(vce′ ) overlaps with the edge e and
vce′ ∈ VC(e). Then, for any edge e′ ∈ E′, vce′ ∈ VC(e).

(2)It is easy to see that for any 1 � i � k, B(c, i) − Bo(c) � 0.
(3) For any client c ∈ Ce′ , KNLC(c, t(c)) overlaps with

e. Since KNLC(c, t(c)) ⊂ KNLC(vce′ , t(c)), KNLC(vce′ , t(c))
overlaps with e, thus, t(vce′) � t(c). Then, t(vce′) � min{t(c)|
c ∈ Ce′ }.

Upp(e) =
∑

c∈C(e)

B(c, t(c)) − Bo(c)

=
∑

e′∈E′

∑

c∈C(e,e′)

B(c, t(c)) − Bo(c)

�
∑

vce′ ∈VC(e)

∑

c∈C(e,e′)

B(c, t(c)) − Bo(c)

�
∑

vce′ ∈VC(e)

∑

c∈Ce′
B(c, t(c))− Bo(c)

(by C(e, e′) ⊂ Ce′ and the above (2))

�
∑

vce′ ∈VC(e)

∑

c∈Ce′
max

t(c)�i�k
B(c, i) − Bo(c)

�
∑

vce′ ∈VC(e)

∑

c∈Ce′
max

t(vce′ )�i�k
B(c, i)−Bo(c)

=
∑

vce′ ∈VC(e)

B(vce′ , t(vce′)) − Bo(vce′)

= NewUpp(e).

�

Lemma 5 says that NewUpp(e) is a relaxed upper bound
compared with Upp(e). Similar to the fine-grained pruning dis-
cussed before, we can construct the coarse-grained pruning
based on the new upper bound for each edge.

4.3.3 Edge scanning
Suppose that the new server is on an edge e of G. After comput-
ing all boundary points and point intervals on e, we obtain the
benefits associated with each point interval. Based on Lemma
1, by scanning each interval on e, we find the location with the
optimal objective value.

Let us illustrate with an example. Consider the edge e =
〈v1, v2〉 in Fig. 1(b). Suppose that k = 2, w(c1) = 0.6 and
w(c2) = 0.4. As shown in Fig. 2, there are four boundary points
p2, p4, p5 and p3 generated by KNLC(c1) and KNLC(c2) on
the edge e. Then, there are four slots [v1, p2], (p2, p4], [p5, v2]
and [p3, p5) among which the former two are associated with
B(c1, 1) = 0.6 and B(c1, 2) = 0.6, respectively, and the latter
two are associated with B(c2, 1) = 0.4 and B(c2, 2) = 0.4, re-
spectively.

Let X be used to compute the optimal objective value and
initialized to zero. In Fig. 2, the start (end) point of each slot
is marked with the symbol of “+” (“−”). The number next to



8 Front. Comput. Sci., 2021, 15(2): 152606

Fig. 2 An example of edge scanning

each symbol is the benefit associated with the corresponding
slot. When we move from v1 to v2, if we hit the start point of an
interval, this means that we will enter the range of this interval,
thus we increase X with the benefit of the interval. Otherwise, if
we hit the end point of an interval, that means we will leave this
interval and so we decrease X with the benefit of the interval.
Firstly, we hit v1 and enter KNLC(c1, 1), so X = 0.6. Next, we
hit p2, where we leave KNLC(c1, 1) and enter KNLC(c1, 2). So,
X = 0.6. Next, we hit p3 and enter KNLC(c2, 2) before leaving
KNLC(c1, 2), which means that X = 0.6+0.4 = 1. Next, we hit
p4 and leave KNLC(c1, 2), so X = 1 − 0.6 = 0.4. Next, we hit
p5. Similarly, we leave KNLC(c2, 2) and enter KNLC(c2, 1),
so X = 0.4. Finally, we reach v2 and this scanning process is
finished.

Next, we examine the vertices of e which are not boundary
points. During the edge scanning, we need to check if a vertex
is included in a point interval. If so, the objective value for the
vertex should be incremented with the benefit of the interval.
For example, since v1 is included in [v1, p2), its objective value
is equal to 0.6. Finally, the optimal objective value is equal to
1 and the optimal location for this example is any point in the
slot (p3, p4).

Putting things together, Algorithm 2 is the MAS algorithm.
Firstly, the upper bound for each edge is computed. Then, edges
are sorted in non-ascending order of their upper bounds and
pruned by the bounds. Finally, the optimal location and the ob-
jective value are found by scanning the remaining edges.

Complexity In Algorithm 2, Lines 2–3 need O(|C|) time
and space. If Upp(e) (NewUpp(e)) is used, Line 4 needs

O(|C||V | log |V |) (O(ε|V | log |V |)) time. Line 4 takes O(|V | + |E|)
space. Line 5 needs O(|E| log |E|) time and O(|E|) space. Let the
number of edges that are scanned be β. Typically, β � |E|.
Lines 6–13 are the edge scanning procedure. In the experi-
ments, β is at most 16 and usually smaller than 6. Then, the edge
scanning procedure takes O(β(|V | log |V | + k|C| log k|C|)) time
and O(|V | + k|C|) space. Thus, the total time is O(|C||V | log |V |
+|E| log |E| + β(|V | log |V | + k|C| log k|C|)) and the total space is
O(|V | + |E| + k|C|).
5 The relocation KMaxSum query
In this section, we study the problem of Relocation KMaxSum
querying, a variant of KMaxSum. We present a baseline algo-
rithm and then the further enhancements.

The purpose of the query variant is to move an existing server
to an optimal location such that the KMaxSum objective can be
achieved. Two key issues need to be addressed. One issue is
which server is selected from the existing servers and the other
is where the selected server is moved to from its original loca-
tion.

A simple baseline algorithm can be described as follows:

• For each server s ∈ S with the query label, we attempt to
delete s from S and obtain a remaining set of servers S r .
• Then, the MAS algorithm is executed on S r to attain an

optimal location ps and the corresponding objective value
os, which are associated with the deletion of server s.
• After the deletion of each server in S is attempted, we

select the greatest objective value and the corresponding
optimal location.

Intuitively, a server which attracts a few clients may be the
server to be moved, while a server which attracts many clients
may be pruned. However, we observe that a server which at-
tracts the most number of clients can also be the server to be
moved. For example, consider a simple road network with only
one edge, from left to right are s2, c2, s3, c3, c1, s1, c4, and the
distances between two neighbors are 1. s1, s2 are KFC and s3

is McDonald’s. Consider k = 1 and the query label is KFC,
the best solution is moving s1 to the locations between s3 and
c1, since by the relocation, all clients will be attracted by KFC.
However, s1 is the server which attracts the most clients at the
very beginning.

Since it is difficult to prune some servers, we try to improve
the baseline algorithm by focusing on how to improve the pro-
cessing for each server. Notice that c.disti (1 � i � k) for each
client c and Upp(e) for each edge e are computed from scratch
for each S r. This may not be efficient. In the following, we pro-
pose two enhancement strategies: incremental update for both
c.disti and Upp(e).

Firstly, we introduce the incremental update for c.disti. We
pre-compute KNN+(c), which is the set of k + 1 nearest servers
of c in S . Then for a client c, once the deleted server is in
KNN(c), we can easily get its new KNN(c).

Secondly, we introduce the incremental update of Upp(e).
When s is deleted, consider two cases. Case 1: s is not in
KNN(c). Case 2: s is in KNN(c). For Case 1, the contribu-
tion of c remains unchanged. For Case 2, after s is deleted, if
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s = NNi(c, S ), then for i � j � k, the original ( j + 1)th nearest
server of c becomes the jth nearest server of c, and it should
then be associated with the visiting probability ˜P j instead of
the original ˜P j+1. Thus, the contribution of c may be changed.
Therefore, the contribution of c only needs to be incrementally
updated for Case 2. For example, consider the examined server
s1 in Fig. 1. Since s1 is in KNN(c1) but not in KNN(c2) and
KNN(c3), we just need to examine c1. Since KNLC(c1) covers
the edge e1 = 〈v1, v2〉 and e2 = 〈v1, v3〉, c1 contributes to both
Upp(e1) and Upp(e2). Consider Upp(e1). The original contribu-
tion of c1 is equal to B(c1, 1)− Bo(c1) = 0.4. After s1 is deleted,
the new contribution of c1 becomes B(c1, 1) − Bo(c1) = 0.2.
Then, the incremental contribution of c1 is δ = −0.2. Thus,
Upp(e1) is updated to be Upp(e1) + δ.

The RMAS algorithm is given in Algorithm 3. KNN+(c) for
each client c and Upp(e) for each edge e are computed in ad-
vance in Line 2. It computes Upp(e) for each edge e in Line
3. Then, each server si ∈ S with the query label is iteratively
examined. At each iteration, we compute Xri , the weighted sum
of clients attracted by the remaining servers S ri in Lines 5–7,
rollback the upper bound of all edges in Lines 8–9, and use the
incremental update to get both KNLC(c) and Upp(e) in Lines
10–13, then sort the edges by Upp(e) in non-ascending order in
Line 14 and scan edges in Line 15. If the current best value X is
updated in the edge scanning process, then we need to update
X, the choice of server to be moved s′, and record the optimal
location in Line 17.

Complexity We are interested in the time complexity T ′ of
running all incremental updates, i.e., the total running time of
Lines 11–13. Let Cl be the set of clients attracted by the servers
with the query label l say S l, then for a client c ∈ Cl, it can
appear in Line 11 at most k times. Thus, Line 11 will be run at
most k|Cl|(� k|C|) times, and T ′ = O(k|C|(k+ |V |log|V |)), which
is independent of the number of servers with the query label.

Since |C||V | log |V | is typically the dominating factor, the time
complexity is essentially k times that of the MAS algorithm.

6 Empirical studies
In this section, we evaluated the performance of our proposed
algorithms. The description of experiment environment and
datasets are as follows.

• Hardware and platform: we run experiments on a ma-
chine with a 3.4Ghz*8 Intel Core i7-4770 CPU and 16
GB RAM, running Ubuntu 12.04 LTS Linux OS. All al-
gorithms were implemented in C++ and compiled with
GNU C++ compiler.
• Real datasets: we use two widely used real road networks,

i.e., road network SF (San Francisco) and COL (Col-
orado). SF contains 174,955 vertices and 223,000 edges.
The way of generating clients and servers in SF is similar
to [5,7,10,11]. Specifically, we acquire a large number of
real building locations in San Francisco from the Open-
StreetMap project. The random sample sets of those real
locations are used as clients and servers in SF. COL con-
tains 435,666 vertices and 1,057,066 edges downloaded
from website1) . As in previous works [5] and [10] on
OLQ, we include synthesized clients and servers whose
numbers and locations on each edge are generated ran-
domly. The clients and the servers in road networks are
stored in two separated lists.
• Settings: each client is associated with a weight which is

generated randomly from a Zipf distribution with a skew-
ness parameter α > 1 (by default α = ∞, which means
that the weight of each client is equal to 1.), which is sim-
ilar to the existing work [5]. The number |L| of class labels
is varied from 3 to 5 and the default value is 3. We as-
sign randomly one class label to each server. The default
value for the number |S | of servers for SF (COL) is 4,000
(8,000) and the default value for the number |C| of clients
for SF (COL) is 400,000 (800,000). By default, k = 3 and
˜Pi is setting inversely proportional to c.disti. For example,
for a client c with c.dist1 = 0.2, c.dist2 = 0.25, c.dist3 =
1, ˜P1, ˜P2, ˜P3 will be 0.5, 0.4, 0.1 respectively.

6.1 Experiments for KMaxSum querying
Firstly, we compare the baseline algorithm in Section 2 with the
MAS algorithm in Section 3 using Upp by default. Specifically,
both algorithms were executed on the same dataset of SF with
4,000 servers and 400,000 clients. The baseline algorithm takes
about 15.55 hours while the MAS algorithm only needs about
30 seconds. The baseline algorithm is very inefficient since it
computes the objective values for each possible point. In the
following, we study the effects of different parameters on the
MAS algorithm.
Effect of the number |S | of servers and k: The sizes of |S | and
k are varied and the other parameters are set by default. The
results on SF and COL are in Fig. 3 and Fig. 4, respectively.
Note that the major time consuming parts of MAS are the KNN
computation and the computation of the upper bounds for each
edge. The running time of the KNN computation increases as

1) http://www.dis.uniroma1.it/challenge9/download.shtml
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|S | increases, while the running time of the upper bound com-
putation decreases as |S | increases. However, for a large |S |,
the upper bound computation dominates, thus, the running time
decreases slowly overall, as we can see in both Fig. 3(a) and
Fig. 4(a). Besides, when k is larger, the radius of KNLC be-
comes larger and thus the time of MAS increases. On the other
hand, the memory consumption of MAS mainly depends on the
sizes of |V |, |C| and k. The effect of |S | is small. As shown in
Fig. 3(b) and Fig. 4(b), when |S | is large, the increase of mem-
ory consumption is very small with |S |.
Effect of the number |C| of clients and k: The results on SF and
COL are in Fig. 5 and Fig. 6, respectively. When |C| is larger, the
number of KNLCs of clients becomes larger and thus the time
of MAS increases with |C|. Besides, when k becomes larger, the
radius of KNLCs of clients is larger and thus the time of MAS
increases. The memory consumption of MAS increases with the
increased sizes of |C| and k.

Fig. 3 Effect of |S | and k on SF for MAS. (a) Time; (b) storage

Fig. 4 Effect of |S | and k on COL for MAS. (a) Time; (b) storage

Fig. 5 Effect of |C| and k on SF for MAS. (a) Time; (b) storage

Fig. 6 Effect of |C| and k on COL for MAS. (a) Time; (b) storage

Table 2 Effect of k and |L| on SF for MAS

Time/s Memory/MB
SF |L| = 3 |L| = 4 |L| = 5 |L| = 3 |L| = 4 |L| = 5

k = 2 18.36 18.94 18.95 19.72 19.72 19.72
k = 3 29.18 30.12 29.51 25.83 25.83 25.83
k = 4 40.25 40.32 40.42 31.93 31.93 31.93
k = 5 51.22 51.37 51.34 38.03 38.03 38.03

Table 3 Effect of k and |L| on COL for MAS

Time/s Memory/MB
COL |L| = 3 |L| = 4 |L| = 5 |L| = 3 |L| = 4 |L| = 5

k = 2 52.90 54.07 54.98 45.41 45.41 45.41
k = 3 83.71 84.80 84.97 57.62 57.62 57.62
k = 4 115.09 116.17 115.67 69.83 69.83 69.83
k = 5 146.59 146.59 146.74 82.03 82.03 82.03

Table 4 Effect of ˜Pi

Dataset Result Min Max Avg Std

Time 28.93 36.58 29.94 1.20
SF

Memory 25.83 25.83 25.83 0.00

Time 82.53 84.67 83.09 0.30
COL

Memory 57.62 57.62 57.62 0.00

Table 5 Effect of α

Dataset Result Min Max Avg Std

Time 29.04 29.80 29.27 0.11
SF

Memory 25.83 25.83 25.83 0.00

Time 82.55 83.94 83.17 0.22
COL

Memory 57.62 57.62 57.62 0.00

Effect of k and the number |L| of class labels: The results on
SF and COL are in Table 2 and Table 3, respectively. The time
and memory consumption of MAS increase with the increase of
k. The effect of |L| is small. The memory consumption remains
unchanged.
Effect of ˜Pi: We use the default setting of all the parameters
except for the probabilities ˜Pi, whose values are generated ran-
domly. The sum of such probabilities for each client is one. We
try 100 tests for the two road networks respectively. As shown
in Table 4, both the time and the memory consumption of MAS
are not sensitive to the visiting probabilities.
Effect of α: Specifically, we use the default setting of all the
parameters except w(c), whose values are randomly generated
from a Zipf distribution with a skewness parameter α. We ran-
domly choose the value of α in {2, 3, 4, 5, 6}, and try 100 tests
for the two road networks respectively. Table 5 shows that the
time and the memory consumption of MAS are not sensitive to
α.
Effect of NewUpp: The results on the comparison of Upp and
NewUpp in MAS algorithm are in Fig. 7 and Fig. 8. The re-
sults show that the MAS algorithm with NewUpp is faster. This
is because the computation cost of NewUpp is less than that
of Upp, especially when |C| is large. NewUpp has comparable
pruning power compared to Upp even though it is not as tight
as Upp, which is another reason why we have good time perfor-
mance. When |S | is small, the computation cost for KNLCs will
be larger. Since Upp is tighter than NewUpp, the computation
cost of Upp will be larger. As shown in these figures, both Upp
and NewUpp have similar memory consumption. The lines for
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Fig. 7 Effect of |C| on SF for Upp and NewUpp. (a) Time; (b) storage

Fig. 8 Effect of |C| on COL for Upp and NewUpp. (a) Time; (b) storage

Fig. 9 Effect of |S | and k on SF for RMAS. (a) Time; (b) storage

memory consumption are overlapping in these figures.
Since the OLQ with the objective MaxSum can be viewed

as a special case of the KMaxSum query, we also compare
the MAS algorithm with the state-of-the-art method called
MaxSum-Alg in [10,11] for the OLQ. With the default parame-
ter values, the algorithm MaxSum-Alg/MAS requires 3.51/8.21
seconds and 10.03/13.62 MB on SF, and 13.3/24.73 seconds
and 25.81/33.21 MB on COL. Thus, the MaxSum-Alg requires
a little less time and memory storage than the MAS. But, the
MaxSum-Alg can only handle the case of KOLQ where k = 1.

6.2 Experiments for Relocation KMaxSum querying
Effect of the number |S | of servers and k: In general, the time
of RMAS depends on three factors. Two factors are the same as
the factors discussed for MAS. The additional factor is the pro-
cessing of the potential servers to be moved. When |S | is larger,
the number of potential servers to be moved is larger and thus

Fig. 10 Effect of |S | and k on COL for RMAS. (a) Time; (b) storage

Fig. 11 Effect of |C| and k on SF for RMAS. (a) Time; (b) storage

Fig. 12 Effect of |C| and k on COL for RMAS. (a) Time; (b) storage

the time of RMAS may increase. However, the radius of KNLCs
of clients may be reduced with the increase of |S | and thus the
time of RMAS becomes smaller. Based on these factors, the
time of RMAS fluctuates with |S | as shown in Fig. 9 and Fig. 10.
The reasons for the memory consumption of RMAS are similar
to MAS.
Effect of the number |C| of clients and k: The results on SF and
COL are shown in Fig. 11 and Fig. 12, respectively. The time
and the memory consumption of RMAS increase with increases
of |C| and k. Similar reasons can be found for MAS with the ef-
fect of |C| and k, and it is also consistent to our analysis of its
time complexity.

7 Conclusion
In this paper, we study the KOLQ problem with the KMaxSum
objective function. We also study a variant of KOLQ for relo-
cation of servers on a road network, which we call RKOLQ.
We propose two location analysis algorithms for the problem
and its variant. Our algorithms incorporate some new prun-
ing techniques based on the concept of KNLC. We verify the
performance of the algorithms on two datasets based on real
world road networks of San Francisco and Colarado. Our re-
sults show that our algorithms can handle location analysis with
reasonable time and memory. The KOLQ problem with other
objective functions will be studied in our future work.
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