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Given a set of weighted objects in a data space, the MaxRS problem in spatial databases
studied in a VLDB 2012 paper is to find a location for a rectangular region of a given size
such that the weighted sum of all the objects covered by the rectangular region centered
at the optimal location is maximized. This problem is useful in lots of location-based ser-
vice applications, such as finding the location for a new fast food restaurant with a limited
delivery range attracting the greatest number of customers. The existing MaxRS problem
assumes that the rectangular region is always placed horizontally and is non-rotatable.
However, under this assumption, the weighted sum of all the covered objects may not
be the greatest when the rectangular region is rotatable. In this paper, we propose a gen-
eralized MaxRS problem called rotating MaxRS without this assumption. In rotating
MaxRS, the rectangular region is rotatable and can be associated with an inclination angle.
The goal of our problem is to find a location and an inclination angle such that the weighted
sum of all the objects covered by the rectangular region of a given size centered at this
location with this inclination angle is the greatest. We also present an efficient algorithm
for the problem. Extensive experiments were conducted to verify the efficiency of our algo-
rithms based on the real and synthetic datasets. The experimental results show that the
weighted sum of all the objects in the rotating MaxRS queries can be increased with up
to 300% on the synthetic datasets compared with existing non-rotating MaxRS queries,
which shows the significance of the new rotating MaxRS queries.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of location-based service applications, researchers in the database community have paid
attention to the analysis issues of location-related data. Recently, several location analysis problems have been proposed.
The maximizing range sum (MaxRS) problem [3] is one of these location analysis problems.

Given a set O of weighted objects in a two-dimensional data space, the MaxRS problem is to find a location for a rectan-
gular region of a given size such that the weighted sum of all the objects covered by the rectangular region centered at this
location is maximized. This optimal location query is very important and useful as a basic operation in a lot of real applica-
tions such as location planning, location-based service and profile-based marketing.
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Application Example 1

Assume that O denotes a set of residential estates in a city. We want to build a new fast food restaurant in the regions
formed by a grid of streets. Consider the fast food delivery capability is often limited in practice. A key question is how to
find a location for the new fast food restaurant such that the greatest number of the residential estates around the restaurant
are attracted. We can assume the fast food delivery range corresponds to a rectangular region with a limited size. Then, a
MaxRS query can answer the question and return an optimal location for the new fast food restaurant.
Application Example 2

There are some game applications such as the World of Tanks in which a variety of personalized game weapons are
included. In such game applications, we may design a kind of personalized weapons which is provided with a limited attack
area such as a fixed size of a rectangle range. Then, given a set of objects to be attacked in a two-dimensional space, a MaxRS
query can be used to locate intelligently the position of the attack area such that the number of objects attacked by the
weapon is the greatest.

The existing MaxRS problem assumes that the rectangular region is always placed horizontally and is non-rotatable.
However, for Application Example 1, the streets in a city are not always horizontal and the objects such as residential

estates are often distributed on both sides of the streets. Thus, the rectangular regions of a limited size covering these objects
are not always horizontal and is rotatable in practice. For example, a rotatable rectangular region may be better to represent
the fast food delivery range in the application examples.

Moreover, under this assumption, for Application Example 2, the answer returned by the existing MaxRS queries may not
be the greatest. For example, in Fig. 1, there are seven objects to be attacked, namely, o1; o2; . . . and o7. Each object is located
at a point in a two-dimensional data space. Assume that each object has the same weight. Given the dimension of a rectan-
gular region as the limited attack area, says l �w where l and w are the length and the width of the region, the existing MaxRS
query returns the point p1 as the optimal location as shown in Fig. 1(a). The rectangular region centered at p1, whose size is
l �w, covers four objects o1; o2; o3, and o4 (i.e., the attacked objects). However, p1 is not the best place if the rectangular
region is rotatable. As shown in Fig. 1(b), there exists another optimal location p2 such that the rectangular region centered
at p2 and rotated with the optimal inclination angle h1 ¼ 80� covers five objects, namely, o2; o3; o4; o5 and o6, the greatest
number of objects covered. Note that this rectangular region can have multiple optimal angles. For example, h2 ¼ �80� in
Fig. 1(b) is another optimal angle.

How to find such a rotatable rectangular region for the practical application has not been studied before.
Motivated by the above observations, in this paper, we propose a generalized MaxRS problem called rotating MaxRS in

which the assumption mentioned in the existing problem is removed. The rectangular region is rotatable and can be asso-
ciated with an inclination angle. Specifically, the purpose of our problem is to find a location and an inclination angle such
that the weighted sum of all the objects covered by the rectangular region of a given size centered at this location and rotated
with this inclination angle is the greatest.

In this paper, we simply call the rectangular region of a given size centered at a point in the data space the given rectangle
of this point. For clarity, when we write ‘‘rectangle’’, we mean ‘‘rectangular region’’, and both terms are used interchangeably
in the rest of the paper.

To the best of our knowledge, we are the first to focus on this generalized problem. The number of candidate points in a
data space for the optimal location and the number of candidate inclination angles for the optimal angle are infinite. It is chal-
lenging to find the optimal location and the optimal angle. Since the inclination angle has not been considered in the lit-
erature, existing solutions are not suitable for our problem. We need to design a new algorithm for our problem.

As shown in Section 3, the optimal locations are contained in the most overlapped region of the rectangular regions cen-
tered at the given object points and rotated with the same optimal inclination angle. For example, Fig. 2 shows 5 rectangular
regions centered at o2; o3; o4; o5 and o6 rotated with an angle of 80�. The optimal location p2 (described in Fig. 1(b)) is inside
(a) The MaxRS
problem

(b) Our problem

Fig. 1. The problem comparison.



Fig. 2. An example for the problem property.
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the shaded region which denotes to the most overlapped region of the rectangular regions centered at the given object points
and rotated with the same optimal inclination angle.

Based on the above property, we propose an efficient algorithm which finds the optimal location and the optimal angle
such that the weighted sum of all the objects covered is the greatest.

The contributions of this paper are as follows. (1) We proposed a generalized MaxRS problem called rotating MaxRS. Com-
pared with the existing MaxRS query, a rotating MaxRS query returns both a location and an inclination angle for a rectan-
gular region of a given size such that the weighted sum of all the objects covered by the rectangular region centered at this
location and rotated with this inclination angle is the greatest. (2) We presented an efficient solution for our problem. This
solution is based on partitioning the data space. By pruning lots of regions and only examining promising space regions, the
proposed solution can quickly find the optimal location and the optimal angle. (3) We conducted extensive experiments to
verify the efficiency of our algorithms. Based on real and synthetic datasets, the experimental results show the efficiency of
our proposed solution. As shown in the experiments, in the synthetic datasets containing 2,500,000 objects, a rotating MaxRS
query can be answered within 300 s in most cases. On the real dataset containing more than 120,000 objects, a rotating
MaxRS query can be answered within 6 s. The experimental results also show that the weighted sum of all the covered
objects in the rotating MaxRS queries can be increased with up to 300% on the synthetic datasets compared with the existing
non-rotating MaxRS queries.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 gives the problem definition.
Section 4 describes our proposed query algorithms. Section 5 evaluates the proposed algorithms. Section 6 concludes this
paper with future directions.

2. Related work

The location analysis problem in the database community originally came from the facility location problem [2,8,15],
which has been extensively studied in past years. The facility location problem is to locate preferred facilities with respect
to a given set of clients, and is shown to be NP-hard. Different from the facility location problem where the number of the
candidate locations for the facilities is usually limited, in the location analysis problem, the number of the candidate loca-
tions to be found can be infinite. It is challenging to find the optimal locations from the whole data space.

In the following, we classify the related studies into 3 parts. The first part (Section 2.1) is the nearest-neighbor based opti-
mal location problem. In this problem, we want to find the optimal location by finding the nearest neighbor of each object
first and then obtaining a coverage area of each object. The second part (Section 2.2) is the coverage based optimal location
problem. In this problem, similarly, we want to find the optimal location by using the coverage area given by a user. The third
part (Section 2.3) is the spatial preference query. In this problem, we want to find the optimal location by using the spatial
preferences.

2.1. Nearest-neighbor based optimal location problem

Several location analysis issues have been studied [3,17,18,10,24,21,4,23,12,20,9,19]. The MaxBRNN problem [2] is to find
a region with the greatest influence in the L2-norm space. A solution with an exponential-time complexity was proposed in
[2].

The MaxBRNN problem was also studied in [17] in which the first polynomial-time complexity algorithm, MaxOverlap,
was proposed. Some variations, such as the extension of the MaxOverlap algorithm in a three-dimensional space and other
Lp-norm metric spaces, were studied in [18], an extended version of [17]. Recently, the MaxSegment algorithm, an improved
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algorithm for the MaxBRNN problem, was proposed in [10]. Both the running time and the storage cost of the MaxSegment
algorithm are significantly smaller than the MaxOverlap algorithm. The improved algorithm OptRegion for the MaxBRNN
problem in a two-dimensional space was proposed in [9]. An approximate method was recently proposed for the MaxBRNN
problem in [21]. Furthermore, the generalized MaxBRkNN problem was studied in [24] where a client may have different
probabilities to visit different servers and at the same time, a server is assumed to have different target sets of clients.

Besides, the algorithm in [4] was proposed to find an optimal location instead of an optimal region for the L1-norm space.
[23] proposed the min-dist optimal location query that finds a location which minimizes the average distance from each cli-
ent to its closest server when a new server is built at this location. [12,13] proposed to select a location from a given set of
potential locations for a new server so that the average distance between a client and its nearest server is minimized. [19]
proposed to find the top-t most influential sites from a given set of sites in a given spatial region. [20] firstly proposed an
algorithm framework to find all optimal locations in the setting of road networks. [6] proposed the continuous min–max
distance bounded query in road networks.

2.2. Coverage based optimal location problem

In the above studies, there are two kinds of objects involved, namely clients and servers. The optimal cost functions com-
puted based on the clients and the servers are used to locate the optimal locations in the data space. However, there is only
one type of objects in the existing MaxRS problem and thus the objects do not have their competitive or collaborative rela-
tionship [3]. The optimal cost function in the MaxRS problem is to maximize the weighted sum of all the objects covered by
the rectangular region centered at the optimal location.

In fact, in the computational geometry community, the MaxRS problem has been extensively studied in past years, which
is called the max-enclosure rectangle problem [7,11]. Recently, a scalable algorithm extending existing solutions was present-
ed in [3]. The approximate MaxRS was studied in [16]. Different from these studies, we focus on a generalized problem which
cannot be addressed by existing solutions. We also proposed a new solution for this problem.

To the best of our knowledge, we are the first to consider the rotating MaxRS problem and propose a new solution to find
the optimal locations and the optimal angle for the given rectangular region.

2.3. The spatial preference query

The other related studies include the top-k spatial preference query [14,22]. Similar to our problem, these studies select
the related spatial objects based on the cost functions from a given data space. The top-k spatial preference query returns the
k objects in the spatial database with the highest scores. The score of an object is computed based on the ranking function
which is defined with the quality of features of an object. Different from our problem, the number of the candidate points to
be selected is often limited in these queries.

3. Problem definition

Given a set O of objects in a two-dimensional data space S, each object o 2 O is associated with a positive weight, denoted
by wðoÞ, which denotes the importance of the client. For example, wðoÞ corresponds to the number of people in the residen-
tial estate o in the application example. Each object is located at a point in the data space. The dimension of a rectangular
region R is specified as l �w, where 0 < w 6 l. Here, l and w correspond to the length and the width of the region. The rect-
angular region of a given size centered at a point p 2 S is called the given rectangle of p, denoted by Rp. A given rectangle
Rp rotated with an inclination angle h can be denoted as RpðhÞ. Consider the Cartesian coordinate system whose origin is
the center point p. The inclination angle of Rp is formed by the horizontal axis pointing to the right and the line parallel to
the long side of Rp. In general, an inclination angle h ranges from �90� to 90�. For example, as shown in Fig. 1(b), the rect-
angular region centered at the optimal location p has an inclination angle h1 ¼ 80�, which can be denoted as Rpð80�Þ.

Our rotating MaxRS problem is defined as follows.

Definition 1 (Problem). Given a set O of weighted objects in a two-dimensional data space S, and a rectangular region of a
given size, our problem is to find an optimal location p 2 S and an optimal angle h such that

P
oi2RpðhÞ^oi2OwðoiÞ is the greatest.

For example, in Fig. 1(b), p2 is an optimal location, and the rectangular region centered at p2 has the optimal angle h ¼ 80�.
This means that the sum of the weights of all the objects covered by this rectangular region centered at this location and
rotated with this angle is the greatest. If each object has the same weight, then our problem is to find the greatest number
of objects covered by the given rectangle centered at the optimal location and rotated with the optimal angle. There may
have multiple optimal locations which are in a consecutive region, we call this region the optimal location region.

In the existing MaxRS problem [3,7,11], an important property is used. Specifically, if the point p 2 S is covered by the
given rectangle of oi 2 O, then oi is also covered by the given rectangle of p. Based on this property, the optimal location
region corresponds to the most overlapped region among the given rectangles of all the objects in O.

Fortunately, in our problem, we can have the similar property. That is, if the point p 2 S is covered by the given rectangle of
oi 2 O rotated with the angle h, then oi is also covered by the given rectangle of p rotated with the same angle h.
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Based on this property, we can derive that given an optimal angle, the optimal location region corresponds to the most
overlapped region of the given rectangles of all the objects rotated with the same optimal angle. In particular, the most over-
lapped region may correspond a single point or a line segment.

As shown in Fig. 2, the optimal location p2 in Fig. 1(b) is covered by the given rectangles of o2; o3; o4; o5 and o6 all rotated
with the same optimal angle h ¼ 80�. These objects are also covered by the given rectangle of p2 rotated with the same opti-
mal angle h ¼ 80�.

In the existing MaxRS problem, the rectangular region is always placed horizontally and that is equivalent that the incli-
nation angle for the rectangular region is always set to 0�. Thus, the existing MaxRS problem can be viewed as a special case
of our problem in which the inclination angle is restricted to 0�. However, in practice, the optimal angle for the rectangular
region may not be equal to 0�. Thus, the existing solutions cannot find the best location for a rotatable rectangular region.

In our problem, the best location for the rectangular region is to be found. The challenges for our problem involves two
aspects. One aspect is the infinite number of points in the data space which causes the difficulty in finding an optimal loca-
tion. The other aspect is the infinite number of angles which causes the difficulty in finding an optimal angle.

Since the existing solutions cannot support the inclination angle not equal to 0�, they cannot be applicable to our problem.
Thus, we have to design a new algorithm for our problem.

4. The proposed algorithms

In this section, we would like to present a baseline algorithm and then introduce the proposed algorithms for our prob-
lem. The basic concepts, the theoretical properties and the algorithm analysis are included in this section.

4.1. Baseline algorithm

Our proposed algorithm to be described later solves a general rotating MaxRS problem where both the optimal angle and
the optimal location are to be found. The existing algorithm solves a specific non-rotating MaxRS problem where there is no
need to find the optimal angle.

In general, we can design a baseline algorithm for our problem based on the existing algorithms for the MaxRS problem.
Since the existing scalable algorithm in [3] is an I/O-optimal algorithm, we choose the existing memory based solutions
[7,11] to design the baseline algorithm. The baseline algorithm works as follows.

Step 1: We are given an optimal angle at the first place. Since there are no solutions for finding such an optimal angle for a
given dataset D, we can execute our proposed algorithm on D and obtain both the optimal location p and the optimal
angle h.

Step 2: We rotate the x-axis and the y-axis in D using the optimal angle h found and obtain the rotated dataset D0.
Step 3: We execute the existing algorithm on this rotated dataset D0 and obtain the optimal location p0 for D0.

It is easy to know that the weighted sum of all the objects covered by the rectangular region of a given size centered at the
optimal location p0 with the optimal angle h is also the greatest for D in our problem.

However, this baseline algorithm involves Step 1 which needs an optimal algorithm to find the optimal angle. In the fol-
lowing, we will present the proposed algorithm for our problem.

4.2. Basic concepts

In general, given any two angles h1 and h2, we define an angle interval in the form of ½h1; h2� as the set of all angles which
are smaller than or equal to h2 and is larger than or equal to h1, where �90� 6 h1 6 h2 6 90�.

The basic idea for the proposed algorithm is to iteratively partition the whole data space into a number of small quadrants
and search the quadrants which possibly contain a part of the optimal location region. The partitioning process is guided by
the upper and lower bounds of a quadrant Q (denoted by UPPðQÞ and LOWðQÞ, respectively).

In general, given a quadrant Q and a set O of weighted objects, we define the following concepts.

Definition 2 (Intersection Angle Range). The intersection angle range of a quadrant Q at o 2 O, denoted by IARoðQÞ, is defined
as IARoðQÞ ¼ fhjRoðhÞ \ Q – ;g. That is, it is equal to a set of angle values h such that the given rectangle of o rotated with
h; RoðhÞ, intersects the region Q.
Definition 3 (Containment Angle Range). The containment angle range of Q at o 2 O, denoted by CARoðQÞ, is defined as
CARoðQÞ ¼ fhjQ # RoðhÞg. That is, it is equal to a set of angle values h such that the given rectangle of o rotated with
h;RoðhÞ, contains the region Q.

Fig. 3 shows the examples for the intersection angle range and containment angle range, where IARoðQÞ is equal to
½10�;60�� and CARoðQÞ is equal to ½25�;45��.



(a) IARo(Q) (b) CARo(Q)

Fig. 3. The examples for the intersection angle range and containment angle range.

Z. Chen et al. / Information Sciences 305 (2015) 110–129 115
IARoðQÞ/CARoðQÞ is equal to ; if Ro does not intersect/contain Q for all possible inclination angles. It is obvious that
CARoðQÞ# IARoðQÞ. In general, the union of IARoðQÞ/CARoðQÞ for all o 2 O is represented as IARðQÞ/CARðQÞ. That is,
IARðQÞ ¼ [o2OIARoðQÞ and CARðQÞ ¼ [o2OCARoðQÞ.

Definition 4 (Upper and Lower Angle Range). The upper angle range of Q, denoted by UARðQÞ, is defined as

UARðQÞ ¼ fhjargmaxh
P

o2O^h2IARoðQÞwðoÞg. The lower angle range of Q, denoted by LARðQÞ, is defined as
LARðQÞ ¼ fhjargmaxh

P
o2O^h2CARoðQÞwðoÞg.

Next, we take an example to illustrate the above concepts. Assume that Q intersects Ro1 ; Ro2 ; Ro3 ; Ro4 and Ro5 . Their inter-
section angle ranges are represented as the angle intervals which are denoted as line segments in Fig. 4.

Assume that each object has the same weight 1. UARðQÞ and UPPðQÞ can be computed as follows. Suppose that IARðQÞ is
known in advance (we will describe how to compute it later). We can scan all the angle intervals in IARðQÞ in the ascending
order of angles and find out these angles shared by the most objects. In this example, it is easy to derive that UARðQÞ cor-
responds to the interval ½70�;80�� which is shared by four objects o2; o3; o4 and o5. Similarly, if CARðQÞ is known in advance,
then we can compute LARðQÞ.

Intuitively, if each object has the same weight then UARðQÞ/LARðQÞ corresponds to the common angle ranges in IARðQÞ/
CARðQÞ shared by the most objects.

Definition 5 (Upper and Lower Bounds). We define the upper and lower bounds on the maximum weighted sum of objects in
O covered by a given region of a point in Q, denoted by UPPðQÞ and LOWðQÞ, respectively. UPPðQÞ ¼maxh

P
o2O^h2IARoðQÞwðoÞ

and LOWðQÞ ¼maxh
P

o2O^h2CARoðQÞwðoÞ.

In our example in Fig. 4, since there exists an angle h (e.g., 70�) such that Ro2 ðhÞ intersects Q, UPPðQÞ is equal to 4. Similar
to UPPðQÞ, we can compute LOWðQÞ.

For each point p in Q, we denote WSðpÞ to be the weighted sum of all the objects covered by RpðhÞ which is the largest
among all possible angles h. That is, WSðpÞ ¼maxh

P
o2O^p2RoðhÞwðoÞ.

Lemma 1. For each p 2 Q ; LOWðQÞ 6WSðpÞ 6 UPPðQÞ.
Proof. Since p 2 Q , for any h, we can derive p 2 RoðhÞ from h 2 CARoðQÞ and we can derive h 2 IARoðQÞ from p 2 RoðhÞ. So, for
any h, we can derive

P
o2O^h2IARoðQÞwðoÞ 6

P
o2O^p2RoðhÞwðoÞ 6

P
o2O^h2IARoðQÞwðoÞ.

Next, we can derive maxh
P

o2O^h2IARoðQÞwðoÞ 6maxh
P

o2O^p2RoðhÞwðoÞ 6 maxh
P

o2O^h2IARoðQÞwðoÞ.
That is, LOWðQÞ 6WSðpÞ 6 UPPðQÞ. This lemma holds. h

Lemma 1 shows the correctness of the upper and lower bounds for Q (i.e., UPPðQÞ and LOWðQÞ).
Next, we would like to introduce how to compute IARðQÞ and CARðQÞ. Before that, we give some notations to be used for

computing IARðQÞ and CARðQÞ. In general, a partitioning quadrant Q corresponds to a rectangular region in the data space
which is formed by four vertices and four edges. Each vertex can be any point in the data space and each edge is formed
by two vertices. Without loss of generality, assume that Q consists of the vertices v1; v2; v3 and v4 and the edges
e1 ¼ ðv1;v2Þ; e2 ¼ ðv2;v3Þ; e3 ¼ ðv3;v4Þ and e4 ¼ ðv4;v1Þ. Note that the location for each vertex can be known when we par-
tition the data space.



Fig. 4. An example for the upper bound.
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Definition 6 (Vertex Range). For any vertex v of Q, the vertex range of v with o 2 O is defined as VertexRðv ; oÞ ¼ fhjv 2 RoðhÞg.
Definition 7 (Edge Range). For any edge e ¼ ðv l;v rÞ of Q, the edge range of e with o 2 O is defined as EdgeRðe; oÞ ¼ fhjRoðhÞ
intersects eg.

Fig. 5 shows an example for VertexR and EdgeR, where Q consists of the vertices v1; v2; v3 and v4. Assume that there is
only one object o on the edge ðv1;v2Þ. The given rectangle of Roð0�Þ with dashed lines is given in the figure. Since the given
rectangle Ro does not cover any vertex of Q no matter what angle Ro is rotated with, we have VertexRs for all vertices equal to
;. Since Ro intersects the edge ðv1;v2Þ when Ro is rotated with any angle in the angle interval ½�90�;90��, we have
EdgeRððv1;v2Þ; oÞ ¼ ½�90�;90��. It is easy to know EdgeRs for the other edges are equal to ;.

How to compute VertexRð�; �Þ and EdgeRð�; �Þ will be described in Section 4.4.
Now, we are ready to describe how to compute IARðQÞ and CARðQÞ with the following lemmas.

Lemma 2. IARðQÞ ¼ [4
i¼1EdgeRðei; ojÞ where oj 2 O and oj R Q.
Proof. It is easy to derive that, if Q intersects a given rectangle, then this given rectangle at least intersects an edge of Q.
According to the definitions of IARðQÞ and EdgeRðe; oÞ, this lemma holds. h

The above lemma suggests that we can compute IARðAÞ by performing a union operation among EdgeRðei; ojÞ where
i 2 ½1;4�; oj 2 O and oj R Q .

Note that if oj 2 Q , then the given rectangle of oj; RðojÞ, will be inside Q or intersect the edges of Q no matter what angle
RðojÞ is rotated with. We can easily derive that IARðQÞ corresponds to the angle interval ½�90�;90��. That is we need not com-
pute [4

i¼1EdgeRðei; ojÞ.

Lemma 3. CARðQÞ ¼ \4
i¼1VertexRðv i; ojÞ where oj 2 O.
Proof. It is easy to derive that, Q is contained by a given rectangle iff each vertex of Q is covered by the given rectangle.
According to the definitions of CARðQÞ and VertexRðv; oÞ, this lemma holds. h

The above lemma suggests that we can compute CARðQÞ by performing a union operation among VertexRðv i; ojÞ where
i 2 ½1;4�; oj 2 O.

4.3. Algorithm phases and theoretical properties

In general, the proposed algorithm works as follows. Initially, the whole data space is set to be the quadrant Q. Next, we
compute the upper and lower bounds for the quadrant Q, namely UPPðQÞ and LOWðQÞ. After that, we examine if the algo-
rithm stopping conditions are satisfied. If the stopping conditions are satisfied, the algorithm finds the optimal location and
the optimal angle, and returns them as the answers. Otherwise, we need to partition the quadrant Q into four equal-size
Fig. 5. An example for VertexR and EdgeR.



Fig. 6. Computing the ROSðQÞ.
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small quadrants at the center of Q. The promising small quadrants are chosen to be handled further. There are three key
phases included in the proposed algorithm.

� The first phase is to compute the upper and lower bounds for the quadrants (Section 4.3.1).
� The second phase is to identify the optimal location region (Section 4.3.2).
� The third phase is to find the optimal location and the optimal angle (Section 4.3.3).

Next, we will introduce the key algorithm phases in detail.

4.3.1. Phase 1: compute the upper and lower bounds
Given a quadrant Q, in order to compute the upper and lower bounds for Q, namely UPPðQÞ and LOWðQÞ, we need to know

the objects whose given rectangles intersect Q. We define the related object set of Q, denoted by ROSðQÞ, as the set of all the
objects whose given rectangles intersect Q. Next, we will introduce how to compute ROSðQÞ with an example. As shown in

Fig. 6, there is a rounded rectangular region of Q which is centered at the center of Q with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þw2Þ

q
=2. There is also a

rectangular region of Q marked in the dashed line and centered at the center of Q. Three rotating circles C1; C2 and C3

are also given for o1; o2 and o3, respectively. Based on Fig. 6, we can have Observation 1.

Observation 1. o is inside the rounded rectangular region of Q, if and only if o 2 ROSðQÞ.

For example, o1 is in ROSðQÞ since it is inside the rounded rectangular region, and o2 and o3 are not in ROSðQÞ since they
are outside the rounded rectangular region.

In general, we can build an R-tree [5] for all objects. When computing ROSðQÞ, we can issue a range query to determine if
an object is inside the rounded rectangular region of Q. However, it is not convenient to issue a range query based on the
rounded rectangular region. In our algorithm implementation, we can use the loose version of ROSðQÞ, denoted as
LROSðQÞ, by the dashed rectangular region of Q instead of the rounded rectangular region of Q to issue the range query.
For example, in Fig. 6, we can easily know that o1 and o3 are inside the dashed rectangular region of Q by a range query. Then,
o1 and o3 are in LROSðQÞ. Similarly, o2 is not in LROSðQÞ since it is outside the dashed rectangular region of Q.

In general, as shown in Fig. 6, the size of the dashed rectangular region of Q is not too much larger than that of the round-
ed rectangular region of Q. Thus, there are not too many objects not in the ROSðQÞ that are included in the LROSðQÞ.

Next, based on LROSðQÞ, we can compute the upper and lower bounds of Q, namely UPPðQÞ and LOWðQÞ. Since all the
objects that intersect Q are included in LROSðQÞ, we only need to examine the objects in LROSðQÞ and all other objects
can be ignored.

In detail, the computation steps for UPPðQÞ are as follows.

� We can compute EdgeRðe; oÞ for each edge e of Q and each object o 2 LROSðQÞ. Then, according to Lemma 2, we can com-
pute IARðQÞ.
� By scanning all the angles in IARðQÞ, we can compute UARðQÞ and UPPðQÞ as shown in Fig. 4.

Similarly, after computing VertexRðv ; oÞ, we can obtain CARðQÞ according to Lemma 3. Then, we can compute LARðQÞ and
LOWðQÞ based on CARðQÞ.

Note that EdgeRðe; oÞ and VertexRðv ; oÞ are equal to ; if o 2 LROSðQÞ and o R ROSðQÞ. This is because the given rectangle Ro

does not intersect Q no matter what angle Ro is rotated with. For example, in Fig. 6, o3 2 LROSðQÞ and o3 R ROSðQÞ.
EdgeRðe; o3Þ and VertexRðv ; o3Þ are equal to ;.

Note that if the size of a quadrant is larger than the size of a given rectangle (i.e., l �w), then this quadrant Q cannot be
contained by the given rectangle. That means we need not compute the lower bounds for each of these quadrants.
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4.3.2. Phase 2: identify the optimal location region
The proposed algorithm will stop with an optimal location region. The optimal location region corresponds to either a

rectangle or a non-rectangle which indicate two stopping conditions. Here, a non-rectangle means a single point or a line
segment. Then, it is a key phase to identify the optimal location region. In this subsection, we will firstly introduce the prop-
erties about the optimal location region. Then, we will introduce how to determine the optimal location region with stopping
conditions.

As shown in Section 3, an optimal location region corresponds to the intersection among the given rectangles of some
objects each rotated with the same optimal angle. The intersection can be a rectangle or a non-rectangle. The result of a rect-
angle is straightforward. Next, we elaborate more the result of a non-rectangle with the example in Fig. 7. Assume that the
dimension of the given rectangle is set to l ¼ 8 and w ¼ 6. For simplicity, the given rectangles for the objects are not shown in
Fig. 7.

In Fig. 7(a), there are five objects o1; o2; o3; o4 and o5. The two numbers in the bracket near to each object is the location
information (i.e., the coordinate values). The optimal region corresponds to the single point p and the optimal angle is equal
to 0�. That is, \5

i¼1Roi
ð0�Þ ¼ fpg. In Fig. 7(b), there are four objects o1; o2; o3 and o4. The optimal region corresponds to the line

segment ðp1; p2Þ and the optimal angle is also equal to 0�. That is, \4
j¼1Roj

ð0�Þ ¼ fp0g, where p0 is any point on the line segment
ðp1; p2Þ.

Next, we will introduce the properties about the optimal location region which corresponds to a non-rectangle (i.e., a sin-
gle point or a line segment). We are given n objects o1; o2; . . ., and on and their given rectangles Ro1 ; Ro2 ; . . ., and Ron , respec-
tively. Assume the optimal angle is equal to h. Firstly, we introduce the property about a single point.

Lemma 4. If an optimal location region corresponds to a single point p, then there exists at least one object along each side of the
given rectangle RpðhÞ.
Proof. Assume that this lemma does not hold. That is, for the given rectangle RpðhÞ, there exists a side/edge along which
there are no objects. Next, we give an example to show this assumption cannot hold.

We can take Fig. 8 as an example, where there are five objects o1; o2; o3; o4 and o5, and \5
i¼1Roi ðhÞ ¼ fpg. The given

rectangle RpðhÞ can cover all objects. Assume that there are no objects on the edge ðA;BÞ of the given rectangle.
Next, we can find another optimal location p0. The given rectangle Rp0 ðhÞ can also cover all objects. Note that, o5 is the

object nearest to the edge ðA;BÞ and locates on the edge ðA0;B0Þ of Rp0 ðhÞ. That is, there are no objects which are inside the
region ABB0A0.

That means, \n
i¼1Roi ðhÞ ¼ fp; p0g. This contradicts that p is the single optimal location. Thus, this lemma holds. h
(a) The single point (b) The line segment

Fig. 7. An example for the optimal location region.

Fig. 8. An example for Lemma 4.
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Next, we introduce the property about the optimal location region which corresponds to a line segment. Assume that
ðp1; p2Þ is a line segment in data space S, where p1 and p2 are any two points in S, and Sðp1 ;p2Þ denotes the set of all points
on the line segment. Given a set of general rectangles RS ¼ fR1;R2;R3; . . . ;Rng which can have any size and rotate with any
angle in data space S. In general, we have the following lemmas.

Lemma 5. If the intersection among the rectangles in RS corresponds to a line segment ðp1; p2Þ, namely \n
i¼1Ri ¼ fpjp 2 Sðp1 ;p2Þg,

then there exist two rectangles whose sides cover the line segment ðp1; p2Þ.
Proof.

Step 1. We want to prove that each point on ðp1; p2Þ is along the sides of the two rectangles. Otherwise, there exist a point p0

that is on ðp1; p2Þ and is not along any side of the rectangles. Then, p0 must be inside each rectangle since p0 2 \n
i¼1Ri.

For each rectangle Ri (1 6 i 6 n), we can find such a �i > 0 that the circle Nðp0; �iÞ centered at p0 with the radius �i is
inside Ri. That is, Nðp0; �iÞ# Ri. Let e ¼ min16i6n�i > 0. Then, we can find a circle Nðp0; eÞ centered at p0 with the radius
e. Then, Nðp0; eÞ# Nðp0; �iÞ# Ri. Thus, Nðp0; eÞ#\n

i¼1Ri. That means, the intersection of the rectangles to a circle Nðp0; eÞ
instead of the line segment ðp1; p2Þ. Then, there is a contradiction.

Step 2. We can pick any 4nþ 1 different points from the line segment ðp1; p2Þ. The total number of the edges for the n rect-
angles is equal to 4n. According to the Step 1, each point on ðp1; p2Þ is along the side of a certain rectangle. According
to the drawer principle, there exist two points p01 and p02 locating on the same side of this rectangle. Without loss of
generality, assume this rectangle is R1. The whole line segment will also be along this side of R1 since it is contained
by each rectangle.

Step 3. We want to prove each point on ðp1; p2Þ also is along the side of another rectangle except R1. Otherwise, we can
assume that there exists a point p00 that is on ðp1; p2Þ and is not along any side of the other rectangles. It is easy
to know p00 2 \n

i¼2Ri. Then, p00 is inside Rj (2 6 j 6 n).
We can find such a �j > 0 that the circle Nðp00; �jÞ centered at p00 with the radius �j is inside Rj. That is, Nðp00; �jÞ# Rj.
We can let e0 ¼ min26j6n�j > 0. Then, we can find a circle Nðp00; e0Þ centered at p00 with the radius e0. Then,
Nðp00; e0Þ# Nðp00; �jÞ# Rj. Thus, Nðp00; e0Þ#\n

j¼2Rj. Since p00 is on the side of R1, \n
i¼1Ri cannot correspond to a line seg-

ment ðp1; p2Þ. This is a contradiction.
Step 4. Similar to the Step 2, we can also pick any 4ðn� 1Þ þ 1 different points from the line segment ðp1; p2Þ. According to

the drawer principle, there exist two points that are on the same side of a certain rectangle except R1. Without loss of
generality, assume this rectangle is R2. Similar to the Step 2, the whole line segment ðp1; p2Þ will also be along the
side of R2. Thus, this lemma holds. h

Moreover, we can have the following lemma for the rectangles whose sides containing/covering the end-points of the line
segment ðp1; p2Þ.

Lemma 6. If the intersection among the rectangles in RS corresponds to a line segment, then there exist two rectangles covering
the two different end-points of the line segment.
Proof.

1. Assume that n ¼ 2, namely, \2
i¼1Ri ¼ fpjp 2 Sðp1 ;p2Þg. Then, it is easy to confirm the lemma holds. That is, if the intersection

of two rectangles corresponds to a line segment, then the two rectangles locate at the different sides of this line segment.
2. Without loss of generality, we assume this lemma holds as n ¼ k. Next, we want to prove that this lemma also holds as

n ¼ kþ 1. According to Lemma 5, among the kþ 1 given rectangles, R1;R2;R3;R4; . . ., and Rkþ1, there exist two rectangles
on which edges the line segment locates.
If the two rectangles locate at the different sides of the line segment, then this lemma holds as n ¼ kþ 1. Otherwise,
assume that the two rectangles are R1 and R2, which locate at the same side of the line segment. Let R12 ¼ R1 \ R2. Since
the line segment locates on the edges of R1 and R2, we can know that R12 should be a rectangle.
Then, we can have k given rectangles, R12; R3; R4; . . ., and Rkþ1. The intersection of those rectangles corresponds to the line
segment ðp1; p2Þ.
Since this lemma holds as n ¼ k, there exist two rectangles, such as, Ri and Rj, among the k rectangles such that ðp1; p2Þ
locates on their edges. Moreover, both Ri and Rj locate at the different sides of the line segment. If Ri and Rj are not R12,
then this lemma holds as n ¼ kþ 1. Otherwise, Ri or Rj is R12. Without loss of generality, assume that Ri is R12. That is,
Ri ¼ R1 \ R2. Then, R1 and Rj locate at the different sides of the line segment. Thus, this lemma holds. h

Next, we can apply the above both lemmas into our problem. Let pbest denote the optimal single point or any point on the
optimal line segment. Let the optimal angle be hbest . Given n objects, it is easy to know that the given rectangle Rpbest

ðhbestÞ can
cover all the objects whose given rectangles’ intersection correspond to the optimal location region.
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In general, we can have the following theorem.

Theorem 1. There exist two objects along the opposite sides of the given rectangle Rpbest
ðhbestÞ.
Proof.

1. Assume that the optimal location region corresponds to a line segment. According to Lemma 6, there exist two objects,
such as, o1 and o2, and the line segment is along the sides of Ro1 ðhbestÞ and Ro2 ðhbestÞ. Moreover, Ro1 ðhbestÞ and Ro2 ðhbestÞ locate
at the different sides of the line segment. In other words, o1 and o2 locate at the different sides of the line segment. For any
point pbest on the line segment, we can know that o1 and o2 are along the opposite sides of the given rectangle Rpbest

ðhbestÞ.
2. Assume that the optimal location region corresponds to a single point. Then, pbest denotes this single point. According to

Lemma 4, there is at leat one object on each side of the given rectangle Rpbest
ðhbestÞ. That is, there exist two objects along the

opposite sides of Rpbest
ðhbestÞ.

Thus this theorem holds. h

Next, we will describe how to determine the two stopping conditions. The optimal region with a rectangle can be
determined as follows. The proposed algorithm is based on the iterative partitioning of data space. Specifically, the algo-
rithm begins to partition the whole data space into four equal-sized small quadrants. Then, the small quadrants with the
greatest upper bound are examined. A quadrant being examined is typically partitioned into four equal-sized quadrants at
its center.

During the splits of the quadrants, we can know that the upper bound of the quadrant will decrease monotonically, and at
the same time, the lower bound of the quadrant will increase monotonically. If the optimal location region corresponds to a
rectangle, then we will find a quadrant Q whose upper bound and lower bound will reach the same value (i.e.,
UPPðQÞ ¼ LOWðQÞ), after a limited number of splits. Then, we need not split the quadrant Q further. This is because the quad-
rant Q is a part of the optimal location region.

On the other hand, the optimal region with a non-rectangle can be determined when we meet the partitioned quad-
rants all intersecting the same set of given rectangles of the objects and having the same upper bound. In order to
examine if the intersecting given rectangles of the objects meet a single point or a line segment, we adopt a threshold
called MaxCount to control the number of times a quadrant is allowed to be partitioned with the same set of intersecting
given rectangles of the objects and the same upper bound. The threshold MaxCount can be specified in advance. When
the threshold is exceeded, the algorithm will check if the intersecting given rectangles meet at a single point or a line
segment.

In general, we can summarize the algorithm stopping conditions as follows.

� Stopping condition 1: During the splits of the quadrants, there exists a quadrant Q such that UPPðQÞ ¼ LOWðQÞ.
� Stopping condition 2: During the splits of the quadrants, there exists a quadrant Q such that the given rectangles inter-

secting with Q meet at a single point or a line segment.
Lemma 7. Our proposed algorithm can be stopped with the stopping conditions.
Proof. For our problem,we can know that there must be a solution. That means we can always find an optimal location
region in which the weight sum of the covered objects is the greatest. The basic idea of our proposed algorithm is to iterative-
ly partition the data space into a number of small quadrants and then handle the promising quadrants efficiently to find the
optimal location region. In general, an optimal location region corresponds to a rectangle or a non-rectangle (i.e., a single
point or a line segment).

Case 1: The final solution is a rectangle.
Since the final region is a rectangle, after a limited number of iteratively partitioning the data space, there must be a
quadrant Q such that UPPðQÞ ¼ LOWðQÞ. This means that the quadrant Q is a part of the optimal location region. Since
any location in Q is an optimal location, our algorithm can be stopped with an optimal location in this case.
Case 2: The final solution is a non-rectangle.
Since the final solution is a non-rectangle (i.e., a single point or a line segment), after a limited number of iterative-
ly partitioning the data space, there must be a quadrant Q such that UPPðQÞ is unchanged and Q intersects the
same set of given rectangles of the objects. Besides, since the final solution is a single point or a line segment,
the most overlapped region of the given rectangles of the objects related to Q with the same inclination angle cor-
responds to a single point or a line segment. This means that the intersecting given rectangles of the objects related
to Q must meet at a single point or a line segment. Our algorithm can examine all possible given rectangles of the
objects related to Q and then find the optimal location and the optimal angle in this case (i.e., the candidate gen-
eration-and-test approach which will be introduced later). Then, our algorithm can also be stopped with an optimal
location in this case. h
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4.3.3. Phase 3: find the optimal location and the optimal angle
Once the proposed algorithm stops with an optimal location region. Then, we need to find the optimal location and the

optimal angle and return them as the answers.
Firstly, we will introduce how to handle the case that an optimal location region is a rectangle. In this case, there exists

such a quadrant Q whose upper bound and lower bound are the same value. Moreover, the quadrant Q is a part of the optimal
location region. Then, we can return any point in Q as an optimal location. We can also return any angle in LARðQÞ as an opti-
mal angle.

Next, we will introduce how to handle the case that an optimal location region is a non-rectangle (i.e., a single point or a
line segment).

Firstly, we will introduce how to compute hbest and then discuss how to find pbest . According to Theorem 1, there are two
objects along the opposite sides of Rpbest

ðhbestÞ. Consider two cases. The first case is that the two objects, say o1 and o2, are
along the two long sides of Rpbest

ðhbestÞ. The computation for hbest is as follows.

� As shown in Fig. 9, we can construct a circle Cðo1;wÞ centered at o1 with the radius w which is the width of the given
rectangle.
� The side containing o2 has a unique intersection (i.e., T1 or T2) with the circle Cðo1;wÞ. It is easy to verify that
\o1T2o2 ¼ 90� or \o1T1o2 ¼ 90�.

� It is easy to compute the angle \o1o2T2 or \o1o2T1. Then, we can determine the directions for the vectors o2T2
��!

and o2T1
��!

.
Then, the hbest can be easily computed (which will be described next in detail).

The second case is that the two objects o1 and o2 are along the two short sides. Then, we can construct a circle Cðo1; lÞ
centered at o1 with the radius l which is the length of the given rectangle. We can also know the unique intersection point
between this circle and the edge containing o2. Then, we can compute hbest similar to the case for the long sides.

However, we do not know which pair of objects in which opposite sides in advance. Next, we propose a candidate gen-
eration-and-test approach for computing hbest and pbest . This approach includes four steps.

� The approach finds the possible objects which can be along the sides of Rpbest
ðhbestÞ. Assume that the algorithm stops with a

quadrant Q which is a part of the optimal location region. Then, we can compute the convex set of ROSðQÞ, denoted by
CVXðROSðQÞÞ. Since Rpbest

ðhbestÞ covers all the objects in ROSðQÞ, only the objects in CVXðROSðQÞÞ possibly locate on the sides
of Rpbest

ðhbestÞ. The other objects in ROSðQÞ cannot be along the sides.
� For any pair of possible objects in the convex set, we firstly assume that they are along the long sides. Then, we can com-

pute the candidate angles as shown in Fig. 9. Next, we assume that they are along the short sides. Similarly, we can com-
pute the candidate angles for the case on the short sides. Then, we can compute the candidate angles for this pair of
possible objects. After examining all pairs of possible objects, we can compute a set of candidate angles.
� Given any candidate angle and any given rectangle of the object in ROSðQÞ, we need to test if the intersection of the given

rectangles of objects in ROSðQÞ rotated with this candidate angle is not equal to ;. If so, then this candidate angle is an
optimal angle hbest .
� After hbest is obtained, pbest corresponds to the intersection of the given rectangles for all objects in ROSðQÞ rotated with the

angle hbest .

4.4. The computation for VertexR and EdgeR

Firstly, we would like to introduce how to compute VertexRðv ; oÞ.

Definition 8 (Rotating Circle). The rotating circle of o 2 O is centered at o with the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þw2Þ

q
=2, denoted by Co.
Fig. 9. An example for the optimal angle computation.
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Intuitively, the rotating circle of o can be obtained by rotating the given rectangle of o around the center o.
Assume that RoðhÞ and Co are given as shown in Fig. 10 in which line 1 and line 2 are parallel to the long side and the short

side of Ro, respectively.
It is obvious that v cannot be covered by Ro if v is outside Co. Suppose that v is inside Co including the boundary of Co. Let

k – 0 be the slope of the line 1. Since line 2 is perpendicular to line 1, the slope of line 2 is equal to �1=k. As shown in Fig. 10,
if v is covered by Ro, then the distance h1 from v to the line 1 satisfies h1 6 w=2 and the distance h2 from v to the line 2 sat-
isfies h2 6 l=2. Since the locations (i.e., the coordinates) for v and o are already known, it is easy to compute the slope of the
line 1 (i.e., k) which corresponds to the inclination angle range for Ro. Then, we can easily compute VertexRðv; oÞ. It is easy to
verify that the computation for VertexRðv; oÞ takes Oð1Þ time.

Next, we discuss the computation of EdgeRðe; oÞwhere e ¼ ðv l;v rÞ. It is obvious that Ro will not intersect e if e is outside Co.
Suppose that e or a part of e is inside Co including the boundary of Co.

As shown in Fig. 11, there are only three cases for the edge e intersecting Ro.

� One of a vertex of e is inside Ro. For example, the vertex v r1 of the edge ðv l;v r1 Þ is inside Ro.
� Both vertices of e are not inside Ro. There are two cases.

– The edge e crosses both long/short sides of Ro. For example, the edge ðv l;vr2 Þ corresponds to this case and crosses the
length edges of Ro.

– The edge e crosses one long side and one short side of Ro. For example, the edge ðv l;v r3 Þ corresponds to this case.

We can connect the vertex v l/v r and the object o by a line segment ðv l; oÞ/ðv r; oÞ and extend this line segment from v l/v r .
Then, the extended line segment will intersect the boundary of Co. The intersection point is called the extension point of v l/v r .
For example, in Fig. 11, v 0l; v 0r2

and v 0r3
are the extension points of v l; vr2 and v r3 , respectively. Note that the extension point

of a vertex may be this vertex itself if the vertex locates on the boundary of Co.

In the following, the arc dv 0l; v 0r on the boundary of Co means the minor arc that is the smaller of the two arcs formed when
the boundary of Co is divided into two unequal parts by the extension points v 0l and v 0r .

Definition 9 (Arc Range). For each arc a along the boundary of Co, the arc range of a is defined as ArcRða; oÞ ¼ fhja intersects
RoðhÞg.
Fig. 10. Computing the VertexR.

Fig. 11. Computing the EdgeR.
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Lemma 8. EdgeRðe; oÞ ¼ VertexRðv l; oÞ [ VertexRðv r ; oÞ [ ArcRðdv 0lv 0r ; oÞ, where v 0l/v 0r is the extension point of v l/v r and dv 0lv 0r is the
arc on the boundary of Co.
Proof. In general, there are three cases for the edge e. As shown in Fig. 11, the edge e can correspond to the edges
ðv l; vr1 Þ; ðv l;v r2 Þ and ðv l;v r3 Þ, respectively. For any angle h 2 EdgeRðe; oÞ, we can have h 2 VextexRðv l; oÞ; h 2 VextexRðv r ; oÞ
or h 2 ArcRðdv 0lv 0r ; oÞ. Thus, EdgeRðe; oÞ# VertexRðv l; oÞ [ VertexRðv r ; oÞ [ ArcRðdv 0lv 0r ; oÞ.

On the other hand, for any angle h0 2 VextexRðv l; oÞ [ VextexRðv l; oÞ, it is easy to know h0 2 EdgeRðe; oÞ where e ¼ ðv l;vrÞ.
For any angle h00 2 ArcRðdv 0lv 0r ; oÞ, as shown in Fig. 11, we can know A is the intersection point between Co and Ro, which is
on the boundary of Co. Then, we can connect A and o by a line segment ðA; oÞ which intersects ðv l;v r2 Þ/ðv l;vr3 Þ at the

intersection point A2/A3. Then, h00 2 EdgeRðe; oÞ. Then, VertexRðv l; oÞ [ VertexRðvr ; oÞ [ ArcRðdv 0lv 0r ; oÞ# EdgeRðe; oÞ. Thus, this
lemma holds. h

It is easy to verify that the computation for EdgeRðe; oÞ takes Oð1Þ time.
Next, we would like to introduce how to compute the ArcRða; oÞ by an example as shown in Fig. 12. Assume that the given

arc a correspond to the minor arc cAB marked in bold arc on the boundary of Co. Among the three sub-figures, the arc cAB is the

shortest and the longest in Fig. 12(a) and (b), respectively. It is easy to know that Ro will intersect the arc cAB if one of the

vertices of Ro is on the arc cAB. Otherwise, Ro will not intersect the arc cAB. As shown in Fig. 12(a), Ro intersects the arc cAB

on the intersection points A and B when Ro is rotated with the angles h1 and h2, respectively. Ro does not intersect cAB as
it is rotated with the angle h3. Note that the vectors op1

��!
; op2
��! and op3

��! are parallel to the long side of Ro rotated with
h1; h2 and h3, respectively.

The ArcRðcAB; oÞ can be computed as follows. We can rotate Ro around the center o in an anti-clockwise direction from the

angle h1 to the angle h2. Then, Ro will firstly intersect the arc cAB on the intersection point A. We continue to rotate Ro until the
intersection point B is passed. Then, Ro will not intersect this arc. In particular, when Ro locates at the angle h3 in Fig. 12(a), Ro

does not intersect the arc cAB.
In general, based on Fig. 12, we can derive the following rules.

� For the case \AoB < 2 arctanðw=lÞ;ArcRða; oÞ ¼ ½h1; h1 þ \AoB� [ ½h2 � \AoB; h2�. This case corresponds to Fig. 12(a).
� For the case \AoBþ 2 arctanðw=lÞP p;ArcRða; oÞ ¼ ½�90�;90��. This case corresponds to Fig. 12(b).
� Otherwise, ArcRða; oÞ ¼ ½h1; h2�. This case corresponds to Fig. 12(c).

It is easy to know that h3 is not included in ArcRða; oÞ in Fig. 12(a).
The computation for ArcRða; oÞ takes Oð1Þ time.
Before ending this subsection, we want to standardize the angle values for each kind of angle range, namely,

VertexR; EdgeR and ArcR. In detail, we want to make sure that the angle value is smaller than or equal to 90� and is larger
than or equal to �90�. For example, the angle interval ½60�;100�� can be standardized as two equivalent intervals
½60�;90�� and ½�90�;�80��.

4.5. Algorithm description and analysis

A detailed algorithm description is given in Algorithm 1. The following four steps are included.
The first step is for initialization. We begin to take the whole data space as a quadrant Q. Initially, the upper bound of

Q ; UPPðQÞ, is set to the weighted sum of all objects, namely
PjOj

i¼1wðoiÞ. The heap H is used to store the partitioned quadrants
and is ordered by the upper bounds of the quadrants to prioritize the quadrants. Initially, H is set to Q that is the whole data
Fig. 12. Computing the ArcR.
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space. The variable MaxLow is used to keep track of the greatest lower bound seen so far. Initially, MaxLow is set to zero. It is
used to prune the quadrants whose upper bounds are smaller than the lower bound of a quadrant. The variable MaxCount is
used to determine the optimal location region of a non-rectangle, which value is specified in advance. The variable count is a
temporary counter variable and is set to zero initially. The variable LastUpp is used to keep track of the greatest upper bound
seen last time. Initially, LastUpp is set to the weighted sum of all objects. Next, the R-tree is built for all objects.

The second step is to compute LOWðQÞ (i.e., Line 10) and UPPðQÞ (i.e., Line 31) for the quadrant Q which is the top entry of
the heap. Initially, the quadrant Q is the whole data space.

The third step is to examine if the stopping conditions are satisfied. In general, the algorithm can stop with an optimal
location region which corresponds to a rectangle or a non-rectangle. If the former is satisfied, the algorithm can return
any point in Q and any angle in LARðQÞ. Otherwise, the latter (i.e., a non-rectangle) is satisfied. The latter can be identified
by examining if the counter reaches the largest number (i.e., MaxCount). If so, the algorithm can compute the optimal loca-
tion and the optimal angle by the candidate generation-and-test approach.

The fourth step is executed if the stopping conditions are not satisfied. The algorithm can partition the quadrant Q into
four equal-sized small quadrants at the center of Q. The promising quadrants, whose upper bounds are at least the greatest
lower bound seen so far, are inserted into the heap.

Algorithm 1. Rotating MaxRS query algorithm
1: Q  the whole data space;

2: UPPðQÞ  
PjOj

i¼1wðoiÞ;
3: insert Q into H;
4: MaxLow 0;//the current largest lower bound
5: LastUpp UPPðQÞ;//the last upper bound
6: count  0;//the control counter
7: build the R-tree index for all objects;
8: while H is not empty do
9: Q  remove top entry from H;

10: compute LOWðQÞ and LARðQÞ;
11: if LOWðQÞ ¼¼ UPPðQÞ then
12: return any point in Q and any angle in LARðQÞ;
13: end if
14: if UPPðQÞ ¼¼ LastUpp then
15: count  count þ 1;
16: if count P MaxCount then
17: if a single point or a line segment is found by the candidate generation-and-test approach then
18: return the optimal location and the optimal angle;
19: else
20: count  0;
21: end if
22: end if
23: else
24: LastUpp UPPðQÞ;
25: count  0;
26: end if
27: if LOWðQÞ > MaxLow then
28: MaxLow LOWðQÞ;
29: end if
30: partition Q into four equal-sized small quadrants at the center of Q;
31: compute the upper bounds for each small quadrant;
32: insert the promising quadrants whose upper bounds are at least MaxLow into H;
33: end while

Next, we will prove the correctness of the proposed algorithm.
Theorem 2. Algorithm 1 is correct.
Proof. The correctness of Algorithm 1 is embodied in two aspects. That is, the algorithm can find the optimal location and
the optimal angle correctly.
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There are two cases. One case is that the algorithm stops with an optimal rectangle. As shown in the algorithm
description, the data space is iteratively partitioned into different quadrants. During the splits of the quadrants, the upper
bounds of the quadrants are decreased and the lower bounds of the quadrants are increased. Once we can find the quadrant
Q whose upper bound and lower bound are equal. That means, we have found an optimal location region overlapping the
quadrant Q. In other words, any point in the region of Q is the optimal location. As shown in Section 4.2, the optimal location
region corresponds to the intersecting given rectangles which share the most common angles in LARðQÞ. That means, any
angle in LAR is the optimal angle.

The other case is that the algorithm stops with single point or a line segment. As shown in Section 4.3.2, we can
also identify the quadrant Q which is overlapped with the optimal location region. As shown in Section 4.3.3, the
approach of candidate generation-and-test can test all combinations for the possible given rectangles for the objects in
ROSðQÞ and the possible angles for the given rectangles. Thus, the approach of candidate generation-and-test can find
an optimal location and an optimal angle. Thus, in this case, we can also find the optimal location and the optimal
angle correctly. h

Algorithm Time and Space Analysis. The algorithm execution time mainly comes from Lines 7, 9, 10, 17, 31, and 32. The
time for Line 7 is Oðn log nÞ [5], where n is the total number of the objects. In our algorithm, we adopt the binary heap struc-
ture to store the quadrants. Thus, Line 9 needs Oðlog nÞ time. Line 10 includes three parts. The first part is to issue a range
query based on the R-tree to determine the objects in the related object set of the quadrant Q, namely ROSðQÞ. This part
needs Oðmþ n1=2Þ time in the worst case [1], where m denotes the greatest number of the objects returned among all range
queries for the quadrants. The second part is to compute the containment angle range (CAR) for each object in ROSðQÞ. This
part needs OðmÞ time. The third part is to compute the lower angle range (LAR) for the quadrant by scanning the angles in all
CARs. This part needs Oðm log mÞ time. Thus, Line 10 needs Oðm log mþ log nÞ time in total.

Line 17 includes two parts. The first part is to compute the convex set for ROSðQÞ, namely, CVXðROSðQÞÞ. The second part is
to test the given rectangle for the objects in CVXðROSðQÞÞ. Assume that the size of ROSðQÞ is equal to c. In the worst case, each
object in ROSðQÞ is included in CVXðROSðQÞÞ and each candidate angle is tested. Then, Line 17 needs Oðc3Þ time. In practice,
c� n. For example, in the experiments, with the default setting, on the NE real dataset, c is at most 493 and n is 80;000.

Line 31 is similar to Line 10 and also needs Oðm log mþ n1=2Þ time. Line 32 is a heap insertion operation whose cost is
small.

Assume that a denotes the number for the iterative partitioning in the proposed algorithm. Thus, the whole while-state-
ment part of the algorithm needs Oðaðm log mþ n1=2ÞÞ time. In the worst case, we can have m ¼ n, and this part needs
Oðaðm log mþ n1=2ÞÞ time. Thus, the proposed algorithm needs Oðaðn log nþ n1=2ÞÞ time in total.

The space cost for the proposed algorithm comes from the storage for all objects, the storage for the R-tree and the storage
for the heap. The storage for all objects needs OðnÞ space. The storage for the binary heap needs OðnÞ space. Thus, the pro-
posed algorithm needs OðnÞ space in total.

5. The experimental results

In this section, we report the experimental results for our proposed algorithm. We can compare our proposed algorithm
with the baseline algorithm (described in Section 4.1) in terms of algorithm performance including the running time and the
storage cost. All algorithms are implemented in C++. All the experiments were performed on a Linux machine with an Intel
3 GHz CPU and 4 GB memory.

Similar to [3], two synthetic datasets and one real dataset are used in the experiments. The object distributions in the two
synthetic datasets are uniform (UN) and Gaussian (GA). The cardinalities of synthetic datasets (i.e., jOj) is set from 500,000 to
2,500,000 (by default, 1,500,000). The real North East (NE) dataset is downloaded from the R-tree Portal.1 The cardinalities of
real datasets is set to be from 40,000 to 120,000 (by default, 80,000). For all datasets, we normalize the range of coordinates to
½0;1�. The weight of each object is set to 1 under default settings. The variable MaxCount is initially set to 1000.

For each kind of dataset, the effects of the cardinalities of datasets and the size of a given rectangle on the algorithm per-
formance were reported. The size of a given rectangle is set to be 0:0005 � 0:0005; 0:001 � 0:001; 0:002 � 0:002,
0:004 � 0:004; 0:006 � 0:006 and 0:008 � 0:008, respectively (by default, 0:002 � 0:002).

The first set of experiments is to study the algorithm performance with the effect of cardinalities of the synthetic datasets. As
shown in Fig. 13(a) and (b), the running time and the storage of the proposed algorithm increase with the number of the objects.
With the increased number of objects, the time for building the R-tree and the time for examining the given rectangles increase.
In fact, the main storage for the proposed algorithm comes from the cost for the object storage and the R-tree. With the increased
number of the objects, the proposed algorithm also needs more space to store the objects and the R-tree.

The second set of experiments is to study the algorithm performance with the effect of the sizes of the given rectangles
based on the synthetic datasets with the default cardinality. As shown in Fig. 14(a), the running time of the proposed algo-
rithm increases with the increased sizes of the given rectangles. This is because the examining time become larger since the
size of the given rectangle is larger.
1 http://www.rtreeportal.org.

http://www.rtreeportal.org
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Fig. 13. Results with the cardinalities of synthetic datasets.

(a) time (b) storage

Fig. 14. Results with the sizes of given rectangles on the synthetic datasets.
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As shown in Fig. 14(b), the storage of the proposed algorithm is almost the same with the increased sizes of the given
rectangles for the uniform distribution. The storage of the proposed algorithm does not have large changes with different
sizes of the given rectangles. Since the storage for the proposed algorithm mainly depends on the object storage and the
R-tree storage, the space cost does not have large changes with the default number of the objects.

The third set of experiments is to study the algorithm performance with the effect of the cardinalities of the real datasets.
In this set of experiments, the object weight distributions are uniform (UN) and Gaussian (GA), respectively. As shown in
Fig. 15(a) and (b), the running time and the storage of the proposed algorithm increase with the number of the objects.

The fourth set of experiments is to study the algorithm performance with the effect of sizes of the given rectangles based
on the real datasets with the default cardinality. In this set of experiments, the object weight distributions are also uniform
and Gaussian, respectively. As shown in Fig. 16(a), the running time decreases with the increased sizes of the given rectan-
gles. As shown in Fig. 16(b), the storage of the proposed algorithm does not have large changes with the decreased sizes of
the given rectangles.
(a) time (b) storage

Fig. 15. Results with the cardinalities of real dataset.
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Fig. 16. Results with the sizes of given rectangles on the real datasets.
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As shown in the above experiments, our proposed algorithm outperforms the baseline algorithm in terms of running time
and storage. This is because the baseline algorithm has to take additional costs to obtain the optimal angle by executing our
proposed algorithm.

Next, we describe the fifth set of experiments. We know that the baseline algorithm described in Section 4.1 requires a
priori knowledge of the optimal angle. In this set of experiments, we consider another baseline algorithm which does not
have this priori knowledge. This baseline algorithm is also based on the existing non-rotating MaxRS query algorithm.
Specifically, assume that we are given a fixed (rotation) angle. The baseline algorithm with a fixed angle works as follows.

Step 1: We rotate the x-axis and the y-axis in the given dataset with this fixed angle and obtain the rotated dataset.
Step 2: We execute the existing algorithm on the rotated dataset and obtain the corresponding optimal location.
Step 3: We can know the weighted sum of all the objects covered by the rectangular region centered at the corresponding
optimal location.

On the given dataset, the weighted sum of all the covered objects computed by the baseline algorithm is denoted as
WSnon. Similarly, we can execute our proposed rotating MaxRS query algorithm on the given dataset and compute the
weighted sum of all the covered objects, which is denoted as WSr . In the experiments, we compare the weighted sum of
all the objects covered of the rotating MaxRS queries and the existing non-rotating MaxRS queries. In detail, we will study
the increase rate (IR) of weighted sum, which is defined as IR ¼ ðWSr �WSnonÞ=WSnon. Note that the default value of the fixed
(rotation) angle is set to 0� in the experiments. This means that the rotated dataset is the same as the given dataset by
default.

On the real datasets, the results on IR with different sizes of datasets are reported in Fig. 17(a) where jOj is varied from 40k
to 120k with an interval 20k, and the fixed angle and the size of given rectangle are set under default settings. The results on
IR with different fixed angles are reported in Fig. 17(b) where the fixed angles are varied from 5� to 80�, the number of objects
and the size of a given rectangle are set under default settings. The results on IR with different sizes of rectangles are reported
in Fig. 17(c) where the number of objects and the fixed angle are set under default settings. In the figures, the IR value fluc-
tuates. This trend can be explained as follows.

Note that the optimal angle in a dataset is a particular value. We know that if the fixed angle is exactly equal to the opti-
mal angle found, then the solution returned by the existing algorithm is very good and thus the IR value is 0. However, in
most of the cases, the fixed angle is not equal to the optimal angle found. Sometimes, the solution returned by the existing
(a) object number (b) fixed angle (c) rectangle size

Fig. 17. Results on the increase rate with the real datasets.
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Fig. 18. Results on the increase rate with the synthetic datasets.
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algorithm is not good. Besides, in some other cases, the solution returned by the existing algorithm is good. Thus, the IR value
fluctuates when the number of objects, the fixed angle and the size of given rectangle change. In addition, in these figures, in
most of the cases, when the fixed angle is close to the optimal angle found, the IR value is small. Note that we may have
multiple optimal angles in the dataset.

On the synthetic datasets, the object weight is set to 1 under default settings, and the object distributions are uniform and
Gaussian, respectively. Similarly, the results on IR with different sizes of datasets, different fixed angles, and different sizes of
rectangles are reported in Fig. 18(a), (b), and (c), respectively. In these figures, we often have a larger IR for the uniform dis-
tribution of objects compared with the Gaussian distribution of objects. This is because the optimal angle found is often far-
ther from the fixed angle used for rotation when the object distribution is uniform on the synthetic dataset. As shown in the
results, the value of IR can be increased with up to 300% on the synthetic datasets.

Based on the results in Figs. 17 and 18, we can conclude that the value of IR mainly depends on the optimal angle found in
the dataset. In general, if the fixed (rotation) angle is closer to the optimal angle, WSnon is closer to WSr , then we have a small-
er IR. Otherwise, we have a larger IR.

Summary

The extensive experimental results verify the efficiency of our proposed algorithms in terms of the running time and the
storage. A rotating MaxRS query can be answered by our proposed algorithm within 300 s in most cases on the synthetic
datasets and even within 6 s on the real datasets. The storage of our proposed algorithm requires less than 240 MB and
12 MB in most cases for the synthetic datasets and the real datasets, respectively. The optimal angles found in the experi-
ments are not equal to 0� in most cases.

6. Conclusions

In this paper, we proposed a new problem called rotating MaxRS. The purpose of our problem is to find an optimal loca-
tion and an optimal angle such that the weighted sum of all the objects covered by the rectangular region of a given size
centered at the optimal location and rotated with the optimal angle is the greatest. We also proposed an efficient algorithm
for our problem. The algorithm iteratively partitions the whole data space into small quadrants and only examines the quad-
rants possibly containing the optimal location. The upper and lower bounds of a quadrant were proposed to guide the par-
titioning process. Extensive experiments were conducted to verify the efficiency of our algorithm based on the real and
synthetic datasets. In our future work, we will continue to study the rotating MaxRS problem including (a) online query tech-
nique for the problem, (b) extending problem such as rotating MaxkRS or rotating MinRS problem, (c) any I/O-optimal algo-
rithm for the problem, and (d) the problem in other metric systems such as L1 and Lmax.
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