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While the study of privacy preserving data publishing has drawn a lot of interest, some recent work has
shown that existing mechanisms do not limit all inferences about individuals. This paper is a positive
note in response to this finding. We point out that not all inference attacks should be countered, in con-
trast to all existing works known to us, and based on this we propose a model called SPLU. This model
protects sensitive information, by which we refer to answers for aggregate queries with small sums,
while queries with large sums are answered with higher accuracy. Using SPLU, we introduce a sanitiza-
tion algorithm to protect data while maintaining high data utility for queries with large sums. Empirical
results show that our method behaves as desired.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In a recent work by Cormode [7], it is shown that despite much
progress in two main branches of privacy models for data publish-
ing, namely differential privacy [13], and various syntactic methods
such as k-anonymity [26] and ‘-diversity [20], inference-based
attacks can still be successful. The study is based on the ability of
an attacker to construct accurate classifiers on top of releases pro-
tected by state-of-the-art privacy preserving data publishing
techniques.

The empirical study result above is in fact consistent with the
result from [10]. Following the model in [10], given a dataset
d ¼ ðd1; . . . ; dnÞ 2 f0;1gn, a query q is a subset of f1;2; . . . ;ng, and
its true answer aq ¼

P
i2qdi. Hence, the query q determines a subset

of d, and the answer for q is the number of entries in the subset.
Given algorithm A for query response, we say that AðqÞ is within
� perturbation if it deviates from the true answer by no more than
�. A is within � perturbation if AðqÞ is within � perturbation for all
q. If an adversary can reconstruct with time complexity tðnÞ the
entire database very accurately, then the database D ¼ ðd;AÞ is
said to be tðnÞ-non-private. The following theorem from [10] says
that any privacy preserving algorithm renders the database use-
less, and conversely utility in the published data implies privacy
breach.
Theorem 1 [10]. Let D ¼ ðd;AÞ be a database where A is within
oð

ffiffiffi
n
p
Þ perturbation then D is poly (n)-non-private.

The above findings are based on the assumption that all infer-
ence attacks are to be defended, and any relatively accurate infor-
mation derivable from the published data is considered privacy
breaching. This is quite inconsistent with the simultaneous
requirement of utility whereby minimum distortion is to be intro-
duced so that the published data are as close to the original data as
possible. Here we show that the dilemma can be resolved by a seg-
regation of utility and privacy.

The key point as observed by Cormode is that privacy and utility
are closely related. As stated in the conclusion in [7], ‘‘release of
(anonymized) data may reveal hitherto unknown population
parameters which compromise individual privacy. . . . in some set-
tings, these population statistics may represent exactly the desired
utility of the data collection and publication.’’ This remark high-
lights the issue to be resolved. The key is how to differentiate
between utility and privacy. Once we identify the utility of the data
and once users agree that this utility has no conflict with their
privacy, the proper solution is not to insist on protection for the
information related to the utility. We provide a way to differentiate
what concepts may be reasonable to be disclosed for utility. If users
indeed have concerns about the disclosure of such concepts there
is always the option of not releasing any data. This provides for a
better alternative for the status quo of releasing the data knowing
that certain inference attacks are possible.

To our knowledge, there is no known model for the separation
of concepts that need protection and those that need to be
oi.org/
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Fig. 1. The SPLU-Gen system for data sanitization and query processing.

2 A.W.-C. Fu et al. / Journal of Biomedical Informatics xxx (2014) xxx–xxx
maintained for utility purposes, in privacy preserving data publish-
ing. Some previous works [11,19] study the adjustment of param-
eters in the anonymization process for the trade-off between
privacy and utility. The problem studied in such works is very dif-
ferent and in their model, all concepts are treated equally in terms
of utility and privacy. We assume that aggregate queries of large
sums should be answered relatively accurately for utility, while
those with very small sums should not. Consider an example from
[13] where a dataset D0 tells us that almost everyone involved in a
dataset is two footed. Knowing with high certainty that an individ-
ual is two footed from D0 is not considered a privacy issue since it is
true for almost everyone in the dataset.1 Large sum concepts are
statistical and of value for utility. In contrast, small count concepts
are non-statistical and the protection of small counts has been
well-studied in the topic of security in statistical databases [1].

Our main contributions are summarized as follows.

(1) We propose a framework, called SPLU, which allows releas-
ing data for answering large sum queries with high accuracy
to provide utility, while offering high inaccuracy for small
sum queries in order to ensure privacy. We point out that
not all inference attacks should be defended.

(2) To demonstrate the feasibility of the concept of SPLU, we
propose a data sanitization mechanism, called SPLU-Gen,
for achieving this goal. SPLU-Gen is based on randomized
perturbation on the sensitive values.

(3) We introduce a sophisticated reconstruction algorithm
which takes into account the global data distribution. This
improves on the known reconstruction approach in syntactic
methods and leads to higher data utility.

(4) We have conducted experiments on two real datasets to
show that SPLU-Gen provides protection for small sums
and high utility for large sum queries. We note that existing
mechanisms may readily support SPLU, which is an encour-
aging result.

In Fig. 1, we outline the SPLU-Gen mechanism for data sanitiza-
tion and the query processing based on the sanitized data. The
dataset on the left of the figure is passed as input to SPLU-Gen.
The input is processed and as a result, a sanitized dataset is pub-
lished. Querying is applied on the sanitized data, and the query
result is generated by a reconstruction algorithm. The user will
receive relatively accurate results for large sum queries and inac-
curate results for queries of small sums.

The rest of the paper is organized as follows. Section 2 presents
the SPLU model. Section 3 describes the mechanism SPLU-Gen.
1 There may be scenarios where our assumption does not hold. That is, even if
something is true for most tuples in D0 , the information is still sensitive. An example
would be a dataset containing only information about patients with a certain cancer
disease. In such a case knowing that a person is in the dataset is already considered
sensitive, and all attributes will be sensitive. Hence, our proposed model becomes
irrelevant and does not apply.
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Section 4 is about count reconstruction and properties of SPLU-
Gen. Section 5 considers multiple attribute aggregations. Section 6
is on empirical study, and Section 7 is on related works. Section 8
concludes this work.

2. SPLU model

We consider the data model in previous works on k-anonym-
ity [26] and ‘-diversity [20]. This data model assumes that a set
of attributes form a quasi-identifier, the values of which for a
target individual can be known to the adversary from other
sources, and also one or more sensitive attributes which need
to be protected. Hence, there are two kinds of attributes in the
dataset, the non-sensitive attributes (NSA) and the sensitive
attributes (SA). In Fig. 2(a) we show a given dataset D. In table
D, the attribute id is for the tuple id. The attributes Age and
Zip-Code are considered non-sensitive attributes and they form
a quasi-identifer. The term quasi-identifier indicates that it
may be possible to identify an individual based on the respective
attribute values. For example, it is possible that Age 90 and Zip-
Code [12–17 k] uniquely determine an individual, if there is only
one resident aged 90 in the area of Zip-Code [12–17 k]. Such
attributes are considered not sensitive. In table D, Disease is a
sensitive attribute.

In this model we do not perturb the non-sensitive values but
may alter the sensitive values to ensure privacy. This is a com-
monly used data model and it corresponds to the initial problem
settings with real world applications [25,22].

We are given a dataset (table) D which is a set of N tuples that
follow the above data model. A concept c in D is a predicator
formed by the conjunction of value assignments to a set of attri-
butes in D. Our problem is how to generate and replace the sensi-
tive values for the tuples in D to be published in the output dataset
D0. D0 should satisfy both utility for large sum querying and privacy
protection for small sum queries.

In Fig. 1(b), we show a possible published dataset D0, which is a
sanitized counterpart of dataset D. We shall discuss in Section 3
about how D0 is generated from D.

We define the requirements of our model in the following.
Given a dataset D, an anonymized data set D0 generated by san-

itization mechanism A, and a concept c involving s 2 SA, let fc be
the true frequency of c in D and f 0c be the estimated frequency of
c from D0.

Definition 1 (large sum utility). Concept c has a ð�; T E; T f Þ utility
guarantee if
Pr jf 0c � fcjP efc
� �

6 T E for f c P T f ð1Þ

The above definition says that a concept c has a ð�; T E; T f Þ
guarantee if whenever the frequency fc of c is above T f in D, then
the probability of a relative error of more than e is at most T E.
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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Fig. 2. An example.

A.W.-C. Fu et al. / Journal of Biomedical Informatics xxx (2014) xxx–xxx 3
Definition 2 (small sum privacy). We say that A satisfies SSP-
privacy requirement w.r.t. ðe; T P; aÞ if

Pr jf 0c � fcjP efc
� �

P T P for f c 6 a ð2Þ
Definition 3 (Problem Definition). Our problem is to design a data-
base sanitization mechanism A which conforms to SPLU by sup-
porting large sum utility as well as small sum privacy.

The threshold for small sum privacy should be set by the appli-
cation based on the level of security that is desired. Similarly for
the threshold for large sum utility. Note that the two thresholds
may be different, so that there can be some frequencies that we
guarantee neither privacy nor utility. These thresholds are specifi-
cations to be given by the users. Also note that a user needs to first
decide if the attributes with large sums are sensitive. As we have
discussed in Footnote 1 in Section 1, there are scenarios where they
can be sensitive. If large sum data are sensitive, our model will be
irrelevant.

We shall also make use of the following definition for privacy
guarantee.

Definition 4 (privacy guarantee). Concept c has a ðe; T PÞ privacy
guarantee if Pr jf 0c � fcjP efc

� �
P T P .

The above definition of small sum privacy resembles the defini-
tion of differential privacy in [12] in that probabilistic bounds are
adopted. However, the exact formulations are quite different. A
randomized algorithm A is said to give �-differential privacy if for
all datasets D and D0 differing on at most one row, for all
S 2 RangeðAÞ, Pr½AðDÞ 2 S� 6 e� � Pr½AðD0Þ 2 S�, where the probabil-
ity space is over the coin flips of A, and RangeðAÞ denotes the out-
put range of A.

The goal of small sum privacy is to ensure that information that
applies to a small number of individuals would not be released
without introducing a significant amount of error probabilistically.
SPLU is defined based on the estimated frequency. It will be up to
the anonymization process to ensure that the estimated frequency
is not accurate. We shall propose a mechanism SPLU-Gen that has a
good guarantee in Section 3.

We do not exclude the possibility that existing methods may
also be shown to satisfy SPLU. In our empirical studies we show
that Anatomy may achieve high enough relative errors for small
sums and good utility for large sums. Also we show that �-differen-
tial privacy may achieve high relative error for small sums with a
proper choice of �. However, these are empirical results and not
theoretical guarantees. There may be future works to show that
both techniques conform to SPLU under certain settings.

3. A mechanism for SPLU

In this section, we make use of a randomization technique to
guarantee a tapering accuracy for the estimated values from large
counts to small counts. In [4], a retention replacement perturba-
tion (RRP) scheme for categorical sensitive values is proposed. This
Please cite this article in press as: Fu A.W.-C et al. Small sum privacy and large
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scheme keeps the original sensitive value in a tuple with a proba-
bility of p and randomly picks any other value to substitute for the
true value with a probability of ð1� pÞ. Not all randomization tech-
niques are equally effective. For example, if we simply generate
sensitive values in the published records based on the original dis-
tribution of SA (let us refer to this distribution based randomiza-
tion technique as DBR), the correlation with the NSA values will
be lost since the generation of SA value for each tuple is based on
the same p.d.f. In what follows, we propose a mechanism, called
SPLU-Gen, which introduces uniform probability for replacement
over a subset of the domain. We will show that this mechanism
is a solution to our problem in Definition 3.

3.1. Randomization by SPLU-Gen

SPLU-Gen generates a dataset D0 given the dataset D. We
assume that there is a single sensitive attribute (SA) S in D. Later
we shall discuss the more general case of multiple sensitive attri-
butes. We make the same assumption as in previous works
[20,30] that the dataset is eligible, so that the highest frequency
of any sensitive attribute value does not exceed N=c. Furthermore
we assume that N is a multiple of c (it is easy to ensure this by
deleting no more than c� 1 tuples from the dataset). There are
four main steps for SPLU-Gen:

[Step 1] Include the tuple id as an attribute id in D. The first step
of SPLU-Gen is an initialization step, whereby the dataset D goes
through a projection operation on id and the SA attribute S. Let
the resulting table be Ds. That is, Ds ¼ Pid;SðDÞ. Note that the
non-sensitive values have no influence on the generation of Ds.
Fig. 3(a) shows a given dataset D, which is the same as the data-
set in Fig. 1(a). After Step 1, the projected table of Ds is shown in
Fig. 3(b).
[Step 2] The set of tuples in Ds is partitioned into groups of size
c each in such a way that in each partitioned group, the sensi-
tive value of each tuple is unique. Let there be r partitioned
groups, P1; . . . ; Pr; in each group Pi, there are c tuples, and c dif-
ferent sensitive values. We call each partitioned group a decoy
group. If tuple t is in Pj, we say that the elements in Pj are the
decoys for t. We also refer to Pj as PðtÞ. With a little abuse of ter-
minology, we also refer to the set of records in D with the same
id’s as the tuples in this decoy group as PðtÞ. One can adopt
some existing partitioning method in the literature of ‘-diver-
sity (e.g. [30]). We require that the method be deterministic.
That is, given a Ds (which involves only id and S), there is a
unique partitioning from this step.
Consider dataset D in Fig. 3(a). Let c ¼ 3. Fig. 3(c) shows a pos-
sible partitioning of the tuples in D into 3 groups. In each group,
there are 3 tuples with distinct Disease values.
[Step 3] For each given tuple t in Ds, we determine the partition

PðtÞ. Let the sensitive values in PðtÞ be s01; . . . ; s0c
n o

. For each of

these decoy values, there is a certain probability that the value
is selected for publication as the sensitive value for t. For a value

not in s01; . . . ; s0c
n o

, the probability of being published as the

value for t is zero. In the following we shall also refer to the

set s01; . . . ; s0c
n o

as decoysðtÞ. Suppose that a tuple t has sensitive

value t:s in D. We create the tuple t0 and initialize it to t. Next we
generate a value to replace the S value in t0 by selecting si with
probability pi, so that
sum u
pi ¼ p for si ¼ t:s

pi ¼ q ¼ ð1� pÞ 1
c� 1

for si – t:s; si 2 decoysðtÞ

pi ¼ 0 for si R decoysðtÞ
tility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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Fig. 3. An example showing the steps of SPLU-Gen.
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We set p ¼ q ¼ 1=c in our mechanism, which has the nice property
that the cases for si ¼ t:s and si – t:s are identical.
For table Ds in Fig. 3(b), with the partitioned groups in Fig. 3(c) and
(d) shows a possible resulting table Ds0 after the randomization pro-
cess in Step 3. Since c ¼ 3, p ¼ q ¼ 1=3. For example, in the first
group of tuples 1, 2 and 4, each of the diseases of Hiv, Flu and Fever
has a probability of 1/3 to be assigned as the sensitive value for each
tuple in this group.

[Step 4] The set of tuples t0 created in the previous step forms a
table Ds0. Remove the s column from D, resulting in DN . Form a
new table D0 by joining Ds0 and DN and retaining only NSA and S
in the join result. The tuples in D0 are shuffled randomly. Finally
D0 and c are published.
Given D in Fig. 3(a). In Fig. 3(e), we show the table after joining
Ds0 and DN . Removing the id attribute from this table gives us D0.
Next, the tuples in D0 are randomly shuffled and Fig. 3(f) shows
the published dataset. h

Our method can be seen as a variation of the Retention Replace-
ment Perturbation (RRP) scheme which is known to preserve good
utility [4]. In particular the correlation of SA with NSA is main-
tained by the retention of the SA value for each tuple with proba-
bility p.2

In comparison with partitioning based methods for ‘-diversity
[20] such as Anatomy [30], there are some major observations.
Firstly, Anatomy can be seen as introducing a random permutation
in each group, whereas our method draws values in each group
with replacement rather than without replacement. Hence, both
methods can preserve the distribution of SA well. However, ran-
dom permutation has a known problem of privacy leak for infre-
quent values, which need suppression for privacy reason [17].
The honest recording of SA values resulting from the permutations
in Anatomy preserves the exact counts of the sensitive values for
all frequencies, and there is no protection for the small counts.
SPLU-Gen is based on a probabilistic assignment of values to sensi-
tive attributes in the tuples. Due to the randomization, as we shall
2 Since the sensitive value has some stickiness with the original tuple with a
probability of p, an adversary with background knowledge that two individuals have
the same SA value can launch an attack if both individuals happen to retain the SA
value and the value is extremely rare. To handle such attacks we may adopt
suppression of rare values. This, however, is beyond the scope of this work.
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see in later analysis, the small counts will be protected by large
expected error in the results of queries for such counts.

Secondly, the partitioning information is not released by SPLU-
Gen, in contrast to Anatomy and related approaches, in which the
anonymized groups or buckets are made known in the data pub-
lishing. When the partitioning is known, each tuple has a limited
set of ‘ possible values, hence Anatomy is known to suffer from
background knowledge attack where the adversary has ‘� 1 pieces
of information for eliminating the possibilities. For SPLU-Gen, by
withholding the partitioning information, and with the possibility
that a value existing in D may not exist in D0, the possible values for
the sensitive attribute is the entire domain. Another advantage of
not releasing the partitioning information is that it makes the de
Finetti attack [18] and the foreground attack in [28] mechanisms
inapplicable, since both attacks are based on the knowledge of
the partitioned groups. Both attacks are possible for Anatomy.

4. Aggregate estimation

In this section we examine how to answer count queries for the
sensitive attribute based on the published dataset D0. Let jDj ¼ N,
so that there are N tuples in D. Consider a sensitive value s. Let
the true frequency of s in D be fs. By Algorithm SPLU-Gen, there will
be fs decoy groups which contain s in the decoy value sets. Each
tuple in these groups has a probability of p ¼ 1

c to be assigned s
in D0. The probability that it is assigned other values �s is 1� p.
There are fsc such tuples.

Let N0s denote the number of times that s is published in D0. The
random variable N0s follows the binomial distribution with param-
eters fsc and p.

P N0s ¼ x
� �

¼
fsc
x

� �
pxð1� pÞfsc�x

The expected value is fscp. Since we set p ¼ q ¼ 1=c, the expected
count of s in D0 is given by es ¼ p cfs ¼ fs. That is, to estimate the true
count of an SA value s, we simply take the count of s in D0; f 0s .

Theorem 2. The estimation of fs by f 0s is a maximum likelihood
estimation (MLE).
Proof. Let LðDÞ be the likelihood of the observation f 0s in D0, given
the original dataset D. LðDÞ ¼ Prðf 0s jDÞ
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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From Mechanism A0, given fs occurrences of s in D, there will be
exactly cfs tuples that generate s in D0 with a probability of p. The
remaining tuples have zero probability of generating a s value. The
probability that f 0s occurrences of s is generated in D0 is given by

LðDÞ ¼ Prðf 0s jDÞ ¼
cfs

f 0s

� �
pf 0s ð1� pÞcfs�f 0s

where p ¼ 1=c. This is a binomial distribution function which is
maximized when f 0s is at the mean value of cfsp ¼ fs. In particular,
lnLðDÞ ¼ c þ f 0s lnpþ ðcfs � f 0s Þlnð1� pÞ for a constant c. Setting
d

dp ðlnLðDÞÞ ¼ f 0s
p �

cfs�f 0s
1�p ¼ 0 gives fs ¼ f 0s . h

To examine the utility of the dataset D0, we ask how likely it is
for f 0s to be close to fs. We also need to provide protection for small
counts. Next, we show that our method simultaneously discloses
useful information where the sum is large and hence safe, and
withholds accurate information when the sum is small.

4.1. Large sum utility

To answer the question about the utility for large sums, we
derive a bound for the relative error. If there are fs tuples with s
value, then n ¼ cfs tuples in D will have a probability of p to be
assigned s in D0. The setting of value s to the tuples in D0 corre-
sponds to a sequence of cfs independent Bernoulli random vari-
ables, X1; . . . ;Xcfs , each with parameter p. Here Xi ¼ 1 corresponds
to the event that s is chosen for the i-th tuple, while Xi ¼ 0 corre-
sponds to the case where s is not chosen. Since p ¼ 1=c and
n ¼ cfs; f s ¼ np.

Theorem 3. For e > 0,

Pr jf 0s � fsjP efs
� �

6
1

ce2f 2
s

ð3Þ
100 200 300 400 500 600 700 800 900

10
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Fig. 4. Relationship between T E and T f .
Proof. The proof of the utility of the published data for large sums
is based on Chebychev’s Theorem: If X is a random variable with
mean l and standard deviation r, then for any positive k,
PrðjX � lj < krÞP 1� 1

k2 and PrðjX � ljP krÞ 6 1
k2.

Let X1;X2; . . . ;Xn; . . . be a sequence of independent, identically
distributed random variables, each with mean l and variance r2.
Define the new sequence of Xi values by Xn ¼ 1

n

Pn
i¼1Xi;

n ¼ 1;2;3; . . ..
From Chebychev’s inequality, P jXn � lXn

jP krXn

h i
6

1
k2 where

lXn
¼ E½Xn� ¼ l, rXn

¼ E½ðXn � lÞ2� ¼ r2

n and k is any positive real

number. Choose k ¼ �
ffiffi
n
p

r for some � > 0, we get

Pr jXn � ljP �
� �

6
r2

�2n
: ð4Þ

We use the above reasoning to derive the utility of our published
data for large sums. If there are fs tuples with s value, then n ¼ cfs

tuples in D will have a probability of p to be assigned s in D0. The set-
ting of value s to the tuples in D0 corresponds to a sequence of cfs

independent Bernoulli random variables, X1; . . . ;Xcfs , each with
parameter p. Here Xi ¼ 1 corresponds to the event that s is chosen
for the i-th tuple, while Xi ¼ 0 corresponds to the case where s is
not chosen.

The mean value lXn
¼ p. Also, r2

Xn
¼ pð1� pÞ=n. From Inequality

(4), Pr jXn � ljP �
� �

6
pð1�pÞ
�2n2 ¼ pð1�pÞ

�2c2f 2
s

. We set p ¼ 1
c, hence

Pr jXn � ljP �
� �

6
1

c3�2f 2
s

ð5Þ

Note that Xn is the count of s in D0 divided by n, and n ¼ cfs. Hence,
the occurrence of s in D0 is f 0s ¼ cfsXn.
Please cite this article in press as: Fu A.W.-C et al. Small sum privacy and large
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Rewriting Inequality (5), we get Pr jcfsXn � cfsljP cfs�
� �

6
1

c3�2f 2
s

Since l ¼ p ¼ 1=c, Pr jf 0s � fsjP c�fs
� �

6
1

c3�2f 2
s
.

With the above inequality, we are interested in how different f 0s
is from fs. Since the deviation is bounded by c�fs, it is better to use
another variable e ¼ c� to quantify the difference.

Pr jf 0s � fsjP efs
� �

6
1

ce2f 2
s
�

Our estimation is es ¼ f 0s , hence the above gives a bound on the
probability of error in our estimation. If fs is small, then the bound
is large. In other words the utility is not guaranteed, which means
better privacy protection.

Given a desired e and a desired c, we may find a frequency
threshold T f so that for fs above this threshold, the probability of
error in Inequality (3) is below another threshold T E for utility.
We can set the RHS in the above inequality to be this threshold.

Lemma 1. SPLU-Gen provides a ð�; T E; T f Þ utility guarantee for

each sensitive value, where T f ¼ 1
ce2T E

� �1
2

Hence, given e and T E, we can determine the smallest count
which can provide the utility guarantee.

Fig. 4 shows the relationship between the possible values of T f

and T E. The utility is better for small T E, and the value of T E

becomes very small when the count is increasing towards 900.
Note that it also means that for concepts with large counts, privacy
protection is not guaranteed, since the accuracy in the count will
be high.

4.2. Small sum privacy

Next, we show how our mechanism can inherently provide pro-
tection for small counts. From Inequality (3), small values of fs will
weaken the guarantee of utility. We can in fact give a probability
for relative errors based on the following analysis.

The number of s in D0 is the total number of successes in fsc
repeated independent Bernoulli trials with probability 1

c of success

on a given trial. It is the binomial random variable with parameters
n ¼ cfs p ¼ 1

c, and q ¼ 1� p. The probability that this number is x is

given by n
x

� �
pxqn�x ¼ cfs

x

� �
1
c

� �x
1� 1

c

� �cfs�x
.

Example 1. If fs ¼ 5; c ¼ 10, for an e ¼ 0:3 bound on the relative
error, we are interested to know how likely it is for f 0s to be close to
5 within a deviation of 1. The probability that f 0s is between 4 and 6

is given by
P6

x¼4
50
x

� �
0:1x0:950�x ¼ 0:52. Hence, the probability

that f 0s deviates from fs by more than 0:3f s is 0.48.

From Definition 4, a sensitive value s has a ðe; T PÞ privacy
guarantee if the probability that the estimated count of s; f 0s , has
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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a relative error of more than e is at least T P . In Example 1, the value
s has a ð0:3; 0:48Þ privacy guarantee. We can derive the following.

Lemma 2. Considering only single SA value concepts, SPLU-Gen with
parameter c satisfies SSP-privacy with respect to ðe; T P ;aÞ, where

T P ¼ min
fs2½1::a�

1�
Xbð1þeÞfsc

x¼dð1�eÞfse

cfs

x

� �
1
cx 1� 1

c

� �cfs�x
0
@

1
A

Note that this guarantee is independent of the dataset size and
independent of the data distribution. Also note that a closed form
approximation by replacing the binomial with a normal distribu-
tion is not applicable here since the value of fs of interest is very
small.

Example 2. A graph is plotted in Fig. 5 for the expected error for
small values of fs. Here the summation in the above probability is
taken from f 0s ¼ d0:7f se to f 0s ¼ b1:3f sc. We have plotted for different

fs values the probability given by 1�
Pb1:3f sc

x¼d0:7f se

cfs

x

� �
1 cx 1� 1

c

� �cfs�x
. Due to the rounding effects of the summa-

tion over integer values of x, the graph has a sawtooth shape. This
graph shows that the relative error in the count estimation is
expected to be large for sensitive values with small counts. From
this graph, we can derive that for single SA value concepts, given
a ¼ 3; e ¼ 0:3; T P ¼ 0:6, SPLU-Gen with c ¼ 10 satisfies SPLU-
privacy with respect to ðe; T P ;aÞ. The graph also shows that the
choice of c has little impact on the guarantee.
5. Multiple attribute predicates

In this section we consider the reconstruction of counts for sets
of values. For example, we may want to estimate the count of
tuples with both lung cancer and smoking, or the count of tuples
with gender = female, Age = 60 and disease = allergy. First we shall
consider the estimation of counts for predicates involving a single
sensitive attribute, then we extend our discussion to predicates
involving multiple sensitive attributes.

5.1. Predicates involving a single SA

Assume that we have a set of non-sensitive attributes NSA and a
single sensitive attribute SA. Let us consider queries involving both
NSA and SA. We may divide such a query into two components: P
and s, where P 2 domainðNAÞ (NA # NSA), and s 2 domainðSAÞ. For
example P ¼ ðfemale;60Þ and s ¼ ðallergyÞ. Note that the non-sensi-
tive attributes are not distorted in the published dataset. This can
be seen as a special case of generating a non-sensitive value for the
individual t by selecting si with probability pi, so that pi ¼ 1 for
si ¼ t:s; and pi ¼ 0 for si – t:s.
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Fig. 5. Expected error for small sums.

Please cite this article in press as: Fu A.W.-C et al. Small sum privacy and large
10.1016/j.jbi.2014.04.002
Suppose we are interested in the count of the co-occurrences of
non-sensitive values P and sensitive value s.

Definition 5 (state i). There are 4 conjunctive predicates concern-
ing P and s, namely, /0 ¼ P ^ s, /1 ¼ P ^ s, /2 ¼ P ^ s, and
/3 ¼ P ^ s. If a tuple satisfies /i, we say that it is at state i.

The distributions of the predicates in D and D0 are given by
cntð/iÞ and cnt0ð/iÞ, respectively. Here cntð/iÞðcnt0ð/iÞÞ is the num-
ber of tuples satisfying /i in D (D0).

For simplicity we let xi ¼ cntð/iÞ and yi ¼ cnt0ð/iÞ, hence the a
priori distribution concerning the states in D is given by
x ¼ fx0; x1; x2; x3g, and the distribution in D0 is given by
y ¼ fy0; y1; y2; y3g. Hence, y contains the observed frequencies.

Definition 6 (Transition matrix M). The probability of transition for
a tuple from an initial state i in D to a state j in D0 is given by aij.
Values aij form a transition matrix M.

Let PrðrijxÞ be the probability that a tuple is at state i in D0 given
vector x for the initial state distribution. The following can be
derived.

Prðr0jxÞ ¼
1
N

1� x1 þ x3

N

� �
x0 þ

c� 1
c

x1

� �
ð6Þ

Prðr1jxÞ ¼
1
N

x1 þ x3

N

� �
x0 þ

1
c

x1

� �
ð7Þ

Prðr2jxÞ ¼
1
N

1� x1 þ x3

N

� �
x2 þ

c� 1
c

x3

� �
ð8Þ

Prðr3jxÞ ¼
1
N

x1 þ x3

N

� �
x2 þ

1
c

x3

� �
ð9Þ

The above equations are based on the mechanism generating D0

from D. Let us consider the last equation, the other equations are
derived in a similar manner. For each true occurrence of ðP; sÞ, there
is a 1

c probability that it will generate such an occurrence in D0. If
there are x3 such tuples, then the expected number of generated
instances will be x3=c.

Other occurrences of ðP; sÞ in D0 may be generated by the x2

tuples satisfying P but with t:s – s ðP; sÞ. Each such tuple t satisfies
P for the non-sensitive values and it is possible that s 2 decoysðtÞ.
We are interested to know how likely it is that s 2 decoysðtÞ.

There are in total N
c partitions. There can be at most one s tuple

in each partition. Hence, fs of the partitions contain s in the decoy
set, and if a tuple t is in such a partition, then s 2 decoysðtÞ. The
probability of having s in decoysðtÞ for a tuple t with t:s – s is the
probability that t is in one of the fs partitions above given that
t:s – s. Note that the condition in this probability is t:s – s and
not on more detailed information about t. This probability is given
by fs=

N
c ¼ fs

c
N. Since fs ¼ x1 þ x3, this probability is x1þx3

N c. The total
Fig. 6. State transition probabilities.
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expected occurrence of ðP; sÞ is given by x3
c þ

x1þx3
N c

	 
 x2
c . We can con-

vert this into a conditional probability that a tuple in D0 satisfies
ðP; sÞ given x, denoted by Prðr3jxÞ. This gives Eq. (9).

Rewriting Eqs. (6)–(9) with the transition probabilities in Fig. 6
gives the following:

PrðrijxÞ ¼
X3

j¼0

aji
xj

N
ð10Þ

Eq. (10) shows that aji is the probability of transition for a tuple
from an initial state j in D to a state i in D0.

We adopt the iterative Bayesian technique for the estimation of
the counts of x0; . . . ; x3. This method is similar to the technique in
[4] for reconstructing multiple column aggregates.

Let the original states of tuples t1; . . . ; tN in D be U1; . . . ;UN ,
respectively. Let the states of the corresponding tuples in D0 be
V1; . . . ;VN . From Bayes rule, we have

PrðUk ¼ ijVk ¼ jÞ ¼ PðVk ¼ jjUk ¼ iÞPðUk ¼ iÞ
PðVk ¼ jÞ

Since PrðUk ¼ iÞ ¼ xi=N, and PrðVk ¼ jjUk ¼ iÞ ¼ aij,

PrðUk ¼ ijVk ¼ jÞ ¼
aij

xi
NP3

r¼0arj
xr
N

ð11Þ

PrðUk ¼ iÞ ¼
X3

j¼0

PrðVk ¼ jÞPrðUk ¼ ijVk ¼ jÞ

Hence, since PrðVk ¼ jÞ ¼ yj=N; PrðUk ¼ jÞ ¼ xj=N and from Eq. (11),
we have

xi

N
¼
X3

j¼0

yj

N
aij

xi
NP3

r¼0arj
xr
N

ð12Þ

We iteratively update x using the following equation

xtþ1
i ¼

X3

j¼0

yj

at
ijx

t
iP3

r¼0at
rjx

t
r

ð13Þ

We initialize x0 ¼ y, and xt is the value of x at iteration t. In Eq. (13),
at

ij refers to the value of aij at iteration t, meaning that the value of at
ij

depends on setting the values of x ¼ xt . We iterate until xtþ1 does
not differ much from xt . In our experiments, the stopping criterion
is that for all 0 6 i 6 3; jxtþ1

i � xt
i j=xt

i 6 0:01. The value of x at this
fixed point is taken as the estimated x value. In particular, x3 is
the estimated count of ðP; sÞ.

5.2. Multiple sensitive attributes

So far we have considered that there is a single sensitive attri-
bute in the given dataset. Suppose instead of a single sensitive
attribute (SA), there are multiple SAs. Let the sensitive attributes
be S1; S2; . . . Sw. We can generalize the randomization process by
treating each SA independently, building decoy sets for each Si.

For predicates involving fP; s1; s2; . . . ; swg, where P is a set of val-
ues for a set of non-sensitive attributes, si 2 domainðSiÞ, there will
be K ¼ 2wþ1 different possible states for each tuple. We let
ðP; s1; s2; . . . ; swÞ stand for ðP ^ s1 ^ s2 . . . ^ swÞ. For reconstruction
of the count for ðP; s1; s2; . . . ; swÞ, we form a transition matrix for
all the K ¼ 2wþ1 possible states. It is easy to see that the case of a
single SA in Section 5.1 is a special case where the transition matrix
M is the tensor product of two matrices M0 and M1;A ¼ M0 �M1,
where M0 is for the set of non-sensitive values and M1 is for s1,
and they are defined as follows:
Please cite this article in press as: Fu A.W.-C et al. Small sum privacy and large
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M0 ¼
1 0
0 1

� �
Mi ¼

1� fsi
=N fsi

=N

ðc� 1Þ=c 1=c

� �

In general, with sensitive attributes S1; . . . ; Sw, the transition matrix
is given by M ¼ M0 �M1 . . .�Mw.

Let the entries in matrix M be given by mij. We initialize x0 ¼ y
and iteratively update x using the following equation

xtþ1
i ¼

XK�1

j¼0

yj

mt
ijx

t
iPK�1

r¼0 mt
rjx

t
r

ð14Þ

In Eq. (14), xt is the value of x at iteration t. at
ij refers to the value of

mij at iteration t, meaning that the value of mt
ij depends on setting

the values of x ¼ xt . We iterate until xtþ1 does not differ much from
xt . In our experiments the stopping criterion is that for all
0 6 i 6 3; jxtþ1

i � xt
i j=xt

i 6 0:01. The value of x at this fixed point is
taken as the estimated x value. In particular xK�1 is the estimated
count of ðP; s1; . . . ; swÞ.

5.3. Small sum privacy

For the multiple attribute predicate counts, we also guarantee
that privacy for small sums will not be jeopardized.

Lemma 3. Let s be a sensitive value with a ðe; T pÞ privacy guarantee,
then the count for a multiple column aggregate involving s also has the
same privacy guarantee.
Proof. Without loss of generality, consider a multiple attribute
aggregate of ðP; sÞ, where P 2 domainðNSAÞ. Since the randomiza-
tion of s is independent of the NSA attributes, the expected relative
error introduced for ðP; sÞ is the same as that for ðP; sÞ. The total
expected error for ðP; sÞ and ðP; sÞ must not be less than that dic-
tated by the ðe; T PÞ guarantee since otherwise the sum of the
two counts will generate a better estimate for the count of s, violat-
ing the ðe; T PÞ privacy for s. Hence for ðP; sÞ the privacy guarantee is
at least ðe; T PÞ. h

Let / ¼ ðP; sÞ be a predicate with sensitive value s. and P 2
domainðNAÞ ðNA # NSAÞ. There are two possible cases as follows.
CASE 1: There exists f/ occurrences of / in D and there is no other
occurrence of s in D. CASE 2: There exists f/ occurrences of / in D
and there exists other occurrence(s) of s in D.

Lemma 4. In CASE 1, the estimation of f/ by f 0s is a maximum
likelihood estimation (MLE).
Proof. There are in total f/ occurrences of s in D. Hence estimat-
ing the number of s in D also estimates the number of / in D.
With SPLU-Gen, given f/ occurrences of s in D, there will be
exactly cfs tuples that generates s in D0 with a probability of p,
where p ¼ 1=c. The remaining tuples have zero probability of
generating a s value. The maximum likelihood of the estimation
by f 0s follows the same argument as that in the proof of Theo-
rem 2. h

For CASE 2, suppose there are f/ occurrences of / in D and fPs

other occurrences of s. Let /1 ¼ ðP ^ sÞ. Estimation of f/ by f 0s will
be affected by other occurrences of s in D0 that may be generated
from groups containing records satisfying /1. Suppose f 0s is taken
to be the estimation of f/, then we can show that the probability
of the estimation error exceeding a given relative error threshold
is always at least the same as that in CASE 1: if there is no occur-
rence of /1, the probability that f 0s is within e of the true f/ value is
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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given by ProbA ¼
Pbð1þeÞf/c

x¼dð1�eÞf/e
cf/
x

� �
1
c

� �x
ð1� 1

cÞ
cf/�x. If there are x0

instances of s generated by instances of /1, the probability will

become ProbB ¼
Pbð1þeÞf/c�x0

x¼dð1�eÞf/e�x0
cf/
x

� �
1
c

� �x
ð1� 1

cÞ
cf/�x. It is easy to

show that ProbB 6 ProbA.
We next consider how to derive the SPLU-privacy property of

SPLU-Gen. For CASE 1, the number of / in D0 is the total number
of successes in f/c repeated independent Bernoulli trials, with a
probability of 1

c for success on a given trial. Hence, we can derive
the ðe; T PÞ privacy guarantee for / as in Section 4.2.

For CASE 2, let us consider the scenario that x0, the number of
occurrences of s due to occurrences of /1, has also been given for
the estimation of f/. In this case the estimation of f/ by f 0s � x0 will
be the maximum likelihood estimation (MLE) for f/, with the argu-
ment given for Lemma 4, and the privacy guarantee is the same as
CASE 1. If the value of x0 is not given, the estimation of f/ will no
longer have the MLE guarantee, and therefore we use the CASE 1
guarantee as a bound for the overall guarantee. Hence, we have
the following result.

Theorem 4. SPLU-Gen with parameter c satisfies SSP-privacy with
respect to ðe; T P;aÞ, where

T P ¼ min
f/2½1::a�

1�
Xbð1þeÞf/c

x¼dð1�eÞf/e

cf/
x

� �
1
c

� �x

1� 1
c

� �cf/�x
0
@

1
A �
3 Downloadable at http://www.ipums.org.
4 Downloadable at http://www.cse.cuhk.edu.hk/adafu/medical-data.html, origi-

nally from http://www.hc-sc.gc.ca/dhp-mps/medeff/databasdon/structure-eng.php.
6. Empirical study

We have implemented our mechanism SPLU-Gen and compared
it with some existing techniques that are related in some way to
our method. The objectives of our empirical study are the follow-
ing: (1) While we have shown in Section 4 that SPLU-Gen satisfies
small sum privacy and large sum utility, we would like to see the
actual results in a real dataset. Hence, in our experiments we adopt
the measure of relative error to illustrate the privacy and utility
levels, where a higher relative error corresponds to more privacy
and less utility. (2) Demonstrate the effectiveness of our sophisti-
cated reconstruction mechanism, which makes the querying
results more accurate for large sum queries compared to previous
approach. We shall compare with Anatomy. (3) Show that �-differ-
ential privacy may not preserve small sum privacy with some
known parameter settings, and therefore careful parameter setting
is needed. (4) Show that the choice of retention based randomiza-
tion is sound by comparing with a randomization algorithm (DBR)
that does not have a retention probability for the original SA value
in each tuple. (5) Show that correlation for the case of multiple SA
attributes can be preserved. (6) Show that the computations
involved are not costly.

6.1. Experimental setup

All algorithms are implemented in C++ and tested on a machine
with Intel (R) Core (TM) i3 3.10 GHz CPU and 4.0 GB RAM. The pro-
gram for Anatomy is provided by the first author of [30].

For step 2 of mechanism SPLU-Gen, we need to partition tuples
in Ds into sets of size c each and each partition contains c different
sensitive values. We have adopted the group creation step in the
algorithm for Anatomy [30]. In this algorithm, all tuples of the
given table are hashed into buckets by the sensitive values, so that
each bucket contains tuples with the same SA value. The group cre-
ation step consists of multiple iterations. In each iteration a parti-
tion (group) with c tuples is created. Each iteration has two sub-
steps: (1) find the set L with the c hash buckets that currently have
Please cite this article in press as: Fu A.W.-C et al. Small sum privacy and large
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the largest number of tuples. (2) From each bucket in L, randomly
select a tuple to be included in the newly formed partition. Note
that the random selection in step (2) can be made deterministic
by picking the tuple with the smallest tuple id.

We use two real datasets. The first dataset is CENSUS,3 which
contains the information for American adults. The second dataset,
CADRMP, is from a publicly available4 real hospital database.

The CENSUS dataset consists of 8 categorical dimensions: Gen-
der (cardinality 2), Education (17), Marital (6), Race (9), Work-class
(10), Country (83), Age (78), and Occupation (50). From the CEN-
SUS dataset, we form datasets with increasing cardinalities. First,
we randomly sampled 500 k tuples from the real dataset, then
we further randomly sampled five datasets from the 500 k tuples,
with cardinalities ranging from 100 k to 500 k, the 100 k dataset is
used as the default. Occupation is chosen as the sensitive attribute,
while it is combined with Age for experiments with multiple sen-
sitive values.

For the dataset CADRMP, there are 8 tables: Reports, Reactions,
Drugs, ReportDrug, Ingredients, Outcome, and Druginvolve. Reports
consists of patients’ basic personal information. Reactions has a for-
eign key PID that references the attribute ID in Reports and an attri-
bute to indicate the patient’s disease. Reports contains records for
42,264 different individuals. A patient may have multiple diseases.
We first pre-process the dataset so that we retain only the most
frequent disease for each patient. Next we join the tables Reports
and Reactions in order to link the patient information with the dis-
ease information. There are 42,264 tuples in the joined table with
17 attributes each. The attributes are Report-id (cardinality 42264),
Report-no (6998), Gender-English (5), Age (107), Age-unit (1),
Weight (316), Height (245), Manufacture-id (3241), Date-of-Last-
Follow-up (1200), Serious (3), Feature-of-Report (12), Report-Type
(11), Notifier-Type (12), Notifier-Location (13), ADR-id (42264) and
Disease (1346). Disease will be used as the sensitive attribute.

In the experiment we consider count queries, which have been
used for utility studies for partition-based methods [30] and ran-
domization-based methods [21]. Count queries are generated
according to the method described in Appendix 10.9 in [5]. Specif-
ically, we generate random predicates with up to 3 of the non-sen-
sitive attributes, each of which is combined with a randomly
selected value in the domain of the sensitive attribute to form a
query. We count the tuples satisfying such a query, which is of
the form A1 ¼ v1 ^ . . . ^ Ad ¼ vd ^ SA ¼ v s, where each Ai is a dis-
tinct non-sensitive attribute, SA is the sensitive attribute, and the
v i and v s are values from the domains of Ai and SA, respectively.
The selectivity of a query is defined as the percentage of tuples that
satisfy the conditions in the query. In most of our analysis, we
group queries according to their distinct selectivity ranges. We
consider the queries with selectivity no more than 10 as small
counts. Large count queries are those with ½0:5%;5%Þ selectivity
in the CENSUS dataset, and with ½1%;9%Þ selectivity in the CAD-
RMP dataset. A pool of 5000 small count queries and a pool of
5000 large count queries are generated for each dataset. When a
selectivity s is considered without a range, we report on the aver-
age relative error of the estimated count for all queries that pass
the selectivity threshold s. For a single query, if the correct answer
is a and the returned answer is a0, then the relative error is given by
ja� a0j=a. For a set of Q queries, if the sum of relative error for all
queries in the set is E, then the average relative error is E=Q .

Given queries in the pool, we calculate the average relative
error between the actual count (from the original dataset) and
the estimated count (from the published dataset) as the metric
for utility. As discussed earlier, we differentiate between small
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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counts and large counts. Specifically, we vary the selectivity
(denoted by s, which is the ratio of the actual count to the
cardinality of dataset) for large counts. For small counts, we
require the actual count to be no more than 10. We evaluate the
influence of various c values, and also the cardinalities of dataset
on the utility. To assess the efficiency, we record the running time
of our data publishing algorithm.

6.2. Results for the CENSUS dataset

In this subsection we report on the results for the CENSUS data-
set. We shall consider the utility for large sums, the privacy for
small sums, and the comparison with other algorithms.

6.2.1. Utility for large sums
We first consider the utility of the anonymized data for queries

with sufficient sums. The results are shown in Fig. 9(a). For selec-
tivity (i.e., large counts) between 2% and 5%, the relative error is
around 10%. The relative errors are bounded by 20% for other selec-
tivities between 0.5% and 5%. Another observation is that the rela-
tive error is the smallest when the selectivity is the greatest at 4–
5%. This shows the desired effect that the result is more accurate
for large sums. In Fig. 8, we plot the relative errors for increasing
selectivity from [0.5%, 1%), [1%, 2%), . . ., to [4%, 5%), and we notice
a drop of the relative error as selectivity reaches 5%, which is the
desired behavior.

We have also run some special queries on the dataset by gener-
alizing the domain of attribute age into intervals so that each age
interval spans about 8% of the tuples, this allows us to generate
queries with selectivities between 5% and 8%. With such queries,
and with c ¼ 5, dataset of size 100 K, the average relative error
for SPLU-Gen is 0.01, which is very small, and it shows that the util-
ity for larger sums is very high.

6.2.2. Privacy for small sums
We plot the relative errors of queries with small counts in Fig. 7,

where the counts are smaller than 10. We see that the error is suf-
ficiently high to ensure privacy, consistent with our requirement
that answer for small count should be inaccurate enough to pre-
vent privacy leakage. The relative error also displays a positive lin-
ear correlation with c. As c becomes bigger, higher uncertainty is
introduced and privacy for small counts is ensured at a higher
level. It also indicates that a small value of c such as 5 is sufficient
for a big relative error.

6.2.3. Results from other methods
We have implemented three existing methods: �-differential

privacy, Anatomy, and the distribution based randomization tech-
nique (DBR). DBR is described in Section 3, it generates SA values
based on the distributions in the original dataset.
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Fig. 7. Comparison of errors for SPLU-Gen, Anatomy, DBR, and differential privacy
(small counts) for CENSUS.
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6.2.3.1. �-differential privacy. The first other method we have
implemented is querying with �-differential privacy. We add inde-
pendently generated noise with distribution LapðDf=�Þ to the true
query result, and this ensures �-differential privacy [14]. The
parameter � is public and as stated in [13], it may be set to values
such as 0.01, 0.1, or in some cases, ln 2 or ln 3, and in particular, an
example of Df ¼ 1 and � ¼ ln 2 is used for illustration. For this set
of experiments, we are not comparing �-differential privacy with
other methods. We aim to study the effects of different values of
� on small sum privacy. We have plotted the result of relative error
for small count queries (count between 1 and 10) in Fig. 7 for the
cases of Df ¼ 1 and � ¼ ln 3 and also � ¼ ln 2. We can see that
the relative error is quite small compared to the other methods,
and can lead to privacy concerns. If � is set smaller, the relative
error will become bigger. This result shows that differential privacy
mechanism may violate the small sum privacy requirement if the
parameters are not set properly. Therefore, careful selection of
parameters is needed.

6.2.3.2. Anatomy. To compare with the Anatomy method, we set
both c and ‘ in Anatomy to the same value, c ¼ ‘ ¼ 5. The answers
for Anatomy are estimated using the method in [30]. We then
choose different settings of s (selectivity) and N (sizes of dataset)
to evaluate their performance. We first examine the relative error
for small counts (see Fig. 7). In comparison it is noted that SPLU-
Gen achieves a highest error rate for larger values of c, which
shows that SPLU-Gen is more sensitive to the group sizes. In
Fig. 8, we compare the methods in terms of their achieved utility
by setting N = 300 K and varying the selectivity. SPLU-Gen has a
decreasing pattern for the relative error with decreasing selectiv-
ity, which is consistent with the SPLU model. Anatomy does not
exhibit a similar trend. These results can be explained by the use
of a randomization and reconstruction technique in SPLU-Gen
which directly corresponds to the law of large numbers. For large
count queries, the average relative errors for Anatomy and SPLU-
Gen are shown in Fig. 9(b) and (a), respectively. The overall error
of our method is smaller than that of Anatomy and also there is
better correspondence of utility with selectivity. This helps to show
the superiority of our reconstruction mechanism.

6.2.3.3. DBR. Next we consider the comparison with the distribu-
tion based randomization algorithm DBR. For DBR, the maximum
likelihood estimations for sums of SA or predicates involves both
NSA and SA are the corresponding counts in the published data.
While DBR makes use of the original SA distribution in the random-
ization, and hence can preserve it well, it does not try to retain the
original SA value in a given tuple. Hence, the correlation of the NSA
and SA is not preserved. This affects the utility of DBR for predi-
cates involving both NSA and SA. From Fig. 9(c), we see that DBR
leads to higher relative errors for large sum queries. In Fig. 8, for
DBR, we observe larger errors for smaller selectivities compared
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to SPLU-Gen, and an increase in error for larger selectivity. There is
no obvious trend as the utility fluctuates with the correlations in
the original datasets, where higher inaccuracy results if the original
dataset exhibits more correlations for the chosen query.
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Fig. 11. Comparison of utilities for SPLU-Gen, Anatomy, and DBR for CADRMP.
6.3. Results from the CADRMP dataset

Next we report our results on the medical dataset CADRMP. This
dataset is comparatively smaller than CENSUS, with only 42,264
data records. The smaller size makes the results less stable com-
pared to CENSUS. We shall again examine the utility for large sums,
the privacy for small sums and the comparison with other meth-
ods. Since the relative errors in general for CADRMP are lower for
small counts, we have attempted to set the default value of c to
10 as is set in [30]. However, there exists some sensitive value with
a frequency above 10%, hence CADRMP violates the eligibility con-
dition [30,20] and Anatomy becomes infeasible. Hence, we set c to
the nearest feasible value of 9.
6.3.1. Utility for large sums
The results for utility are shown in Fig. 11. We plot the relative

errors for increasing selectivity from [1%, 2%), [2%, 3%), . . ., to [8%,
9%). The relative errors range from below 10% to below 30%. The
trend is not clear as the greatest errors occur in the middle at selec-
tivity ½5%;6%Þ, and is the lowest at selectivity ½6%;7%Þ. The errors
from the three methods, SPLU-Gen, Anatomy, and DBR are quite
similar in trend. One explanation to this fluctuation is that the
given dataset has a smaller size and the cardinality of the sensitive
value is large, which introduces more uncertainty for the errors.
The cardinality of Disease in CADRMP is 1346. Compared to the
cardinality of 50 for Occupation in CENSUS, Disease is much more
diverse. This makes the results more unstable across the different
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Fig. 10. Comparison of errors for SPLU-Gen, Anatomy, DBR, and differential privacy
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methods. Hence, users may first analyze the diversity of their data
attributes and take note of its possible impact on the results. Over-
all, the relative errors for SPLU-Gen and Anatomy are both small for
the large sum queries and both methods provide utility for such
queries.

6.3.2. Privacy for small sums
We vary c from 2 to 9 in Fig. 10 to measure the relative error for

small count queries. The relative errors from SPLU-Gen, Anatomy,
DBR and DP are plotted. The resulting trend is similar to the results
from CENSUS. SPLU-Gen has a clearly higher relative error rate
compared to the other methods at c ¼ 4 or above, and hence pro-
vides better small sum privacy.

In Fig. 10 we also show the results of querying with �-differen-
tial privacy [14]. As stated in [13], � may be set to values such as
0.01, 0.1, or in some cases, ln 2 or ln 3. We have plotted the result
of relative errors for small count queries (count between 1 and 10)
in Fig. 10 for the cases of Df ¼ 1 and � ¼ ln 3 and also � ¼ ln 2. We
can see that for � ¼ ln 3, the relative error is quite small compared
to the other methods, and can lead to privacy concerns. If � is set
smaller the relative error will become bigger. This result is similar
to that for CENSUS.

6.4. Multiple sensitive values

We also consider the utility in scenarios where a query involves
more than one sensitive value. To this end, we choose Age and
Occupation as the sensitive attributes in CENSUS. The two sensitive
attributes are randomized independently and then combined for
data publishing To allow queries of large selectivities, we first gen-
eralize the domain of Age into ten intervals; without this step,
most of the resulting counts are too small and the range of selectiv-
ity is limited. The relative error for multiple-dimension aggregates
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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involving two sensitive attributes is shown in Fig. 12, where c
ranges from 2 to 8. Although the selectivity is very low (0.1–0.7%
for this case), the overall accuracy can match that of the single-sen-
sitive-attribute scenario.
6.5. Computational overhead

The computational overhead mainly comes from the partition-
ing process. We have adopted the partitioning method of Anatomy.
This algorithm can be implemented with a time complexity of
OðNð1þ V

cÞÞ, where N is the cardinality of the table, and V is the
number of distinct values of the sensitive attribute. We measure
the running time for the case of single sensitive attribute on the
largest 500 K dataset, varying c from 2 to 10. For all chosen c val-
ues, our algorithm can finish within 10 s for a 500 K dataset, which
is practical to be deployed in real applications.

We also consider the querying efficiency at the user side. To
estimate the answer, a user will compute each component of the
vector y, and do matrix multiplications to iteratively converge to
the answer x. When each component of y changes by no more than
1%, we terminate the iteration and measure the querying time and
number of iterations. In our experiments, SQLITE35 serves for que-
rying y, and we consider the case with two sensitive attributes which
involves the most number of components in y, implying the largest
computational cost. The result shows that the Bayesian iterative pro-
cess takes negligible time, while the major cost comes from the que-
rying step. In particular, it takes less than 1 ms on average, and
10 ms in the worst case, for the iterative process to converge. The
median and average of the number of iterations is 16 and 325,
respectively. In total, the average measured time for a query is
1612 ms, which poses little computational burden on users.
6.6. Discussion on thresholds and parameter setting

As pointed out in Section 2, the thresholds for small sum pri-
vacy and large sum utility can be determined by users. The users
may decide based on both theoretical analysis and experimental
results. With SPLU-Gen, we have the properties as given in Lemmas
1 and 2, and some analytical results are shown in Figs. 4 and 5. The
figures show the utility for large sums of 100 or above for different
values of �, and privacy guarantee for small sums of less than 10.
Our experimental results in this section support similar findings.
The user can decide on the suitable thresholds based on these
results. We have set the parameter of c to values of 5, 9, and 10
with satisfactory outcomes. Hence, we would recommend the
use of c values between 5 and 10 for SPLU-Gen.
5 See http://docs.python.org/library/sqlite3.html.
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7. Related works

Since the pioneering works on protecting privacy while disclos-
ing information in [25,22] there have been many interesting
research works. The models of k-anonymity [26] and ‘-diversity
[20] are among the first major models on this problem. �-differen-
tial privacy has been introduced for query answering and a com-
mon technique is based on distortion to the query answer by a
random noise that is i.i.d. from a Laplace distribution and cali-
brated to the sensitivity of the querying [14,12]. Laplace noise
has been used in recent works on reducing relative error [29]
and the publishing of data cubes in [9].

Some previous works study the trade-off between utility and
privacy (risk). They include the work on risk-utility (RU) confiden-
tiality maps by Duncan et al. [11] and the study of utility versus pri-
vacy trade-off in k-anonymization by Loukides et al. [19]. These
works set up different metrics for privacy and utility, so that adjust-
ments of parameters in the anonyimzation process give rise to dif-
ferent utility and privacy measurements. Typically, higher utility
leads to lower privacy, and vice versa. Based on these metrics, Dun-
can et al. generate RU plots to identify the best solution in terms of
both privacy and utility. Such works differ from ours in that they
treat all concepts equally in terms of privacy or utility. There is no
separation of concepts that need protection versus those that do
not. After the parameter setting, these works follow conventional
mechanisms and are susceptible to the problem posted by [7].

The problem posted by [7] is that a classifier built on top of data
anonymized by conventional mechanisms can be very accurate in
the prediction of sensitive values for some individuals. This is true
even when the anonymization process is known to have certain
privacy protection for the individuals. In their experiment, they
showed that with the Adult dataset from the UCI Machine Learning
repository, when the data is sanitized by a differential privacy
mechanism, a classifier built on top of the published data can be
very accurate for a few hundred individuals when the target attri-
bute is Occupation.

In the literature of statistical databases, the protection of small
counts has been well-studied in the topic of security in statistical dat-
abases [1]. A concept similar to ours is found in [27] where the aim is
to ensure that the error in queries involving a large number of tuples
will be significantly less than the perturbation of individual tuples. It
has been pointed out in previous works [15,16] that the security of a
database is endangered by allowing answers to counting queries that
involve small counts. However, these previous works are about the
secure disclosure of statistics from a dataset and do not deal with
the problem of sanitization of a dataset for publishing.

Some significant impossibility results have been found in previ-
ous works. In [10], it is shown that any algorithm which guarantees
an absolute query estimation error of oð

ffiffiffiffi
N
p
Þ, for a dataset size of N,

for more than XðNlog2NÞ queries will not guarantee privacy. In
[21], it is shown that utility is impossible for privacy preservation
if the attacker’s prior knowledge is above a certain threshold,
where the prior knowledge is based on the prior probability of a
certain tuple in the dataset. Both impossibility results assume uni-
form utility requirements for all queries and hence they do not
contradict our result for non-uniform utilities.

Randomization technique has been used in previous works in
privacy preservation, such as [2,4]. The usefulness of such a tech-
nique is verified in [3], where the randomized data is shown to
have similar utility as the original dataset for classification.

Cormode et al. [8] suggested the notion of empirical privacy. In
this work, privacy is defined to be the fraction of tuples for which
one can predict the correct SA value from the published data. In
the attack model, a classifier is built to determine the empirical pri-
vacy. A comparison of syntactic anonymity and differential privacy
is given in [6], with the conclusion that both methodologies have
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/
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their pros and cons, each holding its value. Other studies consider
combining the strengths of the two methodologies. It is found that
t-closeness can yield �-differential privacy when t ¼ expð�Þ in [23],
and k-anonymity can improve the utility of anonymized data
released by differential privacy techniques [24].
8. Conclusion

While the results in [7] raise an alarm on the existing sanitiza-
tion models, our finding shows the possibility that existing meth-
ods may have covered the needed ground of privacy, and the
uncovered ground is not meant to be covered but instead is meant
for data utility, which is the goal of privacy preserving data pub-
lishing. We introduce the model of SPLU which advocates the sup-
port of utility for large sum querying and the guarantee of privacy
protection by introducing high inaccuracy for small sum querying.
We propose a data sanitization mechanism, called SPLU-Gen, based
on randomized perturbation on the sensitive values of the given
dataset. We show that SPLU-Gen satisfies the requirements of the
SPLU model. Our empirical studies on two real datasets show
desirable performance of our method. For future work, it will be
interesting to examine other existing privacy preserving mecha-
nisms to consider how they can be extended to support the para-
digm of SPLU.

Acknowledgements

We are very thankful to the reviewers for their careful checking
and very helpful comments and suggestions, which greatly
improved the manuscript. We thank the authors of [30] for the
source code of Anatomy. This research is supported by the Hong
Kong UGC/RGC GRF grant 412313 and the CUHK RGC Direct Grant
Allocation 2050497.

References

[1] Adam NR, Wortmann JC. Security-control methods for statistical databases: a
comparative study. ACM Comput Surv 1989;21(4):515–56.

[2] Agrawal D, Aggarwal CC. On the design and quantification of privacy
preserving data mining algorithms. In: ACM PODS; 2001. p. 247–55.

[3] Agrawal R, Srikant R. Privacy-preserving data mining. In: SIGMOD. ACM Press;
2000. p. 439–50.

[4] Agrawal R, Srikant R, Thomas D. Privacy preserving olap. In: SIGMOD; 2005. p.
251–62.

[5] Chaytor R, Wang K. Small domain randomization: same privacy, more utility.
In: VLDB; 2010. p. 608–18.
Please cite this article in press as: Fu A.W.-C et al. Small sum privacy and large
10.1016/j.jbi.2014.04.002
[6] Clifton C, Tassa T. On syntactic anonymity and differential privacy. Trans Data
Privacy 2013;6(2):161–83.

[7] Cormode G. Personal privacy vs population privacy: learning to attack
anonymization. In: KDD; 2011. p. 1253–61.

[8] Cormode G, Procopiuc CM, Shen E, Srivastava D, Yu T. Empirical privacy and
empirical utility of anonymized data. In: ICDE workshop on privacy-preserving
data publication and analysis (PRIVDB); 2013. p. 77–82.

[9] Ding B, Winslett M, Han J, Li Z. Differentially private data cubes: optimizing
noise sources and consistency. In: SIGMOD; 2011. p. 217–28.

[10] Dinur I, Nissim K. Revealing information while preserving privacy. In: PODS;
2003. p. 202–10.

[11] Duncan GT, Keller-McNulty SA, Stokes SL. Disclosure risk vs data utility: the
R � U confidentiality map. In: Technical report number 121, National Institute
of Statistical Sciences; December 2001.

[12] Dwork C. Differential privacy. In: International colloquium on automata,
languages and programming (ICALP); 2006. p. 1–12.

[13] Dwork C. A firm foundation for private data analysis. Commun ACM
2011;54(1):86–95.

[14] Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in
private data analysis. In: Proc 3rd theory of cryptography conference; 2006. p.
265–84.

[15] Feliegi I. On the question of statistical confidentiality. J Am Stat Assoc
1972;67(337):7–18.

[16] Hoffman L, Miller WF. Getting a personal dossier from a statistical data bank.
Datamation 1970;16(5):74–5.

[17] Hurkens CJ, Tiourine S. Models and methods for the microdata protection
problem. J Off Stat 1998:437–47.

[18] Kifer D. Attacks on privacy and definetti’s theorem. In: SIGMOD; 2009.
p. 127–38.

[19] Loukides G, Shao J. Data utility and privacy protection trade-off in
k-anonymisation. In: PAIS ’08 proceedings of the 2008 international
workshop on privacy and anonymity in information society; 2008. p. 36–45.

[20] Machanavajjhala A, Gehrke J, Kifer D. l-diversity: privacy beyond k-anonymity.
In: ICDE; 2006. p. 24.

[21] Rastogi V, Suciu D, Hong S. The boundary between privacy and utility in data
publishing. In: VLDB; 2007. p. 531–42.

[22] Samarati P. Protecting respondents’ identities in microdata release. IEEE Trans
Knowl Data Eng 2001;13(6).

[23] Soria-Comas J, Domingo-Ferrer J. Differential privacy via t-closeness in data
publishing. In: 11th IEEE annual conference on privacy, security and trust-PST;
2013. p. 27–35.

[24] Soria-Comas J, Domingo-Ferrer J, Sánchez D, Martínez S. Improving the utility
of differentially private data releases via k-anonymity. In: 12th IEEE
international conference on trust, security and privacy in computing and
communications; 2013. p. 371–9.

[25] Sweeney L. Weaving technology and policy together to maintain
confidentiality. J Law Med Ethics 1997;25(2–3):98–110.

[26] Sweeney L. k-anonymity: a model for protecting privacy. Int J Uncertain Fuzz
Knowl Syst 2002;10(5):557–70.

[27] Traub J, Yemini Y, Wozniakowski H. The statistical security of a statistical
database. ACM Trans Database Syst 1984;9(4).

[28] Wong R, Fu A, Wang K, Xu Y, Yu P, Pei J. Can the utility of anonymized data be
used for privacy breaches. ACM Trans Knowl Discovery Data 2011;5(3):1–23.
39.

[29] Xiao X, Bender G, Hay M, Gehrke J. ireduct: differential privacy with reduced
relative errors. In: SIGMOD; 2011. p. 229–40.

[30] Xiao X, Tao Y. Anatomy: simple and effective privacy preservation. In: VLDB;
2006. p. 139–50.
sum utility in data publishing. J Biomed Inform (2014), http://dx.doi.org/

http://refhub.elsevier.com/S1532-0464(14)00086-0/h0095
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0095
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0100
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0100
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0105
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0105
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0110
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0110
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0115
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0115
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0120
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0120
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0125
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0125
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0130
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0130
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0135
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0135
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0140
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0140
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0145
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0145
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0150
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0150
http://refhub.elsevier.com/S1532-0464(14)00086-0/h0150
http://dx.doi.org/10.1016/j.jbi.2014.04.002
http://dx.doi.org/10.1016/j.jbi.2014.04.002

	Small sum privacy and large sum utility in data publishing
	1 Introduction
	2 SPLU model
	3 A mechanism for SPLU
	3.1 Randomization by SPLU-Gen

	4 Aggregate estimation
	4.1 Large sum utility
	4.2 Small sum privacy

	5 Multiple attribute predicates
	5.1 Predicates involving a single SA
	5.2 Multiple sensitive attributes
	5.3 Small sum privacy

	6 Empirical study
	6.1 Experimental setup
	6.2 Results for the CENSUS dataset
	6.2.1 Utility for large sums
	6.2.2 Privacy for small sums
	6.2.3 Results from other methods
	6.2.3.1 ? -differential privacy
	6.2.3.2 Anatomy
	6.2.3.3 DBR


	6.3 Results from the CADRMP dataset
	6.3.1 Utility for large sums
	6.3.2 Privacy for small sums

	6.4 Multiple sensitive values
	6.5 Computational overhead
	6.6 Discussion on thresholds and parameter setting

	7 Related works
	8 Conclusion
	Acknowledgements
	References


