
Knowl Inf Syst
DOI 10.1007/s10115-012-0527-4

REGULAR PAPER

A new approach for maximizing bichromatic reverse
nearest neighbor search

Yubao Liu · Raymond Chi-Wing Wong ·
Ke Wang · Zhijie Li · Cheng Chen · Zhitong Chen

Received: 16 September 2011 / Revised: 30 April 2012 / Accepted: 14 July 2012
© Springer-Verlag London Limited 2012

Abstract Maximizing bichromatic reverse nearest neighbor (MaxBRNN) is a variant of
bichromatic reverse nearest neighbor (BRNN). The purpose of the MaxBRNN problem is
to find an optimal region that maximizes the size of BRNNs. This problem has lots of
real applications such as location planning and profile-based marketing. The best-known
algorithm for the MaxBRNN problem is called MaxOverlap. In this paper, we study the
MaxBRNN problem and propose a new approach called MaxSegment for a two-dimensional
space when the L2-norm is used. Then, we extend our algorithm to other variations of
the MaxBRNN problem such as the MaxBRNN problem with other metric spaces, and a
three-dimensional space. Finally, we conducted experiments on real and synthetic datasets
to compare our proposed algorithm with existing algorithms. The experimental results verify
the efficiency of our proposed approach.

Keywords Spatial data search · Reverse nearest neighbor · Bichromatic reverse nearest
neighbor

1 Introduction

Nearest neighbor (NN) search [18] finds the data points in the data space that are nearer
to a given query point than any other points in the data space. Reverse nearest neighbor
(RNN) search finds the points that have the query point as their nearest neighbor. RNN

Y. Liu (B) · Z. Li · C. Chen · Z. Chen
Department of Computer Science, Sun Yat-Sen University, Guangzhou, China
e-mail: liuyubao@mail.sysu.edu.cn

R. C.-W. Wong
Department of Computer Science and Engineering, Hong Kong University of Science
and Technology, Hong Kong, China

K. Wang
Department of Computer Science, Simon Fraser University, Burnaby, BC, Canada

123

Y. Liu et al.

Fig. 1 An example of BRNN

search was presented by Korn et al. [13,14] and has been extensively studied in the
database community. There are two kinds of RNN search [13], namely, monochromatic
RNN (MRNN) and bichromatic RNN (BRNN). In the case of MRNN, all points are of
the same type. A point o is considered as a reverse nearest neighbor for a query point
p if there does not exist another data object o′ where |o, o′| < |o, p| (|.| denotes the
distance). In the case of BRNN, there are two distinct types of point sets O and P .
A point o ∈ O is considered as a reverse nearest neighbor for a point p ∈ P , if there
does not exist another point p′ ∈ P , such that |o, p′| < |o, p|. The set of all possible
points in O each of which is a reverse nearest neighbor for a point p ∈ P is denoted by
B RN N (p, P).

Assume that point sets O and P correspond to a set of customers and a set of con-
venience stores, respectively. Assume that the customers would be more interested in
visiting a convenience store based on their distances. Figure 1a shows the spatial posi-
tions of two stores, p1 and p2, and five customers, o1, o2, o3, o4, and o5. Then, we have
B RN N (p1, P) = {o1, o2, o3} and B RN N (p2, P) = {o4, o5}.

Assume that we want to build a new convenience store p3. How can we determine the
location of convenience store p3? Intuitively, p3 can be set up at different positions as
shown in Fig. 1b, c, d. In Fig. 1b, we have B RN N (p3, P) = {o1, o2, o3}, in Fig. 1c, we
have B RN N (p3, P) = {o1, o2, o3, o4, o5}, and in Fig. 1d, we have B RN N (p3, P) =
{o1, o2, o3, o4, o5}. The largest size of BRNN of p3 means that we can attract the largest
number of customers since we assume the customers would visit a convenience store based
on their distances. So the positions of p3 in Fig. 1c, d are competitive. These two positions are
some specific points/positions in the space. In general, we can find a region instead of some
specific points. Finding a region for building a new convenience store can be formulated as a
problem called maximizing bichromatic reverse nearest neighbor (MaxBRNN) [26]. In this
MaxBRNN problem, we assume that all points in both sets O and P have a specific location
in a Euclidean space. If a new point p is added to P , the MaxBRNN problem [26,27] is to

123

Maximizing bichromatic reverse nearest neighbor search

find the maximal region R such that the size of BRNN of p is the largest when p is placed
in R.

The MaxBRNN problem is a variant of BRNN search. A large number of applications
that exist in BRNN search can also be applied to MaxBRNN search. For example, location
planning and profile-based marketing [33,40] are two traditional examples. The example in
Fig. 1c can be viewed as location planning application in which a new convenience store
can be viewed as a service that needs to attract as many customers as possible. As shown in
[26,27], the MaxBRNN problem can also been utilized into other emergency applications,
such as natural disasters, sudden big events, and military applications.

There exist two kinds of solutions for the MaxBRNN problem. One solution is presented
in [4]. The time complexity of this solution is exponential in terms of |O|. The other solution
is MaxOverlap and is presented in [26]. To the best of our knowledge, the MaxOverlap algo-
rithm [26] is the best solution for the MaxBRNN problem. The key idea of the MaxOverlap
algorithm is as follows. MaxOverlap finds the optimal region using the NLC. The optimal
region can be represented by the intersection of multiple NLCs. MaxOverlap is the first
polynomial-time algorithm for the MaxBRNN problem. The time complexity of MaxOver-
lap is O(|O|log|P| +m2|O| +m|O|log|O|) where m is an integer and denotes the greatest
possible number of intersecting NLCs.

We observe that the running time and the storage cost of the MaxOverlap algorithm would
become large in some cases. For example, in the experiments, when |O|=180K, |P|=360K,
and the value of m is about 2,000, the MaxOverlap algorithm would take more than 1 h
(about 4,500 s). However, in some emergency applications such as the earthquake in China,
we often need fast response for the MaxBRNN search to quickly place the supply/service
centers for rescue or relief jobs. On the other hand, in many mobile applications, we often
only have limited memory in mobile devices such as iPhone and PDA to run the MaxBRNN
search. Motivated by such applications, we aim to achieve more efficient MaxBRNN search
that would need smaller execution time and storage space. In this paper, we propose a new
approach called MaxSegment for the MaxBRNN search. Our proposed approach can not only
speed up the MaxBRNN search but also reduce the storage cost of the MaxBRNN search.

Specifically, we propose an efficient algorithm called MaxSegment whose time complexity
is better than that of MaxOverlap. In this paper, we show that the running time complexity
of the MaxSegment algorithm is O(|O|log|P| + m|O|log m + |O|log|O|).

The major reason why this algorithm is efficient is that we transform the optimal region
search problem in a two-dimensional space to the optimal interval search problem in a one-
dimensional space whose search space is significantly smaller than the search space in the
two-dimensional space. After the transformation, we can use a plane sweep-like method
to find the optimal interval efficiently. Finally, the optimal interval can be used to find the
optimal region in the original two-dimensional space.

Besides, the storage of MaxSegment is much smaller than that of MaxOverlap because
MaxOverlap requires to store a bulky overlap table that occupies O(|O|m) space but MaxSeg-
ment does not. In this paper, we show that the storage cost of the MaxSegment algorithm is
O(|Rp| + m) where Rp denotes the storage cost of R*-tree [1] for point sets O and P . The
main storage cost of the MaxSegment algorithm is to store R*-tree for point sets O and P .

Our contributions can be summarized as follows.

(1) We propose a novel algorithm called MaxSegment for the MaxBRNN problem in a
two-dimensional space where the L2-norm is used. The MaxSegment algorithm is more
efficient than the MaxOverlap algorithm in terms of algorithm running time and storage
cost.

123

Y. Liu et al.

(2) We also make some extensions for the MaxSegment algorithm. The first extension is to
extend our MaxSegment algorithm to other MaxBRNN problems. The second extension
is to extend the MaxSegment algorithm to other metric spaces. The third extension is to
extend our MaxSegment algorithm to a three-dimensional data space. All of the extended
algorithms have a similar algorithmic framework with the basic MaxSegment algorithm
developed for the original MaxBRNN problem.

(3) We conducted experiments to compare the MaxSegment algorithm with the best-known
MaxOverlap algorithm on real and synthetic datasets. The experimental results show the
efficiency of our presented methods.

The rest of this paper is organized as follows. Section 2 reviews the related works. Section 3
gives the problem definition including some basic concepts and existing algorithm analysis.
Section 4 describes our proposed algorithm MaxSegment in a two-dimensional space when
the L2-norm is used. Section 5 proposes our extended algorithms for some variations of the
MaxBRNN problem. Section 6 evaluates the proposed algorithms by comparing with the
existing best-known algorithm MaxOverlap on real and synthetic datasets. Section 7 con-
cludes this paper with future work.

2 Related work

BRNN search was first proposed in [13] and has been extensively studied in spatial databases.
Different from existing studies on BRNN search [15,20,22,32], MaxBRNN is to find an
optimal region not just a point. Since an optimal region may contain an infinite number
of points, how to represent and find such an optimal region become challenging for the
MaxBRNN problem. Similarly, the MaxBRNN problem for the L2-norm space is studied in
[4] in which a solution with exponential time complexity is proposed. An extended version
of [4] with similar results appears in [3]. Besides, the algorithm in [9] finds an optimal
location instead of an optimal region for the L1-norm space. The best-known solution for
the MaxBRNN problem is the MaxOverlap algorithm [26] in terms of running time. In some
cases, the MaxOverlap algorithm is 100,000 times faster than the algorithm in [4]. Some new
results, such as the extension of the MaxOverlap algorithm in a three-dimensional space, are
proposed in [27], an extended version of [26].

In this paper, based on the MaxOverlap algorithm, we propose an improved method called
MaxSegment for the MaxBRNN problem. Different from the MaxOverlap algorithm, which
transforms the MaxBRNN problem into a point search problem, the MaxSegment algorithm
transforms the MaxBRNN problem into an optimal circle arc search problem. As shown in
the experiments, the MaxSegment algorithm is more than 60 times faster than the MaxOverlap
algorithm in some cases. In particular, in a synthetic dataset where |O| = 180K and |P| =
360K, the MaxSegment algorithm running time is about 70 s while the MaxOverlap algorithm
is about 4,500 s. The storage cost for the MaxSegment algorithm is also distinctly smaller
than the MaxOverlap algorithm. In particular, in the same synthetic dataset described above,
the ratio of the storage of MaxOverlap to the storage of MaxSegment is about 3.

As shown in Sect. 5.1, the MaxBRkNN problem, which is a variation of the MaxBRNN
problem, considers the k nearest neighbors instead of the nearest neighbors of client points.
In the MaxBRkNN problem, we assume that each client point (customer) has the same
probability to visit the k nearest server points (convenience store). Recently, the authors in
[39] studied a generalized MaxBRkNN problem in which a client point may have different

123

Maximizing bichromatic reverse nearest neighbor search

probabilities to visit different server points and at the same time a server point is assumed to
have different target sets of client points.

Similar optimal location search problems were also studied in [5] and [35]. Zhang et al.
[35] proposes the min-dist optimal location query that finds a location that minimizes the
average distance from each client point to its closest server point when a new site is built
at this location. Cardinal and Langerman [5] propose to find a location for a new server site
and this location can minimize the maximum distance between this new server site and any
client point. Different from these problems, our problem is to find an optimal region instead
of a location.

There are other related studies. Yiu et al. [34] studies reverse nearest neighbors in large
graphs. In [28], spatial matching considers how to efficiently assign each customer (i.e., client
point) to her/his nearest server provider (i.e., server point) that has a capacity corresponding to
the maximum number of customers it can serve. Lian and Chen [16] proposes some processing
techniques for probabilistic reverse nearest neighbor queries over uncertain data. Kang et al.
[11] and Stanoi et al. [19] study reverse nearest neighbor queries over dynamic databases.
Tao et al. [23,24] study reverse nearest neighbor search in metric spaces and in arbitrary
dimensionality. Xia and Zhang [31], Wu et al. [29,30], Cheema et al. [7,8], Emrich et al. [10]
study the monitoring problem for continuous reverse nearest neighbor search. These problems
focus on spatial search on different scenes such as graph data, uncertain data, and dynamic
data. Different from these works, our problem works on static data. In addition, Zhang and
Alhajj [36,37] study the similarity search and the reverse nearest neighbor queries in high-
dimensional metric space. In [25,38], the concept of k-reverse nearest neighbor is also used
to data clustering. The location-based search services [12,21] are also related to our problem.

3 Problem definition

3.1 Basic concepts

We are given two distinct types of point sets O(client point set) and P(server point set). Each
point in both O and P has a specific location in a Euclidean space D (e.g., convenience stores
in Fig. 1). Each client point o ∈ O is associated with a weight, w(o), which denotes the
number of clients at location o. A region is defined as an arbitrary shape in the space D and
can also be viewed as a set of points in the space. We say that a region R covers another
region R′ if each point in region R′ appears in region R. Similarly, we say that a region R
covers a curve/line if each point along the curve/line appears in region R.

Definition 3.1 A region R is said to be consistent if the following condition holds: ∀p, p′ ∈
R, p, p′ �∈ P , B RN N (p, P ∪ {p}) = B RN N (p′, P ∪ {p′}).
Definition 3.2 Given a consistent region R, the influence value of R is denoted as I (R) and
defined as I (R) = ∑

o∈B RN N_R(R) w(o), where B RN N_R(R) = B RN N (p, P ∪ {p}) in
which p denotes an arbitrary new server point in R.

Definition 3.3 Given a consistent region R, we say that R is a maximal consistent region,
if there does not exist another consistent region R′ satisfying the following conditions: (1)
R ⊂ R′, and (2) B RN N_R(R) = B RN N_R(R′).

Definition 3.4 Given a set P of server points and a set O of client points, the MaxBRNN
problem is to find the maximal consistent region R such that, if a new server point p is set
up in R, the influence value of R is maximized.

123

Y. Liu et al.

Fig. 2 An example of MaxBRNN problem

In Fig. 2a, R1, R2, and R3 are three different regions. In Fig. 2b, R1 is a consistent
region because any new server point in R1 such as p3 has the same BRNN set. Specifically,
B RN N_R(R1) = {o1, o2, o3, o4, o5}. Similarly, as shown in Fig. 2c, R2 is a consistent
region since any new server point in R2 such as p4 has the same BRNN set. Specifically,
B RN N_R(R2) = {o1, o2, o3, o4, o5}. As shown in Fig. 2b, d, both p3 and p5 are in region
R3 and they have different BRNN sets. The BRNN set of p5 is {o1, o2, o3} and the BRNN
set of p3 is {o1, o2, o3, o4, o5}. So R3 is not a consistent region. In Fig. 2a, since R1 is inside
R2, R1 is not a maximal consistent region. If there are no other consistent regions covering
R2, then R2 would be a maximal consistent region.

3.2 Existing algorithm analysis

In the literature, there are two solutions for the MaxBRNN problem. One solution has an
exponential time complexity in terms of |O| and was proposed in [4]. The second solution is
the best-known solution, the MaxOverlap algorithm [26], that is, the first polynomial-time
algorithm. Our improved method MaxSegment shares some components with the MaxOverlap
algorithm. So it is necessary to introduce the MaxOverlap algorithm together with its basic
concepts and important properties. The proofs for these properties are omitted here due to
the limit of space.

Definition 3.5 For any client point o ∈ O, assume p is the nearest neighbor of o in P . The
NLC of o is defined as the circle centered at o with radius |o, p|.

Property 3.1 [26] If an NLC covers another NLC, the boundaries of the two NLCs must
share at least one point.

123

Maximizing bichromatic reverse nearest neighbor search

Fig. 3 The relationship of NLCs

In the following, we adopt the convention that a circle centered at oi is denoted by ci .
The overlapping relationship described in Property 3.1 can be shown in Fig. 3b. Note that
according to Property 3.1, it is not possible that the overlapping relationship shown in Fig. 3d
appears because the boundaries of the two NLCs in the figure do not share at least one point.
The reasoning is described as follows. In this figure, c1 covers c2. That is, the area of c2 is
inside the area of c1, but there are no intersection points between the boundary of c1 and the
boundary of c2. This relationship of NLCs cannot hold since p2 on the boundary of c2 is
nearer to the center point o1 than p1, which contradicts to the definition of NLC for o1.

Property 3.2 [26] For any two overlapping NLCs, say c1 and c2, the number of intersection
points between the boundary of c1 and the boundary of c2 is either one or two.

This property can be easily illustrated in Fig. 3a, b, c. As we illustrated before, Fig. 3b
shows the overlapping relationship that one circle covers another circle. Two other possible
overlapping relationships are shown in Figure 3a, c.

Property 3.3 [26] The optimal region R in the MaxBRNN problem can be represented by
an intersection of multiple NLCs.

According to the above property, we can use NLCs to represent the optimal region. In the
following, we focus on describing NLCs.

Consider an example as shown in Fig. 4 containing 6 clients. For the ease of illustration,
we remove all servers in the figure and we just show all NLCs. The optimal region (i.e., the
shadow part) can be represented by the intersection of three NLCs, namely c1, c2, and c3.

Property 3.4 [26] Assume that C is a set of NLCs whose intersection corresponds to the
optimal region R. If C contains more than one NLC, then there exist two NLCs, say c1 and
c2, such that region R contains at least one intersection point between the boundaries of c1

and c2.

Property 3.4 tells us that the optimal region must contain at least one intersection point
between a pair of NLCs. Suppose that we know this intersection point and we can find all

123

Y. Liu et al.

Fig. 4 An example of
MaxOverlap algorithm

NLCs covering this point. It is easy to verify that the set of all such NLCs corresponds to C .
According to this observation, we design the following algorithm because we can regard
all possible intersection points between any pair of NLCs as candidates for the MaxBRNN
search and each candidate can be used for a range query to find all NLCs covering it.

– Step 1: find all intersection points between the boundaries of any two overlapping NLCs
in the dataset.

– Step 2: find a set of NLCs covering each intersection point found in first step.
– Step 3: return the set of NLCs with the largest weight value as the final solution.

In the example as shown in Fig. 4 containing 6 clients, the MaxOverlap algorithm starts
to find a set of intersection points between all pairs of NLCs such as q1, q2, and q3. These
intersection points are used to determine the optimal region directly. Suppose that we can
find an optimal intersection point q , with the greatest influence value. Let S be a set of NLCs
covering point q . The influence value of q is defined to be

∑
c∈S w(c). The optimal region of

the MaxBRNN problem is equal to region R, which is the intersection of all NLCs in S. In
Fig. 4, we can find intersection point q3 with the largest influence value and the corresponding
set of NLCs, S = {c1, c2, c3}. So, the optimal region corresponds to the intersection of all
NLCs in S.

Besides the above three major steps, some pruning techniques are also proposed in the
MaxOverlap algorithm to reduce the search space of checking all the pairs of overlapping
NLCs. In addition, an R*-tree is used to perform a point query, that is, to check whether an
intersection point is covered by an NLC.

4 The proposed algorithm

In this section, we propose an efficient algorithm called MaxSegment whose time complexity
is better than that of MaxOverlap. The major reason why this algorithm is efficient is that we
transform the optimal region search problem in a two-dimensional space to the optimal inter-
val search problem in a one-dimensional space whose search space is significantly smaller
than the search space in the two-dimensional space. After the transformation, we can use a
plane sweep-like method to find the optimal interval efficiently. Finally, the optimal interval
can be used to find the optimal region in the original two-dimensional space.

Before introducing the proposed algorithm, we would like to give the preliminaries for
our algorithm.

123

Maximizing bichromatic reverse nearest neighbor search

Fig. 5 An example of NLC arc

4.1 Preliminaries

Given two overlapping NLCs, say c1 and c2, they form two intersection points, namely q1

and q2. Consider the boundary of one NLC, say c1. These two intersection points divide the
boundary of c1 into two components. The first component corresponds to the boundary of c1

that is inside c2 while the second component corresponds to the boundary of c1 that is not
inside c2. We call each component an NLC arc (short for arc). We say that c1 owns the first
arc and the second arc. We also say that c2 eclipses the first arc but it does not eclipse the
second arc. Note that the two end points of an arc correspond to the two intersection points.
We give two different names to these two end points according to their positions with respect
to NLC c1. The first one is the head of an arc, which is defined to be its end point such that
there exists a path from this end point to the other end point in an anticlockwise direction.
The second one is the tail of an arc, which is defined to be its end point such that there exists
a path from this end point to the other end point in a clockwise direction. We say that an arc
is directed from its head to its tail.

For example, in Fig. 5, we are given 3 clients and their NLCs. In this figure, there are two
intersection points between NLCs c1 and c2, namely q1 and q2, and two intersection points
between NLCs c1 and c3, namely q3 and q4. Consider the boundary of one NLC c1 that is
divided into four arcs according to these four intersection points. Arc e1 is directed from q1

to q2 along the boundary of c1, denoted by e1 = (q1, q2). q1 and q2 are the head and the tail
of e1, respectively. Similarly, arc e2 is directed from q2 to q3 along the boundary of NLC c1,
denoted by e2 = (q2, q3), arc e3 is directed from q3 to q4 along the boundary of c1, denoted
by e3 = (q3, q4), and arc e4 is directed from q4 to q1 along the boundary of c1, denoted by
e4 = (q4, q1).

Consider the Cartesian coordinate system. Assume that NLC c is centered at coordinate
(a, b) with radius r . Then, the boundary of c can be expressed as a set of points (x, y) equal
to {(x, y)|(x − a)2 + (y − b)2 = r2}, and the insider of c is defined as a set of points (x, y)

equal to {(x, y)|(x − a)2 + (y − b)2 < r2}. We say that a point q is covered by an NLC c if
q is on the boundary of NLC c or q is inside NLC c. We say that arc e is covered by NLC c
if each point on e is covered by NLC c.

Definition 4.1 Given an arc e, we define the influence value of e, denoted by I (e), as the
sum of the weights of NLCs that cover arc e.

For example, in Fig. 5, e1 is covered by c1 and c2 only, e2 is covered by c1 only, e3 is
covered by c1 and c3 only, and e4 is covered by c1 only. Assume the weight of each NLC in
Fig. 5 is equal to 1. Then, we have I (e1) = I (e3) = 2, and I (e2) = I (e4) = 1.

123

Y. Liu et al.

Fig. 6 Representation of arc by angle values

Given two overlapping NLCs, there exists such an arc that is along the boundary of one
NLC c1 and it is also covered by another NLC c2. We call such an arc as an intersection
NLC arc (short for an intersection arc). Note that this intersection arc is owned by c1 and is
eclipsed by c2. For example, in Fig. 5, both arcs e1 and e3 are intersection arcs. Arcs e2 and
e4 are not intersection arcs since both arcs are only along the boundary of c1.

Given an NLC c and a point x along the boundary of c, we can transform the representation
of point x from two real numbers in the Cartesian coordinate system to one real number
ranging from 0◦ to 360◦ in the polar system whose origin/pole is the center of the NLC. This
real number is called the angle value of this point. Formally, the angle value of x is defined
to be the polar angle of this point when the polar coordinate system is used and the pole is
the center of c. Note that the angle value is measured in an anti-clockwise direction from
the polar axis defined in the polar coordinate system (i.e., the horizontal axis pointing to the
right).

For example, consider the example as shown in Fig. 6a containing two NLCs. Two NLCs
intersect and have their intersection points, namely q1 and q2. Consider the NLC c1 and these
two points q1 and q2 along its boundary. Consider the arc e1 directed from q2 to q1 along
the boundary of c1. The head of intersection arc e1, q2, is equal to 340◦ while the tail of
intersection arc e1, q1, is equal to 60◦.

Note that each arc can also be represented by the mapped angle values of its head and
the tail. For example, considering NLC c1, we represent e1 = (340◦, 60◦). For simplicity, a
point and its angle value are alternately used below. So 340◦ and 60◦ are called the head and
tail of e1, respectively.

In the following, we want to standardize the representation of a pair of angle values for
each arc. We want to make sure that the angle representing the head of an arc is smaller than
or equal to the angle representing the tail of the arc. Given an arc with its angle representation
(al , au), if al ≤ au , then we keep this representation. Otherwise, we split this arc into two
sub-intersection arcs. In this case, each sub-intersection arc is represented by a pair of angle
values. The pair representing a sub-arc is (al , 360◦), and the pair representing the other sub-
arc is (0◦, au). For example, in Fig. 6a, if we consider NLC c1, intersection arc e1 would be
split into e11 = (340◦, 360◦) and e12 = (0◦, 60◦).

Similarly, as shown in Fig. 6b, if we consider the other NLC c2, the head q1 and the tail q2

of intersection arc e2 can be mapped into angle values accordingly. We represent intersection
arc e2 = (150◦, 250◦) that is along the boundary of NLC c2. Since 150◦ ≤ 250◦, there is no
need to split this arc into two sub-arcs.

123

Maximizing bichromatic reverse nearest neighbor search

Fig. 7 Computation for influence value

Now, we are ready to describe the major idea of how we use the arc for the MaxBRNN
problem. For each NLC c, we cut the boundary of c at the position of 0◦ (or 360◦). Then, we
stretch the boundary into a line segment whose values range from 0◦ to 360◦. The intersection
arcs along the boundary of this NLC correspond to different partitions or intervals of this
line segment.

Note that for a given NLC c, we can transform the boundary of c that is in a two-dimensional
space into a line segment that is in a one-dimensional space. In this line segment, we have
different partitions or intervals. In the following, we will discuss how we can find the optimal
interval along this line segment efficiently by a plane sweep-like method. After we find this
optimal interval, we can find the corresponding optimal region for the MaxBRNN problem.

We discussed the example in Fig. 5 before where we did not use any angle representation.
Figure 7a shows the same example where the angle representation is adopted. On the boundary
of NLC c1, we have intersection arc e1 = (330◦, 30◦) and e3 = (120◦, 210◦). Since the angle
value representing the head of e1 is larger than that representing the tail of e1, we would split
e1 into two intersection arcs e11 = (330◦, 360◦) and e12 = (0◦, 30◦). Then, we have three
intersection arcs, such as, e11, e12, and e3, and can construct a line segment as in Fig. 7b.
Notice that all intersection points of intersection arcs have been sorted in ascending order of
their angle values.

By a plane sweep-like method along the line segment, we can compute the influence value
of each arc along the boundary of this NLC. In detail, we have the following computation
rules for the influence value of each NLC arc.

(1) While scanning, if we meet an intersection point that is a head of an intersection arc, then
we increase the influence value with the weight of the NLC eclipsing the arc;

(2) If the intersection point is a tail of an intersection arc, then we shall decrease the influence
value with the weight of the NLC eclipsing the arc.

These computation rules are reasonable. If the scanned intersection point is a head of an
intersection arc, which means we would enter the region of an intersecting NLC eclipsing
the arc, and we need increase the influence value with the weight of this NLC. Otherwise, if
the scanned intersection point is a tail of an intersection arc, which means we would leave the
region of an NLC eclipsing this arc, and we need decrease the influence value accordingly.

Consider the example as shown in Fig. 7. Assume the weight of each NLC is equal to 1.
We scan this line segment owned by c1 and check each intersection point of all intersection

123

Y. Liu et al.

arcs of NLC c1. We create a variable called in f for c1 that will store the influence value
of an arc along the boundary of c1 dynamically. Consider that we are scanning through the
line segment for c1. When we reach an arc or leave an arc, we will update in f accordingly.
Details will be described next.

Initially, the influence value, in f , is set as in f = w(c1). We would first check the inter-
section point 0◦ that is the head of e12. The influence value is updated with the weight of
the NLC c2 eclipsing this arc, that is, in f = in f + w(c2) = 1+ 1 = 2, which corresponds
to the influence value of NLC arc e12 = (0◦, 30◦). Next, we move to intersection point 30◦
that is the tail of intersection arc e12. According to the computation rules, we need to reduce
the influence value by the weight of NLC c2, and we would update the influence value of
e2 = (30◦, 120◦). That is, in f is decreased by w(c2). That is, in f = 2 − 1 = 1. Next, we
would meet intersection point 120◦ that is the head of e3, and we increase the influence value
with the weight of the NLC c3 eclipsing the arc, and we have in f incremented by w(c3) and
in f becomes 2. Note that I (e3) = in f . Next, we move to intersection point 210◦ that is the
tail of e3, and we decrease in f by w(c3). Thus in f becomes 1. Note that I (e4) = in f where
e4 = (210◦, 330◦). Finally, we reach intersection point 330◦ that is the head of e11, and we
have I (e11) = in f +w(c2) = 2 where e11 = (330◦, 360◦). The influence value of each arc
along the boundary of NLC c1 is shown in Fig. 7b. The greatest influence value is equal to 2.

As shown in Fig. 7, it is easy to know the following Lemma 4.1 holds.

Lemma 4.1 Given an NLC and its intersection arcs owned by the NLC, we can find the
greatest influence value of an arc by scanning the intersection points of all intersection arcs
of this given NLC with the computation rules for influence values of NLC arcs.

4.2 The algorithm description

The proposed MaxSegment algorithm transforms the MaxBRNN problem into an optimal
circle arc search problem. Before introducing the algorithm descritption, we would like to
introduce why we can transform such problem.

Lemma 4.2 Let C be a set of NLCs whose intersection corresponds to the optimal region R
returned by a MaxBRNN query. Then, R contains at least an optimal arc owned by a certain
NLC (i.e., the arc with the greatest influence value).

Proof There are two cases.

(1) If C contains only one NLC, which means that the optimal solution comes from a single
NLC without any overlap or intersection with other NLCs. The optimal region R is the
single NLC with the greatest influence value (i.e., the greatest weight) among all NLCs.
The boundary of this NLC is the optimal arc contained by the region R. That is, R is this
NLC itself.

(2) If C contains more than one NLC. Assume that NLCs are c1, c2, . . . , cn where n ≥ 2. It
is easy to know that the influence value of R is equal to

∑n
i=1 w(ci). Since the boundaries

of intersecting NLCs, c1, c2, . . . , cn , form the optimal region R, there exists at least an
arc, says arc e, along the boundary of a certain NLC, says c1. For any point p ∈ e, we have
p ∈ R. Then, p is covered by c1, c2, . . . , cn . So, arc e is also covered by c1, c2, . . . , cn .
The influence value of arc e is equal to I (e) = ∑n

i=1 w(ci). So, arc e is an optimal arc
with the greatest influence value and contained in the region R. It is noticed that arc e
can be collapsed into a single intersection point when the number of intersection points
between two overlapping NLCs is equal to one. ��

123

Maximizing bichromatic reverse nearest neighbor search

Similar to Property 3.4, Lemma 4.2 tells that region R contains at least an optimal arc
owned by an NLC. We can take such optimal arc as a candidate to perform a MaxBRNN
query and transform the MaxBRNN problem into the optimal arc search problem.

Based on Lemma 4.1, we know that we can find the optimal arc with the greatest influ-
ence value by checking intersection arcs of all NLCs for a given dataset. The MaxSegment
algorithm includes three major phases as follows.

Phase 1: Construct NLCs for a given dataset.
Phase 2: Construct all possible intersection arcs for each NLC and find the influence value

of each arc. In particular, for each NLC c, we do the following four steps.

Step 1: Find all the other NLCs intersected with c.
Step 2: Compute all intersection points between c and each of the other NLCs intersected

with c and construct intersection arcs along the boundary of c.
Step 3: Sort intersection points (i.e., head or tail) of all intersection arcs of c according to

the angle values.
Step 4: Scan all intersection points of c to update the influence values of the arcs along the

boundary of c accordingly.

Phase 3: Return the arc with the greatest influence value (among all NLCs) and the set of
NLCs covering this arc (where the intersection of all NLCs of this set corresponds
to the optimal region).

The detailed description of the above three phases can be found in Algorithm 4.1.

Algorithm 4.1 MaxSegment algorithm
1: // Phase 1
2: for each client point o ∈ O do
3: search the nearest neighbor of o in P , says p
4: construct an NLC c, centered at o with radius |o, p|
5: end for
6: // Phase 2
7: choose the NLC c with the largest w(c)
8: initialize Max I n f ← w(c) and Max S← {c}
9: for i = 1 to |O| do

10: // Step 1
11: find all NLCs intersected with NLC ci and store them into list L
12: // Step 2
13: for each NLC c j ∈ L do
14: generate intersection arc e = (q1, q2) where q1 and q2 are the intersection points

between the boundaries of ci and c j , and assign both q1.N LC and q2.N LC with c j

15: if q1 > q2 then
16: generate two sub-intersection arcs e1 = (q1, 360◦) and e2 = (0◦, q2)

17: end if
18: store intersection points of the generated intersection arcs into Q
19: end for
20: // Step 3
21: sort the intersection points in Q according to their angle values
22: initialize I n f ← w(ci), S← {ci }
23: // Step 4
24: for each intersection point t ∈ Q do

123

Y. Liu et al.

25: if t is the head of an arc then
26: I n f ← I n f + w(t.N LC), S← S ∪ {t.N LC}
27: else if t is the tail of an arc then
28: I n f ← I n f − w(t.N LC), S← S − {t.N LC}
29: end if
30: if I n f > Max I n f then
31: Max I n f ← I n f , Max S← S
32: end if
33: end for
34: end for
35: // Phase 3
36: return Max I n f and Max S

We use Example 1 to further describe the process of the MaxSegment algorithm.

Example 1 Given point sets O and P as shown in Fig. 8a, where O = {o1, o2, o3, o4, o5, o6}
and P = {p1, p2, p3, p4, p5, p6}. Assume that the weight of each NLC is equal to 1.

According to the algorithm description of MaxSegment, for datasets in Fig. 8a, we construct
six NLCs, such as c1, c2, c3, c4, c5, c6, as shown in Fig. 8b. Since each NLC has the same
weight and is equal to 1, we randomly choose c1 as an initialized NLC and set Max I n f =
w(c1) = 1 and Max S = {c1}.

Next, the algorithm finds all NLCs intersected with NLC c1 and store them into L . Then, we
have L = {c2, c3, c4}. Next, the algorithm computes the intersection points and generate the

Fig. 8 An example of the Max Segment algorithm

123

Maximizing bichromatic reverse nearest neighbor search

intersection arcs. Therefore, we have intersection arcs e1 = (310◦, 70◦), e2 = (140◦, 200◦),
and e3 = (230◦, 350◦). Since the head of e1 is larger than its tail, we split e1 = (310◦, 70◦)
into two intersection arcs, namely, e11 = (0◦, 70◦) and e12 = (310◦, 360◦). All intersection
points of NLC c1 would be stored in Q. Next, we sort all intersection points of c1. That is,
Q = {0◦, 70◦, 140◦, 200◦, 230◦, 310◦, 350◦, 360◦}. Then we construct a line segment of c1

as shown in Fig. 8c. According to the algorithm description, we update influence values of
the arcs by scanning all intersection points of the intersection arcs along the line segment
of c1. During scanning, we initialize I n f = w(c1) (i.e., line 22). We first meet the head of
intersection arc e11, that is, 0◦, and we increase the influence value of e11 by the weight of
the NLC c2 eclipsing this arc. Next, we move further and meet the tail of e11, that is, 70◦.
Then, we decrease the influence value by the weight of the NLC c2 eclipsing this arc.

Next, we process other intersection arcs similarly. Finally, we find the greatest influence
value of an arc and the corresponding NLCs covering this arc, namely, Max I n f = 3 and
Max S = {c1, c2, c3}. The influence values of all arcs along the boundary of NLC c1 are
listed in Fig. 8c.

According to the algorithm description, we take NLC c2 as another scanned NLC and
repeat the above steps. Similarly, we obtain Max I n f = 3 and Max S = {c1, c2, c3}. After
processing all remaining NLCs, we find the optimal influence value of an arc and output the
set of NLCs covering this arc. This set is equal to Max S = {c1, c2, c3}, which corresponds
to the optimal region R (i.e., the shadow part in Fig. 8b) in the MaxBRNN problem.

With this example, we know that the MaxSegment algorithm would check the intersection
points of all NLCs for a given dataset and can find the optimal region R. So it is easy to verify
the following Theorem 4.1.

Theorem 4.1 Algorithm 4.1 returns the region R with the largest influence value.

4.3 Algorithm analysis

Time Complexity: We would give an analysis on the running time complexity and the space
cost complexity of the MaxSegment algorithm.

It is easy to verify the following Lemma 4.3 by elementary mathematics.

Lemma 4.3 The computation of the intersection points between two overlapping NLCs takes
O(1) time.

Next, we analyze the running time of MaxSegment. Before we give the analysis, we define
two notations, namely α(·) and β(·). Given a dataset D of size |D| and a query point q , we
denote the time cost of finding the nearest neighbor from q in D by α(|D|). Besides, given a
dataset D of size |D|, a query point q and a non-negative real number r , we denote the time
cost of finding the answer for a range query from q with radius equal to r in D by β(|D|).

Consider Phase 1 (Lines 1–5 of Algorithm 4.1). For each client point o, we need to find
the nearest neighbor of o in P , which takes O(α(|P|)) time. Since there are |O| client points,
the total running time of Phase 1 is O(|O|α(|P|)).

Consider Phase 2 (Lines 6–34 of Algorithm 4.1). Lines 7–8 take O(|O|) time. There are
|O| iterations in lines 9–34. Consider an iteration (lines 10–33) that involves four steps for
one NLC ci .

– Step 1 (lines 10–11) finds all NLCs intersected with ci and stores them into list L . This
can be done by performing a range query at the center of ci with the range equal to the
radius of ci on the set of all NLCs. Thus, Step 1 takes O(β(|O|)) time.

123

Y. Liu et al.

– Step 2 (lines 12–19) involves a number of iterations. Consider an iteration (lines 14–
18) where we are now considering one NLC c j in L . Line 14 finds the intersection arc
between ci and c j by finding the intersection points between the boundaries of ci and c j ,
which can be done in O(1) time (by Lemma 4.3). It is easy to see that lines 15–18 can
be done in O(1) time if we implement Q with a linked list data structure. Since there are
|L| iterations in Step 2, Step 2 takes O(|L|) time. Let m be the greatest number of NLCs
overlapping with an NLC. Since |L| = O(m), the time complexity of Step 2 is O(m).

– Step 3 (lines 20–22) sorts the intersection points in Q according to the angle values,
which can be done in O(|Q| log |Q|) time. The variable initialization in line 22 can be
done in O(1) time. Thus, the time complexity of Step 3 is O(|Q| log |Q|) time. Since
|Q| = O(m), Step 3 takes O(m log m) time.

– Step 4 (lines 23–33) involves a number of iterations. Consider an iteration (lines 25–33)
where we are now considering one intersection point t in Q. It is easy to verify that lines
25–32 take O(1) time when we implement S with the stack data structure. Since there
are |Q| iterations and |Q| = O(m), Step 4 takes O(m) time.

The overall running time of an iteration involving the above four steps is equal to
O(β(|O|) + m + m log m + m) = O(β(|O|) + m log m). Since there are |O| iterations,
Phase 2 takes O(|O| + |O| · (β(|O|)+ m log m)) = O(|O| · β(|O|)+ |O| · m log m) time.
It is easy to verify that Phase 3 (Lines 35-36 of Algorithm 4.1) takes O(1) time.

The overall time complexity of the MaxSegment algorithm is O(|O|α(|P|)+|O|·β(|O|)+
|O| · m log m + 1) = O(|O|α(|P|)+ |O| · β(|O|)+ |O| · m log m) time.

Theorem 4.2 The running time of the MaxSegment algorithm is O(|O|α(|P|)+|O|·β(|O|)+
|O| · m log m).

Next, we give the theoretical bounds on α(·) and β(·).
Given a dataset D of size |D|, α(|D|) corresponds to the time cost of a nearest neighbor

query. In [2], this query can be done in O(log |D|) time with an index with the space of O(|D|)
size by using some data structures like the trapezoidal map over the Voronoi diagram. Thus,
α(|D|) = O(log |D|).

Given a dataset D of size |D|, β(|D|) corresponds to the time cost of a range query.
In [6], this query can be accomplished in O(k + log |D|) time where k is the number of
points/answers returned for the query. Thus, β(|D|) = O(k + log |D|).

We are interested in analyzing the theoretical bound on the running time of the MaxSegment
algorithm if the time complexities of the queries can be theoretically bounded. It is easy to
verify that with some sophisticated implementations described [2,6], the running time of
the MaxSegment algorithm can be simplified to O(|O| log |P| + |O| · (m + log |O|)+ |O| ·
m log m) = O(|O| log |P| + m|O| log m + |O| log |O|) time.

Although α(·) and β(·) can be theoretically bounded as discussed above, in our imple-
mentation, we adopt the R*-tree data structure for the nearest neighbor query and the range
query since it is shown to be efficient in practice and it is commonly used for these queries
although this data structure does not have a good worst-case asymptotic performance.

Storage Complexity: From the algorithm description of MaxSegment, we know the
MaxSegment algorithm needs to store three kinds of storage structures, (1) the R*-tree for
point sets O and P , (2) the list L storing NLCs intersected with one NLC, and (3) the set
Q to store intersection points of all intersection arcs of one NLC. So, the storage cost of the
MaxSegment algorithm is O(Rp + |L| + |Q|) where Rp denotes the size of the R*-tree. In
general, the size of L and the size of Q are small. Since |L| and |Q| are O(m), the storage
complexity can be simplified to O(Rp+m). Thus, the major storage cost of the MaxSegment
algorithm is the cost of storing the R*-tree.

123

Maximizing bichromatic reverse nearest neighbor search

5 Algorithm extension

We have three kinds of extensions that are described in Sects. 5.1, 5.2 and 5.3.

5.1 Extension to other varied MaxBRNN problems

There are some variations of the MaxBRNN problem, namely MaxBRkNN, Top-t
MaxBRNN, and Top-t MaxBRkNN [26]. Our MaxSegment algorithm can be extended to
these variations.

(1)MaxBRkNN: In the basic MaxBRNN problem, we find a server point p ∈ P that is
the nearest neighbor of a client point o ∈ O. In practice, we may want to search the k
nearest neighbors of a client point instead of the nearest neighbor only. We can give an
extension to find the reverse k-nearest neighbors of a server point p, denoted by k-BRNN
of p. The purpose of the MaxBRkNN problem is to find the optimal region R, such that
a new server p is set up in R, the size of k-BRNN of p is maximized. Our algorithm can
be extended to the MaxBRkNN problem. We only need to construct an NLC according
to the k-th nearest neighbors of o rather than the nearest neighbor of o for each client
point o. In particular, we just need to modify lines 1–4 in Algorithm 4.1 accordingly.
(2)Top-t MaxBRNN: The basic MaxBRNN problem is to find one optimal region with
the greatest size of BRNN. We can make an extension to find t regions that give the
greatest size of BRNN. That is, the top-t MaxBRNN problem is to find t regions with
the greatest influence values with respect to BRNN. Our algorithm can be extended to
the top-t MaxBRNN problem. We need to maintain t regions with the greatest influence
values, rather than maintaining one region with the greatest influence value. In particular,
we only need to modify lines 30–32 in Algorithm 4.1.
(3) Top-tMaxBRkNN: We can combine the above two extensions and achieve the top-t
MaxBRkNN problem. The purpose of top-t MaxBRkNN problem is to find t regions
with the greatest values with respect to k-BRNN instead of BRNN. Our algorithm can
be extended to the Top-t MaxBRkNN problem. We just need to modify lines 1–4 and
lines 30–32 in Algorithm 4.1 together.

5.2 Extension to other metric spaces

The basic algorithm MaxSegment is discussed in the L2-norm space. In this subsection, we
would like to extend our algorithm to another metric space, namely, the L p-norm space. The
Minkowski distance is used in the L p-norm space. Given two n-dimensional space points in
metric space D, q1 = (x1, x2, . . . , xn) and q2 = (y1, y2, . . . , yn), the Minkowski distance

of order p between q1 and q2 is defined as
(∑n

i=1 |xi − yi |p
) 1

p
. Minkowski distance is

typically used with p being 1 or 2. The latter is the Euclidean distance, while the former is
sometimes known as the Manhattan distance. In the extreme case when p = ∞, we obtain
the Chebyshev distance.

The MaxSegment algorithm is based on an important concept of NLC in the L2-norm
space. Note that there are at most two intersection points between the boundaries of two
NLCs in the L2-norm space and these intersection points are used to find the optimal region.
In the L p-norm space, we can use a similar concept of nearest location region (NLR) [27].
The nearest location region is a generalized concept of the nearest location circle where a
circle can be regarded as a region. The major challenge in the L p-norm space is that there
are an infinite number of intersection points between the boundaries of two overlapping

123

Y. Liu et al.

Fig. 9 Representation of NLR
arc by angle values

NLRs and thus adopting the MaxSegment algorithm directly in the L p-norm space can be
computationally expensive. However, interestingly, such an infinite number of intersection
points form a fixed number of continuous curves/segments where all intersection points lie
on these curves and each curve has two end points only. In this paper, in the L p-norm space,
we find that it is sufficient to use all endpoints instead of all intersection points to find the
optimal region and thus we can derive an efficient algorithm.

Definition 5.1 (Nearest Location Region) Given a client point o, the nearest location region
of o is defined to be a region such that, for each point q along the boundary of the region,
|o, q| is equal to |o, p| where p is the nearest neighbor of o in P with respect to the metric
space D.

If the metric space D is the L2-norm space, then NLR of a client point o is a circle. If
the metric space D is the L1-norm space, then NLR is a square rotated 45◦ clockwise. If the
metric space D is the L∞ -norm space, then NLR is a square. Similar to the L2-norm space,
there exist the following properties of NLR.

Property 5.1 [27] The region R returned by the MaxBRNN query in a metric space D can
be represented by an intersection of multiple NLRs.

Property 5.2 [27] If an NLR covers another NLR, the boundaries of the two NLRs must
share at least one point.

For the sake of consistency with the L2-norm space, we re-use the term of arc to denote
such overlapping edges in the L p-norm space. Here, an arc corresponds to the continuous
edge that is along the boundary and formed by two endpoints of two overlapping NLRs.

Similar to the L2-norm space, we can map the endpoints of an edge into the angle values.
Then we can represent an arc by the angle values. Similarly, the angle values are also computed
in an anti-clockwise direction. For example, intersection arc e1 in Fig. 9 can be represented
by the angle values, such as, e1 = (340◦, 60◦), which need to be split into two intersection
arcs (340◦, 360◦) and (0◦, 60◦).

Thus, the related lemmas on an arc in the L2-norm space can also be extended to the
L p-norm space. It is easy to see Lemmas 4.1, 4.2, and 4.3 also hold in the L p-norm space if
we consider NLR instead of NLC. For the sake of convenience, we re-state those lemmas in D

as follows. The corresponding Lemma 4.1, Lemma 4.2, and Lemma 4.3 become Lemma 5.1,
Lemma 5.2, and Lemma 5.3, respectively.

123

Maximizing bichromatic reverse nearest neighbor search

Lemma 5.1 Given an NLR and its intersection arcs owned by this NLR, we can find the
greatest influence value of an arc by scanning the endpoints of all intersection arcs of a given
NLR.

Lemma 5.2 Let C be a set of NLRs whose intersection corresponds to the optimal region R
returned by a MaxBRNN query. Then, R contains at least an optimal arc along the boundary
of a certain NLR (i.e., the arc with the greatest influence value).

With elementary mathematics, it is easy to verify the following Lemma 5.3.

Lemma 5.3 The computation of the end points of all arcs owned by a given NLR but eclipsed
by another NLR takes O(1) time.

Algorithm 4.1 can also be re-used for the L p-norm space. Assume that each NLR is
intersected with at most m other NLRs. The running time of the MaxSegment algorithm for
the L p-norm space is also the same as that in the L2-norm space.

Theorem 5.1 The running time of the MaxSegment algorithm for the L p-norm space is
O(|O|log|P| + m|O|log m + |O|log|O|).
5.3 Extension to three-dimensional space

In this subsection, we would like to extend the MaxSegment algorithm in the L2-norm for
the two-dimensional space to a three-dimensional space.

In the two-dimensional space, the correctness of the MaxSegment algorithm depends on at
least two concepts. The first concept is that the optimal region in the two-dimensional case can
be represented by the intersection of multiple NLCs. The second concept is that all the arcs
each of which is generated by the boundaries of two overlapping NLCs can be used to find the
optimal region. In the three-dimensional space, we adapt the above two concepts due to some
differences between the two-dimensional case and the three-dimensional case. For the first
concept, in the three-dimensional case, we propose a new concept of nearest location spheres
(NLSs). Thus, the optimal region can be represented by the intersection of multiple NLSs
instead of NLCs. We can regard that an NLS has the same meaning as NLC in the context
of the three-dimensional case. The surface of an NLS in the three-dimensional case can be
regarded as the boundary of an NLC in the two-dimensional case. In the following, for the
sake of consistency, when we write the boundary of a sphere (or NLS), we mean the surface of
this sphere. For the second concept, in the three-dimensional case, consider two overlapping
NLSs. In this three-dimensional case, the boundaries of these two overlapping NLSs generate
a circle instead of an arc that can be generated by two NLCs in the two-dimensional case. We
will elaborate how the circle is generated later. In the following, interestingly, we find that
three overlapping NLSs can generate an arc in this three-dimensional case setting. Based on
all arcs generated by any three overlapping NLSs, we can find the optimal region accordingly.
We will explain this later in this section.

In the following, we give the formal definition.

Definition 5.2 Given a client point o, the NLS of o is defined to be a region such that for
each point q along the boundary of the region, |o, q| is equal to |o, p| where p is o’s nearest
neighbor in P in a three-dimensional space.

Based on the concept of NLS, we have the following properties.

Property 5.3 [27] The three-dimensional space region R returned by the MaxBRNN query
in a three-dimensional space can be represented by an intersection of multiple NLSs.

123

Y. Liu et al.

Fig. 10 An example showing intersection arcs in a three-dimensional space

Property 5.4 [27] If an NLS covers another NLS, the boundaries of the two NLSs must share
at least one point.

Consider the Cartesian coordinate system. Assume that NLS s is centered at coordinate
(a, b, c) with radius r . Then, the boundary of s can be expressed as a set of point (x, y, z) as
{(x, y, z)|(x − a)2 + (y − b)2 + (z − c)2 = r2}, and the insider of s can be expressed as a
set of point (x, y, z) as {(x, y, z)|(x − a)2+ (y− b)2+ (z− c)2 < r2}. The NLS s itself can
be expressed as a set of point (x, y, z) as {(x, y, z)|(x − a)2 + (y − b)2 + (z − c)2 ≤ r2}.
We say that a point q is covered by NLS s, if q is on the boundary of NLS s or q is inside
NLS s. We say that arc e is covered by NLS s if each point on e is covered by NLS s.

In a three-dimensional space, the intersection arc is based on three NLSs. Suppose that
we are given three NLSs, s1, s2, and s3, each of which overlaps with the other two NLSs.
The intersection of the boundaries of two three-dimensional NLSs s1 and s2 (as shown in
Fig. 10a) would generate a circle, c12, which is on a plane denoted by α (see Fig. 10b).
Circle c12 is called the (s1, s2)-circle and plane α is called the (s1, s2)-plane. We say that
this plane α is generated from the two NLSs, s1 and s2. The plane α intersects with another
three-dimensional NLS s3 and generates a circle c3 that is also on the plane α (see Fig. 10c).
Circle c3 is called the s3-circle on plane α. Similarly, we say that this circle is eclipsed by
the NLS s3 (or the circle c3 on the plane). Now, we have two circles c12 and c3 (on the plane
α), which have a similar scenario as those in the two-dimensional case. Both circles c12 and
c3 generate intersection arcs on the plane α (see Fig. 10d). The detailed computation of the
(s1, s2)-plane, the (s1, s2)-circle, and s3-circle on a plane in a three-dimensional space is
given in the “Appendix”.

In Fig. 10, given three overlapping NLSs, namely s1, s2, and s3, we know that we can
form intersection arcs when we first consider the intersection between two NLSs s1 and s2

(as shown in Fig. 10a, b) and then consider the intersection between the plane generated from
the previous intersection and the third NLS s3 (as shown in Fig. 10c, d). It is noted that there
is an ordering of processing the three NLSs. In general, we consider all possible orderings
for any three NLSs. For example, one possible ordering of processing is that we can first
consider the intersection between s2 and s3 and then consider the intersection between the
plane generated from the previous intersection and the remaining NLS s1.

Besides, given three overlapping NLSs and a particular ordering to process these three
overlapping NLSs, we can generate the intersection arcs as shown in Fig. 10d. Let A be a
set of all possible intersection arcs generated by the overlapping NLSs with any processing
orderings.

In the following, we will first prove that the optimal region R returned by the MaxBRNN
query in a three-dimensional space contains at least the arc in A that is covered by the greatest
number of NLSs. Next, we will introduce how to find the optimal region R formed by the arcs.

Lemma 5.4 Let C be a set of NLSs whose intersection corresponds to the optimal region R
returned by a MaxBRNN query. Then, R contains at least an arc a ∈ A that is covered by
the greatest number of NLSs.

123

Maximizing bichromatic reverse nearest neighbor search

Proof There are two cases.

(1) Suppose that C contains only one NLS, which means that the optimal solution comes
from a single NLS without any overlap or intersection with other NLSs. The optimal
region R is the single NLS with the greatest influence value (i.e., the greatest weight)
among all NLSs. Any arc along the boundary of this NLS is the optimal arc contained
by region R. This lemma holds.

(2) Suppose that C contains more than one NLS. Assume that NLSs are s1, s2, . . . sn where
n ≥ 2. It is easy to know the influence value of R is equal to

∑n
i=1 w(si). According to

Property 5.3, we can assume that R = s1 ∩ s2 ∩ · · · ∩ sn . Then, we have a set of points
R′ = {q|q ∈ B(si)∩B(s j), and q ∈ s1∩s2∩· · ·∩si−1∩si+1∩· · ·∩s j−1∩s j+1∩· · ·∩sn}
where i < j, B(si) and B(s j) denote the set of points along the boundaries of si and s j ,
respectively. From the expression of points of an NLS, it is easy to know B(si) ⊆ si and
B(s j) ⊆ s j . Thus, we have R′ ⊆ R. From Property 5.4, we can know that there is no such
case that the area of one NLS is inside the area of another NLS (i.e., covering relationship)
but the boundaries of both NLSs do not share any points. So we have R′ �= ∅ . In other
words, if there is an optimal three-dimensional region R, then we can always find the
subset of R, R′. It is obvious that the influence value of R′ is equal to that of R since
the optimal region R is consistent. Intuitively, the intersection of boundaries of si and s j ,
namely, B(si) ∩ B(s j), would generate a (si , s j)-circle on a two-dimensional (si , s j)-
plane. So R′ is constructed by the intersection of the boundary of the (si , s j)-circle with
other three-dimensional NLSs. The intersection of the boundary of a (si , s j)-circle and a
three-dimensional NLS would generate an intersection arc a ∈ A, as shown in Fig. 10. It
is easy to know that the influence value of intersection arc a is also equal to

∑n
i=1 w(si).

So the optimal region R covers an optimal arc. This lemma holds. ��

Lemma 5.4 tells us that we can transform the MaxBRNN problem in a three-dimensional
space into a two-dimensional arc search. That is, we can map the intersection points of
intersection arcs into different angle values. Then, we can scan all the intersection points
to find the optimal arc with the greatest influence value. The MaxSegment algorithm in a
three-dimensional space includes the following three major phases.

Phase 1: Construct NLSs for a given dataset.
Phase 2: Construct all possible intersection arcs for each NLS and find the influence value

of each arc. In particular, for each NLS s, we do the following two steps.

Step 1: Find all the other NLSs intersected with s.
Step 2: For each NLS s′ intersected with s, we do the following steps.

Step 2a: Construct the (s, s′)-circle, says c, and the (s, s′)-plane, says α.
Step 2b: For each NLS s′′ such that the s′′-circle on plane α, says c′′, intersects with c,

compute all intersection points between c and c′′ and construct intersection arcs
along the boundary of c

Step 2c: Sort intersection points (i.e., head or tail) of all intersection arcs of c according
to the angle values

Step 2d: Scan all intersection points of c to update the influence values of arcs along the
boundary of c accordingly.

Phase 3: Return the arc with the greatest influence value (among all arcs generated) and
the set of NLSs covering this arc (where the intersection of all NLSs of this set
corresponds to the optimal region).

123

Y. Liu et al.

The detailed description of the above three phases can be found in Algorithm 5.1. Similar
to the two-dimensional case, we denote the NLS centered at client point oi ∈ O by si for
i ∈ [1, |O|].
Algorithm 5.1 The MaxSegment algorithm in a three-dimensional space
1: // Phase 1
2: for each client point o ∈ O do
3: search the nearest neighbor of o in P , says p
4: construct an NLS s, centered at o with radius |o, p|
5: end for
6: // Phase 2
7: choose the NLS s with the largest w(s)
8: initialize Max I n f ← w(s) and Max S← {s}
9: for i = 1 to |O| do

10: // Step 1
11: find all NLSs intersected with NLS si and store them into list L
12: // Step 2
13: for each NLS s j ∈ L do
14: // Step 2a
15: compute the (si , s j)-circle, says ci j , and the (si , s j)-plane, says α,
16: // Step 2b
17: find all NLSs such that each of these NLSs, says sk , has its sk-circle on plane α, which

intersects with ci j and store them into list M
18: for each NLS sk ∈ M do
19: generate intersection arc e = (q1, q2) where q1 and q2 are the intersection points

between the boundaries of ck and ci j , and assign both q1.N L S and q2.N L S with sk

20: if q1 > q2 then
21: generate two sub-intersection arcs e1 = (q1, 360◦) and e2 = (0◦, q2)

22: end if
23: store intersection points of the generated intersection arcs into Q
24: end for
25: // Step 2c
26: sort the intersection points in Q according to their angle values
27: initialize I n f ← w(si)+ w(s j) and S← {si , s j }
28: // Step 2d
29: for each intersection point t ∈ Q do
30: if t is the head of an arc then
31: I n f ← I n f + w(t.N L S), S← S ∪ {t.N L S}
32: else if t is the tail of an arc then
33: I n f ← I n f − w(t.N L S), S← S − {t.N L S}
34: end if
35: if I n f > Max I n f then
36: Max I n f ← I n f , Max S← S
37: end if
38: end for
39: end for
40: end for
41: // Phase 3
42: return Max I n f and Max S

123

Maximizing bichromatic reverse nearest neighbor search

Next, we give the theoretical analysis on the time complexity and the space complexity
of the MaxSegment algorithm.

Time Complexity: Given two NLSs s and s′, the computation of the (s, s′)-circle and the
computation of the (s, s′)-plane are given in the “Appendix”. From this computation, it is
easy to verify that Lemma 5.5 holds.

Lemma 5.5 Given two NLSs s and s′, the computation of the computation of the (s, s′)-circle
and the computation of the (s, s′)-plane in a three-dimensional space takes O(1) time.

We analyze the running time of MaxSegment in a three-dimensional case. In the following
analysis, we also use the two notations, namely α(·) and β(·). But, the context is based on
the three-dimensional case instead of the two-dimensional case.

Consider Phase 1 (Lines 1–5 of Algorithm 5.1). Similar to the two-dimensional case,
Phase 1 takes O(|O|α(|P|)) time.

Consider Phase 2 (Lines 6–40 of Algorithm 5.1). Lines 7–8 take O(|O|) time. There are
|O| iterations in lines 9–40. Consider an iteration (lines 10–39) which involves two steps for
one NLS si .

– Similar to the two-dimensional case, Step 1 (lines 10–11) takes O(β(|O|)) time.
– Step 2 (lines 12–39) involves a number of iterations. Consider an iteration (lines 14–38)

where we are now considering one NLS s j in L .

• Step 2a (lines 14–15) finds the (si , s j)-circle, says ci j , and the (si , s j)-plane, says α,
which takes O(1) time by Lemma 5.5.
• Note that the number of NLSs each of which is denoted by sk and has its sk-circle on plane

α, which intersects with ci j is O(m). Similar to the two-dimensional case, Step 2b (lines
16–24), Step 2c (lines 25–27), and Step 2d (lines 28–38) take O(m) time, O(m log m)

time and O(m) time, respectively.

There are O(m) iterations in Step 2 and thus Step 2 takes O(m · (1+m +m log m +m)) =
O(m2 log m) time.

The time complexity of executing Step 1 and Step 2 for an iteration in Phase 2 is
O(β(|O|) + m2 log m) time. Note that there are |O| iterations in Phase 2. Thus, Phase 2
takes O(|O| + |O| · (β(|O|) + m2 log m)) = O(|O|β(|O|) + |O|m2 log m) time. It is easy
to verify that Phase 3 (Lines 41–42 of Algorithm 5.1) takes O(1) time.

The overall time complexity of the MaxSegment algorithm is O(|O|α(|P|)+|O|β(|O|)+
|O|m2 log m + 1) = O(|O|α(|P|)+ |O|β(|O|)+ |O|m2 log m) time.

Theorem 5.2 The running time of the MaxSegment algorithm is O(|O|α(|P|)+|O|β(|O|)+
|O|m2 log m).

It is easy to verify that with some sophisticated implementations described [2,6], the
running time of the MaxSegment algorithm can be simplified to O(|O| log |P| + |O|(m +
log |O|)+ |O|m2 log m) = O(|O| log |P| + |O| log |O| + |O|m2 log m) time.

Similar to the two-dimensional case, due to the popular usage of the R*-tree data structure
for the nearest neighbor query and the range query, in our implementation, we adopt the R*-
tree data structure for the queries.

Storage Complexity: Similar to Algorithm 4.1, the storage cost of the MaxSegment algo-
rithm in a three-dimensional space is O(Rp+|L|+ |Q|+ |M |) where Rp denotes the size of
the R*-tree. Note that |M | is the greatest number of NLSs intersected with a circle generated
by a pair of two NLSs. In general, the sizes of L , Q, and M are small. Since |L| = O(m),
|Q| = O(m) and |M | = O(m), the storage complexity can be simplified to O(Rp + m).
Thus, the major storage cost of Algorithm 5.1 is the cost of storing the R*-tree.

123

Y. Liu et al.

6 Experimental results

In this section, we perform a set of experiments to verify the efficiency of our solution. The
algorithms were implemented in C/C++ and the experiments were executed on a PC with an
Intel 2.13 GHz CPU and 3 GB memory.

We conducted the experiments on both real and synthetic datasets. The real datasets are
available at http://www.rtreeportal.org/spatial.html. We deploy four real datasets called CA,
LB, GR, and GM, which contain two-dimensional points representing geometric locations in
California, Long Beach Country, Greece, and Germany, respectively. The sizes of the datasets
are summarized in Table 1. For datasets containing rectangles, we transform them into points
by taking the centroid of each rectangle. For each dataset, each dimension of the data space
is normalized to range [0, 10,000]. Since our problem involves two datasets, namely P and
O, we generated four sets for real datasets, namely CA-GR, LB-GR, CA-GM, and LB-GM,
representing (P, O) = (CA,GR), (LB,GR),(CA,GM), and (LB,GM), respectively.

Following the setting in [26], in the synthetic datasets, we create point set P following
Gaussian distribution and point set O following Zipfian distribution. The coordinates of each
point are generated in the range [0, 10,000]. In point set P , each coordinate follows Gaussian
distribution where the mean and the standard deviation are set to 5,000 and 2,500, respectively.
In point set O, each coordinate follows Zipfian distribution skewed toward origin O where
the skew coefficient is set to 0.8. All coordinates of each point are generated independently.
We created two-dimensional and three-dimensional points in our experiments.

The weight of each client point in both real datasets and synthetic datasets is set to 1 in
the following experimental results. We also conducted experiments where the weight of each
client point is any positive integer. Since the results are similar, for the interest of space, we
only reported the results when the weight is equal to 1. In the experiments, we focus on the
study of top-t MaxBRkNN since it is more general than MaxBRNN, MaxBRkNN, and top-t
MaxBRNN. There are two parameters in the top-t MaxBRkNN problem, namely k and t .
The parameter k is the parameter used in the k-th nearest neighbor of a client point o for the
top-t MaxBRkNN problem. The parameter t is the parameter used in determining t regions
with the greatest influence values with respect to BRkNN.

MaxOverlap [26] is the best-known algorithm for the MaxBRNN problem, which is
100,000 times faster than Arrangement [3,4] when the size of O is 250. Since the MaxOverlap
algorithm is better than other algorithms both in terms of the running time and the storage cost,
we just compare our proposed algorithm with the MaxOverlap algorithm in the experiments.

As indicated earlier, we adopt an R*-tree as an indexing structure for the nearest neighbor
search and the k-th nearest neighbor search where the node size is fixed to 1 K byte. The
maximum number of entries in a node is equal to 50 and 36 for the dimensionality equal to 2
and 3, respectively. We set the minimum number of entries in a node to be equal to half of the
maximum number of entries. In the experiments, we study the effect of dataset cardinality,
k and t in terms of two measurements: (1) execution time, and (2) storage.

Table 1 Summary of the real
datasets

Dataset Cardinality

CA 62,556
LB 53,145
GR 23,268
GM 36,334

123

http://www.rtreeportal.org/spatial.html

Maximizing bichromatic reverse nearest neighbor search

6.1 Performance in two-dimensional case

In the experiments, the default values for the sizes of O and P are given in Table 2.

6.1.1 Effect of cardinality

Figure 11a, b are the results on synthetic datasets in which the size of O varies from 20,000 to
180,000 and the size of P is equal to 2|O|. Figure 11a shows that our MaxSegment algorithm
is faster than the MaxOverlap algorithm in all cases. As the cardinality increases, the running
time of both algorithms also increases. When the size is 180K, the execution time of the
MaxOverlap algorithm is 4,500 s while the MaxSegment algorithm is 70 s, which means that
the MaxSegment algorithm is 60 times faster than the MaxOverlap algorithm.

Both the MaxOverlap and MaxSegment algorithms use the R*-tree to index spatial data.
Besides, the MaxOverlap algorithm needs to maintain an overlap table for all points of P ,
and the size is O(|O|m). Instead of the overlap table, the MaxSegment algorithm uses a
temporary list to store all intersection points of intersection arcs for an NLC. The size of
the temporary list is relatively small and is equal to O(m) where m is the greatest number
of intersecting NLCs. Figure 11b shows that the MaxSegment algorithm needs less memory
than the MaxOverlap algorithm.

6.1.2 Effect of k

As shown in Fig. 12a, the execution times of both the MaxOverlap and MaxSegment
algorithms increase with k. That is because as k increases, the radius of an NLC increases,
and it is more likely that an NLC for a client point overlaps with another NLC, which makes
the influence value larger. The experiment shows that the increase in the execution time of
MaxSegment is smaller than that of MaxOverlap when k increases. So, the MaxSegment

Table 2 Default cardinalities in
synthetic datasets

Dataset Default value

|O| 50K
|P| 100K

Fig. 11 Effect of cardinality (synthetic datasets). a Execution time, b storage

123

Y. Liu et al.

Fig. 12 Effect of k (synthetic datasets). a Execution time, b storage

algorithm is much scalable with respect to k. Figure 12b shows that the storage of the
MaxSegment algorithm is almost unchanged whereas the MaxOverlap algorithm increases
when k increases. That is because k is independent of the R*-tree storage. While k becomes
larger, the R*-tree storage remains the same, and the increased storage of the MaxSegment
algorithm is very small and can almost be omitted. On the other hand, with the increase of
k, the overlap table of the MaxOverlap algorithm becomes larger as there are more inter-
sected NLCs. So, the MaxSegment algorithm needs less storage space than the MaxOverlap
algorithm.

6.1.3 Effect of t

We conducted experiment with t values of 1, 5, 10, and 15. The execution time and the
storage remain nearly unchanged for both the MaxSegment and MaxOverlap algorithms
when t changes. That is because we simply keep a queue to store the information about the
first t-th greatest values and the cost of storing this queue is very insignificant compared with
the overall storage cost.

6.1.4 Effect of real datasets

We conducted experiments on the four sets of real datasets, namely CA-GR, LB-GR, CA-
GM, and LB-GM. The results are similar to the synthetic datasets. Figure 13 shows the
experimental results when we vary k for dataset CA-GM. Figure 14 shows the experimental
results when we vary t for dataset CA-GM. For dataset CA-GR, Fig. 15 shows the results
when we vary k, and Fig. 16 shows the results when we vary t .

6.2 Performance in the L1-norm

In the previous section, we conducted experiments in the L2-norm space. In Sect. 5, we
introduce how to extend the MaxSegment algorithm to other metric spaces. In this section,
we choose the L1-norm metric, one of the L p-norm metric spaces, to study the algorithm
performance. The reason why we choose the L1-norm metric is that the L1-norm metric is
a well-known metric. In the L1-norm metric, we compared the MaxSegment algorithm with
the MaxOverlap algorithm on synthetic and real datasets. In the synthetic dataset, the size of

123

Maximizing bichromatic reverse nearest neighbor search

Fig. 13 Effect of k (CA-GM). a Execution time, b storage

Fig. 14 Effect of t (CA-GM). a Execution time, b storage

O varies from 20K to 100K. In the real dataset, we use the CA-GR dataset where the size of
O is 20K. In both synthetic and real datasets, the size of P is equal to 2|O|.

Figure 17 shows the execution times of the MaxSegment algorithm and the MaxOverlap
algorithm for the synthetic dataset when we vary the cardinality of the dataset, the value
of k and the value of t , respectively. Figure 18 shows the execution times for real dataset
CA-GR. As shown in these figures, the performance of the MaxSegment algorithm and the
MaxOverlap algorithm in the L1-norm is very similar to that in the L2-norm. That is, the
algorithm execution time increases when either the cardinality size or k increases, but it is
not sensitive to t . In both synthetic and real datasets, the MaxSegment algorithm is faster than
the MaxOverlap algorithm.

6.3 Performance in three-dimensional case

Figure 19 shows the results in the three-dimensional space, which are similar to those in the
two-dimensional space. As shown in these figures, the MaxSegment algorithm is better than
the MaxOverlap algorithm in the experiments in regard to the cardinality of dataset, t and k.
As the cardinality of dataset or k increases, the execution time of both algorithms increases.

123

Y. Liu et al.

Fig. 15 Effect of k (CA-GR). a Execution time, b storage

Fig. 16 Effect of t (CA-GR). a Execution time, b storage

Fig. 17 Execution time for the L1-norm experiments (synthetic datasets). a Effect of cardinality, b effect
of k, c effect of t

Compared with the MaxOverlap algorithm, the increase of the MaxSegment algorithm is
smaller. In addition, both algorithms are not sensitive to t . It is noted that, in Fig. 19a,
the execution time of the MaxOverlap algorithm in the three-dimensional space is smaller
than that in the two-dimensional space with the same cardinality (Please see Fig. 11a). It is
because the NLSs scatter sparsely in a higher dimension, which reduces the number of NLSs

123

Maximizing bichromatic reverse nearest neighbor search

Fig. 18 Execution time for the L1-norm experiments (CA-GR). a Effect of k, b effect of t

Fig. 19 Execution time for the three-dimensional case (synthetic datasets). a Effect of cardinality, b effect
of k, c effect of t

intersected with an NLS. In this synthetic dataset, the influence value in the three-dimensional
space is almost smaller than 100 whereas the influence value in the two-dimensional is several
thousands.

7 Conclusion

In this paper, we studied the MaxBRNN problem and proposed a new approach called the
MaxSegment algorithm in the case of the L2-norm for a two-dimensional space. Then, we
extended our algorithm to other variations of the MaxBRNN problem with the consideration
of other metric spaces and a three-dimensional space. Finally, we constructed a set of exper-
iments to compare our proposed algorithm with the existing MaxOverlap algorithm on both
real and synthetic datasets. The experimental results verified the efficiency of our proposed
approach. In the future, we would like to study further on MaxBRNN in a higher dimen-
sional space. We would like to consider MaxBRNN in road network databases. One possible
direction is to consider how to start a new service by considering a number of trajectories
instead of static points [17].

Acknowledgments We thank anonymous reviewers for their very useful comments and suggestions. The
work of Yubao Liu, Zhijie Li, Cheng Chen, and Zhitong Chen are supported by the National Natural Science
Foundation of China (Grant Nos. 60703111, 61070005, and 61033010), the Science and Technology Planning

123

Y. Liu et al.

Project of Guangdong Province of China (2010B080701062), and the Fundamental Research Funds for the
Central Universities (11lgpy63). The research of Raymond Chi-Wing Wong is supported by HKRGC GRF
621309 and DAG11EG05G. Ke Wang’s work is partially supported by a Discovery Grant from Natural Sciences
and Engineering Research Council of Canada.

8 Appendix: Computation of (s1, s2)-circle, (s2, s2)-plane and s3-circle on plane
in a three-dimensional space

In Sect. 5.3, given three NLSs, namely s1, s2, and s3 as shown in Fig. 10, we describe the
concepts of the (s1, s2)-circle, the (s2, s2)-plane, and the s3-circle on a plane. In this section,
we describe how we compute these three concepts.

How to Compute (s1, s2)-Circle: In the following, we want to describe a method to compute
the (s1, s2)-circle given two NLS s1 and s2.

Assume NLS s1 centered at o1(x1, y1, z1) with radius r1 and NLS s2 centered at
o2(x2, y2, z2) with radius r2. Then, we would have the following equations.

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = r2

1 (1)

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 = r2

2 (2)

From Eqs. (1) and (2), we have:−2x(x1− x2)+ (x2
1 − x2

2)− 2y(y1− y2)+ (y2
1 − y2

2)−
2z(z1 − z2)+ (z2

1 − z2
2) = r2

1 − r2
2 Next, we have

x(x1 − x2)+ y(y1 − y2)+ z(z1 − z2) = r2
1 − r2

2 + x2
2 + y2

2 + z2
2 − x2

1 − y2
1 − z2

1

−2
(3)

We assume that the (s1, s2)-circle c12 is centered at o12(x12, y12, z12) with radius r12. In
the following, we need to compute the coordinates of the three-dimensional point o12 and the
radius r12. Since the point o12 is along the line segment between o1 and o2, we can assume
that −−−→o1o12 = λ

−−→o1o2, (0 < λ < 1). Then, we have

(x1 − x12, y1 − y12, z1 − z12) = λ(x1 − x2, y1 − y2, z1 − z2) (4)

That is,

x12 = x1 + λ(x2 − x1), y12 = y1 + λ(y2 − y1), z12 = z1 + λ(z2 − z1) (5)

Since the point o12(x12, y12, z12) is on the plane α, we can put x12, y12 and z12 in Eq. (5)
into Eq. (3) (i.e., replacing x , y, z, respectively). Then, we have

(x1 + λ(x2 − x1))(x1 − x2)+ (y1 + λ(y2 − y1))(y1 − y2)

+(z1 + λ(z2 − z1))(z1 − z2)

= r2
1 − r2

2 + x2
2 + y2

2 + z2
2 − x2

1 − y2
1 − z2

1

−2

Next, we have λ = r2
1−r2

2
2(x2−x1)2 + 1

2 . Then, we put λ into Eq. (5) and compute the coordinates
of the three-dimensional point o12. That is,

123

Maximizing bichromatic reverse nearest neighbor search

Fig. 20 A sectional drawing for
s1, s2 and c12

Fig. 21 The computation for the circle c3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x12 = x1 +
(

r2
1−r2

2
2(x2−x1)2 + 1

2

)

(x2 − x1)

y12 = y1 +
(

r2
1−r2

2
2(x2−x1)2 + 1

2

)

(y2 − y1)

z12 = z1 +
(

r2
1−r2

2
2(x2−x1)2 + 1

2

)

(z2 − z1)

(6)

where o1(x1, y1, z1), o2(x2, y2, z2), r1, and r2 are known.
The radius r12 can be computed as follows. As shown in Fig. 10a, we can easily image

the following sectional drawing in Fig. 20 for NLS s1, NLS s2, and circle c12. So, we have

r12 =
√

r2
1 − |o1o12|2 =

√
r2

1 − λ2|o1o2|2, where o1, o2, r1 and λ are known. Thus, we
derive the (s1, s2)-circle.

It is easy to verify that the above computation of the (s1, s2)-circle takes O(1) time.
How to Compute (s1, s2)-Plane and s3-Circle: In the following, we describe how to

compute the (s1, s2)-plane, says α, and the s3-circle on plane α, says c3.
Assume that NLS s3 is centered at o3(x3, y3, z3) with radius r3. Assume the center of circle

c3 in the three-dimensional space is oc3(xc3, yc3, zc3) and its radius is rc3. From Fig. 10, it
is easy to know that both points o12 and oc3 are on the plane α. We can build a coordinate
system, XαYα , on the two-dimensional plane α whose origin is o12. The relationship between
the three-dimensional space and the two-dimensional plane α can be shown in Fig. 21. From

123

Y. Liu et al.

Fig. 21, we can know the coordinates of point oc3 in the two-dimensional space (Xα, Yα)

correspond to u and v, respectively. Before computing u and v, we need to find the vectors−→
Xα and

−→
Yα that correspond to the axes of the coordinate system on the two-dimensional plane

α. From Fig. 10a, we can know the normal vector
−→
N = −→o2 −−→o1 to the plane α. That is, we

have
−→
N = (x2 − x1, y2 − y1, z2 − z1). This normal vector can denote the (s1, s2)-plane.

Next, we construct two vectors as follows.
{

Xα = (y2 − y1, x1 − x2, 0)

Yα =
(−(x2−x1)(z2−z1)

(x2−x1)2+(y2−y1)2 ,
−(y2−y1)(z2−z1)

(x2−x1)2+(y2−y1)2 , 1
) (7)

It is easy to verify the vectors
−→
Xα ,
−→
Yα , and

−→
N are perpendicular to each of the other two

vectors. Then, we can take
−→
Xα and

−→
Yα as the axes of the coordinate system on the two-

dimensional plane α. It is also easy to know that−−−→oc3o3 = ϕ
−→
N , where ϕ is a real number and−→

N is the normal vector to the plane α. Then, we have the following Eq. (8) in which xN , yN ,

and zN denote the vector components of vector
−→
N , respectively.

x3 − xc3 = ϕxN , y3 − yc3 = ϕyN , z3 − zc3 = ϕzN (8)

Since −−−→o12oc3 ⊥ −→N ,we have (xc3 − x12)xN + (yc3 − y12)yN + (zc3 − z12)zN = 0. Next, we
can replace xc3, yc3 and zc3 using Eq. (8).

Then, we have ϕ = xN (x3−x12)+yN (y3−y12)+zN (z3−z12)

x2
N+y2

N+z2
N

. Next, we put ϕ into Eq. (8) and have

oc3(xc3, yc3, zc3). That is,
⎧
⎨

⎩

xc3 = x3 − ϕxN

yc3 = y3 − ϕyN

zc3 = z3 − ϕzN

(9)

where x3, y3, z3, xN , yN , zN , and ϕ are known. From Fig. 21, we have u, v and the radius of
c3 as follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u = |o12oc3| · cos θ = −−−→o12oc3·−→Xα|Xα |
v = |o12oc3| · sin θ = −−−→o12oc3·−→Yα|Yα |
rc3 =

√
r2

3 − |o3oc3|2
(10)

where r3, o3, oc3,
−→
Xα and

−→
Yα are known. Thus, we derive the s3-circle.

It is easy to verify that the computation of the (s1, s2)-plane and the s3-circle takes O(1)

time.

References

1. Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access
method for points and rectangles. In: Garcia-Molina H, Jagadish HV (eds) Proceedings of the ACM
SIGMOD international conference on management of data. Atlantic City, NJ, May 1990, pp 322–331

2. Berg M, Kreveld M, Overmars M, Schwarzkopf O (eds) (2000) Computational geometry: algorithms and
applications. Springer, Berlin

3. Cabello S, Diaz-Banex JM, Langerman S, Seara C (2010) Facility location problems in the plane based
on reverse nearest neighbor queries. Eur J Oper Res 202(1):99–106

4. Cabello S, Diaz-Banez JM, Langerman S, Seara C, Ventura I (2005) Reverse facility location problems.
In: Proceedings of the 17th Canadian conference on computational geometry, Ontario, Canada, Aug 2005,
pp 68–71

123

Maximizing bichromatic reverse nearest neighbor search

5. Cardinal J, Langerman S (2006) Min-max-min geometric facility location problems. In: Proceedings of
the 22nd European workshop on computational geometry, Delphi, Greece, March 2006

6. Chazelle B (1986) New upper bounds for neighbor searching. Inf Control 68(1–3):105–124
7. Cheema MA, Lin X, Zhang W, Zhang Y (2011) Influence zone: efficiently processing reverse k nearest

neighbors queries. In: Abiteboul S, Bohm K, Koch C (eds) Proceedings of the 27th international conference
on data engineering. Hannover, Germany, April 2011, pp 577–588

8. Cheema MA, Lin X, Zhang W, Zhang Y, Wang W, Zhang W (2009) Lazy updates: an efficient technique
to continuously monitoring reverse kNN. Proc VLDB Endow 2(1):1138–1149

9. Du Y, Zhang D, Xia T (2005) The optimal-location query. In: Medeiros CB, Egenhofer MJ, Bertino E
(eds) Proceedings of the 9th international symposium on advances in spatial and temporal databases.
Angra dos Reis, Brazil, Aug 2005, pp 163–180

10. Emrich T, Kriegel HP, Kröger P, Renz M, Xu N, Züfle A (2010) Reverse k-Nearest neighbor monitoring on
mobile objects. In: Agrawal D, Abbadi AE, Mokbel MF (eds) Proceedings of the 18th ACM SIGSPATIAL
international symposium on advances in geographic information systems. San Jose, CA, USA, Nov 2010,
pp 494–497

11. Kang JM, Mokbel MF, Shekhar S, Xia T, Zhang D (2007) Continuous evaluation of monochromatic and
bichromatic reverse nearest neighbors. In: Chirkova R, Dogac A, Özsu MT, Sellis TK (eds) Proceedings
of the 23rd international conference on data engineering. The Marmara Hotel, Istanbul, Turkey, April
2007, pp 806–815

12. Khoshgozaran A, Shahabi C, Shirani-Mehr H (2011) Location privacy: going beyond K-anonymity,
cloaking and anonymizers. Knowl Inf Syst 26(3):435–465

13. Korn F, Muthukrishnan S (2000) Influence sets based on reverse nearest neighbor queries. In: Chen
W, Naughton JF, Bernstein PA (eds) Proceedings of the ACM SIGMOD international conference on
management of data. Dallas, Texas, USA, May 2000, pp 201–212

14. Korn F, Muthukrishnan S, Srivastava D (2002) Reverse nearest aggregates over data stream. In: Pro-
ceedings of the 28th international conference on very large data bases, Hong Kong, China, August 2002,
pp 814–825

15. Krarup J, Pruzan PM (1983) The simple plant location problem: Survey and synthesis. Eur J Oper Res
12(1):36–57

16. Lian X, Chen L (2009) Efficient processing of probabilistic reverse nearest neighbor queries over uncertain
data. VLDB J 18(3):787–808

17. Lu EHC, Lee WC, Tseng VS (2011) Mining fastest path from trajectories with multiple destinations in
road networks. Knowl Inf Syst 29(1):25–53

18. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Carey MJ, Schneider DA (eds)
Proceedings of the ACM SIGMOD international conference on management of data. San Jose, California,
May 1995, pp 71–79

19. Stanoi I, Agrawal D, ElAbbadi A (2000) Reverse nearest neighbor queries for dynamic databases. In:
Gunopulos D, Rastogi R (eds) Proceedings of 2000 ACM SIGMOD workshop on research issues in data
mining and knowledge discovery. Dallas, Texas, USA, May 2000, pp 44–53

20. Stanoi I, Riedewald M, Agrawal D, Abbadi AE (2001) Discovery of influence sets in frequently updated
databases. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT (eds)
Proceedings of the 27th international conference on very large data bases. Roma, Italy, Sept 2001,
pp 99–108

21. Tan JSF, Lu EHC, Tseng VS (2012) Preference-oriented mining techniques for location-based store
search. Knowl Inf Syst. doi:10.1007/s10115-011-0475-4

22. Tansel BC, Francis RL, Lowe T (1983) Location on networks: a survey. Manag Sci 29(4):482–497
23. Tao Y, Papadias D, Lian X (2004) Reverse kNN search in arbitrary dimensionality. In: Nascimento MA,

Özsu MT, Kossmann D, Miller RJ, Blakeley J, Schiefer KB (eds) Proceedings of the thirtieth international
conference on very large data bases. Toronto, Canada, Sept 2004, pp 744–755

24. Tao Y, Yiu ML, Mamoulis N (2006) Reverse nearest neighbor search in metric spaces. IEEE Trans Knowl
Data Eng 18(8):1239–1252

25. Vadapalli S, Valluri SR, Karlapalem P (2006) A simple yet effective data clustering algorithm. In: Clifton
CW, Zhong N, Liu J, Wah BW, Wu X (eds) Proceedings of the 6th IEEE international conference on data
mining. Hong Kong, China, Dec 2006, pp 1108–1112

26. Wong RCW, Özsu MT, Yu PS, Fu AWC, Liu L (2009) Efficient method for maximizing bichromatic
reverse nearest neighbor. Proc VLDB Endow 2(1):1126–1137

27. Wong RCW, Özsu MT, Yu PS, Fu AWC, Liu L, Liu Y (2011) Maximizing bichromatic reverse nearest
neighbor for Lp-norm in two- and three-dimensional spaces. VLDB J 20(6):893–919

28. Wong RCW, Tao Y, Fu AWC, Xiao X (2007) On efficient spatial matching. In: Koch C, Gehrke J,
Garofalakis MN, Srivastava D, Aberer K, Deshpande A, Florescu D, Chan CY, Ganti V, Kanne CC, Klas

123

http://dx.doi.org/10.1007/s10115-011-0475-4

Y. Liu et al.

W, Neuhold EJ (eds) Proceedings of the 33rd international conference on very large data bases. University
of Vienna, Austria, Sept 2007, pp 579–590

29. Wu W, Yang F, Chan CY, Tan KL (2008) FINCH: evaluating reverse k-nearest-neighbor queries on
location data. Proc VLDB Endow 1(1):1056–1067

30. Wu W, Yang F, Chan CY, Tan KL (2008) Continuous reverse k-nearest-neighbor monitoring. In: Meng
X, Lei H, Grumbach S, Leong HV (eds) Proceedings of the 9th international conference on mobile data
management. Beijing, China, April 2008, pp 132–139

31. Xia T, Zhang D (2006) Continuous reverse nearest neighbor monitoring. In: Liu L, Reuter A, Whang K,
Zhang J (eds) Proceedings of the 22nd international conference on data engineering. Atlanta, GA, USA,
April 2006, p 77

32. Xia T, Zhang D, Kanoulas E, Du Y (2005) On computing top-t most influential spatial sites. In: Bohm K,
Jensen C, Haas LM, Kersten ML, Larson P, Ooi BC (eds) Proceedings of the 31st international conference
on very large data bases. Trondheim, Norway, Sept 2005, pp 946–957

33. Yang Y, Hao C (2011) Product selection for promotion planning. Knowl Inf Syst 29(1):223–236
34. Yiu ML, Papadias D, Mamoulis N, Tao Y (2006) Reverse nearest neighbors in large graphs. IEEE Trans

Knowl Data Eng 18(4):540–553
35. Zhang D, Du Y, Xia T, Tao Y (2006) Progressive computation of the min-dist optimal-location query. In:

Dayal U, Whang K, Lomet DB, Alonso G, Lohman GM, Kersten ML, Cha SK, Kim Y (eds) Proceedings
of the 32nd international conference on very large data bases. Seoul, Korea, Sept 2006, pp 643–654

36. Zhang M, Alhajj R (2011) Effectiveness of NAQ-tree in handling reverse nearest-neighbor queries in
high-dimensional metric space. Knowl Inf Syst 31(2):307–343

37. Zhang M, Alhajj R (2010) Effectiveness of NAQ-tree as index structure for similarity search in high
dimensional metric space. Knowl Inf Syst 22(1):1–26

38. Zhang S, Chen F, Wu X, Zhang C (2006) Identifying bridging rules between conceptual clusters. In:
Eliassi-Rad T, Ungar LH, Craven M, Gunopulos D (eds) Proceedings of the twelfth ACM SIGKDD
international conference on knowledge discovery and data mining. Philadelphia, PA, USA, Aug 2006,
pp 815–820

39. Zhou Z, Wu W, Li X, Lee ML, Hsu W (2011) MaxFirst for MaxBRkNN. In: Abiteboul S, Bohm K, Koch
C, Tan K (eds) Proceedings of the 27th international conference on data engineering. Hannover, Germany,
April 2011, pp 828–839

40. Zhu L, Li C, Tung AKH, Wang S (2012) Microeconomic analysis using dominant relationship analysis.
Knowl Inf Syst 30(1):179–211

Author Biographies

Yubao Liu is currently an associate professor with the Department of
Computer Science of Sun Yat-Sen University, China. He received his
Ph.D. in computer science from Huazhong University of Science and
Technology in 2003, China. He has published more than 40 refereed
journal and conference papers. His research interests include database
systems and data mining. He is also a member of the China Computer
Federation (CCF) and the ACM.

123

Maximizing bichromatic reverse nearest neighbor search

Raymond Chi-Wing Wong received the BSc, MPhil and Ph.D.
degrees in Computer Science and Engineering in the Chinese Univer-
sity of Hong Kong (CUHK) in 2002, 2004 and 2008, respectively. He
joined Computer Science and Engineering of the Hong Kong Univer-
sity of Science and Technology as an Assistant Professor in 2008. His
research interests include database, data mining and security.

Ke Wang received Ph.D. from Georgia Institute of Technology. He is
currently a professor at School of Computing Science, Simon Fraser
University. Ke Wang’s research interests include database technol-
ogy, data mining and knowledge discovery, with emphasis on mas-
sive datasets, graph and network data, and data privacy. Ke Wang has
published in more than 100 research papers in database, information
retrieval, and data mining conferences. He is currently an associate edi-
tor of the ACM TKDD journal.

Zhijie Li received his B.Eng in the Geography and Planning School of
Sun Yat-Sen University of China in 2008. He is a graduate student of
the Department of Computer Science of Sun Yat-Sen University, China.
His research interests include databases and data mining.

123

Y. Liu et al.

Cheng Chen received his B.Eng in the Department of Computer
Science of Sun Yat-Sen University of China in 2010. He is a graduate
student of the Department of Computer Science of Sun Yat-Sen
University, China. His research interests include databases and data
mining.

Zhitong Chen received his B.Eng in the School of Mathematics and
Computational Science of Sun Yat-Sen University of China in 2010. He
is a graduate student of the Department of Computer Science of Sun
Yat-Sen University, China. His research interests include databases and
data mining.

123

	A new approach for maximizing bichromatic reverse nearest neighbor search
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	3.1 Basic concepts
	3.2 Existing algorithm analysis

	4 The proposed algorithm
	4.1 Preliminaries
	4.2 The algorithm description
	4.3 Algorithm analysis

	5 Algorithm extension
	5.1 Extension to other varied MaxBRNN problems
	5.2 Extension to other metric spaces
	5.3 Extension to three-dimensional space

	6 Experimental results
	6.1 Performance in two-dimensional case
	6.1.1 Effect of cardinality
	6.1.2 Effect of k
	6.1.3 Effect of t
	6.1.4 Effect of real datasets

	6.2 Performance in the L1-norm
	6.3 Performance in three-dimensional case

	7 Conclusion
	Acknowledgments
	8 Appendix: Computation of (s1, s2)-circle, (s2, s2)-plane and s3-circle on plane in a three-dimensional space
	References

