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ABSTRACT
Recently, spatial keyword queries become a hot topic in the litera-
ture. One example of these queries is thecollective spatial keyword
query (CoSKQ) which is to find a set of objects in the database
such that itcoversa set of given keywords collectively and has the
smallestcost. Unfortunately, existing exact algorithms have severe
scalability problems and existing approximate algorithms, though
scalable, cannot guarantee near-to-optimal solutions. Inthis paper,
we study the CoSKQ problem and address the above issues.

Firstly, we consider the CoSKQ problem using an existing cost
measurement called themaximum sum cost. This problem is called
MaxSum-CoSKQ and is known to be NP-hard. We observe that the
maximum sum cost of a set of objects is dominated by at mostthree
objects which we call thedistance ownersof the set. Motivated by
this, we propose a distance owner-driven approach which involves
two algorithms: one is an exact algorithm which runs faster than
the best-known existing algorithm by several orders of magnitude
and the other is an approximate algorithm which improves thebest-
known constant approximation factor from 2 to 1.375.

Secondly, we propose a new cost measurement calleddiameter
costand CoSKQ with this measurement is called Dia-CoSKQ. We
prove that Dia-CoSKQ is NP-hard. With the same distance owner-
driven approach, we design two algorithms for Dia-CoSKQ: one is
an exact algorithm which is efficient and scalable and the other is
an approximate algorithm which gives a

√
3-factor approximation.

We conducted extensive experiments on real datasets which ver-
ified that the proposed exact algorithms are scalable and thepro-
posed approximate algorithms return near-to-optimal solutions.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS
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1. INTRODUCTION
With the proliferation of spatial-textual data such as location-

based services and geo-tagged websites,spatial keyword queries
have been studied extensively recently [11, 8, 22, 3]. Givena set
of spatial-textual objects and a query constituted by a location and
a set of keywords, a typical spatial keyword query finds the object
that bestmatches the arguments in the query. One example is to
find the object closest to the query location among all objects that
cover all the keywords specified in the query [22].

In some applications, users’ needs (expressed as keywords)are
satisfied by multiple objectscollectively instead of asingle ob-
ject [4]. For instance, a tourist wants to have site-seeing,shop-
ping and dining which could only be satisfied bymultipleobjects,
e.g., tourist attractions, shopping malls and restaurants. Another
example is that a user would like to set up a project consortium
of partners within a certain region that combine to offer thecapa-
bilities required for the successful execution of the wholeproject.
Finding multiple objects collectively to satisfy users’ needs can be
addressed byCollective Spatial Keyword Query(CoSKQ) [4].

Specifically, CoSKQ is described as follows. LetO be a set of
objects. Each objecto ∈ O is associated with a spatial location,
denoted byo.λ, and a set of keywords, denoted byo.ψ. Given a
queryq with a locationq.λ and a set of keywordsq.ψ, CoSKQ is to
find a setS of objects such thatS coversq.ψ, i.e.,q.ψ ⊆ ∪o∈So.ψ,
and thecostof S, denoted bycost(S), is minimized.

There are different cost functions forcost(S). One cost
function is called themaximum sum cost function, denoted by
costMaxSum(S), and was studied in [4]. It is the linear combi-
nation of twomaxcomponents: the maximum distance betweenq
and an object inS and the maximum distance between two objects
within S. CoSKQ adopting this cost function is calledMaxSum-
CoSKQ. The other cost function is called thediameter cost func-
tion, denoted bycostDia(S). It is defined to be thediameter
of S ∪ {q}. In fact, diameter-related cost functions have been
commonly adopted in graph databases [1, 13, 2, 15] and spatial
databases [24, 25, 26]. To the best of our knowledge, we are the
first to study this cost function for CoSKQ. CoSKQ adopting this
cost function is calledDia-CoSKQ.

Given a queryq, an objecto is said to berelevant (to q) if o
contains at least one keyword inq.ψ. We denote byOq the set of
all relevant objects toq. It is sufficient to focus onOq only for a
specific queryq. Given a setS of objects,S is said to befeasible
if S coversq.ψ. Thus, the optimal solution of CoSKQ is a feasible
set with the smallest cost.

Although MaxSum-CoSKQ (which is proved to be NP-hard) has
been studied by Cao et al. [4], the best-known exact algorithm
which we call Cao-Exact is not scalable to large datasets andthe
two existing approximate algorithms which we call Cao-Appro1



and Cao-Appro2 do not have a very good theoretical guarantee.
Specifically, Cao-Exact is a best-first search method based on the
feasible set space whose size isO(|Oq ||q.ψ|). Though equipped
with some pruning techniques, Cao-Exact is prohibitively expen-
sive when the dataset is large. For example, in our experiments,
Cao-Exact took more than 10 days for a query containing 6 key-
words on a dataset with 8M objects.

In this paper, we propose two algorithms for MaxSum-CoSKQ,
MaxSum-Exactand MaxSum-Appro. MaxSum-Exact is an exact
algorithm and MaxSum-Appro is a 1.375-approximate algorithm.

MaxSum-Exact is more scalable compared with the best-known
algorithm, Cao-Exact. A key observation which is used by
MaxSum-Exact is that the number of distinctcostsof all possible
feasible sets iscubic (in terms of|Oq |) although the number of all
possiblefeasible setsisexponential(in terms of|q.ψ|). Given a fea-
sible setS, the maximum sum cost function ofS is dominated (or
determined) by at mostthreeobjects inS, namely the object with
the greatest distance fromq and the two objects with the greatest
pairwise distance withinS. We say that these three objects form the
distance owner groupof S. Thus, the number of distinct costs of all
possible feasible sets is bounded by the total number of all possible
distance owner groups (which is bounded byO(|Oq |3)). Moti-
vated by this, we propose a distance-owner driven approach called
MaxSum-Exact for MaxSum-CoSK. MaxSum-Exact is a search
algorithm based on the search space containing all possibledis-
tance owner groups. Besides, it incorporates some search strategies
which can prune the search space effectively. Usually,onedistance
owner group corresponds tomanyfeasible sets. This is verified by
our experiments where MaxSum-Exact ran faster than Cao-Exact
by 1-3 orders of magnitude.

MaxSum-Appro, the proposed approximate algorithm, improves
the best-known constant approximation factor from 2 to 1.375 with-
out incurring a higher worst-case time complexity.

Furthermore, we consider Dia-CoSKQ which has not been stud-
ied in the literature. In this paper, we prove that Dia-CoSKQis
NP-hard. We also adapt Cao-Exact, Cao-Appro1 and Cao-Appro2
for Dia-CoSKQ. However, these adapted algorithms suffer from the
same drawbacks in MaxSum-CoSKQ.

Motivated by this, we propose two algorithms, namelyDia-
ExactandDia-Appro. Dia-Exact is an exact algorithm which is also
a search algorithm based on the search space containing all possi-
ble distance owner groupsand thus it is scalable to large datasets.
Dia-Appro gives a

√
3-factor approximation for Dia-CoSKQ.

We summarize our main contributions as follows.

• Firstly, for MaxSum-CoSKQ, we design two algorithms,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is
more scalable than the best-known exact algorithm, Cao-
Exact. MaxSum-Appro improves the best-known constant
approximation factor from2 to 1.375 without incurring a
higher worst-case time complexity.

• Secondly, for Dia-CoSKQ, which is new, we prove its NP-
hardness and develop two algorithms, Dia-Exact and Dia-
Appro. Dia-Exact significantly outperforms the adaptationof
Cao-Exact, and Dia-Appro gives a

√
3-factor approximation.

• Thirdly, we conducted extensive experiments on both real
and synthetic datasets, which verified our theoretical results
and the efficiency of our algorithms.

The rest of this paper is organized as follows. Section 2 gives
the definition of the CoSKQ problem and its existing solutions.
Section 3 and Section 4 study MaxSum-CoSKQ and Dia-CoSKQ,
respectively. Section 5 gives the empirical study and Section 6 re-
views the related work. Section 7 concludes the paper.

2. BACKGROUND

2.1 Problem Definition
LetO be a set of objects. Each objecto ∈ O is associated with

a location denoted byo.λ and a set of keywords denoted byo.ψ.
Given two objectso ando′, we denote byd(o, o′) the Euclidean
distance betweeno.λ ando′.λ. Given a queryq which consists of
a locationq.λ and a set of keywordsq.ψ, we denote byOq the set
of relevant objects each of which contains at least one keyword
in q.ψ, and say that a set of objects isfeasible if it covers q.ψ.
Besides, we introduce a fictitious objectoq in O with oq .λ = q.λ
andoq.ψ = ∅. For simplicity, we shall also refer to objectoq asq.

Problem Definition [4]. Given a queryq = (q.λ, q.ψ), theCollec-
tive Spatial Keyword Query(CoSKQ) problem is to find a setS of
objects inO such thatS coversq.ψ and thecostof S is minimized.

In this paper, we consider two cost functions, themaximum sum
costand thediameter cost.

Given a setS of objects, themaximum sum costof S, denoted
by costMaxSum(S), is equal to the linear combination of the max-
imum distance betweenq and an object inS and the maximum
distance between two objects inS. That is,

costMaxSum(S) = α ·max
o∈S

d(o, q) + (1− α) · max
o1,o2∈S

d(o1, o2)

(1)
whereα ∈ [0, 1] is a user parameter. Same as [4], for ease of
exposition, we consider the case whereα = 0.5 only. In this case,
we can safely assume that

costMaxSum(S) = max
o∈S

d(o, q) + max
o1,o2∈S

d(o1, o2) (2)

In fact, the applicability of all of our algorithms does not rely on
the setting ofα. The only part that is affected is the approximation
factor of our approximate algorithm which isboundedby (2− α)
(e.g., whenα = 0.5, the approximation factor of our approximate
algorithm is 1.375 which is bounded by(2 − α) = 1.5). More
discussion on the general case ofα could be found in Appendix B.
The CoSKQ problem using this cost is calledMaxSum-CoSKQ.

As could be noticed, parameterα in the maximum sum cost
function is used to balance the twomax components, namely
maxo∈S d(o, q) andmaxo1,o2∈S d(o1, o2). Sometimes, however,
people may not have a concrete idea of how to specifyα. To ease
this situation, we define an alternative cost function called diameter
coston a setS of objects, denoted bycostDia(S), which is defined
to be the larger of these twomaxcomponents. That is,

costDia(S) = max
o1,o2∈S∪{oq}

d(o1, o2) (3)

The CoSKQ problem using this cost is calledDia-CoSKQ.

Intractability. It has been proved in [4] that MaxSum-CoSKQ is
NP-hard. In this paper, we prove that Dia-CoSKQ is also NP-hard.

LEMMA 1. Dia-CoSKQ is NP-hard.

PROOF. For interest of space, our proof can be found in Ap-
pendix A. We can show this by transforming an existing NP-
complete problem, 3-SAT, to Dia-CoSKQ.

2.2 Existing Solutions for MaxSum-CoSKQ
Cao et el. [4] proposed one exact algorithm, Cao-Exact, and

two approximate algorithms, Cao-Appro1 and Cao-Appro2, for
MaxSum-CoSKQ.

Cao-Exact.Cao-Exact is a best-first search method using an index
called IR-tree [8]. An IR-tree is an R-tree in which each node is
augmented with anInverted File(IF). Consider a leaf nodeN . For



each keywordt, we construct aninverted listwhich is a list of all
objects in nodeN containingt. All inverted lists in this leaf nodeN
form the IF ofN . Consider a non-leaf nodeN ′. For each keyword
t, we construct aninverted listwhich is a list of all child nodes in
N ′ coveringt. Given a keywordt, a nodeN ′′ is said to covert if
there exists an object in the subtree rooted atN ′′ containingt. All
inverted lists in this non-leaf nodeN ′ form the IF ofN ′.

Cao-Exact is basically an exhaustive search on the object space
with some pruning strategies in the IR-tree. The worst-casetime
complexity of Cao-Exact isO(|O||q.ψ|), which corresponds to the
size of the set containing all possible feasible sets.

Cao-Appro1. Cao-Appro1 gives a 3-factor approximation for
MaxSum-CoSKQ. Specifically, Cao-Appro1 finds for eacht ∈
q.ψ, q’s nearest neighbor (NN) inO containingt and returns the
set containing all these NNs as the approximate solution. Since
Cao-Appro1 issues NN queries at most|q.ψ| times and each NN
query takesO(log |O|) time [6, 10, 17], the time complexity of
Cao-Appro1 isO(|q.ψ| · log |O|).
Cao-Appro2. Cao-Appro2 gives a 2-factor approximation
for MaxSum-CoSKQ. Specifically, Cao-Appro2 enhances Cao-
Appro1 as follows. First, Cao-Appro2 invokes Cao-Appro1 and
obtains an approximate solution denoted byS1. Let of be the far-
thest object fromq in S1 and tf be a keyword contained byof
but not contained by any othercloserobject fromq in O. Then,
for each objecto in O containingtf , it finds for each keywordt
in q.ψ, o’s nearest object that containst in O and obtains a corre-
sponding approximate solution containing all these NNs. Among
all these approximate solutions as well asS1, it returns the one with
the smallest cost. Thus, the approximate solution returnedby Cao-
Appro2 is no worse than that returned by Cao-Appro1. Since there
are at most|Oq | objects containingtf and the cost for each such
object is simplyO(|q.ψ| · log |O|), the worst-case time complexity
of Cao-Appro2 isO(|Oq | · |q.ψ| · log |O|).

3. ALGORITHMS FOR MAXSUM-COSKQ
In this section, we propose two algorithms, MaxSum-Exact (Sec-

tion 3.1) and MaxSum-Appro (Section 3.2), for MaxSum-CoSKQ.
For clarity, we simply writecostMaxSum(·) ascost(·) if the con-
text of the cost function is clear.

Given a queryq and a non-negative real numberr, we denote the
circle or thediskcentered atq.λ with radiusr byD(q, r). Given a
diskD, we denote the radius ofD by radius(D). Given a query
q, a disk centered atq.λ is called aq-disk. Given aq-diskD and
an objecto in D, o is said to be theboundary objectof D if there
does not exist other objectso′ in D such thatd(o′, q) > d(o, q).
Note that in some cases, a boundary object of a disk is along the
boundary of a disk and in some other cases, it is inside the disk
without touching the boundary of the disk.

3.1 Finding Optimal Solution
In this section, we propose an exact algorithm calledMaxSum-

Exact. The key to the efficiency of MaxSum-Exact is based on the
splitting property of the maximum sum cost function.

3.1.1 Splitting Property
Let S′ be a feasible set. The maximum sum cost ofS′

can be split into two parts, namely thequery distance cost
which is maxo∈S′ d(o, q) and thepairwise distance costwhich
is maxo1,o2∈S′ d(o1, o2). We define thequery distance owner
of S′ to be o where o = arg maxo∈S′ d(o, q). We also de-
fine thepairwise distance ownersof S′ to beo1 and o2 where
(o1, o2) = arg max(o′

1
,o′

2
)∈S′×S′ d(o′1, o

′
2).

o1

q

o2

o4

o5

o3

o = t1 2. { }y

o = t2 1. { }y

o = t3 3. { }y

o = t4 1. { }y

o = t5 2. { }y

Disk q, d q, o( ( ))1

Figure 1: An example

Consider Figure 1 containing a query locationq and 5 ob-
jects, namelyo1, o2, o3, o4 ando5. The set of keywords associ-
ated with each object can be found in the figure. Suppose that
q.ψ = {t1, t2, t3}. We know that a setS′ = {o1, o2, o3} is feasi-
ble. The query distance owner ofS′ is o1 and the pairwise distance
owners ofS′ areo2 ando3.

According to the above splitting property, the cost of a setS′

can be dominated (or determined) by exactly three objects inS′,
namely the query distance owner ofS′ (i.e.,o) and the two pairwise
distance owners ofS′ (i.e., o1 and o2). In other words, we can
simply write the cost ofS′ as follows.

cost(S′) = d(o, q) + d(o1, o2)

whereo is the distance owner ofS′, ando1 and o2 are the two
pairwise distance owners ofS′. We say thato, o1 ando2 forms a
distance owner group. Any feasible set with its query distance
owner aso and its pairwise distance owners aso1 ando2 is said to
be(o, o1, o2)-owner consistent. Note that each feasible set that is
(o, o1, o2)-owner consistent has the same cost equal tod(o, q) +
d(o1, o2).

3.1.2 Distance Owner-Driven Approach
Based on the splitting property, we propose adistance owner-

driven approachas follows. This approach maintains a variable
S storing the best feasible set found so far. Initially,S is set to a
feasible set (We will describe how we find this feasible set later).
Then, it has four major steps.
• Step 1 (Query Distance Owner Finding):Select one objecto

inOq to take the role of the query distance owner of a setS′

to be found.
• Step 2 (Pairwise Distance Owner Finding):Select two ob-

jects,o1 ando2, in Oq to take the roles of the pairwise dis-
tance owners of the setS′ (to be found). Note thato, o1 and
o2 form a distance owner group.
• Step 3 (Sub-Optimal Feasible Set Finding):Find the setS′

which is(o, o1, o2)-owner consistent (if any), and updateS
with S′ if cost(S′) < cost(S).
• Step 4 (Iterative Step):Repeat Step 1 and Step 2 which find

anotherdistance owner group, and continue with Step 3 until
all distance owner groups are traversed.

The above approach gives a search strategy based on the set of
all possible distance owner groups. However, a straightforward im-
plementation of this approach would enumerate all|Oq |3 distance
owner groups, which is prohibitively expensive in practice. Thus,
we need a careful design in order to prune the search space effec-
tively. In the following, we elaborate the pruning featuresenjoyed
by this distance owner-driven approach, which cannot be found in
the best-known algorithm, Cao-Exact.

Firstly, some objects inOq need not be considered in Step 2 after
we select an object in Step 1. To illustrate this, consider Figure 1.
Suppose that we picko1 as the query distance owner in Step 1. We
do not need to considero4 as objects in Step 2. This is because
d(o4, q) is larger thand(o1, q), which violates the property that



o1 takes the role of the query distance owner of the setS′ to be
found if S′ containso1 ando4. We formalize this pruning feature
as follows.

PROPERTY1 (PRUNING). LetS′ be a feasible set. Ifo is the
query distance owner ofS′, then the two pairwise distance owners
of S′ are insideD(q, d(o, q)).

PROOF. Any objecto′ ∈ S′ hasd(o′, q) ≤ d(o, q) and thuso′

is insideD(q, d(o, q)).

Secondly, most of the objects inOq need not be considered to
form a setS′ to be found in Step 3. To illustrate this, consider Fig-
ure 1 again. Suppose that we picko1 as the query distance owner
in Step 1, ando2 ando3 as the pairwise distance owners in Step 2.
Similarly, we still do not need to considero4 as one of the objects
to form the setS′ since includingo4 violates the query distance
owner property. Besides, we do not need to considero5 to form the
setS′ to be found. This is becaused(o2, o5) > d(o2, o3) which
violates the property thato2 ando3 take the roles of the pairwise
distance owners. Similarly, we formalize this pruning feature as
follows.

PROPERTY2 (PRUNING). Let S′ be a feasible set. Ifo is
the query distance owner ofS′, and o1 and o2 are two pairwise
distance owners ofS′, then all objects inS′ are insideR where
R = D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2)).

PROOF. For eacho′ ∈ S′, we haved(o′, q) ≤ d(o, q) which
implies that o′ is inside D(q, d(o, q)). For eacho′ ∈ S′,
we haved(o′, o1) ≤ d(o1, o2) which implies thato′ is inside
D(o1, d(o1, o2)), andd(o′, o2) ≤ d(o1, o2) which implies thato′

is insideD(o2, d(o1, o2)).

The above pruning features look promising for improving the
efficiency of the proposed approach. Moreover, since objects near
to q usually form the optimal set, we propose to consider the objects
in Step 1 iteratively, taking the role of the query distance owner of
the set to be found, in ascending order of their distances toq in
order to further improve the efficiency of the proposed approach.

Usually, the NN ofq in Oq is not the query distance owner of
the setS′ to be found. In Figure 1, consider the queryq with its
keyword set to be{t1, t2, t3}. The NN of q is o2. Suppose that
o2 is the query distance owner ofS′. According to Property 2, all
objects inS′ fall in D(q, d(o2, q)) and they together coverq.ψ.
But, in the figure, no object inD(q, d(o2, q)) containst2, which
implies that we cannot find a feasible setS′ with o2 as its query
distance owner.

Based on this observation, we propose to find theclosest possible
query distance owner, sayo, of the setS′ to be found such that
there exists a feasible set in theq-diskD(q, d(o, q)). In addition,
we do not want to pick any object which is far away fromq. Thus,
we also propose to find thefarthest possible query distance owner
of S′ to be found that we need to consider.

3.1.3 Closest/Farthest Possible Query Dist. Owner
The following two lemmas show how to find the closest and far-

thest possible query distance owners.
Before we present the first lemma about the closest possible

query distance owner, we introduce some notations. Given a query
q and a keywordt, thet-keyword nearest neighborof q, denoted
by NN(q, t), is defined to be the NN ofq containing keywordt.
We have a similar definition onNN(o, t) for an objecto. We de-
fine thenearest neighbor setof q, denoted byN(q), to be the set
containingq’s t-keyword nearest neighbor for eacht ∈ q.ψ, i.e.,
N(q) is∪t∈q.ψNN(q, t). Note thatN(q) is a feasible set.

LEMMA 2 (CLOSESTPOSS. QUERY DIST. OWNER). Let
rmin = maxo∈N(q) d(o, q). There exists a feasible set in aq-disk
D if and only ifradius(D) ≥ rmin.

PROOF. The proof for the “if” part is trivial since for anyq-disk
D with radius(D) ≥ rmin,N(q) is a feasible set inD. We prove
the “only if” part by contradiction. Assumeradius(D) < rmin
and there exists a feasible setS in D. Let of be the farthest object
from q in N(q), i.e., rmin = d(q, of ). There exists a keyword
tf ∈ of .ψ ∩ q.ψ such thattf is not contained by any object that is
closer toq thanof since otherwiseof /∈ N(q). SinceS is feasible,
there exists an objecto ∈ S that contains keywordtf . As a result,
we haved(o, q) ≤ radius(D) < rmin = d(q, of ), which leads to
a contradiction.

The above lemma suggests that there is no feasible set in aq-
diskD if radius(D) < rmin. Thus, the disk with its radius equal
to rmin is the “smallest” disk we need to consider. The boundary
object of this disk is the closest possible query distance owner. Note
that this object is along the boundary of this disk.

The following lemma gives the “largest” disk we need to con-
sider. Besides, the boundary object of this disk corresponds to the
farthest possible query distance owner. Note that this object might
or might not be along the boundary of this disk.

LEMMA 3 (FARTHEST POSS. QUERY DIST. OWNER). Let
S be a feasible set andrmax = cost(S). LetD be aq-disk with
radius(D) > rmax. Then, for any feasible setS′ containing at
least one object outsideD, cost(S′) > cost(S).

PROOF. cost(S′) ≥ maxo∈S′d(o, q) > radius(D) >
rmax = cost(S).

The above lemma suggests that when we have known a feasible
setS, there is no need to consider the objects outsideD(q, rmax)
wherermax = cost(S).

The above two lemmas suggest the “smallest” disk and the
“largest” disk we need to consider. Specifically, the objecto which
takes the role of the query distance owner ofS′ to be found must
be in thering which is roughly equal to the “largest” disk mi-
nus the “smallest” disk. LetS be a feasible set. Letrmin =
maxo∈N(q) d(o, q) andrmax = cost(S). We define thering for
S, denoted byR(S), to beD(q, rmax) − D(q, rmin − δ), where
δ is a very small positive real number near to 0.

LEMMA 4 (RING CANDIDATE ). Let S be a feasible set and
So be the optimal set for the MaxSum-CoSKQ problem. The query
distance owner ofSo is insideR(S).

PROOF. Let o be the query distance owner ofSo. First, accord-
ing to Lemma 3,o cannot be outsideD(q, rmax) since otherwise
cost(So) > cost(S) which leads to a contradiction. Second, ac-
cording to Lemma 2, there exist no feasible sets inD(q, rmin− δ).
Thus,o is not insideD(q, rmin − δ) since otherwiseSo which is
feasible is insideD(q, rmin − δ) which also leads to a contradic-
tion. Therefore,o is insideR(S).

It is easy to verify that the region occupied byR(S) becomes
smaller whencost(S) is smaller since the radius of the outer disk
of R(S) is equal tocost(S).

3.1.4 The MaxSum-Exact Algorithm
Based on the discussion in the previous subsection, we design

MaxSum-Exactas shown in Algorithm 1. Specifically, we main-
tain S for storing the best-known solution found so far, which is



Algorithm 1 Algorithm MaxSum-Exact

Input: queryq and a setO of objects
1: S ← N(q)
2: while there is an “un-processed” relevant objecto in R(S) do
3: // Step 1 (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object inR(S)
5: // Step 2 (Pairwise Distance Owner Finding)
6: D ← theq-disk with its radius equal tod(o, q)
7: P ← a set of all pairs(o1, o2) whereo1 ando2 are inD
8: // Step 3 (Sub-optimal Feasible Set Finding)
9: for each(o1, o2) ∈ P in ascending order ofd(o1, o2) do

10: if there exists a feasible setS′ in D which is(o, o1, o2)-
owner consistentthen

11: if cost(S′) < cost(S) then
12: S ← S′; break
13: // Step 4 (Iterative Process)
14: marko as “processed”
15: return S

initialized toN(q). Then, we perform an iterative process as fol-
lows. Consider an iteration. We want to check whether there exists
a relevant object inR(S) that has not been processed. If yes, we
pick the nearest relevant objecto fromR(S) that has not been pro-
cessed to take the role of the query distance owner of the setS′

to be found (Step 1). This object is said to be thequery distance
ownerfor this iteration. We process it as follows. Firstly, we form
the q-disk D with its radius equal tod(o, q) and find a setP of
all pairs (o1, o2) whereo1 and o2 are inD for taking the roles
of the pairwise distance owners (Step 2). Secondly, for eachpair
(o1, o2) in P which is processed in ascending order ofd(o1, o2),
we check whether there exists a feasible setS′ which is(o, o1, o2)-
owner consistent. Case 1: yes. We do the following. Firstly,if
cost(S′) < cost(S), then we updateS by S′. Secondly, we ter-
minate to search the remaining pairs inP since the cost of a final
set whose pairwise distance owners corresponds to one of there-
maining pairs must be at least the cost of the current setS′ whose
pairwise distance owners are(o1, o2), the current processed pair.
Case 2: no. We continue to consider the next pair inP until Case
1 is reached or all the pairs inP have been processed. We continue
the above iteration with the next relevant object fromR(S) that has
not been processed until all objects inR(S) have been processed
(Step 4).

We verify the correctness of MaxSum-Exact via Theorem 1.

THEOREM 1. MaxSum-Exact returns a feasible set with the
smallest cost for MaxSum-CoSKQ.

PROOF. LetSo be one of the feasible sets with the smallest cost
for MaxSum-CoSKQ. Suppose thato is the query distance owner
of So, ando1 ando2 are two pairwise distance owners ofSo. Ac-
cording to Lemma 4,o is insideR(S), whereS is the solution
maintained in MaxSum-Exact. Thus,o must have been processed
in MaxSum-Exact (Step 1). Wheno is processed, pair(o1, o2)
is included inP (Step 2) sinceo1 ando2 are insideD(q, d(o, q))
(Property 1). As a result, any feasible set which is(o, o1, o2)-owner
consistent is retrieved (Step 3) and used to updateS (there must ex-
ist some sinceSo is (o, o1, o2)-owner consistent). The resultingS
will not be updated anymore since it has the same cost ascost(So)
which is the smallest, and thusS is the final output.

Algorithm 1 looks straightforward but how to execute this al-
gorithm efficientlyneeds more careful design. We propose two
computation strategies in the algorithm, namely theself-iteration

computation strategyand thecross-iteration computation strategy,
to execute this algorithm efficiently. The self-iteration computation
strategy is to speed up the operations within an iteration and the
cross-iteration computation strategy is to speed up the operations
across different iterations.

Self-Iteration Computation Strategy. Consider an iteration in the
algorithm whose query distance owner iso. Step 1 (lines 3-4) is
straightforward. In Step 2 (lines 5-7), there is a step of finding a
setP of all pairs(o1, o2) whereo1 ando2 are inD. There is no
need to keep all pairs(o1, o2) in P and some pairs can be pruned.
The following two lemmas give some hints for pruning. The first
lemma (Lemma 5) is based on the triangle inequality and the sec-
ond lemma (Lemma 6) is based on the best-known setS found so
far.

LEMMA 5 (TRIANGLE INEQUALITY ). Let S′ be a feasible
solution whose query distance owner iso, and pairwise dis-
tance owners areo1 and o2. Then, d(o1, o2) ≥ d(o, q) −
min{d(o1, q), d(o2, q)}.

PROOF. Note that d(o1, o2) ≥ d(o1, o) and d(o1, o2) ≥
d(o2, o). By the triangle inequality, we knowd(o1, o) ≥ d(o, q)−
d(o1, q) and d(o2, o) ≥ d(o, q) − d(o2, q). Thus, we have
d(o1, o2) ≥ d(o, q)−min{d(o1, q), d(o2, q)}.

The above lemma suggests that the pair(o1, o2) in P can be
pruned if d(o1, o2) < d(o, q) − min{d(o1, q), d(o2, q)}. Let
dmin = d(o, q) − min{d(o1, q), d(o2, q)}. Thus, dmin corre-
sponds to the smallest distance threshold for a pair(o1, o2).

LEMMA 6 (BEST KNOWN SET). Let S′ be a feasible solu-
tion whose query distance owner iso and pairwise distance own-
ers areo1 ando2. LetS be another feasible solution.cost(S′) ≤
cost(S) if and only ifd(o1, o2) ≤ cost(S)− d(o, q).

PROOF. cost(S′) ≤ cost(S) deducesd(o, q) + d(o1, o2) ≤
cost(S) which is exactlyd(o, q) ≤ cost(S)− d(o1, o2).

Let S be the feasible set found so far in the algorithm. The
above lemma suggests that the pair(o1, o2) in P can be pruned
if d(o1, o2) > cost(S) − d(o, q). Let dmax = cost(S)− d(o, q).
Thus,dmax is the largest distance threshold for a pair(o1, o2).

According to Lemma 5 and Lemma 6, we only need to maintain
those pairs with their distances betweendmin anddmax in P .

Consider Step 3 (lines 8-12). Here, we need to process each
pair (o1, o2) in P . The most time-consuming operation is to check
whether there exists a feasible setS′ which is (o, o1, o2)-owner
consistent. Algorithm 2 presents an algorithm for this task. If it
succeeds, it outputsS′; otherwise, it outputs∅. First, it checks
whetherd(o1, o2) < max{d(o1, o), d(o2, o)}. If yes, we conclude
that there exist no feasible set that is(o, o1, o2)-owner consistent
since it violates the condition thato1 ando2 are the pairwise dis-
tance owners (i.e.,d(o1, o2) ≥ max{d(o1, o), d(o2, o)}). If no,
it initializes S′ to be{o, o1, o2}. It also maintains a variableψ,
denoting the set of keywords not covered byS′ yet, which is ini-
tialized asq.ψ − (o.ψ ∪ o1.ψ ∪ o2.ψ). If ψ = ∅, it returnsS′ im-
mediately. Otherwise, it proceeds to augmentS′ with some other
objects. According to Property 2, we can safely focus on the re-
gionR = D(o, d(o, q)) ∩ D(o1, d(o1, o2)) ∩ D(o2, d(o1, o2)).
Therefore, it retrieves the setO′ of all relevant objects inR. If O′

does not coverψ, it returns∅. Otherwise, it enumerates each pos-
sible subsetS′′ of O′ that coversψ (by utilizing the inverted lists
maintained for each keyword inψ), augmentS′ by S′′ (thusS′

becomes feasible) and checks whetherS′ is (o, o1, o2)-owner con-
sistent which is equivalent to checking whethero1 ando2 are still



Algorithm 2 Algorithm for checking whether there exists a feasible
setS′ which is(o, o1, o2)-owner consistent

Input: three objectso, o1 ando2
Output: a feasible set which is(o, o1, o2)-owner consistent if any

and∅ otherwise
1: if d(o1, o2) < max{d(o1, o), d(o2, o)} then return ∅
2: S′ ← {o, o1, o2}
3: ψ ← q.ψ − (o.ψ ∪ o1.ψ ∪ o2.ψ)
4: if ψ = ∅ then return S′

5: R ← D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2))
6: O′ ← a set of all relevant objects inR
7: if O′ does not coverψ then return ∅
8: for each subsetS′′ of O′ that coversψ do
9: S′ ← S′ ∪ S′′

10: if S′ is (o, o1, o2)-owner consistentthen return S′

11: S′ ← S′ − S′′

12: return ∅

the pairwise distance owners ofS′. If yes, it outputsS′. Otherwise,
it restoresS′ and checks the next subset ofO′. When all subsets
of O′ that coverψ have been traversed and still no feasible setS′

which is(o, o1, o2)-owner consistent has been found, it returns∅.
Cross-Iteration Computation Strategy. We reuse the information
computed in the previous iterations for the current iteration.

Consider an iteration where the query distance owner for this
iteration iso. With respect too, we create aq-disk D and also
construct setP (line 7 in Algorithm 1). Consider the next iteration
where the query distance owner for this iteration iso′. Although
we can construct setP ′ with respect too′ from scratch by applying
the procedure of generating setP , a much better approach is to
construct setP ′ by using the current content ofP becauseP ⊆ P ′.
Specifically, when we consider the next iteration, we first construct
another setQ to be the set of additional pairs inP ′ compared with
P (i.e.,Q = {(o′′, o′)|o′′ ∈ D(q, d(q, o))}) and then setP ′ to be
P ∪Q. Note thatP ∩Q = ∅.

The pruning inP mentioned in the self-iteration computation
strategy is still valid even when we constructP ′ in the above
way. Specifically, the pairs pruned previously inP still do not
need to be considered inP ′ at the next iteration. This is be-
causedmin is monotonically increasingand dmax is monotoni-
cally decreasingwith more iterations. To illustrate, consider a
pair (o1, o2) in P at the previous iteration. Note thatdmin =
d(o, q)−min{d(o1, q), d(o2, q)} anddmax = cost(S)− d(o, q).
At the next iteration,o will becomeo′, which is at least as far aso
from q (i.e.,d(o′, q) ≥ d(o, q)). Thus, at the next iteration,dmin
will remain the same or will increase. In addition, the cost of the
solutionS maintained at the next iteration is at most the cost of
that maintained at the previous iteration. Thus, at the nextiteration,
dmax will remain the same or will decrease.

3.1.5 Implementation and Time Complexity
We adopt the IR-tree built onO to support both the NN query

(line 1 of Algorithm 1) and the range query (line 7 of Algorithm 1
and line 6 of Algorithm 2). For the NN query, we adopt the best-
first search method [12] and for the range query, we perform a sim-
ple breadth-first traversal with the constraint of the range. Besides,
given a queryq, since we only focus on the set of relevant objects,
when performing NN queries and range queries, we can utilizethe
IF information maintained in the IR-tree for pruning.

Since the pairs inP are processed in ascending order of their
distances andP is maintained dynamically (because of the Cross-

Iteration Computation Strategy), we adopt abinary search treefor
maintainingP , which allows efficient sorting and update.

Letn1 be the number of iterations (lines 2-14) in MaxSum-Exact
(Algorithm 1). Note thatn1 << |Oq| sincen1 corresponds to
the number of relevant objects we process inR(S) and the area
occupied byR(S) is typically small. Let|P | be the size of the set
P we use in the algorithm. Similarly, we know that|P | << |Oq |2.
Let β be the cost of Algorithm 2. It is easy to verify that the time
complexity of MaxSum-Exact isO(n1 · |P | · β).

Next, we analyzeβ. The cost of lines 1-4 (Algorithm 2) is
dominated by those of other parts in the algorithm. The cost of
lines 5-6 is simplyO(log |O| + |Oq |) since we can issue three
range queries and then perform an intersection on the query re-
sults. The cost of line 7 isO(|ψ| · |Oq |). The cost of lines 8-11
is O(|O′||ψ| · |ψ|2) since it enumerates at mostO(|O′||ψ|) sub-
setsS′′ that coverψ and each subset incurs a checking operation
(line 10) whose cost isO(|ψ|2) (since|S′′| = O(|ψ|) and we can
try all pairwise distances withinS′′ to do the checking). Thus,
β is O(log |O| + |Oq | + |ψ| · |Oq | + |O′||ψ| · |ψ|2). Note that
|O′| << |Oq | (sinceO′ corresponds to a set of relevant objects in
a small region),|Oq| < |O| and|ψ| ≤ |q.ψ| − 1.

In conclusion, the time complexity of MaxSum-Exact isO(n1 ·
|P | · (log |O|+ |Oq |+ |ψ| · |Oq |+ |O′||ψ| · |ψ|2)).

3.2 Finding Approximate Solution
In this section, we propose a 1.375-factor approximate algorithm

calledMaxSum-Approwhich is better than the best-known 2-factor
approximate algorithm, Cao-Appro2.

Before we present MaxSum-Appro, we introduce the concept
of “o-neighborhood feasible set”. Given a queryq and an object
o ∈ O, theo-neighborhood feasible setis defined to be the set
containingo and all other objects each of which is thet-keyword
nearest neighbor ofo in D(q, d(o, q)) for eacht ∈ q.ψ − o.ψ.
For example, consider Figure 1. Suppose that the queryq.ψ is
{t1, t2, t3}. Then, theo1-neighborhood feasible set is{o1, o2, o3}
since q.ψ − o1.ψ = {t1, t3}, o1’s t1-keyword nearest neigh-
bor inD(q, d(o1, q)) is o2 ando1’s t3-keyword nearest neighbor
in D(q, d(o1, q)) is o3. It could be easily verified that theo-
neighborhood feasible set exists iffo is outsideD(q, rmin − δ)
since ano-neighborhood feasible set is a feasible set.

In MaxSum-Appro, we only consider theo-neighborhood fea-
sible sets for those objectso that are insideR(S) whereS is a
feasible set, and thus they always exist.

We present MaxSum-Appro in Algorithm 3. MaxSum-Appro is
exactly Algorithm 1 by replacing Step 2 and Step 3 which are rel-
atively expensive with the new efficient operation of findingthe
o-neighborhood feasible set which could be finished by issuing
|q.ψ − o.ψ| NN queries.

Theoretical Analysis. Although the setS returned by the
MaxSum-Appro algorithm might have a larger cost than the op-
timal setSo, the difference is bounded.

THEOREM 2. MaxSum-Appro gives a 1.375-factor approxima-
tion for the MaxSum-CoSKQ problem.

PROOF. Let So be the optimal solution andS be the solution
returned by MaxSum-Appro. Leto be the query distance owner
of So. By Lemma 4, we know thato is in R(S). Besides, we
can safely assume thato is a relevant object. Thus, there exists an
iteration in MaxSum-Appro such that we processo (line 3) and thus
we find itso-neighborhood feasible set denoted byS′.

SinceS is the final solution returned by MaxSum-Appro, we
know thatcost(S) ≤ cost(S′). The remaining part of the proof
shows thatcost(S′) ≤ 1.375 · cost(So).



Algorithm 3 Algorithm MaxSum-Appro

Input: queryq and a setO of objects
1: S ← N(q)
2: while there is an “un-processed” relevant objecto in R(S) do
3: // Step 1 (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object inR(S)
5: // Step 2 (o-Neighborhood Feasible Set Finding)
6: S′ ← theo-neighborhood feasible set
7: if cost(S′) < cost(S) then
8: S ← S′

9: // Step 3 (Iterative Process)
10: marko as “processed”
11: return S
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Figure 2: Illustration of the proof of Theorem 2

Let of be the object inS′ that is the farthest fromo andr1 =
d(of , o). Then, all objects inS′ fall in D(o, r1). Let r2 = d(o, q).
Sinceo is the query distance owner ofS′, we know that all ob-
jects inS′ fall in D(q, r2). In summary, all objects inS′ fall in
D(o, r1) ∩D(q, r2).

Consider cost(So). It could be verified by using a simi-
lar method for proving Lemma 2 thatmaxo1,o2∈So

d(o1, o2) ≥
d(o, of ). Thus, we havecost(So) ≥ r2 + r1.

In the following, we consider two cases onr1 according to
whether there exists a line segment linking two points at thebound-
ary ofD(q, r2) such that it has its length equal to2r2 (i.e., the di-
ameter ofD(q, r2)) and falls inD(o, r1)∩D(q, r2). Note that the
boundary case happens whenr1 =

√
2r2 and there existsexactly

one such segment.
Case 1: r1 ≤

√
2r2. We denote the intersection points be-

tween the boundaries ofD(o, r1) andD(q, r2) by a and b, as
shown in Figure 2(a). Letc be the intersection point between seg-
ment qo and segmentab. Let x = d(a, c) = d(b, c) and y =
d(c, q). Since△ocb and△qcb are right-angled triangles, we know
x2 +(r2− y)2 = r21 andy2 + x2 = r22 by thehypothesis theorem.
By solving these two equations, we obtainx =

p

r21 − r41/4r22
and thusd(a, b) = 2x = 2

p

r21 − r41/4r22 . In this case, it can be
verified thatmaxo1,o2∈S′ d(o1, o2) ≤ d(a, b) (since all objects in
S′ are inD(o, r1) ∩D(q, r2), as shown in the shaded area of Fig-
ure 2(a)) and hencecost(S′) ≤ r2 + 2

p

r21 − r41/4r22 . Therefore,

cost(S′)

cost(So)
≤ r2 + 2

p

r21 − r41/4r22
r2 + r1

= 1 +
2

p

1− r21/4r22 − 1

r2/r1 + 1

Let z = r1/r2. Thus, cost(S
′)

cost(So)
≤ 1 +

2
√

1−z2/4−1

1/z+1
. Sincer1 ≤

√
2r2, we havez ∈ (0,

√
2] 1. We definef(z) = 1+

2
√

1−z2/4−1

1/z+1

on {z|z ∈ (0,
√

2]}. It could be verified thatf(z) is monotoni-
cally increasing on(0, 0.875) and is monotonically decreasing on

1The interval(0,
√

2] does not include the boundary case where
z = 0 (i.e.,r1 = 0). In this case, we havecost(S′)/cost(So) = 1.

(0.875,
√

2]. Thus,f(z) ≤ f(0.875) < 1.375. Therefore,

cost(S′)

cost(So)
≤ f(z) ≤ 1.375

Case 2:r1 >
√

2r2. Let ab be any segment linking two points
at the boundary ofD(q, r2) which has its length equal to2r2 and
falls inD(o, r1) ∩D(q, r2). For illustration, consider Figure 2(b).
That is, d(a, b) = 2r2. Similar to Case 1, it could be verified
that maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. Thus,cost(S′) ≤
r2 + 2r2. Therefore,

cost(S′)

cost(So)
≤ r2 + 2r2

r2 + r1
=

1 + 2

1 + r1/r2
≤ 1 + 2

1 +
√

2
< 1.25

Thus, by combining Case 1 and Case 2, we havecost(S′) ≤
1.375 · cost(So), which completes the proof.

Implementation and Time Complexity. We also adopt the IR-tree
built onO to support the NN query and the range query.

Letn1 be the number of iterations in MaxSum-Appro (lines 2-10
in Algorithm 3) andγ be the cost of executing an iteration. Then,
the time complexity of MaxSum-Appro isO(n1 · γ). Note that
γ is dominated by the step of finding theo-neighborhood feasible
set (line 6) whose cost is bounded byO(|q.ψ| · log |O|) (it issues at
most|q.ψ−o.ψ|NN queries each of which takesO(log |O|) time).
Thus,γ = O(|q.ψ| · log |O|). Therefore, the time complexity of
MaxSum-Appro isO(n1 ·|q.ψ|·log |O|) wheren1 << |Oq |. Note
that the worst-case time complexity of MaxSum-Appro isO(|Oq | ·
|q.ψ| · log |O|), which is the same as that of Cao-Appro2.

4. ALGORITHMS FOR DIA-COSKQ
In this section, we propose two algorithms, Dia-Exact and Dia-

Appro, for Dia-CoSKQ. Similarly, in this section, for clarity, we
simply writecostDia(·) ascost(·) if the context of the cost func-
tion is clear.

4.1 Finding Optimal Solution
Interestingly, we can adopt the same MaxSum-Exact algorithm

(Algorithm 1) by replacing the cost measurement from the maxi-
mum sum cost to the diameter cost. We call this algorithmDia-
Exact. The reason is that we can still use the query distance owner
and the pairwise distance owners of a setS′ to be found to find the
optimal solution for Dia-CoSKQ. Next, we explain the reasonin
detail.

Consider the diameter cost. Given a setS′ of objects inO, we
havecost(S′) = maxo′,o′′∈S′∪{oq} d(o

′, o′′). Clearly, the (di-
ameter) cost of a setS′ can be dominated (or determined) by two
pairwise distance owners ofS′∪{oq} (notS′ used in the maximum
sum cost), which form a distance owner group (for Dia-CoSKQ).
It is similar to the maximum sum cost of a setS′ which is domi-
nated by the query distance owner ofS′ and two pairwise distance
owners ofS′. But, there are two differences. The first difference is
that the diameter cost is dominated by the pairwise distanceown-
ers only (without the query distance owner). The second difference
is that the pairwise distance owners used for the diameter cost are
based on the setS′ ∪ {oq} instead ofS′.

Based on the above observations, wedirectly adapt the distance
owner-driven approach as follows. This approach maintainsa vari-
ableS storing the best feasible set found so far. Initially,S is set to
a feasible set. This involves three major steps.
• Step 1 (Pairwise Distance Owner Finding):Select two ob-

jects,o′ ando′′, inOq∪{oq} to take the roles of the pairwise
distance owners of the setS′∪{oq} whereS′ is to be found.
Note thato′ ando′′ form a distance owner group.



• Step 2 (Sub-Optimal Feasible Set Finding):Find a setS′

of objects inOq such that the pairwise distance owners of
S′ ∪ {oq} areo′ ando′′ (if any), and updateS with S′ if
cost(S′) < cost(S).
• Step 3 (Iterative Step):Repeat Step 1 which finds another

distance group, and continue with Step 2 until all distance
owner groups have been traversed.

Interestingly, Step 1 whichoriginally finds two objects to take
the roles of the two pairwise distance ownersbased onS′ ∪ {oq}
can berefined to a number of sub-steps of finding two objects to
take the roles of the two pairwise distance ownersbased onS′ sim-
ply (notS′∪{oq}) and finding an object to take the role of the query
distance ownerbased onS′. This refinement can be explained by
the following observation.

OBSERVATION 1. LetS′ be the feasible set. The pairwise dis-
tance owners ofS′ ∪ {oq} are either (1)oq and the query distance
owner ofS′ or (2) the pairwise distance owners ofS′.

Suppose thato takes the role of the query distance owner ofS′ to
be found, ando1 ando2 take the roles of the two pairwise distance
owners ofS′.

Observation 1 involves two cases. In Case (1) of Observation1,
we know that the pairwise distance owners ofS′ ∪ {oq} areoq
and the query distance ownero of S′. In this case, we deduce that
d(o1, o2) ≤ d(o, q)(= d(o, oq)).

In Case (2) of Observation 1, we know that the pairwise distance
owners ofS′ ∪ {oq} are the pairwise distance owners ofS′, sayo1
ando2. In this case,d(o, q) ≤ d(o1, o2).

In conclusion, if we know thatd(o1, o2) ≤ d(o, q), thenoq and
o are the pairwise distance owners ofS′ ∪{oq}. Otherwise,o1 and
o2 are the pairwise distance owners ofS′ ∪ {oq}.

Thus, Step 1 can be refined with the following three sub-steps.

• Step 1(a) (Query Distance Owner Finding):Select an object
o in Oq to take the role of the query distance owner of a set
S′ to be found.
• Step 1(b) (Pairwise Distance Owner Finding):Select two

objectso1 and o2 in D(q, d(o, q)) to take the roles of the
pairwise distance ownersof the setS′ to be found.
• Step 1(c) (Pairwise Distance Owner Determination):If
d(o, q) ≥ d(o1, o2), assign too andoq the roles of pairwise
distance owners ofS′ ∪ {oq}; otherwise, assign the roles to
o1 ando2.

With this refinement, the distance owner-driven approach still
has its similar pruning features under the diameter cost. Specifi-
cally, Property 1 and Property 2 used for MaxSum-CoSKQ have
their counterparts used for Dia-CoSKQ as Property 3 and Prop-
erty 4, respectively.

PROPERTY3 (PRUNING). LetS′ be a feasible set. Ifo is the
query distance owner ofS′, then the two pairwise distance owners
of S′ ∪ {oq} are insideD(q, d(o, q)).

PROPERTY4 (PRUNING). Let S′ be a feasible set,o be the
query distance owner ofS′, and o1 and o2 be the two pairwise
distance owners ofS′ ∪ {oq}. Then all objects inS′ fall in
D(q, d(o, q)) ∩D(o1, d(o1, o2)) ∩D(o2, d(o1, o2)).

Similar to the maximum sum cost, when the diameter cost is
used, the object to be found in Step 1(a) is fetched based on the
proximity to the query pointq. The proximity is also related to the
closest possible query distance owner (Lemma 2) and the farthest

Algorithm 4 Algorithm Dia-Exact

Input: queryq and a setO of objects
1: S ← N(q)
2: while there is an “un-processed” relevant objecto in R(S) do
3: // Step 1(a) (Query Distance Owner Finding)
4: o← the nearest “un-processed” relevant object inR(S)
5: // Step 1(b) (Pairwise Distance Owner Finding)
6: D ← theq-disk with its radius equal tod(o, q)
7: P ← a set of all pairs(o1, o2) whereo1 ando2 are inD
8: for each(o1, o2) ∈ P in ascending order ofd(o1, o2) do
9: // Step 1(c) (Pairwise Distance Owner Determination)

10: if d(o, q) ≥ d(o1, o2) then o′ ← o; o′′ ← oq
11: elseo′ ← o1; o

′′ ← o2
12: // Step 2 (Sub-Optimal Feasible Set Finding)
13: if there exists a feasible setS′ in D which is(o, o′, o′′)-

owner consistentthen
14: if cost(S′) < cost(S) then
15: S ← S′; break
16: // Step 3 (Iterative Process)
17: marko as “processed”
18: return S

possible query distance owner (Lemma 3). It is easy to verifythat
Lemma 2 and Lemma 3 still hold when the cost measurement is
changed from the maximum sum cost to the diameter cost. Thus,
Lemma 4, which states that thering is the region containing the
query distance owners to be considered, still holds.

In summary, we present the algorithm for finding the optimal
solution of Dia-CoSKQ in Algorithm 4 (which is quite similarto
Algorithm 1) except that we need to determine the pairwise dis-
tance owner ofS′ ∪ {oq} (in Step 1(c)) which cannot be found in
MaxSum-CoSKQ.

THEOREM 3. Dia-Exact returns a feasible set with the smallest
cost for the Dia-CoSKQ problem.

PROOF. LetSo be one of the feasible set with the smallest cost.
Let o be the query distance owner ofSo, and leto1 and o2 be
the two pairwise distance owners ofSo. First, o is insideR(S)
(Lemma 4). Thus, there exists an iteration whereo is processed.
Wheno is processed, pair(o1, o2) must be included inP (Prop-
erty 3). There are two cases. Case 1:d(o, q) ≥ d(o1, o2). In
this case, any feasible setS′ that is(o, o, oq)-owner consistent is
retrieved and used to updateS (there must exist some sinceSo
is (o, o, oq)-owner consistent). Thus, the resultingS has its cost
equal tod(o, q) = cost(So). Case 2:d(o, q) < d(o1, o2). In
this case, any feasible setS′ that is (o, o1, o2)-owner consistent
is retrieved and used to updateS (there must exist some sinceSo
is (o, o1, o2)-owner consistent). Thus, the resultingS has its cost
equal tod(o1, o2) = cost(So). In either case,S will not be up-
dated anymore since it has the smallest cost (i.e.,cost(So)) and
thus it is the final output.

Same as Section 3.1.4, in Dia-Exact, we have the self-iteration
computation strategy and the cross-iteration computationstrategy.

Self-Iteration Computation Strategy: Consider an iteration
where the query distance owner for this iteration iso. We can
use the same mechanism described in Section 3.1.4 afterdmin
anddmax are updated fromd(o, q)−min{d(o1, q), d(o2, q)} and
cost(S)−d(o, q) to d(o, q) andcost(S), respectively. All pruning
properties still hold.

Note that dmin (which is originally set to d(o, q) −
min{d(o1, q), d(o2, q)} in MaxSum-CoSKQ) is based on the tri-
angle inequality (Lemma 5), which means that it can be used for



pruning in both MaxSum-CoSKQ and Dia-CoSKQ. However, in
Dia-CoSKQ,dmin can be updated to a tighter value asd(o, q) since
all pairs with their pairwise distances smaller thand(o, q) cannot
take the roles of the pairwise distance owners ofS′ ∪ {oq}.
Cross-Iteration Computation Strategy: We use the same infor-
mation reuse techniques as in Section 3.1.4 for Dia-Exact since the
updateddmin (i.e.,d(o, q)) is monotonically increasing and the up-
dateddmax (i.e., cost(S)) is monotonically decreasing with more
iterations. Thus, the pairs pruned inP at the previous iterations
need not be considered in the later iterations.

Time Complexity. It could be verified that the time complexity of
Dia-Exact is the same as that of MaxSum-Exact.

4.2 Finding Approximate Solution
In this section, we propose a

√
3-factor approximate algorithm

which is exactly the same as Algorithm 3 but the cost measurement
used is the diameter cost. This algorithm is calledDia-Appro.

Theoretical Analysis. Although the setS returned byDia-Appro
may have a larger cost than the optimal setSo, it has an approxi-
mate factor of

√
3.

THEOREM 4. Dia-Appro gives a
√

3-factor approximation for
the Dia-CoSKQ problem.

PROOF. We use the same notations as defined in the proof of
Theorem 2.

Considercost(So). Similar to the proof of Theorem 2, we
have maxo′

1
,o′

2
∈So

d(o′1, o
′
2) ≥ d(o, of ) = r1. Recall that

maxo′∈So
d(o′, q) = d(o, q) = r2. As a result, we have

cost(So) = max{maxo′∈So
d(o′, q),maxo′

1
,o′

2
∈So

d(o′1, o
′
2)} ≥

max{r2, r1}.
According to the Dia-Appro algorithm, we havecost(S) ≤

cost(S′). The remaining part of the proof shows thatcost(S′) ≤√
3 · cost(So) which further impliescost(S) ≤

√
3 · cost(So).

Same as the proof of Theorem 2, we consider two cases ofr1.
Case 1: r1 ≤

√
2r2. This case corresponds to Figure 2(a).

It can be verified thatmaxo′
1
,o′

2
∈S′ d(o′1, o

′
2) ≤ d(a, b) =

2
p

r21 − r41/4r22 (since all objects inS′ fall in D(o, r1)∩D(q, r2)
as shown by the shaded area). Recallmaxo′∈S′ d(o, q) = r2. As a
result, we havecost(S′) ≤ max{r2, 2

p

r21 − r41/4r22}.
We further consider three sub-cases under Case 1 based on the

relationship amongr1, r2 and2
p

r21 − r41/4r22 .

Case 1(a):r1 ≤
p

2−
√

3r2. In this case, we haver2 > r1 and
r2 ≥ 2

p

r21 − r41/4r22 . Thus,cost(So) ≥ max{r2, r1} = r2 and
cost(S′) ≤ max{r2, 2

p

r21 − r41/4r22} = r2 Therefore,

cost(S′)

cost(So)
≤ r2
r2

= 1

Case 1(b):
p

2−
√

3r2 < r1 ≤ r2. In this case, we have
r2 ≥ r1 and2

p

r21 − r41/4r22 > r2. Thus,cost(So) ≥ r2 and
cost(S′) ≤ 2

p

r21 − r41/4r22 . Therefore,

cost(S′)

cost(So)
≤ 2

p

r21 − r41/4r22
r2

=

r

4(
r1
r2

)2 − (
r1
r2

)4 (4)

Note that functionf(z) =
√

4z2 − z4 is monotonically increasing

on (
p

2−
√

3, 1]. Sincer1
r2
∈ (

p

2−
√

3, 1], Thus, we have

cost(S′)

cost(So)
≤

p

4(1)2 − (1)4 =
√

3

Case 1(c):r2 < r1 ≤
√

2r2. In this case, we haver2 < r1
and2

p

r21 − r41/4r22 > r2. Thus,cost(So) ≥ r1 andcost(S′) ≤

2
p

r21 − r41/4r22 . Therefore,

cost(S′)

cost(So)
≤ 2

p

r21 − r41/4r22
r1

=
p

4− (r1/r2)2 <
√

3

Case 2: r1 >
√

2r2. This case corresponds to Figure 2
(b). In this case,d(a, b) = 2r2. Similar to Case 1, we have
maxo1,o2∈S′ d(o1, o2) ≤ d(a, b) = 2r2. Therefore,

cost(S′)

cost(So)
≤ max{r2, 2r2}

max{r1, r2}
=

2r2
r1

<
2r2√
2r2

=
√

2

In view of above discussion, we know thatcost(S′)/cost(So) ≤√
3, which completes the proof.

Time Complexity. Since Dia-Appro is identical to MaxSum-
Appro except that Dia-Appro adopts a different cost measurement,
Dia-Appro has the same complexity as MaxSum-Appro.

4.3 Adaptions of Existing Solutions
In this section, we adapt the existing solutions in [4], which are

originally designed for MaxSum-CoSKQ, for Dia-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method based on the
object space and thus its applicability is independent of the cost
measurement used in the CoSKQ problem. Therefore, Cao-Exact
can be directly applied to Dia-CoSKQ by replacing the cost mea-
surement with the diameter cost. However, due to its prohibitively
huge search space, Cao-Exact is not scalable to large datasets.

Cao-Appro1 & Cao-Appro2. We can directly adopt Cao-Appro1
and Cao-Appro2 for Dia-CoSKQ by replacing the maximum sum
cost with the diameter cost.

According to [4], the approximation factors of Cao-Appro1 and
Cao-Appro2 are 3 and 2, respectively, for MaxSum-CoSKQ. In the
following, we prove that both Cao-Appro1 and Cao-Appro2 give
2-factor approximations for Dia-CoSKQ.

LEMMA 7. Cao-Appro1 and Cao-Appro2 give 2-factor approx-
imations for Dia-CoSKQ.

PROOF. First, we prove that the approximation ratio of Cao-
Appro1 is 2.

Let S be the set returned by Cao-Appro1 andSo be the opti-
mal set. Letof be the object inS that is the farthest fromq, i.e.,
d(of , q) = maxo∈S d(o, q). First, we havecost(So) ≥ d(of , q).
Second, for any two objectso1 ando2 in S, we haved(o1, o2) ≤
d(o1, q)+d(o2, q) ≤ 2 ·d(of , q) by thetriangle inequality. There-
fore, cost(S) ≤ max{d(of , q), 2 · d(of , q)} = 2 · d(of , q). As a
result, we knowcost(S)/cost(So) ≤ 2.

Since the solution returned by Cao-Appro2 is no worse than that
returned by Cao-Appro1, the approximation ratio of Cao-Appro2
is also bounded by 2.

Furthermore, we show that Cao-Appro2 cannot provide better
error guarantees by constructing a problem instance where the ap-
proximation ratio of Cao-Appro2 is infinitely close to 2. Theprob-
lem instance could be found in Appendix C.

Thus, among all known approximate algorithms for Dia-CoSKQ,
our Dia-Appro provides the best constant-factor approximation.

5. EMPIRICAL STUDIES

5.1 Experimental Set-up
Datasets. We used the real datasets adopted in [4], namely Ho-
tel, Web and GN. Dataset Hotel corresponds to a set of hotels in



Statistics GN Web Hotel

Number of objects 1,868,821 579,727 20,790
Number of unique words 222,409 2,899,175 602

Number of words 18,374,228 249,132,883 80,845

Table 1: Real datasets

the U.S. (www.allstays.com), each of which is associated with its
location and a set of words that describe the hotel (e.g., restau-
rant and pool). Dataset Web was created from two real datasets.
The first one, named WEBSPAMUK20072, corresponds to a set
of web documents. The second one is a set of spatial objects,
named TigerCensusBlock3, which corresponds to a set of census
blocks in Iowa, Kansas, Missouri and Nebraska. Specifically, Web
consists of the spatial objects in TigerCensusBlock, each of which
is associated with a document randomly selected from WEBSPA-
MUK2007. Dataset GN was collected from the U.S. Board on Ge-
ographic Names (geonames.usgs.gov). Each object in GN is a 2D
location which is associated with a set of keywords describing it
(e.g., a geographic name like valley).

Query Generation. Given a datasetO and a positive integerk, we
generated a queryq with the size of its keyword set equal tok as
in [4]. For theq.λ part, we randomly picked a location from the
data space ofO. For theq.ψ part, we first sorted all the keywords
that are associated with the objects inO in descending order of their
frequencies and then randomly pickedk keywords among all key-
words each of which has itspercentile rankwithin range[10, 40]
by default. Note that in this way, each of the keywords inq.ψ has
a relatively high frequency.

Algorithms. For MaxSum-CoSKQ, we consider 2 exact algo-
rithms, namely MaxSum-Exact and Cao-Exact, and 3 approxi-
mate algorithms, namely MaxSum-Appro, Cao-Appro1 and Cao-
Appro2. For Dia-CoSKQ, we consider 2 exact algorithms, namely
Dia-Exact and Cao-Exact (the adaption), and 3 approximate algo-
rithms, namely Dia-Appro, Cao-Appro1 and Cao-Appro2. All al-
gorithms were implemented in C/C++.

Our experiments were conducted on a Linux platform with a
2.66GHz machine and 4GB RAM.

5.2 Experimental Results
We consider 2 measurements, the running time and the approx-

imation ratio (for approximate algorithms only). For each set of
settings, we generated 50 queries, ran the algorithms with each of
these 50 queries, and averaged the experimental measurements.

5.2.1 Experiments for MaxSum-CoSKQ
Effect of |q.ψ|. We generated 5 types of queries with different
values of |q.ψ|. The values we used are 3, 6, 9, 12 and 15.
The results on the dataset GN are shown in Figure 3. Accord-
ing to Figure 3(a), our MaxSum-Exact is faster than Cao-Exact
by 1-3 orders of magnitude. When|q.ψ| increases, the running
time gap between MaxSum-Exact and Cao-Exact increases. Be-
sides, MaxSum-Appro and Cao-Appro2 have comparable running
time, which verified our theoretical analysis that MaxSum-Appro
and Cao-Appro2 have the same worst-case time complexity. Cao-
Appro1 runs the fastest due to its simplicity. According to Fig-
ure 3(b), the approximation ratio of our MaxSum-Appro algorithm
is near to 1, which shows that the accuracy of MaxSum-Appro is
extremely high in practical. We note here that the approximation ra-
tio in the figure corresponds to the average over 50 queries, among
which, the approximation ratio of MaxSum-Appro is exactly 1for

2http://barcelona.research.yahoo.net/webspam/datasets/uk2007
3http://www.rtreeportal.org

most queries (e.g., more than 45). As a result, the approximation ra-
tio of MaxSum-Appro in the figures is always near to 1. Consistent
to our theoretical results, the approximation ratios of Cao-Appro1
and Cao-Appro2 are larger than that of MaxSum-Appro.

We have similar results on Web (Figure 4) and Hotel (Figure 5).
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Figure 3: Effect of |q.ψ| (GN, MaxSum-CoSKQ)
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Figure 4: Effect of |q.ψ| (Web, MaxSum-CoSKQ)

MaxSum-Exact MaxSum-Appro Cao-Exact Cao-Appro1 Cao-Appro2

1

1.01

1.02

1.03

1.04

1.05

3 6 9 12 15

A
pp

ro
xi

m
at

io
n 

ra
tio

No. of keywords

0.01

1

100

10000

3 6 9 12 15

R
un

ni
ng

 ti
m

e 
(m

ill
is

ec
on

ds
)

No. of keywords

(a) Running time (b) Appro. ratio

Figure 5: Effect of |q.ψ| (Hotel, MaxSum-CoSKQ)

Effect of average |o.ψ|. Our experiments were based on dataset
Hotel whose average size of a keyword set of an object (|o.ψ|)
is nearly 4 (i.e., 80,845/20,790). We generated a set of several
datasets based on dataset Hotel such that the average sizes (i.e.,
average|o.ψ|’s) are equal to4 · i for some integersi. To gener-
ate a dataset with its average|o.ψ| equal to4 · i, we proceed with
i− 1 rounds. At each round, for each objecto in dataset Hotel, we
randomly pick another objecto′ and updateo.ψ to beo.ψ ∪ o′.ψ.
It could be verified that the average|o.ψ| of the resulting dataset
is nearly4 · i. In our experiments, we varyi by choosing one of
the values in{1, 2, 4, 6, 8, 10}. Note thati = 1 means that the
resulting dataset is exactly dataset Hotel.

The results are shown in Figure 6. According to Figure 6(a), the
running times of all algorithms increase when the average|o.ψ| in-
creases. The reason is that when the average|o.ψ| increases, the
number of relevant objects (|Oq|) in the dataset would probably in-
crease, which further affects the running times of the algorihtms.
Since all algorithms except for Cao-Appro1 have their time com-
plexities involving |Oq |. Cao-Appro1, though has its time com-
plexity independent of|Oq |, has its NN queries affected by|Oq |:
the larger|Oq | is, the more expensive the NN query would prob-
ably be. Besides, it is worth mentioning that when the average
|o.ψ| increases, the increase rate of the running time of Cao-Exact
is significantly larger than those of the other algorithms including
MaxSum-Exact. This is because Cao-Exact is based on the search



space of the set of all possible feasible sets whose size increases
rapidly with |Oq| (|Oq ||q.ψ|). Thus, Cao-Exact is not scalable on
datasets with a large average|o.ψ|. According to Figure 6(b), the
average|o.ψ| has no obvious trend on the approximation ratios of
the approximate algorithms. Besides, MaxSum-Appro with its ap-
proximation ratio near to 1 always keeps its accuracy superiority
over other approximate algorithms.
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Figure 6: Effect of average|o.ψ| (MaxSum-CoSKQ)

Scalability Test. We conducted a scalability test on the algorithms
with 5 synthetic datasets with their sizes varying from 2M to10M.
The synthetic datasets were generated from a smaller dataset GN.
To generate a datasetO with its size equal ton, we first inserted
all the objects from dataset GN intoO and then repeatedly created
objects inO such thatO has a similar spatial distribution as dataset
GN until |O| = n. For each newly created objecto in O, we
randomly pick a document from WEBSPAMUK2007 and use it as
o.ψ.

The results are shown in Figure 7(a), where we do not show
the running time of the algorithm if it runs more than 10 days or
out of memory. According to these results, both our exact algo-
rithm (MaxSum-Exact) and our approximate algorithm (MaxSum-
Appro) are scalable to large datasets with millions of objects. For
example, in a dataset with size equal to 10M, MaxSum-Exact ran
less than 100s and MaxSum-Appro ran in real-time. In contrast,
Cao-Exact is not scalable. In particular, in our experiments, Cao-
Exact took more than 1 day on a dataset with size equal to 6M and
it took more than 10 days on a dataset with size equal to 8M.
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Figure 7: Scalability Test

5.2.2 Experiments for Dia-CoSKQ
Effect of |q.ψ|. The results on dataset GN is shown in Figure 8.
According to Figure 8(a), our Dia-Exact is faster than Cao-Exact
by 1-4 orders of magnitude. When|q.ψ| increases, the running
time gap between Dia-Exact and Cao-Exact increases. Besides,
Dia-Appro and Cao-Appro2 have comparable running times. Ac-
cording to Figure 8(b), similar to MaxSum-Appro (for MaxSum-
CoSkQ), the approximation ratio of Dia-Appro is near to 1 (for
Dia-CoSKQ), which is better than those of Cao-Appro1 and Cao-
Appro2.

The results on datasets Web and Hotel are similar and thus they
are omitted here due to the page limit.

Effect of Average |o.ψ|. Similar to the experiments for MaxSum-
CoSKQ, we generated a set of datasets by varying their average
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Figure 8: Effect of |q.ψ| (GN, Dia-CoSKQ)

|o.ψ| values. The results are shown in Figure 9. According to
Figure 9(a), when the average|o.ψ| increases, the running time of
Cao-Exact increases significantly while the running times of other
algorithms are only slightly affected. This is similar to the case
for MaxSum-CoSKQ and the explanation for MaxSum-CoSKQ as
we discussed previously could be applied here for Dia-CoSKQ. Ac-
cording to Figure 9(b), the average|o.ψ| value has no obvious trend
on the accuracy of the approximate algorithms.
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Figure 9: Effect of average|o.ψ| (Dia-CoSKQ)

Scalability Test. We conducted a scalability test on the algorithms
for Dia-CosKQ with the same synthetic datasets used in the scala-
bility test for MaxSum-CoSKQ.

The results are shown in Figure 7(b), where we do not show the
running time of the algorithm if it runs more than 10 days or out of
memory. According to these results, both our exact algorithm (Dia-
Exact) and our approximate algorithm (Dia-Appro) are scalable to
large datasets with millions of objects. In contrast, Cao-Exact is
not scalable to large datasets.

Conclusion: MaxSum-Exact (Dia-Exact) runs faster than Cao-
Exact by several orders of magnitude for MaxSum-CoSKQ (Dia-
CoSKQ). Besides, MaxSum-Exact (Dia-Exact) is scalable in terms
of |O| as well as the average|o.ψ| but Cao-Exact is not. Our
MaxSum-Appro (Dia-Appro) has a better accuracy while having
comparable running time as those existing approximate algorithms.

6. RELATED WORK
Many types of spatial keyword query have been proposed in the

literature. Most of them are different from CoSKQ studied inthis
paper since they use a single object to cover all keywords specified
in the query but CoSKQ uses multiple objects collectively for the
same purpose. We review these spatial keyword queries as follows.

A spatial keyword top-k query[8] finds top-k objects where the
ranking function takes both the spatial proximity and the textual
relevance of the objects into consideration. This branch includes
[8, 18, 14] (Euclidean space), [19] (road networks), [20, 9](trajec-
tory databases), and [23] (moving objects). A common technique
shared by these studies is to design a hybrid indexing structure,
which captures both the spatial proximity and the textual informa-
tion of the objects. The IR-tree adopted by us for NN queries and
range queries was proposed in [8].

A spatial keywordk-NN query[11] finds thek-NNs from the
query location, each of which contains the set of keywords speci-



fied in the query. That is, unlike the keywords in the spatial key-
word top-k queries, which are used as asoft constraint, the key-
words in the spatial keywordk-NN queries are used as ahard con-
straint. This branch includes [11, 5, 22].

A spatial keyword range query[21, 27, 7] takes a region and a
set of keywords as input and finds the objects each of which falls
in the region and contains the set of keywords. Same as the spatial
keywordk-NN queries, the keywords are used as a hard constraint.
Usually, they combine a spatial index (e.g., R-tree and Space Fill-
ing Curve (SFC)) and a textual index (e.g., inverted file) forquery
processing.

A spatial keyword reverse top-k query [16] finds the set of ob-
jects whose spatial keyword top-k query results include the query.
Note that in this case, an object which consists of a locationand a
set of keywords could be regarded as a query which also consists
of a location and a set of keywords and vice versa.

An mCK query[24, 25] is a spatial keyword query that is very
similar to CoSKQ. AnmCK query takesm keywords as input and
findsm objects with the smallestdiameterthat cover them key-
words specified in the query. Though both themCK query and
CoSKQ use a set of objects for covering a set of keywords col-
lectively, they are different. In the context of anmCK query, it is
assumed that each object is associated with a single keywordwhile
in the context of CoSKQ, each object is associated with a set of
multiple keywords. Besides, anmCK query only takes a set of
keywords as input while our CoSKQ query takes not only a set of
keywords but also a query location as an input.

CoSKQ was first studied in [4]. Under the maximum sum cost
function, as we described, [4] proposed an exact algorithm and two
approximate algorithms. However, the exact algorithm is not scal-
able to large datasets and the two approximate algorithms cannot
guarantee near-to-optimal solutions. In this paper, we propose an
efficient exact algorithm and an approximate algorithm withbetter
approximate factor for MaxSum-CoSKQ. Besides, in this paper,
we also propose another cost function called the diameter function
which is new and has not been studied in [4].

7. CONCLUSION
In this paper, we studied two types of the CoSKQ problem,

namely MaxSum-CoSKQ and Dia-CoSKQ. MaxSum-CoSKQ is
a CoSKQ problem using the existing maximum sum cost, which
is NP-hard. We designed two algorithms for MaxSum-CoSKQ,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is an exact
algorithm which significantly outperforms its existing competitor
in terms of both efficiency and scalability and MaxSum-Approis
an approximate algorithm which improves the best-known constant
approximation factor from 2 to 1.375. We also proposed a new
cost function and the CoSKQ problem using this function is Dia-
CoSKQ. We designed two algorithms for Dia-CoSKQ, Dia-Exact
and Dia-Appro. Dia-Exact is an exact algorithm while Dia-Appro
is a
√

3-factor approximate algorithm. Extensive experiments were
conducted which verified our theoretical findings and algorithms.

There are several interesting future research directions.One di-
rection is to find the feasible set with the smallestcost per object.
Another direction is to define the cost function based on the short-
est route that traverse all objects in the set. It is also interesting to
to study CoSKQ when the query point is moving.
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APPENDIX

A. NP-HARDNESS PROOF OF DIA-
COSKQ

We first give the decision problem of Dia-CoSKQ. LetO be
a set of spatial objects each of which is associated with a setof
keywords. Given a numberC and a queryq consisting of a loca-
tion q.λ and a set of keywordsq.ψ, the problem is to determine
whether there exists a setS of objects such thatS coversq.ψ and
costDia(S) < C. For simplicity, we denote this decision problem
by Dia-CoSKQ.

We then utilize a well-known NP-C problem3-SATfor proving
that Dia-CoSKQ is NP-hard. 3-SAT is described as follows. Let
U be a set of literals (binary variables){e1, e1, ..., en, en}. Note
thatei corresponds to the negation ofei. Given an expressionE =
C1 ∧ C2 ∧ ... ∧ Cm whereCi has its from ofxi ∨ yi ∨ zi and
xi, yi, zi ∈ U for 1 ≤ i ≤ m, it determines whether there exists a
truth assignment forei for 1 ≤ i ≤ n such thatE is true.

Given a 3-SAT problem instance, we construct a Dia-CoSKQ
problem instance as follows. We arbitrarily select a location asq.λ
and for each clauseCi in the expressionE, we includeCi in q.ψ
as a keyword. Thus,q containsm keywords. To constructO, we
consider the circleCir with its center atq.λ and its radius equal to
1. For each pair of literalsei andei in U , we create two objects
oi ando′i on the boundary ofCir such thatd(oi, o′i) = 2, i.e., the
line segment betweenoi ando′i is a diameter ofCir. We guarantee
that no two objects inO share the same location. Besides, we set
oi.λ (o′i.λ) to be the set of clauses that containei (ei). We setC to
be 2. Clearly, the above construction process could be finished in
polynomial time.

We proceed to show that the above constructed Dia-CoSKQ
problem instance is equivalent to its corresponding 3-SAT prob-
lem instance. Assume that the answer to 3-SAT is “yes”, i.e.,there
exists a truth assignmentA for the literals inU such thatE is true.
Then, we construct a setS of objects inO as follows. For each
positive literalei ∈ U , we includeoi in S if ei is true inA. For
each negative literalei ∈ U , we includeo′i in S if ei is false inA.
Clearly, oi ando′i cannot be included inS simultaneously. Con-
siderS. First,S coversq.ψ which could be verified by contradic-
tion. Assume that there exists a keywordCi in q.ψ which is not
covered byS. SinceE is true,Ci must also be true. Consequently,
Ci contains at least one literal which is true. Case 1: this literal
is a positive literalei. In this case,oi is included inS and thusS
coversCi, which leads to a contradiction. Case 2: this literal is a
negative literalei. In this case,ei is false and thuso′i is included
in S. As a result,S coversCi, which, again, leads to a contradic-
tion. Second, we knowcostDia(S) < C = 2. This is because
maxo∈S d(o) = 1 andmaxo1,o2∈S d(o1, o2) < 2 (there exist no
pairs of two objects such that the segment between them formsa
diameter).

Consider the other direction. Assume that the answer to Dia-
CoSKQ is “yes”, i.e., there exist a setS of objects such thatS
coversq.ψ andcostDia(S) < C. Then, we construct a truth as-
signmentA for the literals inU as follows. For each objectoi ∈ S,
we setei to be true and consequentlyei is false. For each object
o′i ∈ S, we setei to be false and consequentlyei is true. For the re-
maining literals to which no truth values have been assigned, we set
their truth values arbitrarily with the constraint thatei andei have
different truth values. First, we show thatE is avalid assignment,
i.e., there exist no pairs of two literalsei andei such that they have
a common truth value. This could be verified by contradiction. As-
sume that there exist two literalsei andei such thatei andei have
the same truth value. It follows thatoi ando′i co-exist inS which

contradicts the assumption thatcostDia(S) < C = 2. Second, we
show thatE is true with the truth assignmentA. Again, this could
be verified by contradiction. Assume thatE is false. Then, there
exists a clauseCi which is false. It follows that each positive literal
ei in Ci (if any) is false and thusoi is not included inS. Each
negative literalei in Ci (if any) is false and thuso′i is not included
in S. As a result,S does not coverCi which contradicts thatS
coversq.ψ. Therefore,E is true and thus the answer to the 3-SAT
problem is “yes”.

Therefore, we know that Dia-CoSKQ is NP-hard.

B. THE APPROXIMATION FACTOR OF
MAXSUM-APPRO IN GENERAL CASE

In this part, we show that the approximation factor of MaxSum-
Appro with a general setting ofα is equal to(2−

√
2/2 · α).

We use the same notations as defined in the proof of Theorem 2.
Considercost(So). Same as the proof of Theorem 2, we have

maxo′∈So
d(o′, q) = d(o, q) = r2 andmaxo1,o2∈So

d(o1, o2) ≥
d(o, of ) = r1. As a result, we have

cost(So) ≥ α · r2 + (1− α) · r1 (5)

Considercost(S′). Same as the proof of Theorem 2, we consider
two cases.

Case 1: r1 ≤
√

2r2 (See Figure 2(a) for illustration).
In this case, we havemaxo1,o2∈S′ d(o1, o2) ≤ d(a, b) =

2
p

r21 − r41/4r22 . Recall thatmaxo′∈S′ d(o′, q) = d(o, q) = r2.
As a result, we have

cost(S′) ≤ α · r2 + (1− α) · 2
q

r21 − r41/4r22 (6)

Therefore,

cost(S′)

cost(So)
≤ α · r2 + (1− α) · 2

p

r21 − r41/4r22
α · r2 + (1− α) · r1

= 1 +
(1− α) · (2

p

r21 − r41/4r22 − r1)
α · r2 + (1− α) · r1

= 1 +
(1− α) · (2

p

1− r21/4r22 − 1)

α · r2/r1 + 1− α

< 1 +
(1− α) · (2

√
1− 0− 1)

α ·
√

2/2 + 1− α

= 1 +
1− α

α ·
√

2/2 + 1− α

= 2−
√

2/2 · α
1− (1−

√
2/2) · α

< 2−
√

2/2 · α
1− 0

= 2−
√

2/2 · α

Case 2:r1 >
√

2r2 (See Figure 2(b) for illustration). Simi-
lar to Case 1, it could be verified thatmaxo1,o2∈S′ d(o1, o2) ≤
d(a, b) = 2r2. As a result, we have

cost(S′) ≤ α · r2 + (1− α) · 2r2 (7)

Therefore,

cost(S′)

cost(So)
≤ α · r2 + (1− α) · 2 · r2

α · r2 + (1− α) · r1
=

α+ (1− α) · 2
α+ (1− α) · r1/r2

≤ 2− α
α+ (1− α) ·

√
2
< 2− α < 2−

√
2/2 · α

Thus, by combining Case 1 and Case 2, we havecost(S′) ≤
(2−

√
2/2 · α) · cost(So), which finishes the discussion.
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Figure 10: A problem instance for Cao-Appro2

C. THE PROBLEM INSTANCE FOR CAO-
APPRO2

The problem instance is shown in Figure 10. In Figure 10(a),
we have four objects,o1, o2, o3 ando4. o1, o2 ando3 are located
at the boundary of D(q, r1), D(q, r2) and D(o1, r2), respectively.
r2 = r1 − δ (δ > 0). Besides,q, o1, o2 ando3 are on the same
vertical linel. o4 is on the boundary of D(o1, r1) and outside D(q,
r1). In addition,d(o4, q) = r1 + δ. The keyword information of
these objects and the query are shown in Figure 10(b).

Given the above problem instance, Cao-Appro2 works as fol-
lows. First, it invokes the Cao-Appro1 algorithm which returns
S1 = {o1, o2} as the first candidate of the approximate solution
whose cost is equal tod(o1, o2) = r1 + r2. Thus,o1 is the far-
thest object inS1 from q andt1 is the keyword that is covered by
o1 but not by any other objects inS1. As a result, Cao-Appro2
would invoke Cao-Appro1 for each object containingt1. In this
problem instance, since onlyo1 containst1, Cao-Appro2 invokes
Cao-Appro1 ato1 only andS2 = {o1, o3} would be returned as
the second candidate of the approximate solution whose costis
equal tod(o3, q) = r1 + r2. Since Cao-Appro2 obtains two can-
didatesS1 andS2 with the same cost, it returns any of them, say
S2, as the final approximate solutionS. However, the optimal so-
lution So of this problem instance is{o1, o4} with its cost equal to
d(o4, q) = r1 + δ. Therefore,

cost(S2)

cost(So)
=
r1 + r2
r1 + δ

= 2− 3

r1/δ + 1

Whenδ approaches0, the ratio approaches2.


