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Abstract—Searchable symmetric encryption enables a cloud server to answer queries directly over encrypted data. Two key
requirements are a strong security guarantee and a sub-linear search performance. The bucketization approach in the literature
addresses these requirements at the expense of downloading false positives and requiring the local search at the client side. In this
work, we propose a novel approach to meet these requirements while minimizing the clients work and communication cost. First, a
relaxed notion of ciphertext indistinguishability on partitioned data is formalized, called class indistinguishability, which provides a level
of ciphertext indistinguishability similar to that of bucketization but allows the server to perform search of relevant data and filter false
positives. We present a construction for achieving these goals through a two-phase search algorithm. The first phase finds a candidate
set through a sub-linear search. The second phase finds the exact query result using a linear search applied to the candidate set. The
experiment results on large real-world data-sets show that our approach outperforms the state-of-the-art. This work focuses on the
class of equality conjunction search, but it applies to the general class of Boolean queries of equalities because the latter can be
reduced to several equality conjunction queries.

Index Terms—Symmetric Searchable Encryption, Equality Conjunction Search, Sub-linear Search Performance.
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1 INTRODUCTION

THE current trend towards cloud-based Database-as-a-
Service (DaaS) as an alternative to traditional on-site

relational database management systems has largely been
driven by the perceived simplicity and cost-effectiveness.
While moving data from local devices to the cloud server
offers great convenience to the clients, outsourced data are
under threat from being accessed or used by unauthorized
parties (including the server) for their own benefits without
the client’s knowledge. Outsourcing encrypted data can
preserve privacy but preclude the client from delegating
query processing tasks to the server. A promising solution to
this problem is symmetric searchable encryption (SSE) [1] that
allows the server to answer queries directly over encrypted
data on the client’s behalf while protecting the confidential-
ity of plaintext data and queries.

A typical SSE system is shown in Figure 1. At the
setup time, the trusted client builds an encrypted index and
outsources it to the server. Later on, the client can issue a
query by generating the encrypted form of the query, called
the trapdoor. The server is responsible for computing the
query result using the trapdoor and the encrypted index.
During this interaction, the server is considered as “honest-
but-curious”: it will follow the protocol honestly but may
passively attempt to learn the content of encrypted data and
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Fig. 1: A typical SSE system

queries. For this reason, the server is semi-trusted and is
treated as the adversary.

1.1 Motivation
The core of SSE is to meet three design goals: a strong secu-
rity guarantee, efficient search performance, and supporting
a large class of queries. An important line of research (e.g.
[2], [3], [4], [5]) has been to realize practical SSE schemes
that achieve ciphertext indistinguishability [2] by restricting
to single keyword queries or single equality queries. In
many practical applications, however, such simple types of
query is insufficient to provide a good search experience.
For example, suppose an authorized doctor in the hospital
outsources the following relational database of patients to
the server,

PATIENT (name,sex,age,city,country,disease),

and wants to retrieve medical records for all patients who
are diagnosed with HIV and live in Vancouver. In this case,
simply performing search for each equality in the query
and then intersecting the results of the two queries often
leads to inefficient and unsecured query processing [6]. A
sophisticated system should support authorized doctors to
retrieve data through a single query defined by an equality
conjunction query such as
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SELECT * FROM PATIENT as P,
WHERE P.city = Vancouver AND P.disease = HIV.

The above example raises the following question:
Can we design a practical SSE scheme that meets both ci-

phertext indistinguishability and sub-linear search performance
for equality conjunction search, or more generally, for the class of
all equality Boolean search?

Challenge and perspectives. A grand challenge is that
these two requirements are in conflict with each other. On
the one hand, ciphertext indistinguishability requires that
the adversary (i.e., the server) cannot distinguish encrypted
records by observing their ciphertexts. On the other hand,
a sub-linear search on the server side entails distinguishing
the encrypted records that do not need to be searched from
those that do, which leaks significantly more information
about data and queries to the server than what is allowed
to be leaked by ciphertext indistinguishability. More im-
portantly, it is in general difficult to capture the full extent
of such search related low-level disclosures in the security
definition (see Section 3 for more details).

We argue that the strong security level required by
ciphertext indistinguishability is not always necessary. In
many practical scenarios, it suffices to maintain indistin-
guishability among a number of individuals instead of all.
For example, widely used k-anonymity [7] only requires
that each individual cannot be distinguished from (k − 1)
other individuals, where k is a security parameter. Another
example is the bucketization approach ( [8], [9], [10]), which
only provides indistingushiability within each bucket. In
other cases, indistinguishability is needed only for those
who care about it. For example, if Alice and Bob care about
indistinguishability between them, but Cat and Dog do
not, it suffices to partition the domain into three classes
g0 = {Cat}, g1 = {Dog}, g2 = {Alice,Bob} and enforce
ciphertext indistinguishability within each class. In general,
the class partitioning is over the joint domain of several
attributes. The purpose of this class-level ciphertext indis-
tinguishability is to enable sub-linear performance by prun-
ing irrelevant classes for a given query, which is possible
because there is no indistinguishability requirement on data
from different classes.

The bucketization approach ( [8], [9], [10]) enforces ci-
phertext indistinguishability in the class level by partition-
ing the records in the database into buckets (i.e., classes in
our work) according to some specified partitioning of the
domain of each attribute, and each bucket is assigned a
unique bucket id. The plaintext records are encrypted using
traditional techniques and stored on the server. To retrieve
the data requested by a query, the records in a bucket are
identified using the bucket id and the client first maps the
query condition to the relevant bucket ids using a local
index and submits such bucket ids to the server. The server
returns encrypted data according to the received bucket
ids. The client then recovers the query result by decrypting
returned data and filtering false positives. Sub-linear search
performance is supported by retrieving only the data in the
relevant buckets for a query.

However, the bucketization approach suffers from two
main limitations. One is that the client needs to search for
relevant bucket ids for a query locally, referred to as query
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Fig. 2: Bucketization [8] [9] [10]: The client searches for
relevant bucket ids, the server returns all records in the
buckets, and the client filters false positives

Trusted Client Semi-trusted Server

Decrypt  
result

Filtering
True 

results

SearchQuery

Data encrypted 
by our SSE

Candidate 
set

Encrypt  
query

Encrypted 
results

Encrypted 
query

Fig. 3: Proposed scheme: The client encrypts the query
predicate, the server searches for a candidate set and filters
false positives, and the client decrypts the query result

translation processing in [8], [9], [10]. This imposes the
overhead on the client to store and maintain the translation
information of all buckets for dynamic data, which is non-
trivial when data is partitioned by multi-attributes. On the
other hand, the resource-rich server is under-utilized in that
it only takes charge of retrieving encrypted data according
to the given bucket ids computed by the client. Another
limitation is that false positives have to be communicated
to the client because they can only be filtered by the client.
These two limitations are indicated by grey boxes named
“Search” and “Filtering” on the client side in Figure 2. A
finer bucket granularity will increase client’s search work
due to the increased number of buckets (especially for multi-
dimensional data), whereas a coarser bucket granularity will
increase the number of false positives and the communica-
tion cost. With client’s resources and network bandwidth
typically being the bottleneck, this approach’s application
will be limited.

1.2 Contributions

A preferred solution is pushing the “Search” and “Filtering”
tasks to the server as shown in Figure 3, where the client
only needs to encrypt the query and decrypt the query
result. In this work, we present a novel scheme to meet these
requirements. We focus on the class of equality conjunction
queries, such as the query on the “PATIENT” table; the
more general class of Boolean queries of equalities can be
reduced to such queries. Our contributions are summarized
as follows.

• The motivation of our choice of SSE schemes,
we begin with an analysis of two types of SSE
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schemes, namely plaintext-indexing schemes and
ciphertext-indexing schemes. The analysis suggests
that ciphertext-indexing schemes can better meet our
security and performance goals. Therefore, for the
rest of the paper, we consider ciphertext-indexing
schemes.

• We formalize a relaxed notion of ciphertext indis-
tinguishability, called class indistinguishability, that
achieves a level of indistinguishability similar to that
of bucketization, but enables the design in Figure 3.

• We propose a novel ciphertext-indexing SSE scheme,
called CLASS, for computing equality conjunc-
tion queries while meeting class indistinguishability
and supporting sub-linear search. Importantly, with
CLASS we are able to push the search and filtering
tasks to the server as in Figure 3, therefore, freeing
the client from local search and maintenance work.
Furthermore, CLASS can be implemented by plug-
ging in existing indexing methods without designing
specialized methods.

• We formally prove the class indistinguishability of
CLASS and the resistance to common attacks based
on auxiliary knowledge.

• We present an empirical study to evaluate the prac-
tical efficiency of CLASS on large and real life
databases. The results show that CLASS outperforms
the state-of-the-art.

2 PRELIMINARIES

This section introduces necessary notations and definitions.
Databases. We consider a relational database D =

{P1, · · · , P|D|} containing |D| records with d attributes
{A1, · · · , Ad}. Each At has a discrete domain dom(At). A
numeric domain can be discretized into a small number of
intervals. Besides {A1, · · · , Ad}, the database may contain
other attributes that do not occur in any query.

Queries. An equality conjunction query has the form
e1 ∧ · · · ∧ eq , where et, 1 ≤ t ≤ q, is an equality At = vt
with vt ∈ dom(At) for a distinct attribute At. An equality
disjunction query has the form E1 ∧ · · · ∧ Eq , where each
Et is a disjunction of equalities on an attribute At. This
equalty disjunction query can be rewritten into a collection
of equality conjunction queries that do not overlap in re-
sults. Moreover, an inequalty At <> vt can be rewritten
into a disjunction of equalities onAt. Therefore, any Boolean
query of equalites can be reduced to a collection of equality
conjunction queries. For this reason, we shall focus on the
class of equality conjunction queries in the rest of the paper.

Symmetric Searchable Encryption (SSE). We adopt the
formal definition of SSE from [2] as shown in Definition 1.
Like most prior work [2], [6], [11], we focus on concealing
plaintext data and queries but allow the disclosure of “ac-
cess pattern” (i.e., what encrypted records are retrieved by a
search query) and “search pattern” (i.e., whether two search
queries are identical) as a result of granting the server the
search capacity. Please refer to [12], [13], [14], [15], [16] for
more details on access and search patterns hiding.

Definition 1 (SSE scheme [2]). A searchable symmetric en-
cryption (SSE) scheme is a collection of four polynomial-

Notation Description
ψ security parameter
negl(ψ) negligible function in security parameter ψ
K secret key
d number of potential querying attributes
At an attribute in {A1, · · · , Ad}
dom(At) domain of an attribute At
D a database D contains |D| records
RID unique record ID for each record in a database D
Pi and E(Pi) record and encryption
Qj and E(Qj) query and encryption
Att(Qj) attributes where a query Qj has an equality
RID(D, Qj) IDs for the records in D satisfying a query Qj
I encrypted index for a database D
T query trapdoor for a query
κ class size for an attribute At
{gt0, · · · , gtl−1} class partitioning for an attribute At

TABLE 1: Summary of notations

time algorithms SSE = (Gen,Enc,Trpdr,Search) such
that,

K ← Gen(1ψ): A probabilistic algorithm takes as
input a security parameter ψ and outputs a secret
key K.
(I, c) ← Enc(K,D): A probabilistic algorithm takes
as input a secret key K and a databaseD. The output
contains encrypted data c and an encrypted index I.
T ← Trpdr(K,Q): An algorithm takes as input a
secret key K and a query Q. The output is a query
trapdoor T.
E ← Search(I,T) : A deterministic algorithm takes
as input an encrypted index I and a query trapdoor
T. The output is a set of data IDs E .

An SSE scheme is correct if for all ψ ∈ N, for all K
output by Gen(1ψ), for all D ⊆

∏d
t=1 dom(At), for all I

output by Enc(K,D), for all queries Q, and T output by
Trpdr(K,Q), the output of Search(I,T) is the set of IDs
for the records in D satisfying Q. �

c can be generated by any traditional encryption method
such as AES [17] because it is not involved in the search
function (i.e., Search(I,T)). We shall focus on building
the encrypted index I and call it the ciphertext, not to be
confused with c. An SSE scheme is dynamic if I can be
maintained for data update by the server.

In the rest of the paper, Enc(K,Pi) denotes the en-
cryption function for a record Pi and E(Pi) denotes the
ciphertexts generated by the encryption function. We use
x

$← X to denote that x is sampled uniformly at random
from a finite set X , and use |X| to represent the number
of elements in X . x ← A means that x is the output of
an algorithm A. Table 1 summarizes some frequently used
notations.

3 TWO TYPES OF SSE
The construction of the encrypted index I involves two req-
uisite stages for supporting a sub-linear search: encryption
and index building. In this section, we analyze two different
orders of these stages, which motivates our choice of how
to construct the encrypted index I.
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3.1 Plaintext-Indexing
We say that an SSE scheme is plaintext-indexing if I is
generated by first building an index over plaintext database
and then encrypting the index. This index must be built by
the client because it requires accessing plaintext records, as
shown in Figure 4. Most existing SSE schemes that support
a sub-linear search are plaintext-indexing, such as PB-Tree
[18] and R̂-Tree [19] for range queries, Oblivious Cross-Tags
Protocol (OXT) [6], IXE [20] and IBTree [21] for keyword
search. A drawback of plaintext-indexing is that the client
has to maintain the index information locally for dynamic
data. Another drawback is that a sub-linear search using
such I tends to disclose low-level information beyond the
query result and such disclosures are hard to capture.

For concreteness, consider the OXT scheme [6], which is
the first SSE scheme to support conjunctive keyword queries
with sub-linear search complexity. The encrypted index I of
OXT is essentially the inverted index built over the plaintext
database but hiding document pointers using specialized
structures called TSet and XSet. To compute a query, the
server needs to scan the inverted list of the s-term (i.e., the
search keyword with the shortest inverted list) using TSet
and for each document id on the list checks if it is found on
the lists of all x-terms (i.e., the remaining search keywords)
using XSet. This process discloses the following information
for 2-keyword queries [6]: for two queries that share the
same x-term, the server learns the documents containing
both s-terms of the two queries, called conditional intersection
pattern (IP); for each query, OXT leaks the x-terms that match
the initial result from the list for the s-term, called x-term
matching pattern (XMP).

The above disclosure is due to plaintext-indexing and the
sub-linear search requirement. In particular, such indexes
are built using the relationships between plaintext records;
even though this index is encrypted, the sub-linear perfor-
mance requires that the encrypted index provides certain
information useful for pruning irrelevant data during the
search for a query. Therefore, such disclosures are inevitable
for any encryption scheme that supports plaintext-indexing
and the sub-linear requirements. This can also be seen from
the leakage function in the security definition used by OXT.
Moreover, since such disclosures are related to the sub-linear
search process, it is difficult to capture the full extent of such
low-level disclosures.

3.2 Ciphertext-Indexing
We say that an SSE scheme is ciphertext-indexing if I is gen-
erated by encrypting each plaintext record in the database
individually, denoted by I = {E(P1), · · · , E(Pn)}, and then
building any index structure based on I as shown in Figure
5. This index can be built by the server given I. Some
examples of ciphertext-indexing schemes are [11], [22], [23],
[24]. To insert a record Pj , the client just needs to upload
encrypted record E(Pj) for the new record Pj , instead of
uploading an entire updated index as in the case of Figure
4, and the server will update the index structure by inserting
E(Pj) into it.

Therefore, unlike a plaintext-indexing SSE, a ciphertext-
indexing SSE is suitable for dynamic data, and more impor-
tantly, any sub-linear search using such indexes disclose no

Trusted client Untrusted server

Plaintext database : 
D = fP1; · · · ; Png
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Fig. 4: Plaintext-Indexing SSE: the client first builds the
index for the plaintext database D, then encrypts the index
and uploads the encrypted index as I to the server
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Fig. 5: Ciphertext-Indexing SSE: the client first encrypts
each record Pi and then uploads the encrypted records
{E(P1), · · · , E(Pn)} as I; the server can build the index
using I

more information than {E(P1), · · · , E(Pn)}. Consequently,
it suffices to focus on the disclosure of encrypted records,
rather than dealing with low-level disclosures arising from a
sub-linear search process, which hugely simplifies the threat
model and security definition. In particular, there is no
need for a leakage function to capture the search process’s
disclosure as in the case of OXT.

Despite the above mentioned nice properties of
ciphertext-indexing SSE, existing ciphertext-indexing SSE
schemes support only a linear search which are not scalable
for large databases. Indeed, designing a ciphertext-indexing
SSE that supports the sub-linear search is a nontrivial task
due to the following dilemma: the security consideration
requires that encrypted records E(Pi) provide little in-
formation about Pi, whereas the sub-linear performance
consideration requires that the index structure built using
E(Pi) enables the pruning of irrelevant data for a query,
which tends to disclose some information about data and
query. In the rest of the paper, we propose a relaxed notion
of ciphertext indistinguishability and present a ciphertext-
indexing SSE scheme to support sub-linear search. We start
with our security definition.
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4 PROPOSED SECURITY

In this section, we formalize a relaxed notion of cipher-
text indistinguishability, called class indistinguishability, to
maintain the indistinguishability among the members in
a class who care about indistinguishability. Since no in-
distinguishability are required for different classes, class
indistinguishability allows the server to perform sub-linear
search by pruning irrelevant classes. Before going ahead, we
first give the definition of classes used later.

4.1 Classes

We assume that for an attribute At (1 ≤ t ≤ d), the
domain of At is partitioned into disjoint value classes,
{gt0, · · · , gtlt−1}. Typically, the class partitioning for each
attribute is specified by the data owner based on indistin-
guishability required for the members in each class (as the
example shown in Section 1.1). For this reason, we assume
that the class partitioning for each attribute is given in
the following definition. Section 5.3 will discuss how to
construct the class partitioning if the data owner has no
preference.

Definition 2 (Classes). Let {gt0, · · · , gtlt−1} be the class par-
titioning for At, 1 ≤ t ≤ d.

• A record class consists of all records such that for any
two records Pi and P ′i in the class, Pi[t] and Pi[t]′ are
in the same value class for every attribute At.

• A database class consists of all databases D such that
for any database D′ in the class, there is a bijection
η from D to D′ such that for each record Pi in D, Pi
and η(Pi) are in the same record class.

• A query class consists of all queries Q such that for
any query Q′ in the class, Att(Q) = Att(Q′) and for
each At ∈ Att(Q), Q[t] and Q′[t] are in the same
value class.

• A history class consists of all histories H = (D,Q =
{Q1, · · · , Qm}) such that for any history H ′ =
(D′,Q′ = {Q′1, · · · , Q′m}) in the class, D and D′ are
in the same database class, and for 1 ≤ j ≤ m, Qj
and Q′j are in the same query class. �

Intuitively, a database class consists of all databases ob-
tained by replacing each record with a record from the same
record class; a query class consists of all queries obtained by
replacing each specified value with a value from the same
value class; a history class consists of all histories obtained
by replacing the database with a database from the same
database class and replacing each query with a query from
the same query class. We give the following example to
better illustrate record (database, query, history) classes.

Example 1. Let dom(A1) = {a1, a2, a3, a4} and dom(A2) =
{b1, b2, b3, b4}. Assume that the domain ofA1 andA2 are
partitioned as follows to form four value classes,

A1 : g10 = {a1, a4}, g11 = {a2, a3},

A2 : g20 = {b1, b3}, g21 = {b2, b4}.

Consider two databases D as

{P1 = (a1, b1), P2 = (a4, b2), P3 = (a2, b3), P4 = (a2, b3)}

and D′ as

{P ′1 = (a4, b3), P ′2 = (a4, b4), P ′3 = (a3, b1), P ′4 = (a2, b1)}

where A1 and A2 are in the first and second positions
in each record. Let η be the bijection from D to D′ such
that η(Pi) = P ′i . Because Pi[t] and P ′i [t] are in the same
value class for every attribute At, Pi and P ′i are in the
same record class. Consequently, D and D′ are in the
same database class. Similarly, the queries Q1 = (a1,−)
and Q′1 = (a4,−) are in the same query class, where
a dash means no condition on the attribute. Let H1 =
{D, {Q1}} and H2 = {D′, {Q′1}}. It is clearly that H1

and H2 are in the same history class. �

In the rest of discussion, whenever it is clear from the
context, we use the term “class” for any of record class,
database class, query class, and history class.

4.2 Class Indistinguishability
Our security definition, called class indistinguishability, is
the restriction of ciphertext indistinguishability to only the
members from the same class of histories. A standard ap-
proach to formalize a security definition in SSE is defining a
probabilistic game. We adopt the probabilistic game from [2]
to enforce the ciphertext indistinguishability in each history
class. First, we borrow the notion of “trace” for a history
from [2].
Definition 3 (The trace of a history [2]). Given a history

H = (D,Q = {Q1, · · · , Qm}),

• Access pattern induced by H is the tuple α(H) =
(RID(D, Q1), · · · , RID(D, Qm));

• Search pattern induced by H is the symmetric binary
matrix σ(H) such that for 1 ≤ i, j ≤ m, the element
in the i-th row and j-th column is 1 if Qi = Qj , and
0, otherwise;

• Trace induced by H is τ(H) = (|D|, α(H), σ(H)).

Two histories H0 and H1 have the same trace if there is
a renaming ρ of RIDs such that |D0| = |D1|, α(H0) =
ρ(α(H1)), σ(H0) = σ(H1) (The renaming of RID is used
to ignore any difference in the choices of RIDs for the
two databases).

The trace of a history captures all the information about
the history that is allowed to be leaked to the server. Then,
we can formalize the class indistinguishability through a
probabilistic game as follows.
Definition 4 (Class indistinguishability). Assume that the

class partitioning {gt0, · · · , gtl−1} is given for every at-
tribute At. Let SSE = (Gen,Enc,Trpdr,Search). Let
A = (A1,A2) be an adversary. Consider the following
probabilistic game:

IndSSE,A(ψ)

1. K ← Gen(1ψ)
2. (stA, H0, H1)← A1(1ψ)

3. b $← {0, 1}
4. parse Hb as (Db,Qb)
5. for 1 ≤ i ≤ n

6. E(Pb,i)← Enc(K,Pb,i)
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7. let Ib = (E(Pb,1), · · · , E(Pb,n))
8. for 1 ≤ j ≤ m

9. Tb,j ← Trpdr(K,Qb,j)

10. let Tb = (Tb,1, · · · ,Tb,m)
11. b′ ← A2(stA, Ib,Tb)
12. if b′ = b, output 1
13. otherwise output 0

subject to two restrictions: (i) H0 and H1 have the same
trace, (ii) H0 and H1 are from the same class. stA is a
string that captures A1’s state after choosing the plain-
text. We say that SSE ensures class indistinguishability
if for all polynomial-size adversaries A = (A1,A2),

|Pr[IndSSE,A(ψ) = 1]− 1

2
| ≤ negl(ψ) (1)

where the probability is taken over the choice of b and
the coins of Gen,Enc and Trpdr. We say that SSE ensures
strict class indistinguishability if

Pr[IndSSE,A(ψ) = 1] =
1

2
.� (2)

In the above game, the adversary chooses two histories
H0 and H1 (Line 2). Given a bit b ∈ {0, 1} which is chosen
uniformly at random (Line 3), the database Db and queries
Qb in history Hb are encrypted to an encrypted index Ib
and query trapdoors Tb, respectively (Lines 4-10). After
receiving Ib and Tb, the adversary needs to guess the value
of b (Line 11). The game outputs 1 if the adversary correctly
guesses the value b (i.e., b′ = b), otherwise, 0 (Lines 12-
13). Let Pr[IndSSE,A(ψ) = 1] be the probability of the
correct guess. Eqn (1) states that an SSE scheme satisfies
class indistinguishability if no adversary can win the above
probabilistic game with the probability significantly greater
than an adversary who must guess randomly. Eqn (2) states
that an SSE scheme satisfies strict class indistinguishability
if the adversary’s guess is a random guess.

The difference from the standard ciphertext indistin-
guishability in [2] is the additional condition (ii), which
restricts H0 and H1 to be from the same history class;
consequently, the indistinguishability holds only for the
members from the same history class. Note that the above
definition considers a non-adaptive adversary in that all
queries are chosen by the adversary before receiving any en-
crypted data or queries. An adaptive adversary can choose
the next query after receiving the encrypted records and
encrypted queries for the previous queries. We will consider
the adaptive adversary in Section 6.

Discussion. Class indistinguishability ensures that any
two histories from the same class cannot be distinguished
given their ciphertexts and the search result (captured by
traces). The standard ciphertext indistinguishability is the
extreme case of a single class containing all histories in
the class, thus, providing the maximum level of indistin-
guishability. However, this single class leads to ineffective
pruning in computing queries. Class indistinguishability
offers a trade-off between the level of indistinguishability
and the effectiveness of sub-linear search through a more
general class partitioning for each attribute, because classes
containing no query result will not not be searched. It is
worth noting that knowing a record belonging to a class

(A) Encrypted database (B) Candidate phase  (C) Filtering phase

true result
candidate set

Enc1(Pi) Enc2(Pi)Enc1(Pi) Enc2(Pi) Enc1(Pi) Enc2(Pi)Enc1(Pi) Enc2(Pi) Enc1(Pi) Enc2(Pi)Enc1(Pi) Enc2(Pi)

Enc1(Pi) Enc2(Pi)(sub-linear) using Enc1(Pi) Enc2(Pi)(linear) using

E1(Pi) E2(Pi)E1(Pi) E2(Pi) E1(Pi) E2(Pi)E1(Pi) E2(Pi) E1(Pi) E2(Pi)E1(Pi) E2(Pi)

E1(Pi) E2(Pi)E1(Pi) E2(Pi)

Fig. 6: Main idea of the two-phase search strategy

is not a privacy concern, but linking a ciphertext to an
individual record is. Class indistinguishability addresses
this concern by ciphertext indistinguishability between any
two members from the same class. This notion requires non-
singularity of a class but is independent of the size of a class
because it considers two members at a time.

5 CONSTRUCTION

In this section, we construct a new ciphertext-indexing SSE,
called CLASS, to meet class indistinguishability, and support
a sub-linear search for equality conjunction queries, and in
addition, pushing the tasks of searching for relevant data
and filtering false positives to the server as in Figure 3.

5.1 Overview

At the high level, we want to achieve all these requirements
through a two-phase search strategy. The Candidate Phase
(sub-linear phase) focuses on pruning the sub-space not
containing the query result to get a candidate set that may
contain false positives. The Filtering Phase (linear phase)
is applied to the candidate set to filter false positives. In
general, the precision based search (i.e., false positive free)
in the filtering phase is expensive. To reduce overhead,
we want the candidate phase to be a lightweight sub-
linear search that uses only standard operations (instead
of crypto operations) and the candidate set must be small.
Consequently, the efficiency comes from the fact that the
candidate set in the filtering phase is smaller than the full
database.

One solution to the above two-phase search is encrypting
each record in the database by two different SSE schemes as
shown in Figure 6(A). We assume that E1(Pi) is generated
by a strict class indistinguishability SSE, and E2(Pi) is
generated by a ciphertext indistinguishability SSE. Figure
6(B) shows that the candidate phase uses E1(Pi) can find
the candidate set through a sub-linear search by pruning the
classes (i.e., diamonds and stars) not containing any query
result. Figure 6(C) illustrates that the filtering phase using
E2(Pi) is a linear search process that only applies to the
candidate set instead of the full space to find the true result.
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Algorithm 1 Search(I,Tj)

Require: The server has the encrypted index structure I =
{E(P1), · · · , E(P|D|)}, and the query trapdoor Tj =
(E1(Qj), E2(Qj))
Candidate Phase:

Cand← Search1(I, E1(Qj))

Filtering Phase:

Results← Search2(Cand, E2(Qj))

More formally, the proposed CLASS consists of two SSEs:

SSE1 = (Gen1,Enc1,Trpdr1,Search1),

SSE2 = (Gen2,Enc2,Trpdr2,Search2),

where we require that SSE1 achieves strict class indistin-
guishability and SSE2 satisfies ciphertext indistinguishabil-
ity. The client encrypts each record Pi (1 ≤ i ≤ |D|) in a
relational database D into

E(Pi) = (E1(Pi), E2(Pi)),

where Eb(Pi) (b ∈ {1, 2}) denotes the ciphertexts generated
using the encryption function Encb in SSEb. Then, the client
builts the encrypted index structure I as

I = (E(P1), · · · , E(P|D|)).

At the query time the client encrypts a query Qj into the
query trapdoor

Tj = (E1(Qj), E2(Qj)),

and submits Tj to the server where Eb(Qj) (b ∈ {1, 2})
denotes the trapdoor for the search query Qj generated by
the trapdoor generation function Trpdrb in SSEb. The search
for the query answer proceeds in two phases described in
Algorithm 1. These two phases correspond to the Search and
Filtering in Figure 3, respectively. With a small Cand, any
existing SSE achieving ciphertext indistinguishability with a
linear search, such as [11], [22], [23], can serve as SSE2. For
this reason, our discussion in the following focuses on the
construction of SSE1.

5.2 Construction of SSE1

We assume that for every attribute At, 1 ≤ t ≤ d, the class
partitioning {gt0, · · · , gtl−1} is given and the domain values
in each class gty are arranged in any order.

The intuition of our SSE1 is modeling the equivalence
of the domain values in the same class gty by encoding each
domain value into an angle and by the periodicity of circular
functions sin and cos over such angles. In particular, we
encode the domain value v at the x-th position in the class
gty by the angle (1 ≤ x ≤ |gty| and 0 ≤ y ≤ l − 1):

α(v) = y
π

l
+ (x− 1)π. (3)

The class label y determines the initial angle y πl for the class
and each next value in the class adds an additional angle
π. Note that α(v) depends on the assignment of class labels
to classes and the order of values in a class, but any such
assignment and order will do. Since any two values from

Algorithm 2 Enc1(K1, Pi)

Require: • The client has the secret key K1 = (M)

1) for 1 ≤ t ≤ d

a) εt,i
$←− [−U,−L] ∪ [L,U ], (0 < L ≤ U )

Ii[t]1 ← εt,i sin(αt(Pi[t]))
Ii[t]2 ← εt,i cos(αt(Pi[t]))

(4)

2) Ii ← (Ii[1]1, Ii[1]2, · · · , Ii[d]1, Ii[d]2)
3)

E1(Pi)← M−1Ii
|M−1Ii|

(5)

Algorithm 3 Trpdr1(K1, Qj)

Require: • The client has the secret key K1 = (M)
• Att(Qj) 6= ∅

1) for 1 ≤ t ≤ d

a) if At ∈ Att(Qj)

i) µt,j
$←− [−U,−L]∪ [L,U ], (0 < L ≤ U )

Tj [t]1 ← µt,j cos(π − αt(Qj [t]))
Tj [t]2 ← µt,j sin(π − αt(Qj [t]))

(6)

b) if At /∈ Att(Qj)

i) Tj [t]1 = Tj [t]2 ← 0

2) Tj ← (Tj [1]1, Tj [1]2, · · · , Tj [d]1, Tj [d]2)
3)

E1(Qj)← MT Tj

|MT Tj |
(7)

the same class have the same first term y πl , the next lemma
follows immediately.
Lemma 1. For any two values (v, v′) in the domain of At,

α(v)− α(v′) is a multiple of π if and only if v and v′ are
from the same class of At.

PROOF. The lemma holds because v and v′ have the same
class label y if and only if they are from the same value class.
�

Below, we present detailed construct for each component
of SSE1, including secret key generation, encrypted index
generation, query trapdoor generation and query evalua-
tion.

5.2.1 Secret Key Generation
The key generation function Gen1(1ψ1) outputs the secret
key K1 = (M), where M is a randomly chosen (2d × 2d)
invertible matrix (i.e., M−1M is equal to the (2d × 2d)
identity matrix). The key size ψ1 is implicitly specified by
the data dimensionality d. If necessary, dummy attributes
can be added to increase d.

5.2.2 Encrypted Index Generation
The algorithm for generating E1(Pi) is given in Algo-

rithm 2. Step 1 encodes each entry Pi[t] into two values
Ii[t]1 and Ii[t]2, where α(Pi[t]) is the angle in Eqn (3) and
εt,i is a noise randomly sampled from [−U,−L] ∪ [L,U ]
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for t and i, 0 < L ≤ U . The effect of the parameters for
randomness (i.e., L and U ) will be discussed later on. Step 2
creates a randomized 2d-dimensional vector Ii using Ii[t]1
and Ii[t]2 for all attributes. Step 3 “blends” all dimensions
together using the secret matrix M and normalizes E1(Pi).
Consequently, E1(Pi) is mapped as a point on the 2d-
dimensional unit sphere centered at the origin, and the
location of the point is randomized by the random noises
εt,i for each attribute At.

5.2.3 Query Trapdoor Generation
Algorithm 3 gives the algorithm for generatingE1(Qj). Step
1 encodes each specified Qj [t] (i.e., At ∈ Att(Qj)) into two
values (Tj [t]1, Tj [t]2) using the angle (π − αt(Qj [t])), and
encodes each unspecified Qj [t] (i.e., At /∈ Att(Qj)) into
(0, 0). Step 2 creates a randomized 2d-dimensional vector
Tj and Step 3 blends all dimensions together and produces
E1(Qj) as a randomized point on the 2d-dimensional unit
sphere centered at the origin. Note that Tj is not all zero
because there is at least one condition in a query.

More on the random noises. It is worth noting that
random noises ε in Eqn (4) and µ in Eqn (6) are used to
unlink the ciphertext and the class of a record and a query,
respectively. The interval size of the noise does not affect
the size of Cand or the proof of class indistinguishability,
but will affect the degree of unlinking the ciphertext and
the class. In other words, even for the extreme case that
L = U , the class indistinguishability still holds because the
server cannot distinguish two histories from the same class.
A larger interval [−U,−L] ∪ [L,U ] (0 < L ≤ U ) means
more randomness of encrypted records and queries, which
is more effective for thwarting statistic-based attacks but
affects the effectiveness of sub-linear search for computing
the candidate set Cand. Furthermore, in the case that D has
a single attribute or Qj has a single equality condition, the
normalization step in Eqns (5) and (7) will cancel the effect
of added noises. This problem can be fixed by adding a
dummy attribute A∗ with a single domain value v∗ to every
record and adding the equality A∗ = v∗ to every query.

5.2.4 Searching for The Candidate Set
The search function Search1 computes the candidate set of
the query Qj , denoted by Cand(Qj), as the set of E2(Pi)
such that (E1(Pi), E2(Pi)) is in I and Pi[t] is in the same
class as Qj [t] for every At ∈ Att(Qj). Cand(Qj) contains the
query result and possibly false positives. The next lemma
gives the computation of Cand(Qj). By “Pi is in Cand(Qj)”,
we mean “E2(Pi) is in Cand(Qj)”.

Lemma 2. If Pi is in Cand(Qj),

E1(Qj)
TE1(Pi) = 0. (8)

If Pi is not in Cand(Qj), Eqn (8) holds with an exceed-
ingly small probability.

PROOF. From Eqns (5) and (7), we have

E1(Qj)
TE1(Pi) =

TTj Ii

|MTTj ||M−1Ii|
, (9)

where the superscript T denotes a transpose operation.
E1(Qj)

TE1(Pi) = 0 holds if and only if TTj Ii =

∑d
t=1(Ii[t]1Tj [t]1 + Ii[t]2Tj [t]2) = 0. Since Tj [t]1 = Tj [t]2 =

0 for all At which are not in Att(Qj), from Eqns (4) and (6),
we have

TTj Ii =
∑

At∈Att(Qj)

(Ii[t]1Tj [t]1 + Ii[t]2Tj [t]2)

=
∑

At∈Att(Qj)

εt,iµt,j sin(π + αt(Pi[t])− αt(Qj [t])).

(10)
If Pi is in Cand(Qj), Pi[t] and Qj [t] are in the same class

for every At ∈ Att(Qj), so (αt(Pi[t])− αt(Qj [t])) is a mul-
tiple of π (Lemma 1) and sin(π + αt(Pi[t])− αt(Qj [t]) = 0.
In this case, Eqn (8) holds. If Pi is not in Cand(Qj), Pi[t] and
Qj [t] are not in the same class for some At ∈ Att(Qj), and
(αt(Pi[t]) − αt(Qj [t]) is not a multiple of π (Lemma 1), so
sin(π + αt(Pi[t]) − αt(Qj [t]) 6= 0. In this case, the chance
that TTj Ii = 0 holds is small because noises ε’s and µ’s are
randomly chosen. �
Example 2. Continue with Example 1. Let D = {P1 =

(a1, b1), P2 = (a4, b2), P3 = (a2, b3), P4 = (a2, b3)} and
consider three queries

Q1 = (a1,−), Q2 = (a2, b3), Q3 = (a2, b3),

where Q2 and Q3 are repeating queries. The next table
lists (x, y) and α(v) for all domain values v:

A1 A2

v a1 a2 a3 a4 b1 b2 b3 b4
(x, y) (1,0) (1,1) (2,1) (2,0) (2,0) (2,1) (1,0) (1,1)

α(v) = y π
2
+ (x− 1)π 0 π

2
3
2
π π π 3

2
π 0 π

2

For example, the (x, y) for domain value a3 is (2,1)
because a3 is the second value in g1. Consider the secret
key M (i.e., a (4× 4) invertible matrix)

M =


10.538 0.319 3.579 0.725
1.833 −1.308 2.769 −0.063
−2.259 −0.434 −1.350 0.714
0.862 0.343 3.035 −0.205

 .
Algorithm 2 encrypts Pi into

E1(P1) = (−0.359,−0.309, 0.252,−0.844),

E1(P2) = (−0.446,−0.822, 0.199,−0.293),

E1(P3) = (−0.360,−0.124, 0.159,−0.911),

E1(P4) = (0.554,−0.370,−0.529, 0.526),

and Algorithm 3 encrypts Qj into

E1(Q1) = (0.145, 0.086, 0.966, 0.196),

E1(Q2) = (−0.193,−0.735, 0.588, 0.279),

E1(Q3) = (0.687,−0.153, 0.699,−0.128).

The random noises εt,i and µt,j for Pi[t] and Qj [t] are
drawn from the interval [−1100,−1000] ∪ [1000, 1100]
(i.e., L = 1000 and U = 1100). Note that probabilistically
generated E1(Q2) and E1(Q3) are different even though
Q2 and Q3 are identical. The following table shows the
inner product E1(Qj)

TE1(Pi).
Due to the limited precision, a zero inner product
is represented by a small value close to zero indi-
cated by the gray cells. Cand(Q1) contains E1(P1) and
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|E1(Qj)
TE1(Pi)| E1(P1) E1(P2) E1(P3) E1(P4)

E1(Q1) 0.0006 0.0005 0.088 0.359
E1(Q2) 0.209 0.726 0.0000 0.0007
E1(Q3) 0.085 0.004 0.0005 0.0001

E1(P2), and Cand(Q2) and Cand(Q3) contain E1(P3)
and E1(P4). In an actual implementation with higher
precision, E1(Qj)

TE1(Pi) = 0 can be replaced by
|E1(Qj)

TE1(Pi)| ≤ c for a “small” positive value c. �

Below, we discuss several issues related to implementa-
tion and practical use.

Numeric unstability. Let x = E1(Pi) and y = E1(Qj)
be the exact theoretical values, and let x′ and y′ be the
finite machine representation of x and y. These are 2d-
dimensional vectors, where d is the number of attributes in
the database. For the t-th entry of these vectors, let ∆x[t] and
∆y[t] be the errors due to the machine representation, i.e.,
x[t] = x′[t] + ∆x[t] and y[t] = y′[t] + ∆y[t]. Note that, when
xy = 0, x′y′ is not always 0 (due to the limited machine
representation) but will be a “small” value close to 0. There-
fore, we can use a tight upper bound ub, i.e., the condition
x′y′ ≤ ub, to find all E1(Pi) such that E1(Qj)

TE1(Pi) = 0.
To find such ub, let e(x, y) = |xy − x′y′| be the error of

using x′y′ to approximate E1(Qj)
TE1(Pi).

e(x, y) =|
∑
t

(x′[t]∆y[t] + y′[t]∆x[t] + ∆x[t]∆y[t])|

≤
∑
t

(|x′[t]∆y[t]|+ |y′[t]∆x[t]|+ |∆x[t]∆y[t]|)

≤
∑
t

(|∆y[t]|+ |∆x[t]|+ |∆x[t]∆y[t]|)

The last inequality follows from |x′[t]| ≤ 1 and |y′[t]| ≤ 1 be-
cause E1(Pi) and E1(Qj) are unit vectors. For the DOUBLE
data type (other types are considered similarly), x′[t] and
y′[t] have the precision of 10−15, that is, |∆x[t]| ≤ 10−15,
|∆y[t]| ≤ 10−15 and ∆x[t]∆y[t] ≤ 10−15. Therefore, we
have e(x, y) < 6d ∗ 10−15 because ∆x and ∆y are 2d-
dimensional vectors. So ub = 6d ∗ 10−15 serves the above
upper bound on x′y′.

Transforming to hyperplane queries. From Lemma 2,
the server can compute Cand(Qj) by the testing condition
E1(Qj)

TE1(Pi) = 0. Alternatively, the server can compute
the hyperplane query defined by E1(Qj)

TV = 0 for a 2d-
dimensional point V , which retrieves all ciphertexts that are
on the hyperplane defined by the norm E1(Qj) and passing
through the origin. In other words, the original query Qj
is transformed into a hyperplane query in the ciphertext
space, which enables any existing sub-linear methods for
hyperplane queries to be deployed by the server.

Search techniques for hyperplane queries are well stud-
ied, such as R-Tree [25], M -Tree [26], half-space queries
[19] and scalar product queries [27]. In this work, we adopt
M -Tree for hyperplane queries processing. Figure 7 shows
an example. At the system setup, the server builds an M -
Tree using the E1(Pi) portion of E(Pi). Each node in the
tree represents a sphere and leaf nodes store the encrypted
records. Given a query hyperplane for Qj (indicated by
the red line), the search starts from the root and goes to
the child nodes if the current node intersects the query
hyperplane. On reaching a leaf node (i.e., nodes H and I), all
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Fig. 7: Query hyperplane testing with M -Tree

stored points in the leaf node are tested against the query
hyperplane. If a point is on the hyperplane, it is added to
Cand(Qj). This search is sub-linear in that all the leaf nodes
not reached in this search are ignored (i.e., nodes A to G).

Updating. The proposed SSE1 in the above enjoys all
the benefits discussed in Section 3.2 because it is ciphertext-
indexing SSE (i.e., I = {E(P1), · · · , E(Pn)}). In particular,
the server can maintain the index structure on encrypted
data for dynamic data easily. To insert a new record, the
client only needs to encrypt the new record and outsource
the encrypted data. Then the server can follow the standard
insertion procedure for M -Tree to insert the encrypted data
E1(Pi) into I, by treating E1(Pi) as a regular record and
treating I as a regular database. Deleting a record specified
by RID follows the standard deletion operation on M -Tree
as well. Alternatively, records can be deleted by specifying
a condition on index attributes, which requires first locating
the records satisfying the condition, like processing a regular
query discussed above.

Comparison with bucketization. It is interesting to
compare our approach with the bucketization approach [8]
[9] [10]. Our candidate set is similar to the result retrieved
using the bucket ids of the query in bucketization. However,
there are several substantial differences. The first difference
is that bucketization requires the client to perform local
search of bucket ids for a query, whereas the client in our
approach only needs to encrypt the query. Secondly, buck-
etization requires the client to filter false positives, whereas
our approach filters false positives by the server (through
SSE2). Finally, bucket ids in bucketization are static, thus,
directly tell what records are in the same bucket, whereas
our encryption functions are probabilistic thanks to fresh
random noises for each encryption.

5.3 Constructing Class Partitioning

While we expect that the class partitioning Xt =
{gt0, · · · , gtl−1} for an attribute At is specified by the data
owner, the class partitioning can also be constructed to
minimize a cost metric for a given class size |gty|, for
1 ≤ y ≤ l − 1, which is useful if the data owner has no
preference except that each class must have a minimum size.
Below, we give a construction of Xt = {gt0, · · · , gtl−1} to
minimize the number of false positives in the candidate set,
thus, the search cost of the linear time Search2.

The cost metric is minimized with respect to a chosen
query workload. For simplicity, we consider only queries
with a single equality. For each attributeAt, the query work-
load is denoted by {Q1, · · · , Q|At|} where Qj , 1 ≤ j ≤ |At|,
denotes the query with the single equality At = vj . We
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assume that the frequency for Qj , 1 ≤ j ≤ |At|, denoted
by fj , is known. Let Oj , 1 ≤ j ≤ |At|, be the number of
records in the database D having At = vj . Consider a value
class gty = {v1, · · · , vκ} for At. For a query Qj , all records
having a value vk ∈ (gty − {vj}) are false positives, so the
cost of false positives is Cost(gty, Qj) = Σvk∈gty−{vj}Okfj
(recall that each false positive is returned fj times). The cost
of false positives related to gty for all queries is Cost(gty) =∑
vj∈gty Cost(gty, Qj), and the communication cost of all false

positives is Cost(Xt) = Σl−1y=0Cost(gty).
Definition 5 (Optimal κ-sized class partitioning). Given a

class size κ > 1 such that |At| is divisible by κ and l =
|At|
κ , (O1, · · · , O|At|) and (f1, · · · , f|At|) specified above,

find a class partitioning for At, Xt = {gt0, · · · , gtl−1},
such that Cost(Xt) is minimized and all gty have the size
κ. �

This problem can be solved as the following r-way
equipartition problem for which a branch-and-cut algorithm
exists [28]: divide the vertices of a weighted graph G =
(V,E) into r equally sized sets, so as to minimize the total
weight of edges that have both endpoints in the same set.
To solve our optimal class partitioning problem, we can
define the graph G = (V,E) as follows: V = {1, · · · , |At|}
and E = {(i, j) | 1 ≤ i < j ≤ |At|}, where for each
edge (i, j) ∈ E, the weight (w(i,j) = Oifj + Ojfi). Let
r = l = |At|

κ . Intuitively, w(i,j) is the communication cost
for returning false positives if i and j are grouped into the
same class. Then Xt = {gt0, · · · , gtl−1} is an optimal κ-sized
class partitioning if and only if Xt is an optimal solution to
the r-way equipartition problem for G = (V,E).

6 SECURITY ANALYSIS

We show that SSE = (SSE1,SSE2) presented in Section
5 achieves class indistinguishability (Definition 4). We first
consider SSE1 and then SSE. The next lemma shows that
all records or queries from the same class cannot be distin-
guished from their ciphertexts.
Lemma 3. Let SSE1 = (Gen1,Enc1,Trpdr1,Search1) be the

SSE scheme constructed in Section 5 and let K1 be the
secret key generated by Gen1. For any 2d-dimensional
vector V ,

(i) Pr[Enc1(K1, Pi) = V ] = Pr[Enc1(K1, P
′
i ) = V ]

holds for any records Pi and P ′i from the same record
class.

(ii) Pr[Trpdr1(K1, Qj) = V ] = Pr[Trpdr1(K1, Q
′
j) = V ]

holds for any queriesQj andQ′j from the same query
class.

PROOF. We prove (i) first. Recall from Eqn (4) that

(Ii[t]1, Ii[t]2) = (εt,i sin(αt(Pi[t])), εt,i cos(αt(Pi[t]))),

(I ′i[t]1, I
′
i[t]2) = (ε′t,i sin(αt(P

′
i [t])), ε

′
t,i cos(αt(P

′
i [t]))),

where εt,i and ε′t,i are drawn from [−U,−L] ∪ [L,U ] uni-
formly at random. Since Pi and P ′i are from the same class,
from Lemma 1, α(Pi[t]) and α(P ′i [t]) differ by a multiple of
π, which means

sin(αt(P
′
i [t])) = θ sin(αt(Pi[t])),

cos(αt(P
′
i [t])) = θ cos(αt(Pi[t])),

where θ is either + or - sign. Since εt,i and ε′t,i are drawn
from [−U,−L]∪[L,U ] uniformly at random, for any (v1, v2),
Pr[(Ii[t]1, Ii[t]2) = (v1, v2)] = Pr[(I ′i[t]1, I

′
i[t]2) = (v1, v2)].

This implies Pr[Ii = V ] = Pr[I ′i = V ] for any 2d-
dimensional vector V . Finally, the proof follows from the
fact that the matrix multiplication in the last step of Enc1
does not affect the probability.

The proof of (ii) is similar. According to Eqn (6), for each
attribute At(t ∈ [1, d]), Qj [t] is encoded as:

(Tj [t]1, Tj [t]2) = (µt,j cos(π−αt(Qj [t])), µt,j sin(π−αt(Qj [t]))),

and Q′j [t] is encoded as:

(T ′j [t]1, T
′
j [t]2) = (µ′t,j cos(π−αt(Q′j [t])), µ′t,j sin(π−αt(Q′j [t]))),

Recall from Lemma 1 that (α(Qj [t])−α(Q′j [t])) is a multiple
of π, because Qj and Q′j are from the same query class. This
implies that

cos(π − αt(Q′j [t])) = θ cos(π − αt(Qj [t])),

sin(π − αt(Q′j [t])) = θ sin(π − αt(Qj [t])),

where θ is either + or - sign. Since µt,j and µ′t,j are drawn
from [−U,−L]∪[L,U ] uniformly at random, for any (v1, v2),

Pr[(Qj [t]1, Qj [t]2) = (v1, v2)] = Pr[(Q′j [t]1, Q
′
j [t]2) = (v1, v2)],

and for any 2d-dimensional vector V ,

Pr[Qj = V ] = Pr[Q′j ] = V.

Finally, the matrix multiplication in the last step of Trpdr1
does not affect the above probability. �
Theorem 1. SSE1 constructed in Section 5 meets strict class

indistinguishability, i.e.,

Pr[IndSSE1,A(ψ1) = 1] =
1

2
. (11)

PROOF. Consider two same trace histories H0 = (D0 =
{P0,1, · · · , P0,n}, Q0 = {Q0,1, · · · , Q0,m}) and H1 = (D1 =
{P1,1, · · · , P1,n}, Q1 = {Q1,1, · · · , Q1,m}) from the same
history class chosen by the adversary in Definition 4. This
means that D0 and D1 are from the same class, and for
1 ≤ j ≤ m, Q0,j and Q1,j are from the same class. For
any b ∈ {0, 1} chosen randomly, the adversary receives the
ciphertext for (Db,Qb) generated by Enc1 and Trpdr1. From
Lemma 3, given E1(Pb,i) and E1(Qb,j), where 1 ≤ i ≤ n
and 1 ≤ j ≤ m, H0 and H1 are equally likely to be the
underlying history based on the observed ciphertexts. This
remains true even if the adversary computes the candidate
set Cand(Qb,j) because Cand(Q0,j) and Cand(Q1,j) have
the same size, 1 ≤ j ≤ m. Finally, any index structure I
constructed using E1(Pb,i), 1 ≤ i ≤ n, discloses no more
information than E1(Pb,i) does. So the adversary gains no
advantage in guessing the value of b from accessingE1(Pb,i)
and E1(Qb,j), where 1 ≤ i ≤ n and 1 ≤ j ≤ m, computing
the queries. �
Theorem 2. Let SSE1 be constructed in Section 5 and let

SSE2 be any scheme meeting ciphertext indistinguisha-
bility (say [2]). Then SSE = (SSE1,SSE2) meets class
indistinguishability, that is,

|Pr[IndSSE,A(ψ1, ψ2) = 1]− 1

2
| ≤ negl(ψ2),
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where ψ2 is the security parameter of SSE2.

PROOF. To show class indistinguishability, we consider
two histories H0 = (D0 = {P0,1, · · · , P0,n}, Q0 =
{Q0,1, · · · , Q0,m}) and H1 = (D1 = {P1,1, · · · , P1,n},
Q1 = {Q1,1, · · · , Q1,m}) chosen by the adversary of SSE1.
H0 and H1 have the same trace and belong to the class.
(H0, H1) is also a valid pair chosen by the adversary in the
game of SSE2 because the latter only requires H0 and H1

having same trace.
Recall that

E(Pb,i) = (E1(Pb,i), E2(Pb,i)),

E(Qb,j) = (E1(Qb,j), E2(Qb,j)).

In the game for SSE1, the adversary has access to E1(Pb,i)
and E1(Qb,j), and in the game for SSE2, the adversary has
access to E2(Pb,i) and E2(Qb,j), as well as the candidate
sets Cand(Qb,j) computed by SSE1, for 1 ≤ j ≤ m.

First, the ciphertext indistinguishability of SSE2 implies
that the adversary’s advantage in guessing the value of b
from accessing E2(Pb,i) and E2(Qb,j) is negligibly different
from the probability 1

2 .
In addition, the history formed by the candidate sets

Cand(Q1,j) plus queries Q1,j , 1 ≤ j ≤ m, and the history
formed by Cand(Q0,j) plus queries Q0,j , 1 ≤ j ≤ m,
have the same trace. Therefore, the adversary’s advantage
remains unchanged even if the adversary also has access to
the candidate sets computed by SSE1.

Finally, from Theorem 1, this advantage is unaffected
by accessing E1(Pb,i) and E1(Qb,j) in the game of SSE1

because the adversary gains no advantage in the game of
SSE1 thanks to the strict class indistinguishability provided
by SSE1. �

6.1 Adaptive Adversaries
So far, we considered a non-adaptive adversary in Definition
4. Our approach achieves class indistinguishability for an
adaptive adversary as well. We first define class indsitin-
guishability for an adaptive adversary.
Definition 6 (Class indistinguishability for an adap-

tive adversary). Assume that the class partitioning
{gt0, · · · , gtl−1} is given for every attribute At. Let SSE =
(Gen,Enc,Trpdr,Search). Let A = (A0, · · · ,Aq+1) be
an adversary such that q ∈ N. Consider the following
probabilistic game:

IndSSE,A(ψ)

1. K ← Gen(1ψ)
2. (stA,D0,D1)← A0(1ψ)

3. b $← {0, 1}
4. for 1 ≤ i ≤ n

5. E(Pb,i)← Enc(K,Pb,i)

6. let Ib = (E(Pb,1), · · · , E(Pb,n))
7. (stA, Q0,1, Q1,1)← A1(1ψ, Ib)
8. Tb,1 ← Trpdr(K,Qb,1)
9. for 2 ≤ j ≤ q

10. (stA, Q0,j , Q1,j)← Aj(stA, Ib,
Tb,1, · · · ,Tb,j−1)

11. Tb,j ← Trpdr(K,Qb,j)

12. let Tb = (Tb,1, · · · ,Tb,q)
13. b′ ← Aq+1(stA, Ib,Tb)
14. if b′ = b, output 1
15. otherwise output 0

subject to two restrictions: (i) H0 and H1 have the same
trace, (ii) H0 and H1 are from the same class. stA is a
string that captures A’s state. We say that SSE ensures
class indistinguishability for an adaptive adversary if
for all polynomial-size adversaries A = (A0, · · · ,Aq+1)
such that q = poly(ψ),

|Pr[IndSSE,A(ψ) = 1]− 1

2
| ≤ negl(ψ) (12)

where the probability is taken over the choice of b and
the coins of Gen,Enc,Trpdr. We say that SSE ensures
strict class indistinguishability for an adaptive adver-
sary if

Pr[IndSSE,A(ψ) = 1] =
1

2
.� (13)

Unlike a non-adaptive adversary, an adaptive adversary
can choose adaptively the next query pair (Q0,j , Q1,j) after
receiving the encrypted records and encrypted queries for
the previous queries (Lines 9-11). The next theorem shows
that our SSE construction also meets strict class indistin-
guishability for an adaptive adversary.

Theorem 3. SSE1 constructed in Section 5 meets strict class
indistinguishability for an adaptive adversary, i.e.,

Pr[IndSSE1,A(ψ1) = 1] =
1

2
. (14)

PROOF. A key observation from Theorem 1 is that the
adversary gains no advantage of guessing the value of b
from receiving encrypted records and encrypted queries.
In particular, this holds after the adversary receives the
encrypted queries chosen before choosing the next query
pair in the adaptive process. �

Theorem 2 is also generalized to an adaptive adversary
as follows.

Theorem 4. Let SSE1 be constructed in Section 5 and
let SSE2 be any scheme meeting ciphertext indistin-
guishability for an adaptive adversary (say [2]). Then
SSE = (SSE1,SSE2) meets class indistinguishability
for an adaptive adversary, that is,

|Pr[IndSSE,A(ψ1, ψ2) = 1]− 1

2
| ≤ negl(ψ2),

where ψ2 is the security parameter of SSE2.

PROOF. The proof is essentially same as Theorem 2. The
difference is that here SSE1 has strict class indistinguisha-
bility for an adaptive adversary (Theorem 3) and SSE2 has
ciphertext indistinguishability for an adaptive adversary as
assumed. �
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6.2 Adversaries with Auxiliary Knowledge
We now consider the case where the adversary may ac-
quire auxiliary knowledge from other sources. One type of
auxiliary knowledge is the correspondence (E1(Pi), Pi) of
ciphertext and plaintext for some records Pi in the database;
in other words, the adversary can link E1(Pi) to the known
plaintext Pi for some records Pi in D.

Recall the equation

E1(Qj)
TE1(Pi) =

TTj Ii

|MTTj ||M−1Ii|
, (15)

used in our approach, where Ii or Tj are intermediate
vectors generated from Pi and Qj before being transformed
by the secret matrix M. A question is whether knowing the
correspondence (E1(Pi), Pi) allows the adversary to learn Ii
or Tj using the above equation, therefore, further learn the
secret key M. This attack can be prevented by modify our
key generation. Recall α(v) = y πl +(x−1)π (Eqn (3)), where
x and y encode the in-class position and the class label of a
domain value v. There are many different (x, y) encodings
because each pair of permutation of values in a class and
permutation of class labels will define a different (x, y)
encoding. Therefore, we can hide the the (x, y) encoding by
making the pair of permutations used for generating (x, y)
a part of the secret key. In particular, we modify Gen1(1ψ1)
to output the secret key of the form K1 = (M,Ψ), where
M is a (2d × 2d) invertible matrix as before, and Ψ is the
permutation defining the (x, y) encoding for all domain
values of all attributes. Now we show that with this minor
modification SSE1 is resilient to the above attack.
Theorem 5. Let d be the number of querying attributes,

and lt be the number of classes for the attribute At.
For SSE1 constructed in Section 5 with the modified
Gen1(1k1) above, even if the adversary acquires the
auxiliary knowledge in the form of pairs (E1(Pi), Pi)
for any set of Pi in the database D, the adversary
cannot distinguish the true secret key K1 = (M,Ψ)
from the other (

∏
1≤t≤d(2lt) − 1) possible secret keys

K ′1 = (M′,Ψ′) .

PROOF. We show that, given E1(Qj) and E1(D) and
the observed pairs (E1(Pi), Pi) for a set {Pi} ⊆ D,
“many” (I ′i, T

′
j) cannot be distinguished from (Ii, Tj) be-

cause (I ′i, T
′
j) is equally likely to be generated by another

secret key K ′1 = (M′,Ψ′) and because the adversary does
not know the secret key picked. In the following, we con-
struct such (I ′i, T

′
j) and K ′1 = (M′,Ψ′). From Eqn (4), for

1 ≤ t ≤ d,
Ii[t]1 = εt,i sin(αt),
Ii[t]2 = εt,i cos(αt),

(16)

where αt = yt
π
lt

+ (xt − 1)π and (xt, yt) encodes the in-
class position and class label of Pi[t] according to Ψ. Let
θt = ∆2

π
lt

+ ∆1π for integers ∆1 and ∆2. Replacing αt

with (αt−θt) corresponds to replacing the encoding (xt, yt)
with the new encoding (xt − ∆1, yt − ∆2), where − is
modular the class size for Pi[t] and the number of classes for
At, respectively. This corresponds to rotating (Ii[t]1, Ii[t]2)
clockwise by θt degree, i.e., (I ′i[t]1, I

′
i[t]2) = Rt(Ii[t]1, Ii[t]2)

for the rotation matrix

Rt =

(
cosθt −sinθt
sinθt cosθt

)
. (17)

Let
I ′i = (I ′i[1]1, I

′
i[1]2, · · · , I ′i[d]1, I

′
i[d]2).

Note I ′i = RIi, where

R =


R1

R2

. . .
. . .

Rd

 . (18)

Similarly, let (T ′j [t]1, T
′
j [t]2) = Rt(Tj [t]1, Tj [t]2) and let

T ′j = (T ′j [1]1, T
′
j [1]2, · · · , T ′j [d]1, T

′
j [d]2).

T ′j = RTj .
Define another secret key K ′1 = (M′,Ψ′), where M′ =

RM and Ψ′ specifies the above new (xt − ∆1, yt − ∆2)
encoding scheme for all attributes. M′ is an invertible matrix
because R is an orthogonal matrix and M is an invertible
matrix, i.e., M′−1 = M−1RT . From the above discussion,
we have

E1(Qj) = MTTj = (RM)T (RTj) = M′TT ′j ,

E1(Pi) = M−1Ii = (M−1RT )(RIi) = M′−1I ′i.

These equalities imply that, given the observed E1(Qj) and
E1(Pi), the following two cases are possible. Case 1: I ′i and
T ′j were generated from Pi and Qj using the secret key
K ′1 = (M′,Ψ′), or Case 2: Ii and Tj were generated from Pi
and Qj using the secret key K1 = (M,Ψ). These cases are
equally likely because the secret key is chosen uniformly at
random.

It remains to show that the number of distinct K ′1 =
(M′,Ψ′), thus, the number of distinct associated (I ′i, T

′
j),

is large. The matrix Rt has a periodicity of 2π over θt,
so, for each ∆2 from {0, · · · , lt − 1}, Rt has two different
outcomes, one for all even ∆1 and one for all odd ∆1.
Therefore, the number of distinct Rt is 2lt, where lt is the
number of classes for At, and the number of distinct R is∏

1≤t≤d(2lt). Consequently, there are
∏

1≤t≤d(2lt) different
K ′1 = (M′,Ψ′) and the same number of associated (I ′i, T

′
j).

Even for the smallest lt = 1,
∏

1≤t≤d(2lt) is exponential in
d. �

7 EMPIRICAL EVALUATION

In this section, we summarize our study on the performance
of CLASS presented in Section 5.

Data sets. We consider two data sets.The US Census
data set1 was collected from 2006 to 2011 with d = 3 categor-
ical attributes: Race (237), PlaceOfBirth (531) and City (1134),
with the domain size indicated in the bracket. D1M , D10M ,
D50M and D100M , denote four samples containing the first
1, 10 , 50, 100 million records, respectively. The US Flight
data-set2 contains 28 million records and d = 8 categorical
attributes. We used the second data set to evaluate the
impact of data dimensionality. These data sets are much
larger than those in the literature for evaluating searchable
encryption techniques [9], [11], [19], [29], [30].

1. IPUMS US Census data set. https://www.ipums.org
2. US Flight data-set. http://stat-computing.org/dataexpo/2009/

the-data.html
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Queries. For the US Census data, we generated a query
pool QW = {Q1 ∪ · · · ∪ Qd} using D1M . For each integer
q ∈ [1, d], Qq contains 100 q-equality queries generated as
follows. Let Qq∗ contain all q-equality queries that have a
non-empty result in D1M . Let SelQ denote the selectivity
of a query Q, defined as the percentage of records in the
data that satisfy the query. We picked 100 queries Q from
Qq∗. The probability of picking a query Q is modeled by
the beta distribution Beta(α, β) of the selectivity selQ [31].
In general, with a fixed β a smaller α leads to a higher
probability for a query with a smaller selectivity. This case
assigns a higher probability to a query having a smaller
selectivity, modeling the typical scenario that more queries
retrieve more specific information. The query generation for
the US Flight data set is described in Section 7.3.

Competing methods. For CLASS, we implemented the
sub-linear method Search1 for hyperplane queries by M -
Tree [26] and the linear method Search2 by Secure Index
[11]. The M -Tree and the database are stored on disk and
the candidate set computed by Search1 is kept in memory.
Since [11] deals with only single-keyword search, we con-
vert equality conjunction queries to single-keyword search
by treating each conjunction up to the maximum number
of equalities in a query as a new keyword. We used the
method in Section 5.3 to construct the class partitioning
for each attribute for a given class size κ with the single
equality queries Q1

∗ as the input. By default, we set the
class size as κ = 6, the bounds for the noise interval
as (L = 1000, U = 1100), and the parameters of beta
distribution Beta(α, β) for class parition construction as
(α = 0.5, β = 3).

We consider two baselines. The first baseline is OXT, the
state-of-the-art sub-linear search for conjunctive keywords
queries [6]. OXT uses a disk-resident data structure TSet to
locate the documents containing the least frequent keyword
in the query, called s-term, and uses a RAM-resident data
structure XSet to filter the result using the remaining key-
words in the query, called x-terms. The second baseline,
denoted by SI, is Secure Index [11] applied to the full
database following the same strategy of converting equality
conjunction queries to single-keyword search as described
above for Search2 in CLASS.

We wrote all codes in C++ and leveraged OpenSSL
library to implement cryptographic primitives. Experiments
were deployed on a Linux machine with a single Intel Core
i7 CPU with 2.3 GHz and 16 GB RAM.

7.1 Setup Cost
At system initialization, there is a one-time setup cost, which
includes storage overhead for the server, and data encryp-
tion time for the client. Note that the setup cost of CLASS
is divided into the setup cost of Enc1 and the setup cost of
SI. Table 2 shows the overall storage overhead of SI, CLASS
and OXT, highlighted in gray color, for various data sample
sizes. These structures were stored on the server, thus, there
is no client storage overhead. Since these structures were
generated by the client, they also represent the upload
communication cost at setup. OXT uses most storage and
SI uses least storage. In fact, we can only include the result
for samples up to D50M for OXT due to the excessively long
data encryption time.

SI CLASS OXTEnc1 SI Overall
D1M 0.015 0.12 0.015 0.135 1.21
D10M 0.156 1.28 0.156 1.436 11.98
D50M 0.781 6.55 0.781 7.331 120.35
D100M 1.562 13.98 1.562 15.542 -

TABLE 2: Storage Overhead (GB)

1M 10M 50M 100M
101101
102102
103103
104104
105105

E
nc
ry
pt
io
n
T
im
e
(s
ec
on
d) CLASS SI OXT

Fig. 8: Data encryption time

Figure 8 compares data encryption time at setup in log
scale. CLASS’s encryption time is the sum of encryption
times of SSE1 and SSE2 where SSE2 is SI. The small
difference between CLASS and SI suggests that the addi-
tional encryption time caused by SSE1 is very small. OXT’s
encryption time is one order of magnitude longer than
CLASS and SI. The index structure in CLASS is constructed
by the server by applying an existing indexing algorithm
(e.g., M -Tree in our experiments), we do not further discuss
its performance.

7.2 Query Cost

For each query, there is a query cost in the form of query en-
cryption time, computing time and result delivery time. We
focus on query computing time (averaged over the queries
in QW ) that dominates the query time. Figure 9 reports
query time in log scale vs four different data cardinality.
For D100M , we could not get OXT’s query time due to long
database encryption time. In fact, OXT hides the entries on
an inverted list by storing them in random locations on disk,
which results in a large number of random I/O accesses
during index construction and query process. As expected,
the query time of SI grows linearly with data cardinality. By
estimation, SI needs to take about 1000 seconds on D100M

which is too slow for large databases. It is clear that CLASS
outperforms SI and OXT.

The efficiency of CLASS relies on the sub-linear Candi-
date Phase to reduce the search space of the linear Filtering
Phase to a small candidate set. We measure this effectiveness
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Fig. 9: Query time vs data cardinality
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Fig. 10: Efficiency of CLASS vs data cardinality

by two metrics:

candidate size =
|Cand|
|D|

, search size =
|Test|
|D|

,

where Cand denotes the candidate set computed by Candi-
date Phase and Test denotes the set of records examined in
Candidate Phase.

Figure 10(A) shows candidate size and search size, and
Figure 10(B) shows the times spent in the two phases.
candidate size is no more than 0.1% and search size is no
more than 4%. In other words, with Candidate Phase that
searches 4% of the data, the search space of Filtering Phase is
reduced to a candidate set of size less than 0.1% of the full
data. On query time, for D100M , Filtering Phase that runs
SI on the candidate set took no more than 1 second, and
Candidate Phase took 9 seconds to generate this candidate
set. The total query time is much less than the 1000 seconds
if SI was run on the full data as shown in Figure 9. In
the following, we study the effect of other factors w.r.t the
efficiency of CLASS based on D50M .

Effect of Query Dimensionality. Figure 11 reports the
search space (A) and query time (B) for varied query dimen-
sionality q ∈ {1, 2, 3} of q-equality queries (x-axis). Queries
with more equalities tend to require a larger search size
and a longer query time in Candidate Phase. In contrast,
single-equality queries have a larger selectivity and a larger
candidate size, leading to a longer query time in Filtering
Phase. For all q tested, candidate size and search size are
small, verifying the effectiveness of reducing the search
space in Filtering Phase and the performance of the sub-
linear search in Candidate Phase.

Effect of Class Size. The class size κ of a class partition-
ing plays a role in balancing the level of indistinguishability
and the sub-linear search performance. We studies the effect
of the class size κ ∈ {2, 6, 10, 14, 18} (x-axis) on query time.
As shown in Figure 12, a larger κ leads to larger search size
and candidate size due to more data tested in Candidate
Phase and more false positives in the candidate set Cand.
Despite this trend, even for κ = 18, Cand is 0.2% of the
full data set. This significantly reduces the time of Filtering
Phase that is applied to the candidate set, as shown in Figure
12(B). In all cases, the total query time of the two phases is
no more than 10 seconds. This study clearly shows that the
sub-linear Candidate Phase is highly effective in pruning
the search space.

Effect of Class Construction. Our performance based
the construction of class partitioning which takes a query
pool and query frequencies as input to minimize false
positives in the candidate set. This experiment studies the
effectiveness of this construction for different query pools
and query frequencies modeled by different setting of beta
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Fig. 11: Efficiency of CLASS vs query dimensionality q
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distribution Beta(α, β). In particular, we fixed β = 3 and
set α ∈ {0.1, 0.5, 0.9} (x-axis) to model different slopes of
the increasing sampling probability as the query selectivity
decreases. Figure 13(A) shows that candidate size is no more
than 0.1% in all cases. In comparison, if the class partition-
ing were randomly generated, candidate size is 19%, 20%,
and 21% at α = 0.1, 0.5, 0.9. This clearly supports that our
class partitioning construction achieves the goal of reducing
false positives in the candidate set.

Effect of Random Noises. Figure 14 examines the impact
of the interval [−U,−L]∪ [L,U ] for drawing random noises
ε and µ in functions Enc1 and Trpdr1, respectively. We fixed
the lower limit L = 1000 and varied the size (U − L) (x-
axis). A larger (U−L) leads to more random noises injected,
thus less effective indexed search in Candidate Phase as
shown by the larger search size. However, even with the
maximum (U − L) = 10000, candidate size remains very
small, which suggests that restricting Filtering Phase to the
candidate set is highly effective. In general, Filtering Phase
employs crypto primitives for producing the exact query
result, therefore, it is more important to reduce the search
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space in this phase. Our two phase search exactly achieves
this goal.

7.3 Effect of Data Dimensionality
In this experiment, we switched to the US Flight data
set that has more attributes to study the effect of data
dimensionality on query time. This data set has 8 attributes:
TailNum (12157), FlightNum (8130), Carrier (1492), Destina-
tion (336), Origin (331), DayOfMonth (31), Month (12), and
DayOfWeek (7). For 4 ≤ d ≤ 8, Dd20M denotes the data
set containing the first 20 million records with the first d
categorical attributes, and the query pool QW d contains 100
q-equality queries for each q ∈ {1, 2, 3, 4} generated follow-
ing the same query generation as before. The dimensionality
of encrypted records and queries is 2d. We set the class size
at κ = 2 if 2 < |At| < 10 and κ = 6 if |At| ≥ 10.

Table 3 shows query time for Dd20M for 4 ≤ d ≤ 8. Due
to OXT’s long database encryption time we were able to
collect only OXT’s query times for d = 4. SI denotes the
linear search applied to the full data set, Candidate Phase
and Filtering Phase are the two phases of CLASS. Candidate
Phase* denotes the linear version of Candidate Phase by
testing the condition in Eqn (8) against every record. Note
that Candidate Phase* produces the same candidate set as
Candidate Phase.

Dimensionality d 4 5 6 7 8
OXT 11.2 - - - -
SI 220 220 230 235 240
Candidate Phase 3.5 5.2 10.5 17.7 26.4
Filtering Phase 0.5 1.2 1.6 2.4 3.5
Candidate Phase* 25 25 26 27 28

TABLE 3: Query time (seconds) vs dimensionality d on US
Flight data (20M records)

As d increases from 4 to 8 (i.e., 8 to 16 after encryption),
the M -Tree based Candidate Phase’s query time increases
quickly, which is consistent with the well known “curse
of dimensionality” principle. However, the total query time
of Candidate Phase and Filtering Phase is still significantly
smaller than SI’s query time. Candidate Phase* is almost
unaffected by the increase of d because it does not use any
index. Therefore, for a high dimensionality d, Candidate
Phase* followed by Filtering Phase would be the winner
because their total time does not change much as d increases.
In other words, even testing the condition in Eqn (8) for
every record in the database is justified to reduce the search
space of the heavyweight Search2. This is because this
condition uses only standard numeric operations instead of
cryptographic primitives.

8 RELATED WORK

This work is at the intersection of cryptography (for strong
security guarantee) and database (for high performance
query processing).

8.1 Cryptographic Solutions
Most existing SSE schemes focus on conjunctive keyword
queries requiring a linear search performance [32], [33],

[34], [35]. Conjunctive keyword search is also studied based
on Hidden Vector Encryption (HVE) [29] using bilinear
pairings over elliptic curve groups which suffers from pro-
hibitive computation and communication costs [36].

A few recent work considers sub-linear search for con-
junctive keyword search [6], [20], [36]. These schemes relax
the notion of ciphertext indistinguishability by capturing
certain disclosures (using a leakage function) caused by
a sub-linear search process. One problem with these ap-
proaches is that it is a daunting task to capture the full extent
of such low-level disclosures that are specific to the design of
the index structure and the sub-linear search algorithm. The
real-world consequences of such low-level disclosures are
poorly understood, which was highlighted as an important
open question [37] [2].

Fully homomorphic encryption [38], [39], [40] currently
is not suitable for data outsourcing applications due to
prohibitive communication and computation costs. Differ-
ential privacy [41], [42] addresses a different scenario where
changing a single record in the data does not alter signifi-
cantly the output of a query. In the data outsourcing setting,
the security notion prevents the cloud server from learning
the plaintext information of data as well as query output.

8.2 Database Solutions
The research in database traditionally focused on efficiency
for large databases by adopting ad hoc security definitions.
Examples are order preserving encryption [43] and distance
preserving encryption [44], which makes indexing easy
but discloses order and proximity information of plaintext.
CryptDB [45] enables the DBMS server to execute SQL
queries on encrypted data, using deterministic encryption
for equality checks, group by, and equality-joins, and order
preserving encryption for order checks. It is well known that
deterministic encryption does not provide sufficient protec-
tion in practice. Bucketization [8] [9] [10] provides a trade-off
solution to security and sub-linear search performance. We
already mentioned in Section 1.1 that this approach requires
either significant client work or a high communication cost.

Asymmetric scalar product preserving encryption
(ASPE) [46] is another popular ad hoc secure SSE schemes.
The basic idea of APSE is representing each data and query
as vectors and encrypting them by invertable matrices.
Thanks to the inner product preserving property, a lot of
recent work adopted ASPE to support a variety of im-
portant similarity-based queries efficiently, such as multi-
keyword ranked queries [47], [48] and fuzzy multi-keyword
match queries [49]. However, as proved in [50], ASPE and
its vairants cannot provide sufficient security guarantee in
practice.

8.3 Differences from Previous Publication
A preliminary work was reported in [51], which was ex-
tended by the current paper in the following ways. First
of all, to deal with dynamic data, we analyze two types of
SSE: plaintext-indexing and ciphertext-indexing (Section 3).
This analysis serves as a major motivation for the choice of
ciphertext-indexing SSE presented in the current work. Sec-
ond, we consider two more powerful adversaries for secu-
rity models: the adversary that adaptively chooses the next
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query after receiving the results of previous queries, and the
adversary that may acquire the plaintext of some ciphertext
records (Section 6.1 and Section 6.2, respectively). Third, we
add more examples and implementation details, including
dealing with numeric unstability, leveraging implementa-
tion of hyperplane queries, and dealing with dynamic data
(Section 5.2.4). Furthermore, we provide a more compre-
hensive evaluation of the proposed SSE scheme CLASS,
including evaluating data encryption time for setup cost
(Section 7.1) and examining the effect of data dimensionality
using a new real-world data set (Section 7.3).

9 CONCLUSION

A key challenge of data outsourcing in cloud computing
is providing a strong security guarantee while supporting
a sub-linear search performance for dealing with large
databases. The existing bucketization approach partially
addresses this requirement at the cost of client performing
local search and increased communication cost of trans-
mitting false positives. This is unsatisfactory because client
computation and communication bandwidth are typically
the bottleneck. We addressed these limitations by proposing
a novel dynamic SSE scheme, called CLASS, that provides a
similar level of security to that of bucketization and pushes
the work of search and false positive filtering tasks to the
computationally powerful server. The key is a carefully
chosen security definition and a carefully designed encryp-
tion scheme so that such computation can be performed
by the server while providing a strong security guarantee.
A distinct feature of CLASS is enabling existing plaintext
based index methods for the search over encrypted data and
queries.
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[34] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, p. 18, 2015.

[35] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized private keyword
search over encrypted data in cloud computing,” in 2011 31st
International Conference on Distributed Computing Systems. IEEE,
2011, pp. 383–392.

[36] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay,
R. Steinfeld, S.-F. Sun, D. Liu, and C. Zuo, “Result pattern hiding
searchable encryption for conjunctive queries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 745–762.

[37] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” pp. 707–720, 2016.

[38] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University Stanford, 2009, vol. 20, no. 09.

[39] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2010, pp. 24–43.

[40] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on Computing,
vol. 43, no. 2, pp. 831–871, 2014.

[41] C. Dwork, “Differential privacy: A survey of results,” in Interna-
tional Conference on Theory and Applications of Models of Computation.
Springer, 2008, pp. 1–19.

[42] X. Ding, W. Yang, K.-K. R. Choo, X. Wang, and H. Jin, “Privacy
preserving similarity joins using mapreduce,” Information Sciences,
vol. 493, pp. 20–33, 2019.

[43] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill, “Order-
preserving symmetric encryption,” in Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, 2009,
pp. 224–241.

[44] S. R. Oliveira and O. R. Zaiane, “Privacy preserving clustering by
data transformation.” in Embrapa Informática Agropecuária-Artigo
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