
A Fully Dynamic Algorithm for k-Regret
Minimizing Sets

Yanhao Wang∗, Yuchen Li
†,¶ , Raymond Chi-Wing Wong‡, Kian-Lee Tan§

∗University of Helsinki †Singapore Management University ‡The Hong Kong University of Science and Technology
§National University of Singapore ¶Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies

∗yanhao.wang@helsinki.fi †yuchenli@smu.edu.sg ‡raywong@cse.ust.hk §tankl@comp.nus.edu.sg

Abstract—Selecting a small set of representatives from a large
database is important in many applications such as multi-criteria
decision making, web search, and recommendation. The k-regret
minimizing set (k-RMS) problem was recently proposed for
representative tuple discovery. Specifically, for a large database P
of tuples with multiple numerical attributes, the k-RMS problem
returns a size-r subset Q of P such that, for any possible ranking
function, the score of the top-ranked tuple in Q is not much worse
than the score of the kth-ranked tuple in P . Although the k-RMS
problem has been extensively studied in the literature, existing
methods are designed for the static setting and cannot maintain
the result efficiently when the database is updated. To address
this issue, we propose the first fully-dynamic algorithm for the
k-RMS problem that can efficiently provide the up-to-date result
w.r.t. any tuple insertion and deletion in the database with a
provable guarantee. Experimental results on several real-world
and synthetic datasets demonstrate that our algorithm runs up to
four orders of magnitude faster than existing k-RMS algorithms
while providing results of nearly equal quality.

Index Terms—regret minimizing set; dynamic algorithm; set
cover; top-k query; skyline

I. INTRODUCTION

In many real-world applications, including multi-criteria
decision making [1], web search [2], recommendation [3],
[4], and data description [5], a crucial task is to find a
succinct representative subset from a large database to meet
the requirements of various users. For example, when a user
queries for a hotel on a website (e.g., booking.com and ex-
pedia.com), she/he will receive thousands of available options
as results. The website would like to display the best choices
in the first few pages from which almost all users could
find what they are most interested in. A common method
is to rank all results using a utility function that denotes a
user’s preference on different attributes (e.g., price, rating, and
distance to destination for hotels) and only present the top-k
tuples with the highest scores according to this function to the
user. However, due to the wide diversity of user preferences,
it is infeasible to represent the preferences of all users by
any single utility function. Therefore, to select a set of highly
representative tuples, it is necessary to take into account all
(possible) user preferences.

A well-established approach to finding such representatives
from databases is the skyline operator [6] based on the concept
of domination: a tuple p dominates a tuple q iff p is as good
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as q on all attributes and strictly better than q on at least
one attribute. For a given database, a skyline query returns
its Pareto-optimal subset which consists of all tuples that are
not dominated by any tuple. It is guaranteed that any user
can find her/his best choice from the skyline because the
top-ranked result according to any monotone function must
not be dominated. Unfortunately, although skyline queries
are effective for representing low-dimensional databases, their
result sizes cannot be controlled and increase rapidly as the
dimensionality (i.e., number of attributes in a tuple) grows,
particularly so for databases with anti-correlated attributes.

Recently, the k-regret minimizing set (k-RMS) problem [1],
[7]–[13] was proposed to alleviate the deficiency of skyline
queries. Specifically, given a database P of tuples with d
numeric attributes, the k-RMS problem aims to find a subset
Q ⊆ P such that, for any possible utility function, the top-1
tuple in Q can approximate the top-k tuples in P within a
small error. Here, the maximum k-regret ratio [8] (mrrk) is
used to measure how well Q can represent P . For a utility
function f , the k-regret ratio (rrk) of Q over P is defined to
be 0 if the top-1 tuple in Q is among the top-k tuples in P
w.r.t. f , or otherwise, to be one minus the ratio between the
score of the top-1 tuple in Q and the score of the kth-ranked
tuple in P w.r.t. f . Then, the maximum k-regret ratio (mrrk)
is defined by the maximum of rrk over a class of (possibly
infinite) utility functions. Given a positive integer r, a k-RMS
on a database P returns a subset Q ⊆ P of size r to minimize
mrrk. As an illustrative example, the website could run a k-
RMS on a database of all available hotels to pick a set of r
candidates from which all users can find at least one close to
her/his top-k choices.

The k-RMS problem has been extensively studied recently.
Theoretically, it is NP-hard [8]–[10] on any database with
d ≥ 3. In general, we categorize existing k-RMS algorithms
into three types. The first type is dynamic programming
algorithms [8], [10], [11] for k-RMS on two-dimensional data.
Although they can provide optimal solutions when d = 2, they
are not suitable for higher dimensions due to the NP-hardness
of k-RMS. The second type is the greedy heuristic [1], [7],
[8], which always adds a tuple that maximally reduces mrrk
at each iteration. Although these algorithms can provide high-
quality results empirically, they have no theoretical guarantee
and suffer from low efficiency on high-dimensional data.
The third type is to transform k-RMS into another problem



such as ε-kernel [9], [10], [12], [13], discretized matrix min-
max [11], hitting set [9], [12], and k-MEDOID clustering [14],
and then to utilize existing solutions of the transformed prob-
lem for k-RMS computation. Although these algorithms are
more efficient than greedy heuristics while having theoretical
bounds, they are designed for the static setting and cannot
process database updates efficiently. Typically, most of them
precompute the skyline as an input to compute the result of
k-RMS. Once a tuple insertion or deletion triggers any change
in the skyline, they are unable to maintain the result without
re-running from scratch. Hence, existing k-RMS algorithms
become very inefficient in highly dynamic environments where
tuples in the databases are frequently inserted and deleted.
However, dynamic databases are very common in real-world
scenarios, especially for online services. For example, in a
hotel booking system, the prices and availabilities of rooms
are frequently changed over time. As another example, in an
IoT network, a large number of sensors may often connect
or disconnect with the server. Moreover, sensors also update
their statistics regularly. Therefore, it is essential to address
the problem of maintaining an up-to-date result for k-RMS
when the database is frequently updated.

In this paper, we propose the first fully-dynamic k-RMS
algorithm that can efficiently maintain the result of k-RMS
w.r.t. any tuple insertion and deletion in the database with
both theoretical guarantee and good empirical performance.
Our main contributions are summarized as follows.
• We formally define the notion of maximum k-regret ratio

and the k-regret minimizing set (k-RMS) problem in a
fully-dynamic setting. (Section II)

• We propose the first fully-dynamic algorithm called FD-
RMS to maintain the k-RMS result over tuple insertions
and deletions in a database. Our basic idea is to transform
fully-dynamic k-RMS into a dynamic set cover problem.
Specifically, FD-RMS computes the (approximate) top-
k tuples for a set of randomly sampled utility functions
and builds a set system based on the top-k results. Then,
the k-RMS result can be retrieved from an approximate
solution for set cover on the set system. Furthermore,
we devise a novel algorithm for dynamic set cover by
introducing the notion of stable solution, which is used to
efficiently update the k-RMS result whenever an insertion
or deletion triggers some changes in top-k results as well
as the set system. We also provide detailed theoretical
analyses of FD-RMS. (Section III)

• We conduct extensive experiments on several real-world
and synthetic datasets to evaluate the performance of FD-
RMS. The results show that FD-RMS achieves up to
four orders of magnitude speedup over existing k-RMS
algorithms while providing results of nearly equal quality
in a fully dynamic setting. (Section IV)

II. PRELIMINARIES

In this section, we formally define the problem we study in
this paper. We first introduce the notion of maximum k-regret
ratio. Then, we formulate the k-regret minimizing set (k-RMS)

xO

y

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

u
1

u
2

Tuple x y

p
1

0.2 1

p
2

0.6 0.8

p
3

0.7 0.5

p
4

1 0.1

p
5

0.4 0.3

p
6

0.2 0.7

p
7

0.3 0.9

p
8

0.6 0.6

Fig. 1. A two-dimensional database of 8 tuples.

problem in a fully dynamic setting. Finally, we present the
challenges of solving fully-dynamic k-RMS.

A. Maximum K-Regret Ratio

Let us consider a database P where each tuple p ∈ P
has d nonnegative numerical attributes p[1], . . . , p[d] and is
represented as a point in the nonnegative orthant Rd+. A user’s
preference is denoted by a utility function f : Rd+ → R+ that
assigns a positive score f(p) to each tuple p. Following [1],
[7], [8], [11], [13], we restrict the class of utility functions to
linear functions. A function f is linear if and only if there
exists a d-dimensional vector u = (u[1], . . . , u[d]) ∈ Rd+
such that f(p) = 〈u, p〉 =

∑d
i=1 u[i] · p[i] for any p ∈ Rd+.

W.l.o.g., we assume the range of values on each dimension
is scaled to [0, 1] and any utility vector is normalized to be a
unit1, i.e., ‖u‖ = 1. Intuitively, the class of linear functions
corresponds to the nonnegative orthant of d-dimensional unit
sphere U = {u ∈ Rd+ : ‖u‖ = 1}.

We use ϕj(u, P ) to denote the tuple p ∈ P with the jth-
largest score w.r.t. vector u and ωj(u, P ) to denote its score.
Note that multiple tuples may have the same score w.r.t. u and
any consistent rule can be adopted to break ties. For brevity, we
drop the subscript j from the above notations when j = 1, i.e.,
ϕ(u, P ) = arg maxp∈P 〈u, p〉 and ω(u, P ) = maxp∈P 〈u, p〉.
The top-k tuples in P w.r.t. u is represented as Φk(u, P ) =
{ϕj(u, P ) : 1 ≤ j ≤ k}. Given a real number ε ∈ (0, 1),
the ε-approximate top-k tuples in P w.r.t. u is denoted as
Φk,ε(u, P ) = {p ∈ P : 〈u, p〉 ≥ (1− ε) · ωk(u, P )}, i.e., the
set of tuples whose scores are at least (1− ε) · ωk(u, P ).

For a subset Q ⊆ P and an integer k ≥ 1, we define the k-
regret ratio of Q over P for a utility vector u by rrk(u,Q) =

max
(
0, 1 − ω(u,Q)

ωk(u,P )

)
, i.e., the relative loss of replacing the

kth-ranked tuple in P by the top-ranked tuple in Q. Since it
is required to consider the preferences of all possible users,
our goal is to find a subset whose k-regret ratio is small for
an arbitrary utility vector. Therefore, we define the maximum
k-regret ratio of Q over P by mrrk(Q) = maxu∈U rrk(u,Q).
Intuitively, mrrk(Q) measures how well the top-ranked tuple
of Q approximates the kth-ranked tuple of P in the worst case.
For a real number ε ∈ (0, 1), Q is said to be a (k, ε)-regret set
of P iff mrrk(Q) ≤ ε, or equivalently, ϕ(u,Q) ∈ Φk,ε(u, P )
for any u ∈ U. By definition, it holds that mrrk(Q) ∈ [0, 1].

1The normalization does not affect our results because the maximum k-
regret ratio is scale-invariant [1].



Example 1. Fig. 1 illustrates a database P in R2
+ with 8

tuples {p1, . . . , p8}. For utility vectors u1 = (0.42, 0.91) and
u2 = (0.91, 0.42), their top-2 results are Φ2(u1, P ) = {p1, p2}
and Φ2(u2, P ) = {p2, p4}, respectively. Given a subset
Q1 = {p3, p4} of P , rr2(u1, Q1) = 1 − 0.749

0.98 ≈ 0.236 as
ω(u1, Q1) = 〈u1, p3〉 = 0.749 and ω2(u1, P ) = 〈u1, p2〉 =
0.98. Furthermore, mrr2(Q1) ≈ 0.444 because rr2(u,Q1) is
the maximum when u = (0.0, 1.0) with rr2(u,Q1) = 1− 5

9 ≈
0.444. Finally, Q2 = {p1, p2, p4} is a (2, 0)-regret set of P
since mrr2(Q2) = 0.

B. K-Regret Minimizing Set

Based on the notion of maximum k-regret ratio, we can
formally define the k-regret minimizing set (k-RMS) problem
in the following.

Definition 1 (k-Regret Minimizing Set). Given a database
P ⊂ Rd+ and a size constraint r ∈ Z+ (r ≥ d), the k-regret
minimizing set (k-RMS) problem returns a subset Q∗ ⊆ P
of at most r tuples with the smallest maximum k-regret ratio,
i.e., Q∗ = arg minQ⊆P : |Q|≤r mrrk(Q).

For any given k and r, we denote the k-RMS problem by
RMS(k, r) and the maximum k-regret ratio of the optimal result
Q∗ for RMS(k, r) by ε∗k,r. In particular, the r-regret query
studied in [1], [7], [11], [13] is a special case of our k-RMS
problem when k = 1, i.e., 1-RMS.

Example 2. Let us continue with the example in Fig. 1. For
a query RMS(2, 2) on P , we have Q∗ = {p1, p4} with ε∗2,2 =
mrr2(Q∗) ≈ 0.05 because {p1, p4} has the smallest maximum
2-regret ratio among all size-2 subsets of P .

In this paper, we focus on the fully-dynamic k-RMS prob-
lem. We consider an initial database P0 and a (possibly
countably infinite) sequence of operations ∆ = 〈∆1,∆2, . . .〉.
At each timestamp t (t ∈ Z+), the database is updated from
Pt−1 to Pt by performing an operation ∆t of one of the
following two types:
• Tuple insertion ∆t = 〈p,+〉: add a new tuple p to Pt−1,

i.e., Pt ← Pt−1 ∪ {p};
• Tuple deletion ∆t = 〈p,−〉: delete an existing tuple p

from Pt−1, i.e., Pt ← Pt−1 \ {p}.
Note that the update of a tuple can be processed by a deletion
followed by an insertion, and thus is not discussed separately
in this paper. Given an initial database P0, a sequence of
operations ∆, and a query RMS(k, r), we aim to keep track
of the result Q∗t for RMS(k, r) on Pt at any time t.

Fully-dynamic k-RMS faces two challenges. First, the k-
RMS problem is NP-hard [8]–[10] for any d ≥ 3. Thus,
the optimal solution of k-RMS is intractable for any database
with three or more attributes unless P=NP in both static and
dynamic settings. Hence, we will focus on maintaining an
approximate result of k-RMS in this paper. Second, existing k-
RMS algorithms can only work in the static setting. They must
recompute the result from scratch once an operation triggers
any update in the skyline (Note that since the result of k-
RMS is a subset of the skyline [1], [8], it remains unchanged
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for any operation on non-skyline tuples). However, frequent
recomputation leads to significant overhead and causes low
efficiency on highly dynamic databases. Therefore, we will
propose a novel method for fully-dynamic k-RMS that can
maintain a high-quality result for RMS(k, r) on a database
w.r.t. any tuple insertion and deletion efficiently.

III. THE FD-RMS ALGORITHM

In this section, we present our FD-RMS algorithm for k-
RMS in a fully dynamic setting. The general framework of
FD-RMS is illustrated in Fig. 2. The basic idea is to transform
fully-dynamic k-RMS to a dynamic set cover problem. Let us
consider how to compute the result of RMS(k, r) on database
Pt. First of all, we draw a set of m random utility vectors
{u1, . . . , um} from U and maintain the ε-approximate top-
k result of each ui (i ∈ [1,m]) on Pt, i.e., Φk,ε(ui, Pt).
Note that ε should be given as an input parameter of FD-
RMS and we will discuss how to specify its value at the end
of Section III. Then, we construct a set system Σ = (U ,S)
based on the approximate top-k results, where the universe
U = {u1, . . . , um} and the collection S consists of nt sets
(nt = |Pt|) each of which corresponds to one tuple in Pt.
Specifically, for each tuple p ∈ Pt, we define S(p) as a set
of utility vectors for which p is an ε-approximate top-k result
on Pt. Or formally, S(p) = {u ∈ U : p ∈ Φk,ε(u, Pt)} and
S = {S(p) : p ∈ Pt}. After that, we compute a result Qt
for RMS(k, r) on Pt using an (approximate) solution for set
cover on Σ. Let C ⊆ S be a set-cover solution of Σ, i.e.,⋃
S(p)∈C S(p) = U . We use the set Qt of tuples corresponding

to C, i.e., Qt = {p ∈ Pt : S(p) ∈ C}, as the result of
RMS(k, r) on Pt. Given the above framework, there are still
two challenges of updating the result of k-RMS in a fully
dynamic setting. Firstly, because the size of Qt is restricted
to r, it is necessary to always keep an appropriate value of m
over time so that |C| ≤ r. Secondly, the updates in approximate
top-k results triggered by tuple insertions and deletions in
the database lead to the changes in the set collection S.
Therefore, it is essential to maintain the set-cover solution C
over time for the changes in S. In fact, both challenges can
be treated as a dynamic set cover problem that keeps a set-
cover solution w.r.t. changes in both U and S. Therefore, we
will first introduce the background on dynamic set cover in
Section III-A. After that, we will elaborate on how FD-RMS
processes k-RMS in a fully dynamic setting using the dynamic
set cover algorithm in Section III-B.



A. Background: Dynamic Set Cover

Given a set system Σ = (U ,S), the set cover problem asks
for the smallest subset C∗ of S whose union equals to the
universe U . It is one of Karp’s 21 NP-complete problems [15],
and cannot be approximated to (1 − o(1)) · lnm (m = |U|)
unless P=NP [16]. A common method to find an approximate
set-cover solution is the greedy algorithm. Starting from C =
∅, it always adds the set that contains the largest number of
uncovered elements in U to C at each iteration until

⋃
S∈C S =

U . Theoretically, the solution C achieves an approximation
ratio of (1 + lnm), i.e., |C| ≤ (1 + lnm) · |C∗|. But obviously,
the greedy algorithm cannot dynamically update the set-cover
solution when the set system Σ is changed.

Recently, there are some theoretical advances on covering
and relevant problems (e.g., vertex cover, maximum matching,
set cover, and maximal independent set) in dynamic set-
tings [17]–[20]. Although these theoretical results have opened
up new ways to design dynamic set cover algorithms, they
cannot be directly applied to the update procedure of FD-RMS
because of two limitations. First, existing dynamic algorithms
for set cover [18], [19] can only handle the update in the
universe U but assume that the set collection S is not changed.
But in our scenario, the changes in top-k results lead to the
update of S. Second, due to the extremely large constants
introduced in their analyses, the solutions returned may be far
away from the optima in practice.

Therefore, we devise a more practical approach to dynamic
set cover that supports any update in both U and S. Our
basic idea is to introduce the notion of stability to a set-cover
solution. Then, we prove that any stable solution is O(logm)-
approximate (m = |U|) for set cover. Based on this result,
we are able to design an algorithm to maintain a set-cover
solution w.r.t. any change in Σ by guaranteeing its stability.

We first formalize the concept of stability of a set-cover
solution. Let C ⊆ S be a set-cover solution on Σ = (U ,S).
We define an assignment φ from each element u ∈ U to a
unique set S ∈ C that contains u (or formally, φ : U → C).
For each set S ∈ C, its cover set cov(S) is defined as the set of
elements assigned to S, i.e., cov(S) = {u ∈ U : φ(u) = S}.
By definition, the cover sets of different sets in C are mutually
disjoint from each other. Then, we can organize the sets in C
into hierarchies according to the numbers of elements covered
by them. Specifically, we put a set S ∈ C in a higher level if it
covers more elements and vice versa. We associate each level
Lj (j ∈ N) with a range of cover number2 [2j , 2j+1). Each
set S ∈ C is assigned to a level Lj if 2j ≤ |cov(S)| < 2j+1.
We use Aj to denote the set of elements assigned to any set in
Lj , i.e., Aj = {u ∈ U : φ(u) ∈ Lj}. Moreover, the notations
L with subscripts, i.e., L>j or L≥j and L<j or L≤j , represent
the sets in all the levels above (excl. or incl.) and below Lj
(excl. or incl.), respectively. The same subscripts are also used
for A. Based on the above notions, we formally define the
stability of a set-cover solution in Definition 2 and give its
approximation ratio in Theorem 1.

2Here, the base 2 may be replaced by any constant greater than 1.

Definition 2 (Stable Set-Cover Solution). A solution C for set
cover on Σ = (U ,S) is stable if:

1) For each set S ∈ Lj , 2j ≤ |cov(S)| < 2j+1;
2) For each level Lj , there is no S ∈ S s.t. |S∩Aj | ≥ 2j+1.

Theorem 1. If a set-cover solution C is stable, then it satisfies
that |C| ≤ O(logm) · |C∗|.
Proof. Let OPT = |C∗|, ρ∗ = m

OPT
, and j∗ be the level index

such that 2j
∗ ≤ ρ∗ < 2j

∗+1. According to Condition (1) of
Definition 2, we have |cov(S)| ≥ 2j

∗
for any S ∈ L≥j∗ . Thus,

it holds that |L≥j∗ | ≤ |A≥j∗ |
2j∗

≤ m
2j∗
≤ ρ∗

2j∗
· OPT ≤ 2 · OPT.

For some level Lj with j < j∗, according to Condition (2)
of Definition 2, any S ∈ S covers at most 2j+1 elements
in Aj . Hence, S∗ needs at least |Aj |

2j+1 sets to cover Aj , i.e.,
OPT ≥ |Aj |

2j+1 . Since |cov(S)| ≥ 2j for each S ∈ Lj , it holds
that |Lj | ≤ |Aj |

2j ≤ 2 · OPT. As 1 ≤ |cov(S)| ≤ m, the range
of level index is [0, log2m]. Thus, the number of levels below
Lj∗ is at most log2m. To sum up, we prove that

|C| = |L≥j∗ |+ |L<j∗ | ≤ (2 + 2 log2m) · OPT

and conclude the proof.

We then describe our method for dynamic set cover in
Algorithm 1. First of all, we use GREEDY to initialize a set-
cover solution C on Σ (Line 1). As shown in Lines 13–19,
GREEDY follows the classic greedy algorithm for set cover,
and the only difference is that all the sets in C are assigned to
different levels according to the sizes of their cover sets. Then,
the procedure of updating C for set operation σ is shown in
Lines 2–12. Our method supports four types of set operations
to update Σ as follows: σ = (u, S,±), i.e., to add/remove
an element u to/from a set S ∈ S; σ = (u,U ,±), i.e., to
add/remove an element u to/from the universe U . We identify
three cases in which the assignment of u must be changed
for σ. When σ = (u, S,−) and φ(u) = S, it will reassign
u to another set containing u; For σ = (u,U ,±), it will
add or delete the assignment of u accordingly. After that, for
each set with some change in its cover set, it calls RELEVEL
(e.g., Lines 5, 8, and 11) to check whether the set should
be moved to a new level based on the updated size of its
cover set. The detailed procedure of RELEVEL is given in
Lines 20–27. Finally, STABILIZE (Line 12) is always called
for every σ to guarantee the stability of C since C may become
unstable due to the changes in Σ and φ(u). The procedure of
stabilization is presented in Lines 28–32. It finds all sets that
violate Condition (2) of Definition 2 and adjust C for these
sets until no set should be adjusted anymore.

Theoretical Analysis: Next, we will analyze Algorithm 1
theoretically. We first show that a set-cover solution returned
by GREEDY is stable. Then, we prove that STABILIZE con-
verges to a stable solution in finite steps.

Lemma 1. The solution C returned by GREEDY is stable.

Proof. First of all, it is obvious that each set S ∈ C is assigned
to the correct level according to the size of its cover set and



Algorithm 1: DYNAMIC SET COVER

Input : Set system Σ, set operation σ
Output : Stable set-cover solution C
/* compute an initial solution C on Σ */

1 C ← GREEDY(Σ);
/* update C for σ = (u, S,±) or (u,U ,±) */

2 if σ = (u, S,−) and u ∈ cov(S) then
3 cov(S)← cov(S) \ {u};
4 cov(S+)← cov(S+) ∪ {u} for S+ ∈ S s.t. u ∈ S+;
5 RELEVEL(S) and RELEVEL(S+);
6 else if σ = (u,U ,+) then
7 cov(S+)← cov(S+) ∪ {u} for S+ ∈ S s.t. u ∈ S+;
8 RELEVEL(S+);
9 else if σ = (u,U ,−) then

10 cov(S−)← cov(S−) \ {u} if u ∈ cov(S−);
11 RELEVEL(S−);

12 STABILIZE(C);

13 Function GREEDY(Σ)
14 I ← U , Lj ← ∅ for every j ≥ 0;
15 while I 6= ∅ do
16 S∗ ← arg maxS∈S |I ∩ S|, cov(S∗)← I ∩ S∗;
17 Add S∗ to Lj s.t. 2j ≤ |cov(S∗)| < 2j+1;
18 I ← I \ cov(S∗);

19 return C ← ⋃
j≥0 Lj ;

20 Function RELEVEL(S)
21 if cov(S) = ∅ then
22 C ← C \ {S};
23 else
24 Let Lj be the current level of S;
25 if |cov(S)| < 2j or |cov(S)| ≥ 2j+1 then
26 Let j′ be the index s.t. 2j′ ≤ |cov(S)| < 2j′+1;
27 Move S from Lj to Lj′ ;

28 Function STABILIZE(C)
29 while ∃S ∈ S and Lj s.t. |S ∩Aj | ≥ 2j+1 do
30 cov(S)← cov(S) ∪ (S ∩Aj), RELEVEL(S);
31 while ∃S′ ∈ C : cov(S) ∩ cov(S′) 6= ∅ do
32 cov(S′)← cov(S′) \ cov(S), RELEVEL(S′);

Condition (1) of Definition 2 is satisfied. Then, we sort the sets
in C as S∗1 , . . . , S

∗
|C| by the order in which they are added. Let

S∗i be the set s.t. |cov(S∗i )| < 2j+1 and |cov(S∗i′)| ≥ 2j+1

for any i′ < i, i.e., S∗i is the first set added to level Lj .
We have |I ∩ S∗i | = |cov(S∗i )| < 2j+1 where I is the set of
uncovered elements before S∗i is added to C. If there were a set
S ∈ S such that |S∩Aj | > 2j+1, we would acquire |I ∩S| ≥
|S ∩ Aj | > 2j+1 and |I ∩ S| > |I ∩ S∗i |, which contradicts
with Line 16 of Algorithm 2. Thus, C must satisfy Condition
(2) of Definition 2. To sum up, C is a stable solution.

Lemma 2. The procedure STABILIZE converges to a stable
solution in O(m logm) steps.

Proof. For an iteration of the while loop (i.e., Lines 28–32)
that picks a set S and a level Lj , the new level Lj′ of S always
satisfies j′ > j. Accordingly, all the elements in cov(S) are
moved from A≤j to Aj′ . At the same time, no element in
A≥j′ is moved to lower levels. Since each level contains at

Algorithm 2: INITIALIZATION

Input : Query RMS(k, r), initial database P0, parameters
ε ∈ (0, 1) and M ∈ Z+ (M > r)

Output : Result Q0 of RMS(k, r) on P0

1 Draw M vectors {ui ∈ U : i ∈ [1,M ]} where the first d are
the standard basis of Rd

+ and the remaining are uniformly
sampled from U;

2 Compute Φk,ε(ui, P0) of every ui where i ∈ [1,M ];
3 L← r, H ←M , m← (L+H)/2;
4 while true do
5 foreach p ∈ P0 do
6 S(p)← {ui : i ∈ [1,m] ∧ p ∈ Φk,ε(ui, P0)};
7 Σ = (U ,S) where U = {ui : i ∈ [1,m]} and

S = {S(p) : p ∈ P0});
8 C ← GREEDY(Σ);
9 if |C| < r then

10 L← m+ 1, m← (L+H)/2;
11 else if |C| > r then
12 H ← m− 1, m← (L+H)/2;
13 else if |C| = r or m = M then
14 break;

15 return Q0 ← {p ∈ P0 : S(p) ∈ C};

most m elements (|Aj | ≤ m), STABILIZE moves at most m
elements across O(logm) levels. Therefore, it must terminate
in O(m logm) steps. Furthermore, after termination, the set-
cover solution C must satisfy both conditions in Definition 2.
Thus, we conclude the proof.

The above two lemmas can guarantee that the set-cover
solution provided by Algorithm 1 is always stable after any
change in the set system. In the next subsection, we will
present how to use it for fully-dynamic k-RMS.

B. Algorithmic Description

Next, we will present how FD-RMS maintains the k-RMS
result by always keeping a stable set-cover solution on a
dynamic set system built from the approximate top-k results
over tuple insertions and deletions.

Initialization: We first present how FD-RMS computes
an initial result Q0 for RMS(k, r) on P0 from scratch in
Algorithm 2. There are two parameters in FD-RMS: the
approximation factor of top-k results ε and the upper bound
of sample size M . The lower bound of sample size is set
to r because we can always find a set-cover solution of
size equal to the size of the universe (i.e., m in FD-RMS).
First of all, it draws M utility vectors {u1, . . . , uM}, where
the first d vectors are the standard basis of Rd+ and the
remaining are uniformly sampled from U, and computes the ε-
approximate top-k result of each vector. Subsequently, it finds
an appropriate m ∈ [r,M ] so that the size of the set-cover
solution on the set system Σ built on U = {u1, . . . , um} is
exactly r. The detailed procedure is as presented in Lines 3–
14. Specifically, it performs a binary search on range [r,M ]
to determine the value of m. For a given m, it first constructs
a set system Σ according to Lines 5–7. Next, it runs GREEDY
in Algorithm 1 to compute a set-cover solution C on Σ. After



Algorithm 3: UPDATE

Input : Query RMS(k, r), database Pt−1, operation ∆t,
set-cover solution C

Output : Result Qt for RMS(k, r) on Pt

1 Update Pt−1 to Pt w.r.t. ∆t;
2 for i← 1, . . . ,M do
3 Update Φk,ε(ui, Pt−1) to Φk,ε(ui, Pt) w.r.t. ∆t;

4 Maintain Σ based on Φk,ε(ui, Pt);
5 if ∆t = 〈p,+〉 then
6 foreach u ∈ S(p) do
7 if u ∈ cov(S(p′)) and u /∈ S(p′) then
8 Update C for σ = (u, S(p′),−);

9 else if ∆t = 〈p,−〉 then
10 Delete S(p) from C if S(p) ∈ C;
11 foreach u ∈ cov(S(p)) do
12 Update C for σ = (u, S(p),−);

13 if |C| 6= r then
14 m, C ← UPDATEM(Σ);

15 return Qt ← {p ∈ Pt : S(p) ∈ C};

that, if |C| 6= r and m < M , it will refresh the value of m and
rerun the above procedures; Otherwise, m is determined and
the current set-cover solution C will be used to compute Q0 for
RMS(k, r). Finally, it returns all the tuples whose corresponding
sets are included in C as the result Q0 for RMS(k, r) on P0

(Line 15).
Update: The procedure of updating the result of RMS(k, r)

w.r.t. ∆t is shown in Algorithm 3. First, it updates the database
from Pt−1 to Pt and the approximate top-k result from
Φk,ε(ui, Pt−1) to Φk,ε(ui, Pt) for each ui w.r.t. ∆t (Lines 1–
3). Then, it also maintains the set system Σ according to the
changes in approximate top-k results (Line 4). Next, it updates
the set-cover solution C for the changes in Σ as follows.
• Insertion: The procedure of updating C w.r.t. an insertion

∆t = 〈p,+〉 is presented in Lines 5–8. The changes in
top-k results lead to two updates in Σ: (1) the insertion
of S(p) to S and (2) a series of deletions each of which
represents a tuple p′ is deleted from Φk,ε(u, Pt) due to
the insertion of p. For each deletion, it needs to check
whether u is previously assigned to S(p′). If so, it will
update C by reassigning u to a new set according to
Algorithm 1 because u has been deleted from S(p′).

• Deletion: The procedure of updating C w.r.t. a deletion
∆t = 〈p,−〉 is shown in Lines 9–12. In contrast to an
insertion, the deletion of p leads to the removal of S(p)
from S and a series of insertions. Thus, it must delete
S(p) from C. Next, it will reassign each u ∈ cov(S(p))
to a new set according to Algorithm 1.

Then, it checks whether the size of C is still r. If not, it will
update the sample size m and the universe U so that the set-
cover solution C consists of r sets. The procedure of updating
m and U as well as maintaining C on the updated U is shown
in Algorithm 4. When |C| < r, it will add new utility vectors
from um+1, and so on, to the universe and maintain C until
|C| = r or m = M . On the contrary, if |C| > r, it will drop

Algorithm 4: UPDATEM(Σ)

Output : Updated sample size m and solution C on Σ
1 if |C| < r then
2 while m < M and |C| < r do
3 m← m+ 1, U ← U ∪ {um};
4 foreach p ∈ Φk,ε(um, Pt) do
5 S(p)← S(p) ∪ {um};
6 Update C for σ = (um,U ,+);

7 else if |C| > r then
8 while |C| > r do
9 U ← U \ {um};

10 foreach p ∈ Φk,ε(um, Pt) do
11 S(p)← S(p) \ {um};
12 Update C for σ = (um,U ,−);
13 m← m− 1;

14 return m, C;

existing utility vectors from um, and so on, from the universe
and maintain C until |C| = r. Finally, the updated m and C
are returned. After all above procedures, it also returns Qt
corresponding to the set-cover solution C on the updated Σ as
the result of RMS(k, r) on Pt.

Example 3. Fig. 3 illustrates an example of using FD-RMS
to process a k-RMS with k = 1 and r = 3. Here, we set
ε = 0.002 and M = 9. In Fig. 3(b), we show how to compute
Q0 for RMS(1, 3) on P0 = {p1, . . . , p8}. It first uses m =
(3 + 9)/2 = 6 and runs GREEDY to get a set-cover solution
C = {S(p1), S(p2), S(p4)}. Since |C| = 3, it does not change
m anymore and returns Q0 = {p1, p2, p4} for RMS(1, 3) on
P0. Then, the result of FD-RMS after the update procedures
for ∆1 = 〈p9,+〉 as Algorithm 3 is shown in Fig. 3(c). For
RMS(1, 3) on P1 = {p1, . . . , p9}, the result Q1 is updated to
{p1, p4, p9}. Finally, after the update procedures for ∆2 =
〈p1,−〉, as shown in Fig. 3(d), m is updated to 4 and the
result Q2 for RMS(1, 3) on P2 is {p4, p7, p9}.

Theoretical Bound: The theoretical bound of FD-RMS is
analyzed as follows. First of all, we need to verify the set-
cover solution C maintained by Algorithms 2–4 is always
stable. According to Lemma 1, it is guaranteed that the set-
cover solution C returned by Algorithm 2 is stable. Then, we
need to show it remains stable after the update procedures of
Algorithms 3 and 4. In fact, both algorithms use Algorithm 1
to maintain the set-cover solution C. Hence, the stability of C
can be guaranteed by Lemma 2 since STABILIZE is always
called after every update in Algorithm 1.

Next, we indicate the relationship between the result of k-
RMS and the set-cover solution and provide the bound on the
maximum-k regret ratio of Qt returned by FD-RMS on Pt.

Theorem 2. The result Qt of FD-RMS is a
(
k,O(ε∗k,r′ + δ)

)
-

regret set of Pt with high probability where r′ = O( r
logm )

and δ = O(m−
1
d ).

Proof. Given a parameter δ > 0, a δ-net [9] of U is a finite
set U ⊂ U where there exists a vector u with ‖u−u‖ ≤ δ for
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p6 0.2 0.7

p7 0.3 0.9
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u1 u2 u3 u4 u5 u6 u7 u8 u9

p9p7

(d) Delete tuple p1

Fig. 3. An example of using FD-RMS to process a k-RMS with k = 1 and r = 3

any u ∈ U. Since a random set of O( 1
δd−1 log 1

δ ) vectors in U
is a δ-net with probability at least 1

2 [9], one can generate a
δ-net of size O( 1

δd−1 log 1
δ ) with high probability by random

sampling from U in O(1) repeated trials.
Let B be the standard basis of Rd+ and U be a δ-net of

U where B = {u1, . . . , ud} ⊂ U . Since p ∈ Pt is scaled to
p[i] ≤ 1 for i ∈ [1, d], we have ‖p‖ ≤

√
d. According to

the definition of δ-net, there exists a vector u ∈ U such that
‖u− u‖ ≤ δ for every u ∈ U. Hence, for any tuple p ∈ Pt,

|〈u, p〉 − 〈u, p〉| = |〈u− u, p〉| ≤ ‖u− u‖ · ‖p‖ ≤ δ ·
√
d (1)

Moreover, as Qt corresponds to a set-cover solution C on Σ,
there exists a tuple q ∈ Qt such that 〈u, q〉 ≥ (1−ε)·ωk(u, Pt)
for any u ∈ U . We first consider a basis vector ui ∈ U for
some i ∈ [1, d]. We have ω(ui, Qt) ≥ (1− ε) ·ωk(ui, Pt) and
thus ω(ui, Qt) ≥ (1− ε) · c where c = mini∈[1,d] ωk(ui, Pt).
Since ‖u‖ = 1, there must exist some i with u[i] ≥ 1√

d
for any

u ∈ U. Therefore, it holds that ω(u,Qt) ≥ ω(ui, Qt) · 1√
d
≥

(1− ε) · c√
d

for any u ∈ U.
Next, we discuss two cases for u ∈ U separately.

• Case 1 (ωk(u, Pt) ≤ c√
d

): In this case, there always
exists q ∈ Qt such that 〈u, q〉 ≥ (1− ε) · ωk(u, Pt).

• Case 2 (ωk(u, Pt) >
c√
d

): Let u ∈ U be the utility vector
such that ‖u− u‖ ≤ δ. Let Φk(u, Pt) = {p1, . . . , pk} be
the top-k results of u on Pt. According to Equation 1, we
have 〈u, pi〉 ≥ 〈u, pi〉 − δ ·

√
d for all i ∈ [1, k] and thus

〈u, pi〉 ≥ ωk(u, Pt)− δ ·
√
d. Thus, there exists k tuples

in Pt with scores at least ωk(u, Pt) − δ ·
√
d for u. We

can acquire ωk(u, Pt) ≥ ωk(u, Pt) − δ ·
√
d. Therefore,

there exists q ∈ Qt such that

〈u, q〉 ≥ 〈u, q〉 − δ ·
√
d ≥ (1− ε) · ωk(u, Pt)− δ ·

√
d

≥ (1− ε) ·
(
ωk(u, Pt)− δ ·

√
d
)
− δ ·

√
d

≥
(
1− ε− (1− ε)dδ

c
− dδ

c

)
· ωk(u, Pt)

≥ (1− ε− 2dδ

c
) · ωk(u, Pt)

Considering both cases, we have ω(u,Qt) ≥ (1 − ε − 2dδ
c ) ·

ωk(u, Pt) for any u ∈ U and thus mrrk(Qt) over Pt is at most
ε + 2dδ

c . In all of our experiments, the value of c is always
between 0.5 and 1, and thus we regard c as a constant in this
proof. Therefore, Qt is a

(
k,O(ε + δ)

)
-regret set of Pt with

high probability for any c, d = O(1). Moreover, since FD-
RMS uses m utility vectors including B to compute Qt and
m = O( 1

δd−1 log 1
δ ), we can acquire δ = O(m−

1
d ).

Finally, because any (k, ε)-regret set of Pt corresponds to
a set-cover solution on Σ (otherwise, the regret ratio is larger
than ε for some utility vector) and the size of the optimal
set-cover solution on Σ is O( r

logm ) according to Theorem 1,
the maximum k-regret ratio of any size-r′ subset of Pt is at
least ε where r′ = O( r

logm ), i.e., ε∗k,r′ ≥ ε. Therefore, we
conclude that Qt is a

(
k,O(ε∗k,r′ + δ)

)
-regret set of Pt with

high probability.

Finally, the upper bound of the maximum k-regret ratio of
Qt returned by FD-RMS on Pt is analyzed in the following
corollary derived from the result of Theorem 2.

Corollary 1. It satisfies that mrrk(Qt) = O(r−
1
d ) with high

probability if we assume ε = O(m−
1
d ).

Proof. As indicated in the proof of Theorem 2, U = {u1, u2,
. . . , um} is a δ-net of U where δ = O(m−

1
d ) with high

probability. Moreover, we have mrrk(Qt) = O(ε + δ) and
thus mrrk(Qt) = O(m−

1
d ) if ε = O(m−

1
d ). In addition, at

any time, U must have at least r utility vectors, i.e., m ≥ r.
Thus, we have mrrk(Qt) = O(r−

1
d ) since m−

1
d ≤ r−

1
d for

any d > 1 and conclude the proof.

Since ε is tunable in FD-RMS, by trying different values
of ε, we can always find an appropriate one such that ε =
O(m−

1
d ). Hence, from Corollary 1, we show that the upper

bound of FD-RMS is slightly higher than that of CUBE [1]
and SPHERE [13] (i.e., O(r−

1
d−1 )) under a mild assumption.

Complexity Analysis: First, we use tree-based methods
to maintain the approximate top-k results for FD-RMS (see
Section III-C for details). Here, the time complexity of each
top-k query is O(n0) where n0 = |P0| because the size of
ε-approximate top-k tuples can be O(n0). Hence, it takes
O(M · n0) time to compute the top-k results. Then, GREEDY
runs O(r) iterations to get a set-cover solution. At each
iteration, it evaluates O(n0) sets to find S∗ in Line 16 of Al-
gorithm 1. Thus, the time complexity of GREEDY is O(r ·n0).
FD-RMS calls GREEDY O(logM) times to determine the
value of m. Therefore, the time complexity of computing Q0

on P0 is O
(
(M + r logM) · n0

)
. In Algorithm 3, the time

complexity of updating the top-k results and set system Σ is
O
(
u(∆t) · nt

)
where u(∆t) is the number of utility vectors



whose top-k results are changed by ∆t. Then, the maximum
number of reassignments in cover sets is |S(p)| for ∆t, which
is bounded by O(u(∆t)). In addition, the time complexity of
STABILIZE is O(m logm) according to Lemma 2. Moreover,
the maximum difference between the old and new values of
m is bounded by O(m). Hence, the total time complexity of
updating Qt w.r.t. ∆t is O

(
u(∆t) · nt +m2 logm

)
.

C. Implementation Issues

Index Structures: As indicated in Line 2 of Algorithm 2
and Line 3 of Algorithm 3, FD-RMS should compute the ε-
approximate top-k result of each ui (i ∈ [1,M ]) on P0 and
update it w.r.t. ∆t. Here, we elaborate on our implementation
for top-k maintenance. In order to process a large number
of (approximate) top-k queries with frequent updates in the
database, we implement a dual-tree [21]–[23] that comprises
a tuple index TI and a utility index UI.

The goal of TI is to efficiently retrieve the ε-approximate
top-k result Φk,ε(u, Pt) of any utility vector u on the up-to-
date Pt. Hence, any space-partitioning index, e.g., k-d tree [24]
and Quadtree [25], can serve as TI for top-k query processing.
In practice, we use k-d tree as TI. We adopt the scheme
of [26] to transform a top-k query in Rd into a kNN query in
Rd+1. Then, we implement the standard top-down methods to
construct TI on P0 and update it w.r.t. ∆t. The branch-and-
bound algorithm is used for top-k queries on TI.

The goal of UI is to cluster the sampled utility vectors so
as to efficiently find each vector whose ε-approximate top-
k result is updated by ∆t. Since the top-k results of linear
functions are merely determined by directions, the basic idea
of UI is to cluster the utilities with high cosine similarities
together. Therefore, we adopt an angular-based binary space
partitioning tree called cone tree [21] as UI. We generally
follow Algorithms 8–9 in [21] to build UI for {u1, . . . , uM}.
We implement a top-down approach based on Section 3.2
of [22] to update the top-k results affected by ∆t.

Parameter Tuning: Now, we discuss how to specify the
values of ε, i.e., the approximation factor of top-k queries, and
M , i.e., the upper bound of m, in FD-RMS. In general, the
value of ε has direct effect on m as well as the efficiency and
quality of results of FD-RMS. In particular, if ε is larger, the
ε-approximate top-k result of each utility vector will include
more tuples and the set system built on top-k results will
be more dense. As a result, to guarantee the result size to
be exactly r, FD-RMS will use more utility vectors (i.e., a
larger m) for a larger ε. Therefore, a smaller ε leads to higher
efficiency and lower solution quality due to smaller m and
larger δ, and vice versa. In our implementation, we use a trial-
and-error method to find appropriate values of ε and M : For
each query RMS(k, r) on a dataset, we test different values of
ε chosen from [0.0001, . . . , 0.1024] and, for each value of ε,
M is set to the smallest one chosen from [210, . . . , 220] that
always guarantees m < M . If the result size is still smaller
than r when m = M = 220, we will not use larger M anymore
due to efficiency issue. The values of ε and M that strike the
best balance between efficiency and quality of results will be

used. In Fig. 5, we present how the value of ε affects the
performance of FD-RMS empirically.

IV. EXPERIMENTS

In this section, we evaluate the performance of FD-RMS
on real-world and synthetic datasets. We first introduce the
experimental setup in Section IV-A. Then, we present the
experimental results in Section IV-B.

A. Experimental Setup

Algorithms: The algorithms compared are listed as follows.
• GREEDY: the greedy algorithm for 1-RMS in [1].
• GREEDY∗: the randomized greedy algorithm for k-RMS

when k > 1 proposed in [8].
• GEOGREEDY: a variation of GREEDY for 1-RMS in [7].
• DMM-RRMS: a discretized matrix min-max based algo-

rithm for 1-RMS in [11].
• ε-KERNEL: computing an ε-kernel coreset as the k-RMS

result [9], [10] directly.
• HS: a hitting-set based algorithm for k-RMS in [9].
• SPHERE: an algorithm that combines ε-KERNEL with

GREEDY for 1-RMS in [13].
• URM: a k-MEDOID clustering based algorithm for 1-

RMS in [14]. Following [14], we use DMM-RRMS to
compute an initial solution for URM.

• FD-RMS: our fully-dynamic k-RMS algorithm proposed
in Section III.

The algorithms that only work in two dimensions are not
compared. All the above algorithms except FD-RMS and
URM3 cannot directly work in a fully dynamic setting. In our
experiments, they rerun from scratch to compute the up-to-
date k-RMS result once the skyline is updated by any insertion
or deletion. In addition, the algorithms that are not applicable
when k > 1 are not compared for the experiments with varying
k. Since ε-KERNEL and HS are proposed for min-size k-RMS
that returns the smallest subset whose maximum k-regret ratio
is at most ε, we adapt them to our problem by performing a
binary search on ε in the range (0, 1) to find the smallest value
of ε that guarantees the result size is at most r.

Our implementation of FD-RMS and URM is in Java 8
and published on GitHub4. We used the C++ implementations
of baseline algorithms published by authors and followed the
default parameter settings as described in the original papers.
All the experiments were conducted on a server running
Ubuntu 18.04.1 with a 2.3GHz processor and 256GB memory.

Datasets: The datasets we use are listed as follows.
• BB5 is a basketball dataset that contains 21, 961 tuples,

each of which represents one player/season combination
with 5 attributes such as points and rebounds.

• AQ6 includes hourly air-pollution and weather data from
12 monitoring sites in Beijing. It has 382, 168 tuples and

3The original URM in [14] is also a static algorithm. We extend URM to
support dynamic updates as described in the technical report [27].

4https://github.com/yhwang1990/dynamic-rms
5www.basketball-reference.com
6archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data



TABLE I
STATISTICS OF DATASETS

Dataset n d #skylines updates (%)
BB 21, 961 5 200 1.07
AQ 382, 168 9 21, 065 5.60
CT 581, 012 8 77, 217 13.4

Movie 13, 176 12 3, 293 26.5
Indep 100K–1M 2–10 see Fig. 4

AntiCor 100K–1M 2–10 see Fig. 4
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Fig. 4. Sizes and update rates of the skylines of synthetic datasets

each tuple has 9 attributes including the concentrations of
6 air pollutants like PM2.5, as well as 3 meteorological
parameters like temperature.

• CT7 contains the cartographic data of forest covers in
the Roosevelt National Forest of northern Colorado. It
has 581, 012 tuples and we choose 8 numerical attributes,
e.g., elevation and slope, for evaluation.

• Movie8 is the tag genome dataset published by Movie-
Lens. We extract the relevance scores of 13, 176 movies
and 12 tags for evaluation. Each tuple represents the
relevance scores of 12 tags to a movie.

• Indep is generated as described in [6]. It is a set of
uniform points on the unit hypercube where different
attributes are independent of each other.

• AntiCor is also generated as described in [6]. It is a set
of random points with anti-correlated attributes.

The statistics of datasets are reported in Table I. Here, n
is the number of tuples; d is the dimensionality; #skylines is
the number of tuples on the skyline; and updates (%) is the
percentage of tuple operations that trigger any update on the
skyline. Note that we generated several Indep and AntiCor
datasets by varying n from 100K to 1M and d from 2 to 10 for
scalability tests. By default, we used the ones with n = 100K
and d = 6. The sizes and update rates of the skylines of
synthetic datasets are shown in Fig. 4.

Workloads: The workload of each experiment was gener-
ated as follows: First, we randomly picked 50% of tuples as
the initial dataset P0; Second, we inserted the remaining 50%
of tuples one by one into the dataset to test the performances
for insertions; Third, we randomly deleted 50% of tuples one
by one from the dataset to test the performances for deletions.
It is guaranteed that the orders of operations kept the same
for all algorithms. The k-RMS results were recorded 10 times
when 10%, 20%, . . . , 100% of the operations were performed.

7archive.ics.uci.edu/ml/datasets/covertype
8grouplens.org/datasets/movielens

Performance Measures: The efficiency of each algorithm
was measured by average update time, i.e., the average wall-
clock time used per operation. For the static algorithms, we
only took the time for k-RMS computation into account and
ignored the time for skyline maintenance for fair comparison.
The quality of results was measured by the maximum k-regret
ratio (mrrk) for a given size constraint r, and, of course, the
smaller mrrk the better. To compute mrrk(Q) of a result Q,
we generated a test set of 500K random utility vectors and
used the maximum regret value found as our estimate. Since
the k-RMS results were recorded 10 times for each query, we
reported the average of the maximum k-regret ratios of 10
results for evaluation.

B. Experimental Results

Effect of parameter ε on FD-RMS: In Fig. 5, we present
the effect of the parameter ε on the performance of FD-RMS.
We report the update time and maximum regret ratios of FD-
RMS for k = 1 and r = 50 on each dataset (except r =
20 on BB) with varying ε. We use the method described in
Section III-C to set the value of M for each value of ε. First of
all, the update time of FD-RMS increases significantly with ε.
This is because both the time to process an ε-approximate top-
k query and the number of top-k queries (i.e., M ) grow with ε,
which requires a larger overhead to maintain both top-k results
and set-cover solutions. Meanwhile, the quality of results first
becomes better when ε is larger but then could degrade if ε
is too large. The improvement in quality with increasing ε is
attributed to larger m and thus smaller δ. However, once ε is
greater than the maximum regret ratio ε∗k,r of the optimal result
(whose upper bound can be inferred from practical results),
e.g., ε = 0.0512 on BB, the result of FD-RMS will contain less
than r tuples and its maximum regret ratio will be close to ε no
matter how large m is. To sum up, by setting ε to the one that
is slightly lower than ε∗k,r among [0.0001, . . . , 0.1024], FD-
RMS performs better in terms of both efficiency and solution
quality, and the values of ε in FD-RMS are decided in this
way for the remaining experiments.

Effect of result size r: In Fig. 6, we present the per-
formance of different algorithms for 1-RMS (a.k.a. r-regret
query) with varying r. In particular, r is ranged from 10 to
100 on each dataset (except BB where r is ranged from 5
to 25). In general, the update time of each algorithm grows
while the maximum regret ratios drop with increasing r. But,
for FD-RMS, it could take less update time when r is larger in
some cases. The efficiency of FD-RMS is positively correlated
with m but negatively correlated with ε. On a specific dataset,
FD-RMS typically chooses a smaller ε when r is large, and
vice versa. When ε is smaller, m may decrease even though
r is larger. Therefore, the update time of FD-RMS decreases
with r in some cases because a smaller ε is used. Among all
algorithms tested, GREEDY is the slowest and fails to provide
results within one day on AQ, CT, and AntiCor when r > 80.
GEOGREEDY runs much faster than GREEDY while having
equivalent quality on low-dimensional data. However, it cannot
scale up to high dimensions (i.e., d > 7) because the cost
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Fig. 5. Performance of FD-RMS with varying ε (k = 1; r = 20 for BB and r = 50 for other datasets). Note that the red line represents the update time
and the blue bars denote the maximum regret ratios.
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Fig. 6. Update time and maximum regret ratios with varying the result size r (k = 1)

of finding happy points grows significantly with d. DMM-
RRMS suffers from two drawbacks: (1) it also cannot scale
up to d > 7 due to huge memory consumption; (2) its solution
quality is not competitive when r ≥ 50 because of the sparsity
of space discretization. The solution quality of ε-KERNEL is
generally inferior to any other algorithm because the size of an
ε-kernel coreset is much larger than the size of the minimum
(1, ε)-regret set. Although HS provides results of good quality
in most cases, it runs several orders of magnitude slower
than FD-RMS. SPHERE demonstrates better performance than
other static algorithms. Nevertheless, its efficiency is still much
lower than FD-RMS, especially on datasets with large skyline
sizes, e.g., CT and AntiCor, where FD-RMS runs up to three
orders of magnitude faster. URM shows good performance in
both efficiency and solution quality for small r (e.g., r ≤ 20)
and skyline sizes (e.g., on BB and Indep). However, it scales
poorly to large r and skyline sizes because the convergence
of k-MEDOID becomes very slow and the number of linear
programs for regret computation grows rapidly when r and
and skyline sizes increase. In addition, URM does not provide
high-quality results in many cases since k-MEDOID cannot
escape from local optima. To sum up, FD-RMS outperforms
all other algorithms for fully-dynamic 1-RMS in terms of
efficiency. Meanwhile, the maximum regret ratios of the results
of FD-RMS are very close (the differences are less than 0.01
in almost all cases) to the best of static algorithms.

Effect of k: The results for k-RMS with varying k from 1
to 5 are illustrated in Fig. 7. We only compare FD-RMS with
GREEDY∗, ε-KERNEL, and HS because other algorithms are

not applicable to the case when k > 1. We set r = 10 for BB
and Indep and r = 50 for the other datasets. The results of
GREEDY∗ for k > 1 are only available on BB and Indep. For
the other datasets, GREEDY∗ fails to return any result within
one day when k > 1. We can see all algorithms run much
slower when k increases. For FD-RMS, lower efficiencies are
caused by higher cost of maintaining top-k results. HS and
ε-KERNEL must consider all tuples in the datasets instead
of only skylines to validate that the maximum k-regret ratio
is at most ε when k > 1. For GREEDY∗, the number of
linear programs to compute k-regret ratios increases drastically
with k. Meanwhile, the maximum k-regret ratios drop with k,
which is obvious according to its definition. FD-RMS achieves
speedups of up to four orders of magnitude than the baselines
on all datasets. At the same time, the solution quality of FD-
RMS is also better on all datasets except Movie and CT, where
the results of HS are of slightly higher quality in some cases.

Scalability: Finally, we evaluate the scalability of different
algorithms w.r.t. the dimensionality d and dataset size n. To
test the impact of d, we fix n = 100K, k = 1, r = 50,
and vary d from 2 to 10. The performance with varying d is
shown in Fig. 8(a)–8(b). Both the update time and maximum
regret ratios of all algorithms increase dramatically with d.
Although almost all algorithms show good performance when
d = 2, 3, most of them quickly become very inefficient in high
dimensions. Nevertheless, FD-RMS has a significantly better
scalability w.r.t. d: It achieves speedups of at least 100 times
over any other algorithm while providing results of equivalent
quality when d ≥ 7.
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Fig. 7. Update time and maximum regret ratios with varying k (r = 10 for BB and Indep; r = 50 for other datasets)
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Fig. 8. Scalability with varying the dimensionality d and dataset size n (k = 1, r = 50)

To test the impact of n, we fix d = 6, k = 1, r = 50,
and vary n from 100K to 1M. The update time with vary-
ing n is shown in Fig. 8(c)–8(d). For static algorithms, we
observe different trends in efficiency on two datasets: The
update time slightly drops on Indep but keeps steady on
AntiCor. The efficiencies are determined by two factors, i.e.,
the number of tuples on the skyline and the frequency of
skyline updates. As shown in Fig. 4, when n is larger, the
number of tuples on the skyline increases but the frequency
of skyline updates decreases. On Indep, the benefits of lower
update frequencies outweigh the cost of more skyline tuples;
on AntiCor, two factors cancel each other. FD-RMS runs
slower when n increases due to higher cost of maintaining
top-k results on Indep. But, on AntiCor, the update time
keeps steady with n because of smaller values of ε and m,
which cancel the higher cost of maintaining top-k results. In
addition, since the maximum regret ratios are not obviously
affected by n, we omit the results here and leave them to the
technical report [27]. Generally, FD-RMS always outperforms
all baselines for different values of n.

V. RELATED WORK

There have been extensive studies on the k-regret minimiz-
ing set (k-RMS) problem (see [28] for a survey). Nanongkai
et al. [1] first introduced the notions of maximum regret
ratio and r-regret query (i.e., maximum 1-regret ratio and 1-
RMS in this paper). They proposed the CUBE algorithm to
provide an upper-bound guarantee for the maximum regret
ratio of the optimal solution of 1-RMS. They also proposed

the GREEDY heuristic for 1-RMS, which always picked a
tuple that maximally reduced the maximum regret ratio at
each iteration. Peng and Wong [7] proposed the GEOGREEDY
algorithm to improve the efficiency of GREEDY by utilizing the
geometric properties of 1-RMS. Asudeh et al. [11] proposed
two discretized matrix min-max (DMM) based algorithms for
1-RMS. Xie et al. [13] designed the SPHERE algorithm for 1-
RMS based on the notion of ε-kernel [29]. Shetiya et al. [14]
proposed a unified algorithm called URM based on k-MEDOID
clustering for lp-norm RMS problems, of which 1-RMS was
a special case when p = ∞. The aforementioned algorithms
cannot be used for k-RMS when k > 1. Chester et al. [8] first
extended the notion of 1-RMS to k-RMS. They also proposed
a randomized GREEDY∗ algorithm that extended the GREEDY
heuristic to support k-RMS when k > 1. The min-size version
of k-RMS that returned the minimum subset whose maximum
k-regret ratio was at most ε for a given ε ∈ (0, 1) was
studied in [9], [12]. They proposed two algorithms for min-
size k-RMS based on the notion of ε-kernel [29] and hitting-
set, respectively. However, all above algorithms are designed
for the static setting and very inefficient to process database
updates. To the best of our knowledge, FD-RMS is the first k-
RMS algorithm that is optimized for the fully dynamic setting
and efficiently maintains the result for dynamic updates.

Different variations of regret minimizing set problems were
also studied recently. The 1-RMS problem with nonlinear util-
ity functions were studied in [30]–[32]. Specifically, they gen-
eralized the class of utility functions to convex functions [30],
multiplicative functions [31], and submodular functions [32],



respectively. Asudeh et al. [33] proposed the rank-regret rep-
resentative (RRR) problem. The difference between RRR and
RMS is that the regret in RRR is defined by ranking while
the regret in RMS is defined by score. Several studies [14],
[34], [35] investigated the average regret minimization (ARM)
problem. Instead of minimizing the maximum regret ratio,
ARM returns a subset of r tuples such that the average
regret of all possible users is minimized. The problem of
interactive regret minimization that aimed to enhance the
regret minimization problem with user interactions was studied
in [36], [37]. Xie et al. [38] proposed a variation of min-size
RMS called α-happiness query. Since these variations have
different formulations from the original k-RMS problem, the
algorithms proposed for them cannot be directly applied to the
k-RMS problem. Moreover, these algorithms are still proposed
for the static setting without considering database updates.

VI. CONCLUSION

In this paper, we studied the problem of maintaining k-
regret minimizing sets (k-RMS) on dynamic datasets with
arbitrary insertions and deletions of tuples. We proposed the
first fully-dynamic k-RMS algorithm called FD-RMS. FD-
RMS was based on transforming fully-dynamic k-RMS to a
dynamic set cover problem, and it could dynamically maintain
the result of k-RMS with a theoretical guarantee. Extensive
experiments on real-world and synthetic datasets confirmed the
efficiency, effectiveness, and scalability of FD-RMS compared
with existing static approaches to k-RMS. For future work,
it would be interesting to investigate whether our techniques
can be extended to k-RMS and related problems on higher
dimensions (i.e., d > 10) or with nonlinear utility functions
(e.g., [30]–[32]) in dynamic settings.
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