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Viral marketing has attracted considerable concerns in recent years due to its novel idea of
leveraging the social network to propagate the awareness of products. Specifically, viral
marketing first targets a limited number of users (seeds) in the social network by
providing incentives, and these targeted users would then initiate the process of
awareness spread by propagating the information to their friends via their social
relationships. Extensive studies have been conducted for maximizing the awareness
spread given the number of seeds (the Influence Maximization problem). However, all of
them fail to consider the common scenario of viral marketing where companies hope to
use as few seeds as possible yet influencing at least a certain number of users. In this
paper, we propose a new problem, called J-MIN-Seed, whose objective is to minimize the
number of seeds while at least J users are influenced. J-MIN-Seed, unfortunately, is NP-
hard. Therefore, we develop an approximate algorithm which can provide error guaran-
tees for J-MIN-Seed. We also observe that all existing studies on viral marketing assume
that all users in the social network are of interest for the product being promoted (i.e., all
users are potential consumers of the product), which, however, is not always true.
Motivated by this phenomenon, we propose a new paradigm of viral marketing where the
company can specify which types of users in the social network are of interest when
promoting a specific product. Under this new paradigm, we re-define our J-MIN-Seed
problem as well as the Influence Maximization problem and design some algorithms with
provable error guarantees for the new problems. We conducted extensive experiments on
real social networks which verified the effectiveness of our algorithms.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction among individuals. Each individual who gets the awareness

of the product is said to be influenced. The number of all

Viral marketing is an advertising strategy that takes the
advantage of the effect of “word-of-mouth” among the
relationships of individuals to promote a product. Instead
of broadcasting to a massive number of users directly as
existing advertising methods [1] do, viral marketing targets a
limited number of initial users (by providing incentives) and
utilizes their social relationships, such as friends, families and
co-workers, to further spread the awareness of the product
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influenced individuals corresponds to the influence incurred
by the initial users. According to some recent research
studies [2], people tend to trust the information from their
friends, relatives or families more than that from general
advertising media like TVs. Hence, it is believed that viral
marketing is one of the most effective marketing strategies
[3]. In fact, extensive commercial instances of viral marketing
succeed in real life. For example, Nike Inc. used social
networking websites such as orkut.com and facebook.com to
market products successfully [4].

The propagation process of viral marketing within a
social network can be described in the following way.
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David
Fig. 1. Social network for J-MIN-Seed.

At the beginning, the advertiser selects a set of initial users
and provides these users incentives so that they are willing
to initiate the awareness spread of the product in the
social network. We call these initial users seeds. Once
the propagation is initiated, the information of the product
diffuses or spreads via the relationships among users in the
social network. A lot of models about how the above
diffusion process works have been proposed [5-10].
Among them, the Independent Cascade Model (IC model)
[5,6] and the Linear Threshold Model (LT model) [7,8] are
the two that are widely used in the literature. In the social
network, the IC model simulates the situation where for
each influenced user u, each of its neighbors has a
probability to be influenced by u, while the LT model
captures the phenomenon where each user's tendency to
become influenced increases when more of its neighbors
become influenced.

1.1. Minimizing seed set

Consider the following scenario of viral marketing. A
company wants to advertise a new product via viral
marketing within a social network. Specifically, it hopes
that at least a certain number of users, says J, in the social
network must be influenced yet the number of seeds for
viral marketing should be as small as possible. Clearly, the
above problem can be formalized as follows. Given a social
network G(V, E), we want to find a set of seeds such that the
size of the seed set is minimized and at least | users are
influenced at the end of viral marketing. We call this
problem J-MIN-Seed.

We use Fig. 1 to illustrate the main idea of the J-MIN-
Seed problem. The four nodes shown in Fig. 1 represent
four members in a family, namely Ada, Bob, Connie and
David. In the following, we use the terms “nodes” and
“users” interchangeably since they correspond to the same
concept. The directed edge (u,v) with the weight of wy,
indicates that node u has the probability of w,, to
influence node v for the awareness of the product. Now,
we want to find the smallest seed set such that at least 3
nodes can be influenced by this seed set. It is easy to verify
that the expected influence incurred by seed set {Ada} is
about 3.572 under the IC model and no smaller seed set

2 The expected influence incurred by seed set {Ada} on Bob is
1-(1-0.8)-(1-0.6-0.7)=0.884 (note that Ada can influence Bob either

can incur at least three influenced nodes. Hence, seed set
{Ada} is our solution.

J-MIN-Seed can be applied to most (if not all) applica-
tions of viral marketing. Intuitively, J-MIN-Seed asks for
the minimum cost (seeds) while satisfying an explicit
requirement of revenue (influenced nodes). Clearly, in
the mechanism of viral marketing, a seed and an influ-
enced node correspond to cost and potential revenue of a
company, respectively, because the company has to pay
the seeds for incentives, while an influenced node might
bring revenue to the company. In many cases, companies
face the situation where the goal of revenue has been
set up explicitly and the cost should be minimized. Thus,
J-MIN-Seed meets these companies’ demands.

No existing studies have been conducted for J-MIN-
Seed on the IC model and the LT model. even though it
plays an essential role in the viral marketing field. First,
most existing studies related to viral marketing focus on
maximizing the influence incurred by a certain number of
seeds, says k [11-16]. Specifically, they aim at maximizing
the number of influenced nodes when only k seeds are
available. We denote this problem by k-MAX-Influence.
Clearly, J-MIN-Seed and k-MAX-Influence have different
goals with different given resources. Second, though a few
studies [17,18] have been done for minimizing the number
of seeds while influencing a certain number of users,
which is called the Target Set Selection (TSS) problem, they
adopt the Deterministic Linear Threshold (DLT) model as the
underlying diffusion model. In contrast, we consider the
Independent Cascade (IC) model and the Linear Threshold
(LT) model as the underlying diffusion models for our
J-MIN-Seed problem. As will be shown later, both the IC
model and the LT model enjoy a nice property (submodu-
larity), which, however, is not owned by the DLT model,
and based on this property, we design an approximate
algorithm for J-MIN-Seed with good error guarantees.
Mainly, [17,18] provide some results about the hardness
of approximating the TSS problem, which, do not apply to
the J-MIN-Seed problem.

Naively, we can solve the J-MIN-Seed problem [19] by
adapting an existing algorithm for k-MAX-Influence. Let k
be the number of seeds. We set k=1 at the beginning and
increment k by 1 at the end of each iteration. For each
iteration, we use an existing algorithm for k-MAX-Influ-
ence to calculate the maximum number of nodes, denoted
by I, that can be influenced by a seed set with the size
equal to k. If I>], we stop our process and return the
current number k. Otherwise, we increment k by 1 and
perform the next iteration. However, this naive method is
very time-consuming since it issues the existing algorithm
for k-MAX-Influence many times for solving J-MIN-Seed.
Note that k-MAX-Influence is NP-hard [12]. Any eXis-
ting algorithm for k-MAX-Influence is computationally
expensive, which results in this naive method with a high

(footnote continued)

directly with the probability equal to 0.8 or via Connie with the
probability equal to 0.6:0.7). Similarly, we can compute the expected
influence incurred by {Ada} on other users. Overall, the influence
incurred by {Ada} is equal to 3.57.
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computation cost. Hence, we should resort to other more
efficient solutions.

In this paper, J-MIN-Seed is, unfortunately, proved to be
NP-hard. Motivated by this, we design an approximate
algorithm called MS-Greedy for J-MIN-Seed. Specifically,
MS-Greedy iteratively adds into a seed set one node that
generates the greatest influence gain until the influence
incurred by the seed set is at least J. Besides, we work out
an additive error bound and a multiplicative error bound
for MS-Greedy.

1.2. Interest-Specified viral marketing

Existing studies on viral marketing assume implicitly that
all users in the social network are of interest for a specific
product being promoted via viral marketing, which, how-
ever, is not true in some cases. For instance, a young student
might not be of interest for the company when the product
being promoted is a product designed for the old. In these
cases, it is a necessity to provide the company an option to
specify which users in the social network are of interest in
order to influence the truly potential customers effectively.
Motivated by this phenomenon, we propose a new paradigm
of viral marketing called Interest-Specified Viral Marketing,
where the company can specify which users are of interest
when promoting a specific product. To this purpose, we
assume that each user in the social network is associated
with a set of attribute values and the company can specify
the users to be of interest by providing a set A; of attribute
values. Consequently, all users that contain some attribute
values from A; correspond to the users that are of interest.
Note that a user is of interest to a company means that the
company has interest in this user (the product of the
company is designed for the group of users which includes
this user), which further implies that this user would
probably be interested in the product. Thus, “user interest”
and “company interest” co-exists in our Interest-Specified
Viral Marketing paradigm.

Interest-Specified viral marketing is more general than
the existing one. Since when all users in the social network
are specified to be of interest, the Interest-Specified viral
marketing becomes the existing one trivially. Besides,
Interest-Specified viral marketing renders a more effective
marketing strategy because it provides the option to focus
on only the truly potential customers.

Under the paradigm of Interest-Specified Viral Market-
ing, we propose two problems Interest-Specified J-MIN-
Seed (IS-J-MIN-Seed) and Interest-Specified k-MAX-
Influence (IS-k-MAX-Influence), which are the counterparts
of ]-MIN-Seed and k-MAX-Influence, respectively. For both
IS-J-MIN-Seed and IS-k-MAX-Influence, we develop some
approximate algorithms which can provide a certain
degree of error guarantee.

1.3. Contributions
We summarize our contributions as follows:

® To the best of our knowledge, we are the first to
propose the J-MIN-Seed problem [19] under the IC

model and the LT model, which is a fundamental
problem in viral marketing.

® Since J-MIN-Seed is NP-hard, we develop an approx-
imate algorithm for J-MIN-Seed which is proved to
provide both additive and multiplicative error guaran-
tees.

® We propose a new paradigm of viral marketing, i.e.,
Interest-Specified viral marketing, is more general and
flexible than the existing one. Under this new para-
digm, the company can specify which users in the
social network are of interest when promoting a
specific product.

® We propose two problems IS-J-MIN-Seed and IS-k-
MAX-Influence under the Interest-Specified viral mar-
keting paradigm and develop some approximate algo-
rithms that can provide error guarantees for each of
these problems.

® We conducted extensive experiments on real social
networks which verified our algorithms and the related
theoretical results.

The rest of the paper is organized as follows. We review
the related work in Section 2. In Section 3, we first
introduce the existing viral marketing paradigm and then
propose our Interest-Specified viral marketing paradigm.
We study the J-MIN-Seed problem, the IS-J-MIN-Seed
problem and the IS-k-MAX-Influence problem in Sections
4, 5 and 6, respectively. We conducted our empirical
studies in Section 7 and conclude our paper in Section 8.

2. Related work

In Section 2.1, we discuss two widely used diffusion
models in a social network, and in Section 2.2, we give the
related work about the influence maximization problem.
We briefly review the Target Set Selection (TSS) problem in
Section 2.3 and introduce some other relevant works in
Section 2.4.

2.1. Diffusion models

Given a social network represented in a directed graph
G, we denote V to be the set containing all the nodes in G
each of which corresponds to a user and E to be the set
containing all the directed edges in G. Each edge ecE in
the form of (u,v) is associated with a weight w,, [0, 1].
Different diffusion models have different meanings on
weights. In the following, we discuss the meanings for
two popular diffusion models, namely the Independent
Cascade (IC) model and the Linear Threshold (LT) model.

Independent Cascade (IC) model [7,8]. The first model is
the Independent Cascade (IC) model. In this model, the
influence is based on how a single node influences each of
its single neighbor. The weight w,, of an edge (u,v)
corresponds to the probability that node u influences node
v. Let Sp be the initial set of influenced nodes (seeds in our
problem). The diffusion process involves a number of steps
where each step corresponds to the influence spread from
some influenced nodes to other non-influenced nodes. At
step t, all influenced nodes at step t—1 remain influenced,
and each node that becomes influenced at step t —1 for the
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first time has one chance to influence its non-influenced
neighbors. Specifically, when an influenced node u
attempts to influence its non-influenced neighbor v, the
probability that v becomes influenced is equal to wy,. The
propagation process halts at step t if no nodes become
influenced at step t—1. The running example in Fig. 1 is
based on the IC model.

For a graph under the IC model, we say that the graph is
deterministic if all its edges have the probabilities equal to
1. Otherwise, we say that it is probabilistic.

Linear Threshold (LT) model [5,6]. The second model is
the Linear Threshold (LT) model. In this model, the
influence is based on how a single node is influenced by
its multiple neighbors together. The weight w,, of an edge
(u,v) corresponds to the relative strength that node v is
influenced by its neighbor u (among all of v's neighbors).
Besides, for each veV, it holds that Y ) cgWuy < 1. The
dynamics of the process proceeds as follows. Each node v
selects a threshold value 6, from range [0, 1] randomly.
Same as the IC model, let Sy be the set of initial influenced
nodes. At step t, the non-influenced node v, for which the
total weight of the edges from its influenced neighbors
exceeds its threshold (}Xuw.r and u is influenced
wyy > 6y), becomes influenced. The spread process termi-
nates when no more influence spread is possible.

For a graph under the LT model, we say that the graph
is deterministic if the thresholds of all its nodes have been
set before the process of influence spread. Otherwise, we
say that it is probabilistic.

2.2. Influence maximization

There is a long history of study on the information
diffusion process among individuals. The first effort
devoted to diffusion study is due to Ryan and Gross [20]
who discovered that the diffusion is a social process which
has strong effects on the farmers' decision making of
whether or not to adopt the hybrid corn seeds. More
recently, motivated by the fact that the social network
plays a fundamental role in spreading ideas, innovations
and information, Domingoes and Richardson proposed to
use social networks for marketing purpose, which is called
viral marketing [11,21]. By viral marketing, they aimed at
selecting a limited number of seeds such that the influence
incurred by these seeds is maximized. We call this funda-
mental problem as the influence maximization problem.

In [12], Kempe et al. formalized the above influence
maximization problem as a discrete optimization problem
which corresponds to k-MAX-Influence. Given a social net-
work G(V,E) and an integer k, find k seeds such that the
incurred influence is maximized. Kempe et al. proved that k-
MAX-Influence is NP-hard for both the IC model and the LT
model. To achieve better efficiency, they provided a
(1-1/e)-approximation algorithm for k-MAX-Influence.

Recently, several studies have been conducted to solve
k-MAX-Influence in a more efficient and/or scalable way
than the aforementioned approximate algorithm in [12].
Specifically, in [13], Leskovec et al. employed a “lazy-
forward” strategy to select seeds, which has been shown
to be effective for reducing the cost of the approximate
algorithm in [12]. In [14], Kimura et al. proposed a new

shortest-path cascade model, based on which, they devel-
oped efficient algorithms for k-MAX-Influence. Motivated
by the drawback of non-scalability of all aforementioned
solutions for k-MAX-Influence, Chen et al. [22] proposed to
re-use the Monte-Carlo simulation results for estimating
the influence spread incurred by different sets of seeds and
also proposed a new heuristic called “Degree Discount” for
estimating the influence spread efficiently. Chen et al. [15]
proved that the problem of computing the influence
spread incurred by a set of seeds under the IC model is
#P-hard and proposed a heuristic called “PMIA” for esti-
mating the influence spread calculation under the IC
model. Chen et al. [23] proved that the problem of
computing the influence spread incurred by a set of seeds
under the LT model is #P-hard and proposed a heuristic
called “LDAG” for estimating the influence spread calcula-
tion under the LT model. Wang et al. [24]| proposed a
community-based method for finding top-k influential
users. Narayanam and Narahari [25] proposed a method
called “SPIN” which is based on Shapley value computa-
tion. Goyal et al. [26] developed an algorithm based on the
concept of “simple paths”, which provides a new trade-off
between the quality and the efficiency for the k-MAX-
Influence problem. Jiang et al. [27] proposed an approach
based on Simulated Annealing (SA) for the influence max-
imization problem under the IC model. Goyal et al. [28]
defined a new propagation probability model called “call
distribution” model that reveals how influence flows in
the networks based on historical data and studied the
influence maximized problem based on the proposed
model. Jung et al. [29] proposed a new heuristic based
on influence ranking (IR) and influence estimation (IE) for
estimating the influence spread calculation under the IC
model, which achieves up to two orders of magnitude
faster than PMIA. Li et al. [30] studied the influence
maximization problem on social networks with not only
the friend relationship but also the foe relationship. More
recently, Christian et al. [31] proposed a probabilistic
algorithm for the k-MAX-Influence problem, which gives
a(1—1/e—e¢)-approximation (for any ¢>0) and runs in
O((m+n)e—3logn) time where n (m) is the number of
users (links) in the social network.

The influence maximization problem has been extended
into the setting with multiple products instead of a single
product. Bharathi et al. solved the influence maximization
problem for multiple competitive products using game-
theoretical methods [32-40], while Datta et al. proposed
the influence maximization problem for multiple non-
competitive products [16]. Apart from these studies aiming
at maximizing the influence, considerable efforts have
been devoted to the diffusion models in social networks
[9,10].

2.3. Target Set Selection

The Target Set Selection (TSS) problem was first pro-
posed in [17]. The Target Set Selection problem is to select
a set S of seeds such that the whole social network is
influenced and the size of S is minimized. In the TSS
problem, the underling diffusion model is the Deterministic
Linear Threshold (DLT) model, which is identical to the LT
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model except that the thresholds of the nodes in the social
network are fixed in the DLT model. In contrast, the
thresholds of the nodes in the social network are randomly
determined under the LT model.

A few studies have been devoted to the TSS problem
[17,18,41]. In [17], Ning Chen derived some inapproxim-
ability results of the TSS problem. Specifically, it was stated
in [17] that the TSS prqbl_em cannot be approximated
within the ratio of 0(2'°¢ ™) for any fixed e > 0, unless
NP = DTIME(nP°Y1ogM)  In [18,41], Ben-Zwi explored the
hardness of the TSS problem by considering the treewidth
parameter of the graph. They developed an exact algo-
rithm for TSS which runs in n®" time, where w is the
treewidth of the underlying social network. Recently,
several pruning heuristics have been developed for the
TSS problem [42,43].

As could be noticed, the J-MIN-Seed problem, which
will be discussed later, is exactly the TSS problem except
that the diffusion models considered in J-MIN-Seed are the
IC model and the LT model instead of the DLT model. Due
to the different underlying diffusion models, the TSS
problem and the J-MIN-Seed problem have different
results. For example, as will be introduced later, a simple
greedy algorithm can give a good approximation error that
guarantees for the J-MIN-Seed problem, which, however, is
not the case for the TSS problem [17]. In a recent work
[44], Goyal et al. considered the J-MIN-Seed problem
independently and provided similar results to those in
our previous study [19].

2.4. Other relevant works

In [45], the authors studied the problem of identifying
the most efficient “spreaders” from which, the information
will be propagated to a large portion of the social network.
In [46], Centola empirically studied the effect of homo-
philic structures (similarity of social contacts) on the
information diffusion process, according to which, homo-
phily significantly increased the overall information diffu-
sion. In [47], the authors presented a method which is
used to identify the influence/susceptibility degree of the
users in the social networks. In [48], motivated by the
phenomenon that the diffusion processes of different
products might compete with each other, the authors
proposed a scalable framework for incorporating multiple
competitive diffusion models in social networks. Some
other works studied the problem of determining the
optimal size of the seed set. For example, [49] identifies
the optimal size of the seed set based on parameters such
as the coefficients of innovation and imitation, market
potential, discount rate, and gross margin. Stonedahl et al.
[50] defined a strategy space for this task by weighting a
combination of network characteristics such as average
path length, clustering coefficient, and degree. We note
here that we adopt a simple yet natural seeding strategy for
viral marketing, i.e., the seed size is either pre-set (influ-
ence maximization), in which case, the above branch of
studies could be used for setting the seed size, or regarded
as an objective to optimize (seed minimization), in which
case, the strategy is intuitive since using fewer seeds saves
money for the company. More recently, Saharara et al. [51]

studied the viral marketing with the following two set-
tings: (1) the network is evolving and (2) the weights (or
strengths) of the edges are product-dependent.

3. Viral marketing paradigms

We discuss the existing viral marketing paradigm in
Section 3.1 and propose the new paradigm, Interest-
Specified viral marketing, in Section 3.2. We illustrate the
method for estimating the influence spread corresponding
to a seed set in Section 3.3.

3.1. Existing viral marketing paradigm

3.1.1. Paradigm

As mentioned in Section 1, in the existing viral market-
ing paradigm, the company first targets a limited number
of seeds and then these seeds would initiate the diffusion
process of the product information in the social network
automatically. Thus, the most critical problem in viral
marketing is to decide which users should be targeted as
seeds.

To answer this question, most existing studies
[12,15,26] on viral marketing assume such a scenario,
where the budget of how many seeds could be targeted
is given, e.g., k, and the goal is to maximize the influence
resulted from the diffusion process initiated by the seeds.
The problem corresponding to this scenario is k-MAX-
Influence.

In this work, we assume another scenario, where the
influence requirement has been specified, e.g., at least |
users should be influenced, and the goal is to minimize the
number of seeds. The problem corresponding to this
scenario is called J-MIN-Seed and will be formally defined
in Section 4.

Given a set S of seeds, we define the influence incurred
by the seed set S (or simply the influence of S), denoted by
a(S), to be the expected number of nodes influenced
during the diffusion process initiated by S.

3.1.2. Properties

Since the analysis of the error bounds of our approx-
imate algorithm for J-MIN-Seed, which will be in Section 4,
is based on the property that function «(-) is submodular,
we first briefly introduce the concept of submodular
function, denoted by f(-). After that, we provide several
properties related to the influence diffusion process in a
social network.

Definition 1 (Submodularity). Let U be a universe
set of elements and S be a subset of U. Function f(-)
which maps S to a non-negative value is said to be
submodular if given any Sc U and any T = U where Sc T,
it holds for any element xe U—T that f(SU {x})—f(S) >
f(TU{xp— f(T). o

In other words, we say f(-) is submodular if it satisfies
the “diminishing marginal gain” property: the marginal
gain of inserting a new element into a set T is at most the
marginal gain of inserting the same element into a subset
of T.
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According to [12], function o(-) is submodular for both
the IC model and the LT model. The main idea is as follows.
When we add a new node x into a seed set S, the influence
incurred by the node x (without considering the nodes in
S) might overlap with that incurred by S. The larger S is,
the more overlap might happen. Hence, the marginal gain
is smaller on a (larger) set compared to that on any of its
subsets. We formalize this statement with the following
Property 1.

Property 1. Function o(-) is submodular for both the IC
model and the LT model. ©

To illustrate the concept of submodular functions,
consider Fig. 1. Assume that a seed set T is {Ada}. Let a
subset S of T be @. We insert into seed sets T and S the
same node Bob. In fact, it is easy to calculate ¢(@)=0,
o({Ada})=3.57, o({Bob})=2.64 and o({Ada,Bob})=3.83.
Consequently, we know that the marginal gain of adding
a new node Bob into set T, i.e., ¢({Ada, Bob})—o({Ada}) =
0.26, is smaller than that of adding Bob into one of its
subsets S, i.e., ¢({Bob})—a(0) = 2.64.

In the k-MAX-Influence problem, we have a submodu-
lar function o(-) which takes a set of seeds as an input and
returns the expected number of influenced nodes incurred
by the seed set as an output. Similarly, in the J-MIN-Seed
problem, we define a function a(-) which takes a set of
influenced nodes as an input and returns the smallest
number of seeds needed to influence these nodes as an
output. One may ask: Is function «(-) also submodular?
Unfortunately, the answer is “no” which is formalized with
the following Property 2.

Property 2. Function a(-) is not submodular for both the IC
model and the LT model. ©

Property 2 suggests that we cannot directly adapt
existing techniques for the k-MAX-Influence problem
(which involves a submodular function as an objective
function) to our J-MIN-Seed problem (which involves a
non-submodular function as an objective function).

3.2. Interest-Specified viral marketing paradigm

3.2.1. Paradigm

As could be noticed, in the existing viral marketing
paradigm discussed in Section 3.1, it is implicitly assumed
that all users in the social network are of interest for the
product being promoted. Specifically, the users in the
social network are not differentiated from each other by
considering the specific product being promoted, which,
however, could cause some problem in those cases, where
the product being promoted is not designed for the
general people, but for a specialized group of people, says
the young. Motivated by this phenomenon, we propose a
new paradigm of viral marketing, where people can
specify which users in the social network are of interest
when promoting products. We call this paradigm Interest-
Specified Viral Marketing.

The main procedure of viral marketing in this new
paradigm is the same as that in the existing paradigm,
except that the company should also specify which users

Ada Bob

Connie

il
David

Fig. 2. Counterexample (a(-)).

in the social network are of interest at the beginning,
which will be discussed next.

In real-life applications, the company can specify the
users of interest in an arbitrary way. For ease of illustra-
tion, in this paper, we consider the following way for
specifying which users are of interest. We assume
that each user in the social network is associated with a
set of attribute values, e.g., ages, professions and genders.
Usually, these attribute values are good indicators of
whether a user is of interest for a specific product. For
example, when we promote a product aimed at the young,
all users that are young can be specified to be of interest.
The attribute values could come from different attribute
domains. Examples of attributes include gender, age and
profession, and their corresponding domains are {male,
female}, {1, 2, ..., 120} and {salesman, teacher, ...}, respec-
tively. For example, the set of attribute values of Ada in
Fig. 3 is {female, young, student}, meaning that she is a
young student.

We formally present the above way of specifying the
users of interest as follows. Let A= {ay,ay,...,a,} be the
attribute domain and A;={a;,,a;,,....q;,} (1<ij<iy<--
<1im <n), a subset of A, be the set of specified attribute
values of interest. Then, all nodes that contain some
attribute values from A; are regarded to be of interest
wrt A; and we denote the set of users that are of interest
wrt A; by V. For example, let A be {young, adult, old} and A,
be {young}. Then, all the users that contain the attribute
value “young” are of interest. Let S be a set of seeds. At the
end of the process of viral marketing with its seed set of S,
a corresponding set of users in the social network would
be influenced. We define o(S,A;) to be the expected
number of influenced users incurred by S that are of
interest, where A, is the set of attribute values of interest.
To illustrate, consider the social network presented in
Fig. 3(a), where there are six people. The attribute values
of each user are shown in Fig. 3(b). We assume that each
edge has its weight equal to 1, which indicates that an
influenced node u will influence a non-influenced node v
immediately if there exists an edge from u to v. Let A; be
{young} and S be {Ada}. Then we have o(S,A;)=2. Note
that 4(S) is equal to 4(S, A).

3.2.2. Properties
Same as a(S), o(S,A;) is also submodular. We present
this property in Property 3.
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Attribute values

female, young, student

male, young, student

female, young, student

male, middle-aged, teacher

female, middle-aged, lawyer

a b
Ada Bob Users
. Connie Ada
N\ /
< = - Bob
. P Connie
David - Emely David
[N 4
N ,,/ Emely
Fred Fred

male, old, retired

Fig. 3. An example for Interest-Specified viral marketing. (a) Social network and (b) attribute values.

Property 3. 4(S,A)) is a submodular function for both the IC
model and the LT model. ©

To illustrate, consider the example in Fig. 3. Assume
that A; is {young}. Let T be {Ada} and S be a subset of T, @.
We have o(T,A;) =2 since two users that of interest (i.e.,
Ada and Connie) would be influenced due to the seed set T
and 4(S,A;) = 0 since no users would be influenced due to
an empty seed set. Consider adding a new seed Connie.
The marginal gain of adding Connie into T, i.e. o(TU
{Connie},A))—o(T,A|), is 0, while the marginal gain of
adding Connie into S, i.e., o(S U { Connie },A;)—a(S,A)), is
1. Thus, we have (T U { Connie },A;))—a(T,A))<a(SU {
Connie },A))—a(S,A)).

3.3. Influence estimation

We discuss the methods for estimating «(S) and o(S,A))
Sections 3.3.1 and 3.3.2, respectively.

331. 4 (S)

It is proved in [15,23] that the problem of calculating
a(S) given a seed set S is #P-hard. Thus, it is prohibitively
expensive to compute o(S) exactly. Usually, in the literature
of viral marketing, people adopt Monte-Carlo simulation to
estimate ¢(S). The main idea of Monte-Carlo simulation is
as follows. Let S be the seed set. It simulates the diffusion
process initiated by S many times and for each time, it
counts the number of influenced users at the end of that
diffusion process. Then, it averages the counts to be the
estimated (S). It is shown in [12] that on a social networks
with about 10k nodes and 50k vertices, the accuracy of this
method is good enough when the diffusion process is
simulated 10,000 times and the gain on the accuracy by
performing more simulations, e.g., 20,000 times, is not
significant. However, it remains unclear whether the above
Monte-Carlo simulation method provides a certain degree
of accuracy guarantee.

In this paper, we prove a theoretical result on the
accuracy achieved by the Monte-Carlo simulation method
and present it in the following lemma.

Lemma 1. Let ¢ be a real number between 0 and 1. Given a
social network G(V,E) and a seed set S, Monte-Carlo simula-
tion method achieves a (1 + ¢)-approximation of o(S) with
the confidence at least ¢ by performing the simulation
process at least (|V|—1)? In(2/(1—c))/2¢%|S|? times. ©

Note that our work in this paper is orthogonal to the
methods of estimating o(S). Therefore, all existing efficient
heuristic-based methods [23,15,26] for estimating ¢(S) can
be adopted for estimating o(S) in this work.

33.2. (S, A)

Since o(S,A;) is more general than o(S), we know that
a(S,A)) is at least #P-hard.

Again, we utilize the same idea of Monte-Carlo simula-
tion for estimating «(S,A;). The only difference is that for
each simulation process, instead of counting all influenced
users, we only count the influenced users that are of
interest.

4. J-MIN-Seed

We define the J-MIN-Seed problem in Section 4.1 and
introduce an approximate algorithm called Greedy for J-
MIN-Seed in Section 4.2. We provide the theoretical
analysis of Greedy in Section 4.3 and discuss two different
implementations of Greedy in Section 4.4.

4.1. Problem definition

We define the J-MIN-Seed problem as follows.

Problem 1 (J-MIN-Seed). Given a social network G(V,E)
and an integer J, it is to find a set S of seeds such that |S] is
minimized and ¢(S)>J. ©

We say that node u is covered by seed set S if u is
influenced during the influence diffusion process initiated
by S. It is easy to see that J-MIN-Seed aims at minimizing
the number of seeds while satisfying the requirement of
covering at least ] nodes. Given a node x in V and a subset S
of V, the marginal gain of inserting x into S, denoted by
Gx(S), is defined to be (S U {x})—a(S).

We show the hardness of J-MIN-Seed with the follow-
ing theorem.

Theorem 1. The J-MIN-Seed problem is NP-hard for both the
IC model and the LT model. ©

4.2. Approximate algorithm

As proved in Section 3, J-MIN-Seed is NP-hard. It is
expected that there is no efficient exact algorithm for
J-MIN-Seed. As discussed in Section 1, if we want to solve
J-MIN-Seed, a naive adaption of any existing algorithm
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originally designed for k-MAX-Influence is time-consuming.
The major reason is that it executes an existing algorithm
many times and the execution of this existing algorithm for an
iteration is independent of the execution of the same algorithm
for the next iteration. Motivated by this observation, we
propose Greedy which solves J-MIN-Seed efficiently by
executing an iteration based on the results from its previous
iteration.

Specifically, Greedy first initializes a seed set S to be an
empty set. Then, it selects a non-seed node u such that the
marginal gain of inserting u into S is the greatest and then
it inserts u into S. It repeats the above steps until at least |
nodes are influenced. We present Greedy in Algorithm 1.

Algorithm 1. Greedy.

Input: G(V,E): a social network.
J: the required number of nodes to be influenced
Output: S: a seed set.
1:S<o
2: while ¢(S) <] do
3: u<«arg maxycy-_s(a(S U {x}h)—a(S))
4: S<SU{u}
5: return S

Greedy is similar to the algorithm from [12] for k-MAX-
Influence except its stopping criterion. The stopping cri-
terion in Greedy is o(S) >J while the stopping criterion in
the algorithm from [12] is |S|>k where k is a user
parameter of k-MAX-Influence. Besides, they have differ-
ent theoretical results. Greedy for J-MIN-Seed has theore-
tical results which guarantee the number of seeds used
while the algorithm for k-MAX-Influence has theoretical
results which guarantee the number of influenced nodes.

4.3. Theoretical analysis

In this part, we show that Greedy in Algorithm 1 can
return the seed set with both an additive error guarantee
and a multiplicative error guarantee.

Greedy gives the following additive error bound.

Lemma 2 (Additive error guarantee). Let h be the size of the
seed set returned by Greedy and t be the size of the optimal
seed set for ]-MIN-Seed. Greedy gives an additive error bound
equal to 1/e-J+1. That is, h—t <1/e-J+1. Here, e is the
natural logarithmic base. ©

Before we give the multiplicative error bound of
Greedy, we first give some notations. Suppose that Greedy
terminates after h iterations. We denote S; to be the seed
set maintained by Greedy at the end of iteration i where
i=1,2,...,h. Let Sy denote the seed set maintained before
Greedy starts (i.e.,, an empty set). Note that o(5;) <J for
i=1,2,...,h—1 and a(Sp) > J.

In the following, we give the multiplicative error bound
of Greedy.

Lemma 3 (Multiplicative Error Guarantee). Let ¢'(S)=
min{a(S),J}. Greedy is a (1+min{kq, ko, k3})-approximation
of J-MIN-Seed, where ky =InJ/(J—d'(Sp_1)), ko =In o'(S1)/
(0'(Sp)—3a'(Sp_1)), and ks =In(max{c'({x})/(c’ (S; U {x})—
dS)IxeV,0<i< hd' S U x)—a'(S)>0}). o

According to Lemma 3, the multiplicative error bound
of Greedy depends on the execution process of the algo-
rithm. As will be shown in our empirical studies, the
theoretical multiplicative error bound of Greedy is usually
smaller than 4 and the practical multiplicative error is
around 2 in most cases.

4.4. Implementations

As can be seen, the efficiency of Greedy in Algorithm 1
relies on the calculation of the influence of a given seed set
(operator o(-)). However, the influence calculation process
for the IC model is #P-hard [15]. Under such a circum-
stance, we adopt the Monte-Carlo simulation method
discussed in Section 3.3 when using operator o(-). We
denote this implementation by SM-Greedy1.

In fact, we have an alternative implementation of
Greedy as follows. Instead of sampling the social network
to be deterministic when calculating the influence incurred
by a given seed set, we can sample the social network to
generate a certain number of deterministic graphs only at
the beginning. Then, we solve the J-MIN-Seed problem on
each such deterministic graph using Greedy, where the
cost of operator o(-) simply becomes the time to traverse
the graph.

At the end, we return the average of the sizes of the
seed sets returned by Greedy based on all samples
(deterministic graphs). We denote this alternative imple-
mentation by SM-Greedy2. Note that with the SM-Greedy2
implementation, we can only obtain the average size of the
seed sets, but not a real seed set.

5. Interest-Specified J-MIN-Seed

We provide the formal definition of Interest-Specified
J-MIN-Seed in Section 5.1 and design some approximate
algorithms for it in Section 5.2.

5.1. Problem definition

Recall that given a positive number J, the J-MIN-Seed
problem is to select a set S of seeds such that the number
of influenced nodes, i.e., (S), is at least J and |S| is
minimized. We denote its counterpart in the paradigm of
Interest-Specified viral marketing by Interest-Specified
J-MIN-Seed (IS-J-MIN-Seed). The goal part of IS-J-MIN-Seed
is the same as J-MIN-Seed, i.e., selecting as few seeds as
possible, while the constraint part of IS-J-MIN-Seed is
different from that of J-MIN-Seed. Instead of imposing
only one overall requirement of influencing at least a
certain number J users as J-MIN-Seed does, IS-/-MIN-Seed
enforces multiple requirements on the number of influ-
enced users, one for each attribute value of interest.
Specifically, for each attribute value of interest, a;
(1 <l<m), it is required to influence at least a certain
number j; of users containing the attribute value a;. We
provide the formal definition of the IS-J-MIN-Seed pro-
blem in the following problem.

Problem 2 (Interest-Specified J-MIN-Seed). Given a set
of m positive integers J = {j;,Jja,---»jm}, it is to find a set
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S of seeds such that o(S,{a;})>j, for 1<I<m and |S] is
minimized. ©

To illustrate, consider our running example in Fig. 3.
Suppose that a company has a stock of three products
designed for young people. In order to sell out these products,
it wants to influence at least three users that are young while
the cost (the number of seeds) for viral marketing is mini-
mized. This problem is essentially an instance of IS-J-MIN-
Seed where 7 ={3} and q;, is set to be “young”. It can be
verified that the solution of this problem instance is {Ada,
Bob}, since {Ada, Bob} is the smallest seed set that can incur
(at least) three influenced users that are young (i.e., Ada, Bob
and Connie). Note that J-MIN-Seed cannot be adopted in this
scenario since it provides no option for the company to
specify which kinds of users in the social network are of
interest.

IS-J-MIN-Seed is more general than J-MIN-Seed in the
sense that when all the users in the social network are
assumed to have a common attribute value of interest, say
a;,, and 7 is set to be {J}, IS-/-MIN-Seed becomes J-MIN-Seed
exactly.

5.2. Approximate algorithms

The IS-J-MIN-Seed problem can be regarded as an
optimization problem with m constraints, where the con-
straints are (S, {a;}) > j, for 1 <I<m and the objective is
to minimize |S|. Considering IS-J-MIN-Seed is more general
than J-MIN-Seed and J-MIN-Seed is NP-hard, we know that
IS-J-MIN-Seed is NP-hard as well. In order to solve the IS-J-
MIN-Seed problem efficiently, in the following, we explore
three approximate algorithms for IS-J-MIN-Seed, namely
MS-Independent (Section 5.2.1), MS-Incremental (Section
5.2.2) and MS-Greedy (Section 5.2.3).

5.2.1. Algorithm MS-Independent

The main idea of algorithm MS-Independent is to
satisfy the m constraints of IS-J-MIN-Seed independently.
Specifically, MS-Independent finds a seed set S; such that
o(51.{a;,}) > j;. Then, it finds a seed set S, such that
o(S2.{a;,}) > j,. Similarly, it finds a seed set S; such that
(51, {a;}) = j, for 3 <1< m. Finally, it constructs a seed set S
as the union of §; (1<l<m), ie, S=U;-;-S, and
returns S as the (approximate) solution. It is easy to verify
that S satisfies all the constraints of the IS-J-MIN-Seed
problem, i.e., (S, {a;}) >j, for 1 <I<m, using the mono-
tonicity of o(S,{a;}). We provide the framework of MS-
Independent in Algorithm 2.

Algorithm 2. MS-Independent.

1:S<o

2: for [=1 to m do

3: find a seed set S; such that o(S, {a; }) > j
4:S<Uici<mS

5: return seed set S

One remaining issue of MS-Independent is how to find
a seed set S; such that (S, {a;}) > j; (line 3 in Algorithm 2).
A trivial solution is to include all users containing attribute
value g; into S;. However, this would result in the seed set

S returned by MS-Independent to be the set of all users of
interest, which is a trivial solution of the IS-J-MIN-Seed
problem. Roughly, the smaller S; it finds, the more likely
the seed set S returned by MS-Independent is smaller
since S is the union of S; (1 <l <m).

In this paper, we use a simple greedy algorithm for this
purpose. Specifically, it first sets S; to be @. Then, it
proceeds with iterations and at each iteration, it picks
the node v, that incurs the largest gain of influencing
users with the attribute value a; among all nodes, ie.,
Vi = arg maxycv_s{a(S U {x},{a;})—o(S,{a;})} and inserts
vV, into Si. It stops when the number of influenced users
with attribute g;, is at least j, i.e., a(S, {a;}) > ji.

Before providing the approximation factor of MS-Inde-
pendent, we introduce some notations first. Consider the
above greedy procedure for finding S;. Assume that it runs
with r; iterations in total. We use S? to represent the seed
set at the end of iteration h (1 < h <r)). Besides, we define
04(S,{a;}) to be min{a(S, {a;}),j;} for 1 <I<m. We provide
the approximation factor of MS-Independent in Lemma 4.

Lemma 4. For a problem instance of IS-]-MIN-Seed, let S* be
the optimal solution and S be the solution returned by MS-
Independent. Let S, be the largest seed set among S;
(1 <l<m). We have |S|/|S*| <m - (14+min{t}, t2,t3}), where
tl=In

Jx
oS )
a4 (Sy. 1ai,})

2=
oS A D — op(Sy 1 fay )
and
£2=In max{ - 7a(tv}, 163, }) - [1<h<ry,
oSy U {vh {ai}) —oy(Sy, (ai,})

veV, oy(Sk U vhia)) —ou(Shia)) >0 O

—

As will be shown in our experiments, the approximation
error bound of MS-Independent is usually small, say around 3.

5.2.2. Algorithm MS-Incremental

MS-Independent tries to satisfy each constraint of the
IS-J-MIN-Seed problem independently. In other words,
when finding S, to influence at least j, users with the
attribute value @iy it does not take the previously found
seed sets S;, (I; <I,) into consideration, which might also
incur some influenced users with attribute aj,. Thus, the
constraint of influencing at least j, users containing
attribute value a;, might be satisfied excessively.

Motivated by this, we propose the second approximate
solution, MS-Incremental, for IS-J-MIN-Seed as follows.
As its name implies, MS-Incremental tries to satisfy the
constraints of IS-J-MIN-Seed one after one incrementally.
Specifically, it maintains a set S to store the selected seeds.
Initially, S is set to @. Then, it proceeds with m stages
(Stage 1,2,...,m). At Stage 1, it selects some seeds and
inserts them into S such that the constraint of influencing
at least j; users containing attribute value a;, is satisfied
(i.e., (S, {a; }) = j;)- At Stage 2, it selects some other seeds
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and inserts them into S such that the constraint of
influencing at least j, users containing attribute a;, is
satisfied (i.e., o(S,{a;})>j,). It continues in the same
manner for the remaining stages. As can be noted, when
satisfying the constraint of influencing at least j, users
containing attribute value a; at Stage I, it takes into
consideration those seeds that have been selected for
satisfying the previously satisfied constraints.

One remaining issue of MS-Incremental is, at Stage [, how
to select some seeds together with the previously selected
seeds such that the constraint of influencing at least j; users
containing attribute value a;, is satisfied. In this paper, we
consider a similar greedy procedure as that for MS-
Independent as follows. It repeatedly picks the user that
incurs the largest marginal gain of satisfying the constraint of
influencing at least j; users containing attribute value a; and
inserts it into S until this constraint is satisfied (i.e.,
a(S,{a;}) = j;). We present MS-Incremental in Algorithm 3.

Algorithm 3. MS-Incremental.

1Se@; 11

: while | <m do

V< arg maxy e v —s{o(S U {v}, {a; }) - a(S, {a; })}

S<SU {vp}

if 6(S, {a;}) > j, then
//Change to satisfy the next constraint
l—1+1

: return seed set S

OND U A WN =

5.2.3. Algorithm MS-Greedy

In this part, we introduce the third approximate solu-
tion, MS-Greedy, for IS-J-MIN-Seed. Different from MS-
Independent and MS-Incremental which try to satisfy the
constraints individually, MS-Greedy attempts to satisfy the
constraints collectively.

Let S be a seed set. MS-Greedy sets S to ¢ initially. Then,
it proceeds with iterations and at each iteration, it picks
the node v, that incurs the largest “gain” and inserts v,,
into S. Here, the “gain” of a node v based on a seed set S is
defined to be the new contribution of satisfying the
remaining un-satisfied constraints made by v. We define
the valid contribution of satisfying the constraint of influ-
encing at least j; users containing attribute value a; made
by v to be min{a(S U {v},{a;}).j;} —min{a(S, {a;}),j;}. Note
that if (S, {a;}) = jj, that is, the constraint of influencing at
least j; users that contain attribute g;, is satisfied, then the
valid contribution of including any additional seed is
simply 0. As a result, the new contribution of satisfying
all un-satisfied constraints made by v is equal to
Y1 <1<m(Min{e(S U {v}, {a;}),j)} —min{a(S, {a; }).j}),  ie,
Y1 <1<m(0(S U (v} {a;}) —a,(S, {a;})). In the following, we
define o;,(S) as Y1 < 1< ma,(S, {a;}). Then, the gain of includ-
ing a node v into a seed set S becomes o,(S U {v})—a/,(S).
MS-Greedy terminates when all constraints are satisfied.
We present MS-Greedy in Algorithm 4.

Algorithm 4. MS-Greedy.

1: S«

2: while there exist an unsatisfied constraint do
3 Vme—arg maxyev_s{og(S U (V) —a,(S))

4: S<SU {vy)

5: return seed set S

Before introducing the approximation factor of MS-
Greedy, we define some notations first. Assume that MS-
Greedy runs with r iterations. Let S;, denote the seed set at
the end of iteration h (1 <h <r). We provide the approx-
imation factor of MS-Greedy in Lemma 5.

Lemma 5. For a problem instance of IS-]-MIN-Seed, let S* be
the optimal solution and S be the approximate solution
returned by MS-Greedy. We have |S|/|S*| <1+ min{t,
t2, 3}, where

Aelndswm 2y 0D
Jsum—04(Sr—1)’ ,(Sr)— 0y (Sr-1)

e =mmax{ o T sy ShEE VeV, g U )=o) >0}

and

]sum:21£l£mjl~ O

As will be shown in our experiments, the approxima-
tion error bound of MS-Greedy is usually small, say
around 2.5.

6. Interest-Specified k-MAX-Influence

We provide the formal definition of Interest-Specified
k-MAX-Influence in Section 6.1 and design an approximate
algorithm for it in Section 6.2

6.1. Problem definition

Recall that given a positive integer k, the k-MAX-
Influence problem is to select a set S of at most k seeds
such that the number of influenced nodes incurred by S is
maximized. We denote its counterpart in the paradigm of
Interest-Specified viral marketing by Interest-Specified k-
MAX-Influence (IS-k-MAX-Influence). The constraint part of
IS-k-MAX-Influence is the same as that of k-MAX-Influ-
ence, i.e., at most k seeds can be selected, while the goal of
IS-k-MAX-Influence is more concise than that of k-MAX-
Influence. Specifically, instead of maximizing the overall
number of influenced users, i.e., ¢(S), as k-MAX-Influence
does, IS-k-MAX-Influence maximizes only the number of
the influenced users that are of interest, i.e., (S, Aj). The
formal definition of IS-k-MAX-Influence is provided in the
following problem.

Problem 3 (Interest-Specified k-MAX-Influence). Given a
positive integer k, it is to find a seed set S such that
IS| <k and o(S,A;) is maximized. ©

To illustrate, consider the following scenario. Suppose
that a company is promoting a product which is designed
only for young people. Now, the company wants to launch
a viral marketing procedure based on the social network in
Fig. 3. Due to the limited budget, the company can select
at most two seeds. Since the product is aimed at the
young, only the users who are young are of interest to
this company. This problem is essentially an instance
of IS-k-MAX-Influence, where A; = {young} and k=2. As
can be verified, the solution of this IS-k-MAX-Influence is
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{Ada, Bob} since the number of influenced users that are of
interest is 3 (i.e.,, Ada, Bob and Connie) which is max-
imized. Note that k-MAX-Influence cannot be adopted in
this scenario. This is because if k-MAX-Influence is adopted
and k is set to be 2, the corresponding solution is {Ada,
Fred} incurring five users (Ada, Connie, David, Emely,
Fred), among which, however, only two (i.e.,, Ada and
Connie) are of interest to the company.
IS-k-MAX-Influence is more general than k-MAX-Influ-
ence in the sense that when A is set to be A, i.e., all the
users in the social network are specified to be of interest,
IS-k-MAX-Influence becomes k-MAX-Influence exactly.

6.2. Approximate algorithm

As mentioned previously, IS-k-MAX-Influence is more
general than k-MAX-Influence. It is proved that the k-
MAX-Influence problem is NP-hard [12]. Therefore, the
Interest-Specified k-MAX-Influence problem is NP-hard
as well.

To solve IS-k-MAX-Influence efficiently, we provide an
approximate solution, a greedy algorithm called MI-
Greedy, which provides an approximation factor equal to
(1—1/e). Initially, MI-Greedy sets the seed set S to be @.
Then, it proceeds with k iterations. At each iteration, the
user that incurs the largest marginal gain among all non-
seeds in V is selected and inserted into S. We present the
MI-Greedy algorithm in Algorithm 5.

Algorithm 5. MI-Greedy.

1:S«o

2: for i=1 to k do

3: Vp<«arg maxycv_s{a(S U {x},A)—a(S, A}
4: S<SU {vy}

5: return seed set S

Given a positive number k, the Interest-Specified k-
MAX-Influence problem is to select a set S of k seeds such
that the number of influenced users of interest, (S, A)), is
maximized. That is, Interest-Specified k-MAX-Influence
can be regarded as the problem of maximizing the sub-
modular function (S, A;) where S ¢ V and |S| < k. By using
Lemma 7 (provided in the appendix), we know that the
MI-Greedy provides an approximation factor equal to
(1-1/e) for IS-k-MAX-Influence. We formalize this result
in the following lemma.

Lemma 6. Algorithm MI-Greedy provides the approximation
factor of (1—1/e) for the Interest-Specified k-MAX-Influence
problem, where e is the base of the natural logarithm. ©

7. Empirical study

We set up our experiments in Section 7.1 and give the
corresponding experimental results in Section 7.2.

7.1. Experimental setup
We conducted our experiments on a 2.26 GHz machine

with 4 GB memory under a Linux platform. All algorithms
were implemented in C/C+ +.

7.1.1. Datasets

We used five real datasets for our empirical study,
namely HEP-T, Epinions, Amazon, DBLP and Twitter.

The first four datasets are used for J-MIN-Seed. HEP-T is
a collaboration network generated from “High Energy
Physics-Theory” section of the e-print arXiv (http://www.
arXiv.org). In this collaboration network, each node repre-
sents one specific author and each edge indicates a co-
author relationship between the two authors correspond-
ing to the nodes incident to the edge. The second one,
Epinions, is a who-trust-whom network at Epinions.com,
where each node represents a member of the site and
the link from member u to member v means that u trusts v
(i.e., v has a certain influence on u). The third real dataset,
Amazon, is a product co-purchasing network extracted
from Amazon.com with nodes and edges representing
products and co-purchasing relationships, respectively.
We believe that product u has an influence on product v
if v is purchased often with u. Both Epinions and Amazon
are maintained by Jure Leskovec. Our fourth real dataset,
DBLP, is another collaboration network of computer
science bibliography database maintained by Michael Ley.

For Interest-Specified Viral Marketing, we use two data-
sets, Twitter and HEP-T, where each node is associated with a
set of attribute values. Twitter corresponds to a social net-
work crawled from website twitter.com. In this social net-
work, each node represents a user and each edge (u,v)
indicates that user v is a follower of user u. Besides, each user
contains a set of attribute values, such as his/her profession,
gender and location information. HEP-T is exactly the colla-
boration network from “High Energy Physics-Theory” men-
tioned above except that for each node v in the social
network, we randomly pick an attribute from set {young,
middle-aged, senior, old} and assign it as v's attribute. For
simplicity, we keep the name of “HEP-T” for this dataset. We
summarize the features of the above real datasets in Table 1.

For efficiency, we ran our algorithms on the samples of
the aforementioned real datasets with the sampling ratio
equal to one percent. The sampling process is done as
follows. We randomly choose a node as the root and then
perform a breadth-first traversal (BFT) from this root. If the
BFT from one root cannot cover our targeted number of
nodes, we continue to pick more new roots randomly and
perform BFTs from them until we obtain our expected
number of nodes. Next, we construct the edges by keeping
the original edges between the nodes traversed. However,
we note here that by equipping some efficient heuristic-
based methods [15,26] for influence estimation (¢(S) and
a(S,A))), the techniques developed in this paper could be
scalable to large social networks.

7.1.2. Configurations

® Weight generation for the IC model. We use the QUAD-
RIVALENCY model to generate the weights. Specifically,
for each edge, we uniformly choose a value from set
{0.1,0.25,0.5,0.75}, each of which represents minor,
low, medium and high influence, respectively.

® Weight generation for the LT model. For each node u, let
d, denote its in-degree, we assign the weight of each
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Table 1
Statistics of real datasets.

Dataset HEP-T Epinions Amazon DBLP Twitter

No. of nodes 15,233 75,888 262,111 654,628 1977
No. of edges 58,891 508,837 1,234,877 1,990,259 8,846,476
Average degree 412 6.1 134 9.4 884
Maximal degree 64 588 3079 425 2513
No. of connected component 1781 73K 1 1 165
Largest component size 6794 517 K 76 K 262 K 1824
Average component size 8.6 9.0 6.9K 262K 12

edge to u as 1/d,. In this case, each node obtains the
equivalent influence from each of its neighbors.

® No. of times for Monte-Carlo simulation. For each influ-
ence calculation under both the IC model and the LT
model, we perform the simulation process 10,000 times
by default.

® Parameter J. In the following, we denote parameter J as
a relative real number between 0 and 1 denoting the
fraction of the influenced nodes among all nodes in the
social network (instead of an absolute positive integer
denoting the total number of influenced nodes)
because a relative measure is more meaningful than
an absolute measure in the experiments. We set J to be
0.5 by default. Alternative configurations considered
are {0.1,0.25,0.5,0.75, 1}.

® Attribute domain A. For Twitter, we use set {male,
female}, while for the HEP-T dataset, we use set {young,
middle-aged, senior, old}.

® Set of attributes of interest A.. We set A; to {male} and
{middle-aged, senior} on default for Twitter and HEP-T,
respectively.

® Parameter k for Interest-Specified k-MAX-Influence. k is
varied from set {5,10,15, 20, 25}.

® Parameter J = {ji,Ja,----jm} fOr Interest-Specified J-MIN-
Seed. We first define a parameter y, which follows
normal distribution Nu,s]. Then, we set ji to y- Ny,
where Ny is the number of users containing attribute
value a;. In our experiments, x varies from set
{0.1,0.25,0.5,0.75,1} and 6 is set to 0.1 on default.

7.1.3. Algorithms
J-MIN-Seed: The following shows the algorithms for
J-MIN-Seed.

® Greedyl corresponds to the first implementation of
Greedy as introduced in Section 4.4.

® (Greedy2 corresponds to the alternative implementation
of Greedy as introduced in Section 4.4.

® Random corresponds to the method which repeatedly
selects the seeds from the un-covered nodes at random
until J users have been influenced. Correspondingly, we
denote it by Random.

® Degree-heuristic corresponds to the method which
repeatedly picks the node with the largest out-degree
yet un-covered and adds it into the seed set until the
incurred influence exceeds the threshold.

® (Centrality-heuristic is another heuristic method which
uses distance centrality as the heuristic. In sociology,
distance centrality is a common measurement of nodes’
importance in a social network based on the assump-
tion that a node with short distances to other nodes
would probably have a higher chance to influence
them. Centrality-heuristic repeatedly selects the seeds
in a decreasing order of nodes' distance centralities
until the requirement of influencing at least J nodes
is met.

In the experiment, we do not compare our algorithms
with the naive adaption of an existing algorithm for k-
MAX-Influence described in Section 1 because this naive
adaption is time-consuming as discussed in Section 4.

Interest-Specified J-MIN-Seed: The following shows the
algorithms for Interest-Specified J-MIN-Seed.

® MS-Independent, MS-Incremental and MS-Greedy are our
proposed algorithms.

® MS-Random is the first baseline which repeatedly
selects seeds at random until all the constraints are
satisfied.

® MS-Degree is the second baseline which adopts the
heuristic of out-degree for selecting seeds.

® MS-Centrality is the third baseline which uses the
heuristic of distance centrality for selecting seeds.

Interest-Specified k-MAX-Influence: The following shows
the algorithms for Interest-Specified k-MAX-Influence.

® MiI-Greedy is our proposed algorithm MI-Greedy.

® Mi-Random is the first baseline which selects k seeds
randomly.

® Mi-Degree represents the second baseline which selects
as seeds the k nodes whose out-degrees are among the
top-k.

® Mi-Centrality is our third baseline which selects as
seeds the k nodes whose centralities are among the
top-k.

7.2. Experimental results

7.2.1. Experiments for ]-MIN-Seed

We use three measurements, namely the no. of seeds,
running time and memory. The no. of seeds measurement is
used for measuring the effectiveness of the algorithms for
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J-MIN-Seed. Specifically, the fewer seeds an algorithm
returns, the better the algorithm is. The running time
and memory correspond to two common measurements
on algorithms. The main memory usage of all algorithms
in our experiments is to store the underlying social net-
work. We also conducted the experiments on the errors
incurred by our algorithms. All these experiments are
presented as follows.

No. of seeds. We vary parameter J from 0.1 to 1. The
experimental results for the IC model are shown in Fig. 4.
Consider the results on HEP-T (Fig. 4(a)) as an example. We
find that algorithms Greedy1 and Greedy2 are comparable
in terms of quality. Both of them outperform other base-
lines significantly. Similar results can be found in other
real datasets.

For the LT model, we conducted the similar experi-
ments, whose results are shown in Fig. 5. Same as the IC
model, Greedy1 and Greedy2 beat other algorithms by an
order of almost one magnitude in terms of the no. of seeds
returned by the algorithms.

Running time. Again, we vary J. For the IC model,
according to the results shown in Fig. 6, we find that
Greedy1 is the slowest algorithm. This is reasonable since
Greedy1 has to calculate the marginal gain of each non-
seed at each iteration while the heuristic-based algorithms
simply choose the non-seed with the best heuristic value
(e.g., out-degree and centrality). We also find that the

(@]

Number of Seeds

alternative implementation of Greedy, i.e., Greedy2, shows
its advantage in terms of efficiency. Greedy2 is faster than
Greedy1 because the total cost of sampling in Greedy?2 is
much smaller than that in Greedy1. Surprisingly, we find
that Greedy? is even faster than Random though the cost
of choosing a seed in Random is O(1). This is possible since
Random usually has to select more seeds than Greedy2 in
order to incur at least the same amount of influence and
for each iteration, Random also needs to calculate the
influence incurred by the current seed set which performs
the Monte-Carlo simulation many times.

For the LT model, we show the experimental results in
Fig. 7. Again, Greedyl requires the most running time.
However, different from the results for the IC model, Gree-
dy2's efficiency is similar to that of other heuristic algorithms.

Memory. Same as the experiments for effectiveness and
efficiency testing, we vary J and the experimental results
are shown in Fig. 8 for the IC model and Fig. 9 for the LT
model. According to these results, our greedy algorithms
share the nice feature of low space complexity with other
heuristic algorithms (less than 2 MB for all experiments in
this paper).

Error analysis. To verify the error bounds derived in this
paper, we compare the number of seeds returned by our
algorithms with the optimal one on small datasets (0.5% of
the HEP-T dataset). We performed Brute-Force search to
obtain the optimal solution.
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For the IC model, the experimental results are shown in
Fig. 10. According to these results, the additive errors
incurred by our algorithms are generally much smaller
than the theoretical error bounds on the real dataset. In
Fig. 10(b), we find that the multiplicative error of our
greedy algorithm grows slowly when ] increases. Besides,
we discover that k, is the smallest among ky, k, and ks in
most cases of our experiments. That is, the multiplica-
tive bound becomes (1+k;) (i.e, (1+Ind'(S1)/(c'(Sp)—
d'(Sp_1))) in these cases. Based on this, we can explain
the phenomenon in Fig. 10(b) that the theoretical multi-
plicative error bound does not change too much when we
increase J from 0.75 to 1.

For the LT model, the results are shown in Fig. 11.
According to these results, the additive errors of our
greedy algorithms are much smaller than the theoretical
error bounds. For the multiplicative errors shown in Fig. 11
(b), we find that the theoretical bounds are usually 1, i.e.,
the approximate solution should be exactly the optimal
one, which is verified by our results.

7.2.2. Interest-Specified J-MIN-Seed

We used the same measurements for Interest-Specified
J-MIN-Seed as those for J-MIN-Seed. The experimental
experiments are shown as follows.
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Fig. 13. IS-J-MIN-Seed (on HEP-T, IC model). (a) No. of seeds and (b) Run time.

No. of seeds. We vary the parameter x and record the
number of seeds returned for each setting. For the IC
model, the results are presented in Fig. 12(a) (on Twitter)
and in Fig. 13(a) (on HEP-T). According to these results, we
find that the three algorithms proposed in this paper,
namely MS-Independent, MS-Incremental and MS-Greedy,
perform better than the baselines. Besides, among these
three algorithms, MS-Greedy outperforms slightly better
than the other two. For the LT model, the results are
shown in Fig. 14(a) (on Twitter) and in Fig. 15(a) (on
HEP-T). Similar results to those for the IC model can be
found from these results for the LT model.

Running time. For the IC model, the results are
presented in Fig. 12(b) (on Twitter) and in Fig. 13(b)
(on HEP-T). According to these results, we find that

MS-Independent, MS-Incremental and MS-Greedy usually
run slower than the baselines. This is reasonable since our
proposed algorithms need more computation for selecting
the seeds than the baselines. For the LT model, the results
are similar and are presented in Fig. 14(b) (on Twitter) and
in Fig. 15(b) (on HEP-T).

Memory. Similar to the case of Interest-Specified
k-MAX-Influence, all algorithms considered in our experi-
ments have high space efficiency.

Approximation error. As discussed in Section 5, our MS-
Independent and MS-Greedy algorithms can provide a
certain degree of approximation error guarantees. Thus,
in this part, we conducted the experiments on the approx-
imation errors incurred by MS-Independent and MS-
Greedy. We used a Brute-Force method to compute the
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optimal solution and then compare this optimal solution
with the approximate solutions found by our approximate
algorithms.

For the IC model, the experimental results for MS-
Independent and MS-Greedy are shown in Fig. 16(a) and in
Fig. 16(b), respectively. According to these results, the
approximation factors of both MS-Independent and MS-
Greedy are around 2-3 (smaller than 4 in all experiments).
Note that the approximation factor of MS-Independent
would become larger when m increases.

For the LT model, the results for MS-Independent and
MS-Greedy are shown in Fig. 17(a) and in Fig. 17(b),
respectively. We can observe similar results as those for
the IC model.

7.2.3. Interest-Specified k-MAX-Influence
We used three measurements, namely influence spread
(the number of influenced users that are of interest),

running time and memory. The influence spread measure-
ment measures the effectiveness of the algorithms for
IS-k-MAX-Influence. The larger the influence spread
incurred by the seed set returned by an algorithm is, the
better the algorithm is. The experimental results are
shown as follows.

Influence spread. We vary the parameter k and for each
setting of k, we record the influence spread incurred by the
seed set found by the algorithm. For the IC model, the
results are shown in Fig. 18(a) (on Twitter) and in Fig. 19(a)
(on HEP-T). According to the results, we find that MI-
Greedy performs the best because its constructed seed set
incurs the greatest influence spread. For the LT model, the
results are shown in Fig. 20(a) (on Twitter) and in Fig. 21
(a) (on HEP-T). Similar patterns as those for the IC model
can be found in these results for the LT model.

Running time. For the IC model, the results are shown
in Fig. 18(b) (on Twitter) and in Fig. 19(b) (on HEP-T).
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These results show that MI-Greedy is slower than the base-
lines. This can be explained by the fact that MI-Greedy needs
more computation for selecting a seed than the baselines. For
the LT model, the results are similar and are shown in Fig. 20
(b) (on Twitter) and in Fig. 21(b) (on HEP-T).

Memory. We vary k. We find that all algorithms are
space-efficient for both the IC model and the LT model. For
example, in all of our experiments, the memory occupied
by the algorithms isis no more than 2M. This is due to the
fact that the main memory usage of these algorithms is to
store the social network only.

Approximation error. To verify the approximation factor
(i.e., (1—1/e)~0.63) of MI-Greedy, we used a brute-force
method to find the seed set that incurs the maximum
influence spread of interest on a sampled social network of
Twitter (with the sampling rate of 5%). Then, we ran
our MI-Greedy algorithm on the same dataset and obtain
the approximation solution. After that, we collected the

approximation error of MI-Greedy by comparing the
optimal influence spread and that incurred by the seed
set returned by MI-Greedy.

For the IC model, the results are shown in Fig. 22.
According to these results, the influence spread incurred
by the seed set returned by MI-Greedy is very close to the
optimal one. For the LT model, the results are shown in
Fig. 23 and similar results can be found.

7.2.4. Experiment conclusion

For the J-MIN-Seed problem, our Greedy algorithm
beats all the baselines in terms of effectiveness. In addi-
tion, the approximation error of our Greedy algorithm is
usually much smaller than the theoretical bounds.

For the IS-J-MIN-Seed problem, our proposed approx-
imate algorithms, i.e., MS-Independent, MS-Incremental
and MS-Greedy, are more effective than the baselines.
Besides, the theoretical (multiplicative) approximation



18 C. Long, R.C.-W. Wong / Information Systems 46 (2014) 1-23

MI-Greedy —=<—
100 b MI-Random —H— |

w MI-Degree —o—
® MiI-Centrality —&—
E
= 10F 3
jo2)
c
c
o
g 4 3
i
0-1 1 1 1
5 10 15 20 25
k

Fig. 20. IS-k-MAX-Influence (on Twitter, LT model). (a) Influence spread and (b) Run time.
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Fig. 23. Approximation error (IS-k-MAX-Influence, LT model).

error bounds of our algorithms are around 2-3 and in
practice, the (multiplicative) approximation errors of our
algorithms are smaller than 2 in most cases.

For the IS-k-MAX-Influence problem, our MI-Greedy
algorithm returns the seed set that incurs the greatest
influence spread. Besides, there is usually a gap between
the theoretical approximation error bound (i.e., 0.63) and
the practical approximation error (e.g., 0.8 on average).

8. Conclusion

In this paper, we propose a new viral marketing
problem called J-MIN-Seed, which has extensive applica-
tions in real world. We then prove that J-MIN-Seed is NP-
hard under two popular diffusion models (i.e., the IC
model and the LT model). To solve J-MIN-Seed effectively,
we develop a greedy algorithm, which can provide approx-
imation guarantees. Besides, we propose a new paradigm
of viral marketing called Interest-Specified Viral Market-
ing, where the companies can specify which kinds of users
are of interest. Under this paradigm, we propose two new
problems, namely IS-J-MIN-Seed and IS-k-MAX-Influence,
which are the counterparts of J-MIN-Seed and k-MAX-
Influence, respectively. These two problems are more
general than their counterparts which are NP-hard
and thus they are NP-hard as well. Then, for each of
the two proposed problems, we design approximate
algorithms that could provide approximation error guar-
antees. Finally, we conducted extensive experiments
on real datasets, which verified the effectiveness of our
algorithms.

There are several interesting research directions related
to our work. First, in this paper, we assume that we have
the complete access to the whole social network which
might not be true in some cases (e.g., due to security
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problems or economic issues). Thus, how to effectively
carry out the viral campaigns in these cases still remain
un-solved. Second, it is interesting to capture other factors
in addition to the product's target customers, e.g., the
users' spatial information and the community structure
within the social network, in order to further improve the
effectiveness of the viral marketing campaign. Third, it is
worth mentioning that the direction of extracting a sub-
net from the original social network which involves only
those users who are of interest for a specific product has
not been unexplored yet. The key of this direction is how
to set the weights of the edges in the sub-net (if exists),
which turns out to be non-trivial.
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Appendix A. Proof of lemmas/theorems

Proof of Property 1. The proof can be found in [12]. ©

Proof of Property 2. We prove Property 2 by constructing
a problem instance where «a(-) does not satisfy the condi-
tions of a submodular function. We first discuss the case
for the IC model. Consider the example as shown in Fig. 2.
In this figure, there are four nodes, namely Ada, Bob,
Connie and David. We assume that each edge is associated
with its weight equal to 1, which indicates that an
influenced node u will influence a non-influenced node v
definitely when there is an edge from u to v. Let set T be
{Ada, Connie, David} and a subset of T, says S, be {Connie,
David}. Obviously, when Ada is influenced, it will further
influence Connie and David, i.e., all the nodes in T will be
influenced when Ada is selected as a seed. Thus, o(T) =1.
Similarly, we know that «(S)=1. Now, we add Bob into
both T and S and then obtain «(T U { Bob })=2 (by the
seed set {Ada, Bob}) and «(S U { Bob }) =1 (by the seed set
{Bob}). As a result, we know that «T U{ Bob })—a
(T)y=1>a(S U { Bob })—a(S) = 0, which, however, violates
the conditions of a submodular function.

Next, we discuss the case for the LT model. Consider the
special case where each node's threshold is equal to a
value slightly greater than 0. Consequently, a node will be
influenced whenever one of its neighbors becomes influ-
enced. The resulting diffusion process is actually identical
to the special case for the IC model where the weights of
all edges are 1 s. That is, the example in Fig. 2 can also be
applied for the LT model. Hence, Property 2 also holds for
the LT model. ©

Proof of Theorem 1. First, we give the J-MIN-Seed's
decision problem as follows. Given a social network
G(V,E) and two integers | and I, we want to find a set S
of seeds such that |S| <[ and ¢(S) > ]J. It could be noted that
this decision problem is identical to that of the k-MAX-
Influence problem. Therefore, the procedure of proving
k-MAX-Influence's NP-hardness in [12] can carry over to

proving the NP-hardness of the J-MIN-Seed problem.
Interested readers are referred to [12] for details. ©

Proof of Lemma 1. Assume that we perform the simula-
tion process n times. Let I; be the influence incurred by the
seed set S during the ith simulation. Let E(I) be the
expected value of I; and I = ¥"_,I; be the mean of the ;
values. According to Hoeffding's Inequality, for any non-
negative real number t, we know

. 2t*n?
Pr([—E(H)|>t)<2exp| ————
( O ) p( ZP: 1(ui_li)2>

where u; and [; are the upper bound and the lower bound
of I;, respectively.

Considering I; < |V| and ;> 1, i.e,, u; =
1 <i<n, we have

I 2t%n
Pr('l‘E(n E(I)) =2e "( vi= 1)2>

Let e = t/E(I). We obtain

|V| and [;=1, for

2e2E(ly*n
Pr<|l—E(1)|>e)2e p< V- ))

Hence, in order to obtain a (1 + ¢)-approximation algo-
rithm with the confidence at least c, the following condi-
tion should hold:

2
exp 26 E(I) n <l-c
(V=17
As a result, we obtain the requirement on the number of
simulations as follows:

5 2
(vVi=1 lﬂ<a>

262E(I)?

n=>

Since the seeds themselves would be influenced, we
know that E(I) > |S|. As a result, we obtain the following
inequality:

2 2
(V-1 ln<m>

262|S)?

n=

Thus, we finish our proof. ©

Proof of Lemma 2. Firstly, we give the theoretical bound
on the influence for k-MAX-Influence. The problem of
determining the k-element set S c V that maximizes the
value of o(-) is NP-hard. Fortunately, according to [52],
a simple greedy algorithm can solve this maximiza-
tion problem with the approximation factor of (1—1/e)
by initializing an empty set S and iteratively adding the
node such that the marginal gain of inserting this node
into the current set S is the greatest one until k nodes have
been added. We present this interesting tractability prop-
erty of maximizing a submodular function in Property 1 as
follows.

Lemma 7 (Nemhauser et al. [52]). For a non-negative,
monotone submodular function f, we obtain a set S of size
k by initializing set S to be an empty set and then iteratively
adding the node u one at a time such that the marginal gain



20 C. Long, R.C.-W. Wong / Information Systems 46 (2014) 1-23

of inserting u into the current set S is the greatest. Assume
that S* is the set with k elements that maximizes function f, i.
e., the optimal k-element set. Then, f(S)=(1—1/e)-f(S%),
where e is the natural logarithmic base. ©

Secondly, we derive the additive error bound on the
seed set size for J-MIN-Seed based on the aforemen-
tioned bound.

As discussed in Section 3, ¢(-) is submodular. Clearly,
a(-) is also non-negative and monotone. The framework in
Algorithm 1 involves a number of iterations (lines 2-4)
where the size of the seed set S is incremented by one for
each iteration. We say that the framework in Algorithm 1
is at stage j if the seed set S contains j seeds at the end of
an iteration. The seed set S at stage j is denoted by S;.
Consequently, according to Lemma 7, at each stage j, we
conclude that

a(S)=(1-1/e)-a(S)) (A1)

where SJ’»“ is the set that provides the maximum value of
a(-) over all possible seed sets of size j. Note that the total
number of stages for the greedy process is equal to h (i.e.,
the size of the seed set returned by the algorithm). That is,
the greedy process stops at stage h. Thus, we know that
a(Sp) =] and the greedy solution for J-MIN-Seed is Sp.
Consider the last two stages, namely stage h—1 and stage
h. We know that (S,_1) <J and a(Sp) =J. Since a(S};) >
a(Sp), we have (S}) > J.

Now, we want to explore the relationship between h
and t. Note that the following inequality holds:

t<h (A.2)

Consider two stages, stage i and stage i+ 1, such that
a(S)) <(1—1/e) -] while ¢(S; 1) >(1—1/e)-J. According to
Inequality (A.1), we know o(S)) <J. (This is because if
a(S7) =], then we have o(S;) > (1—1/e) -J with Inequality
(A.1), which contradicts ¢(S;) < (1—1/e) - J.) As a result, we
have the following inequality:

t>i (A.3)

due to the monotonicity property of a(-).

According to Inequality (A.2) and Inequality (A.3), we
obtain t e [i+1, h]. That is, the additive error of our greedy
algorithm (i.e., h—t) is bounded by the number of stages
between stage i+ 1 and stage h. Since o(S; 1) >(1—1/e)-]
and o(S,_1) <], the difference of the influence incurred
between stage i+1 and stage h—1 is bounded by
J—(1-1/e)-J=1/e-]. Since each stage increases at least
1 influenced node (seed itself), it is easy to see that the
number of stages between stage i+1 and stage h—1 is at
most 1/e -J. Consequently, the number of stages between
stage i+1 and stage h is at most 1/e-J+1. As a result,
h—t<1/e-J+1. ©

Proof of Lemma 3. This proof involves four parts. In the
first part, we construct a new problem P’ based on the
submodular function ¢’(-) (instead of a(-)). In the second
part, we show the multiplicative error bound of the greedy
algorithm in Algorithm 1 (using ¢'(-) instead of o(-)) for this
new problem P'. We denote this adapted greedy algorithm
by A’. For simplicity, we denote the original greedy algo-
rithm in Algorithm 1 using o(-) by A. In the third part, we

show that this new problem is equivalent to the J-MIN-
Seed problem. In the fourth part, we show that the multi-
plicative error bound deduced in the second part can be
used as the multiplicative error bound of algorithm A for
J-MIN-Seed.

Firstly, we construct a new problem P’ as follows. Note
that ¢/(S) = min{s(S),J}. Problem P’ is formalized as fol-
lows:

arg min{|S|: ¢'(S) =¢'(V),S<= V}. (A4)

Secondly, we show the multiplicative error bound of
algorithm A’ for problem P’ by using the following lemma.

Lemma 8 (Wolsey [53]). Given problem arg min{y . sg(X):
f©S)=fU),S < U} where fis a nondecreasing and submod-
ular function defined on subsets of a finite set U, and g is a
function defined on U. Consider the greedy algorithm that
selects x in U—S such that (f(SU {x})—f(S))/g(x) is the
greatest and adds it into S at each iteration. The process
stops when f(S)=f(U). Assume that the greedy algorithm
terminates after h iterations and let S; denote the seed set at
iteration i (So=@). The greedy algorithm provides a
(1+min{kq, ky, k3})-approximation of the above problem,
where ki =1In (f(U)—f(@))/ FU)—f(Sp-1)) ka =In(f(S1)—
f@)/ S —fSn-1)), and k3 =Inmax{(f({x)— f(@))
fS VU xD—fSIxeU,0<i<h,f(S; U {xh—f(S)>0). ©

We apply the above lemma for problem P’ as follows. It
is easy to verify that ¢/(-) is a non-decreasing and sub-
modular function defined on subsets of a finite set V. We
set U to be V and set f(-) to be /(). We also define g(x) to
be 1 for each x e V (or U). Note that Y. sg(x) =|S|. We re-
write Problem P’ (A.4) as follows:

arg min{ Y 8(x):d'(S)=0d'(V),S= V}. (A5)
xeS

The above form of problem P’ is exactly the form of the
problem described in Lemma 8. Suppose that we adopt the
greedy algorithm in Algorithm 1 for problem P’ by using
¢'(-) instead of o(-), i.e., algorithm A’. It is easy to verify that
algorithm A’ follows the steps of the greedy algorithm
described in Lemma 8 (i.e., selecting the node x such that
(¢'(S U {x})—0d'(S))/g(x) is the greatest where g(x) is exactly
equal to 1). By Lemma 8, the greedy algorithm A" for
problem P’ gives (1+min{kq,k;,ks})-approximation of
problem P’, where

e W@ ]
W =S T Sh)
koin CSD=C@ oS

T IS =0 Sho1) IS = (Sh_1)
and

- o/ (1)
ka=1In (max{o/(si Up—osreY:

0<i<h,d'(S U x)—d'(S)>0}).

Thirdly, we show that problem P’ is equivalent to the
J-MIN-Seed problem which can be formalized as follows
(since Yy esg(x)=ISD):

arg min{ ng(x): a(S)>],S<= V}. (A.6)
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In the following, we show that the set of all possible
solutions for the problem in the form of (A.6) (i.e., the
J-MIN-Seed problem) is equivalent to the set of all possible
solutions for the problem in the form of (A.5) (i.e., problem
P’). Note that the objective functions in both problems are
equal. The remaining issue is to show that the constraints
for one problem are the same as those for the other
problem.

Suppose that S is a solution for the problem in the form
of (A.6). We know that ¢(S)>]J and S< V. We derive that
d'(S)=]. Since ¢'(V)=], we have ¢ (S)=4'(V) and ScV
(which are the constraints for the problem in the form of
(A.5)).

Suppose that S is a solution for the problem in the form
of (A.5). We know that ¢(S)=0¢'(V) and S<V. Since
(V) =], we have ¢'(S) =]. Considering ¢'(S) = min{a(S),J},
we derive that ¢(S)>]J. So, we have ¢(S)>] and ScV
(which are the constraints for the problem in the form of
(A.6)).

Fourthly, we show that the size of the solution (i.e., |S|)
returned by algorithm A’ for the new problem P’ is equal to
that returned by algorithm A for J-MIN-Seed. Since o(S;) <J
for 1 <i<h-—1, we know that ¢'(S;) =a(S;) for 1 <i<h-—1.
We also know that the element x in V—S;_; that max-
imizes o(S;_1 U {x})—a(S;_1) (which is chosen at iteration i
by algorithm A) would also be the element that maximizes
' (Si_1 U {x})—0d’(S;i_1) (which is chosen at iteration i by
algorithm A’) for i=1,2,...,h—1. That is, algorithm A’
would proceed in the same way as algorithm A at iteration
i=1,2,...,h—1. Consider iteration h of algorithm A. We
denote the element selected by algorithm A by x;. Then,
we know a(S,_1 U {x3})>] since algorithm A stops at
iteration h. Consider iteration h of algorithm A’. This
iteration is also the last iteration of A’. This is because
there exists an element x in V—S,_4 such that ¢'(S,_; U
{x) =0 (V)(=]) (since x can be equal to x, where
o' (Sp_1 U {xp}) =J). Note that this element x maximizes
'(Sp_1 U {X))—d’(Sp_1) and thus is selected by A'. We
conclude that both algorithms A and A terminate at
iteration h. Since the number of iterations for an algorithm
(A or A") corresponds to the size of the solution returned
by the algorithm, we deduce that the size of the solution
returned by algorithm A" is equal to that returned by
algorithm A.

In view of the above discussion, we know that problem
P’ is equivalent to J-MIN-Seed and algorithm A" for pro-
blem P’ would proceed in the same way as algorithm A for
J-MIN-Seed. As a result, the multiplicative bound of algo-
rithm A" for problem P’ in the second part also applies to
algorithm A (i.e., the greedy algorithm in Algorithm 1) for
J-MIN-Seed. ©

Proof of Property 3. We first prove Property 3 for the IC
model. The proof has two steps.

First, we prove that o(S,A)) is submodular on a determi-
nistic social network, where the weights of all edges are 1.
Let T and S be any two subsets of V such that S ¢ T and v be
any node not in T. The marginal gain of v when inserted
into T corresponds to the number of nodes of interest that
can be reached from v but not from any node in T. We
denote by G(v,T) the set including all these nodes.

Similarly, we use G(v,S) to represent the set of nodes of
interest that can be reached from v but not from any node
in S. Consider any node u € G(v, T). We show that u e G(v,S)
by contradiction. Suppose u¢ G(v,S). Since u can be reached
from v (ve G(v,T)), we know that u must be reachable
from a node in S. Considering S c T, we further conclude
that u must be reachable from a node in T and thus it
contradicts the condition that ueG(v,T). Therefore,
u e G(v,S). Thus, any node ue G(v,T) is also included in
G(v,S). Therefore, we know that G(v,T) c G(v,S). It follows
that (T U {v},A)—a(T,A)) <o(S U {v},A))—a(S,A)). Thus,
a(S,A;) is submodular on a deterministic social network.

Second, based on the above results, we proceed to show
that ¢(S,A;) is submodular on a general (probabilistic) social
network G. Any edge (u,v) with the weight of wy, is
discretized to own the weight of 1 with the probability of
wy,, and the weight of 0 with the probability of 1 —w,,. As a
result, social network G can be discretized into a set of
deterministic social networks G,, each with a probability,
denoted by P,. Let 64(S, A;) be the number of nodes of interest
incurred by S on G, and thus ox(S, A;) is submodular according
to the results of the first step. Besides, o(S,A)) is the expecta-
tion of ox(S,A), ie, a(S,A)) = YxPx: ox(S,Ar). According to
[52], the combination of submodular functions is also sub-
modular, we conclude that (S, A;) is submodular.

We then prove Property 3 for the LT model. According to
[12], the diffusion process on a graph G(V,E) under the LT
model is equivalent to the traversal process on the same
graph containing only the so-called live edges. The live
edges in G are selected randomly as follows. For each node
v, at most one edge among all edges that go to v is
specified to be live and the probability of selecting
edge (u,v) is wyy, where u is an in-neighbor of v. The
probability that no live edges go to v is thus equal to
1= is a in—neighbor of vWuy. According to [12], the diffu-
sion process on G is equivalent to the traversal process on
G, where G, is G by excluding all edges that are not live.
Specifically, all nodes that are reachable from the seeds in
G, would be influenced. As a result, the diffusion process of
the LT model could be discretized as the traversal pro-
cesses on a finite number of G/'s and each of them is
associated with a specific probability.

The traversal process on a specific G, is equivalent to the
diffusion process on graph G; under the IC model, where
the weights of all edges in G, are set to 1s. Thus,
according to the above results for the IC model, o(S,A))
is submodular for the traversal process on G,;. Considering
the diffusion process under the LT model is a weighted
combination of the traversal processes on all possible G;'s
and for each traversal process on a specific G, o(S,A)) is
submodular, we know that «(S,A;) is submodular under
the LT model. ©

Proof of Lemma 4. We define a new problem Q' as
min{|Sx|: o(Sx, {a;,}) > j,} (1<x<m). That is, Q corre-
sponds to the problem of fining the smallest seed set Sy
that satisfies the constraint of influencing at least j, users
containing attribute value a;,. Let S} be the optimal solu-
tion of Q'. Recall that S, corresponds to the solution
returned by a greedy procedure. According to Lemma 3,
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we have
1Sx1/1S%| < 1+min(t}, 2,63} (A7)

where t} =1n ji /(,—o'(Sy ' {a;,})) and £ =In ¢'(S}, {a;, })/
@Sy {ai H—a'(Sy ' {ay,}) and € =In max{s'({v}, {a;})/
(@S U vk {a ) - S a1 <h<r,veV,d@(Shu
vl {a, )— &(S".{a;})>0}. Let B, be 1+min {t}, 2,£3}.
That is, [Sx|/ISi| < Bx.

First of all, we have the following inequality, which
could be easily verified by contradiction:

IS*| > 1S3 (A.8)

Second, since |Sx| = maX; < ;< n|Sl and S= Uq - ;< xS we
deduce the following inequality:

ISI<m - S (A.9)

By using Eq. (A.7), Egs. (A.8) and (A.9), we have the
following result:

IS<m-|Sx|<m-By-|Si|<m-By-|S¥
That is, |S|/|S*|<m-By. ©

Proof of Lemma 5. We formalize the I[S-J-MIN-Seed
problem as problem P:min{|S|: o(S, {a;}) > j; for 1 <I<mj.
We prove Lemma 5 with three steps. First, a new problem,
P’ is defined. Second, we prove that MS-Greedy provides
an approximation factor B for problem P, where
B=1+min{t!, 2, t3}. Third, we prove that this approxima-
tion factor of B also applies to problem P by showing that
problem P is equivalent to problem P'.

First, we define problem P’ as min{|S|: o/,(S) > Jsum} Where
Jsum = 21 <l<mll-

Second, according to Property 3, function o(S,A)) is
submodular. Thus, we know that function o(S,{a;})
(1 <l<m) is submodular. Besides, it is known that, for a
submodular function f:2Y >R and a real number ¢, func-
tion min{f(S),0} is also submodular [53]. Thus, we know
that ¢'(S, {a;}) is a submodular function. Furthermore, it is
easy to verify that the summation of several submodular
functions is submodular and thus we know that ¢/,(S) is a
submodular function as well. As can be noted in Algorithm
4, MS-Greedy is exactly a greedy procedure based on o/,(S).
According to Lemma 3, we know MS-Greedy provides the
approximation factor of 14+min{t', %, 3} for problem P,
where ! = ln]sum/(]sum - J&(Sr—l))v t>=1In 0'21(51)/(6:1(50 -
a,(Sr_1)) and £ =In max{a,(v)/(a,(Sp U {v}) —a,(Sp)I1 <
h< r,ve V,o,(Sp U {v})—0a,(Sp) > 0}.

Third, we prove that problem P is equivalent to problem
P’ as follows. Assume that S is a feasible solution of
problem P, that is, o(S,{a;})>j, for 1 <I<m. It follows
that ¢4(S,{a;})=j, for T<l<m. As a result, we know
0,(S)=Y1<1<mi; and thus ¢,,(S) > X1 <1< mi =Jsum - That
is, S is also a feasible solution of problem P'.

Similarly, assume that S is a feasible solution of problem
P'. That is, 0,(S)>Y1-1<mj. Since a,(S,{a;}) <j for
1<l<m, we know (S, {a;}) must be j, for 1<l<m. It
follows that o(S, {a;}) is at least j; for 1 <1< m according to
the definition of ¢(S, {a;}). That is, S is a feasible solution
of problem P as well.

In summary, we know that MS-Greedy provide the
approximation factor of 1+min{t', t?, 3} for problem P. ©

Proof of Lemma 6. Since (S, A|) is submodular, according
to Lemma 7, we know that MI-Greedy provides a
(1—1/e)-factor approximation for the IS-k-MAX-Influence
problem.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.is.
2014.05.003.
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