Demonstration of FeVisQA: Free-Form Question Answering over Data Visualization

Yuanfeng Song∗†, Jinwei Lu†, Xuefang Zhao†, Raymond Chi-Wing Wong∗, Haodi Zhang†
∗HKUST, Hong Kong, China †AI Group, WeBank Co., Ltd, Shenzhen, China ‡Shenzhen U., Shenzhen, China
∗†{songyf, raywong}@cse.ust.hk

Abstract—Question Answering (QA) systems play a vital role in knowledge acquisition. CodeQA refers to question answering (QA) over source code for code comprehension purpose. However, existing CodeQA studies mainly focus on questions related to general-purpose programming languages (GPLs) (e.g., Java and Python), and no study has been conducted on QA over declarative visualization languages (DVLs) (e.g., Vega-Lite), a kind of programming languages used for creating data visualization (DV). DVLs enjoys specific grammars that are distinct from GPLs. This demonstration presents the first neural-based QA system for DVL, FeVisQASystem. FeVisQASystem is based on a new task named FeVisQA, short for Free-form QA over data Visualization, which takes natural language questions and DV specification as inputs to predict the answers to the questions. As a particular case of the CodeQA task, FeVisQA enables people to better comprehend data and its DVs by conducting logical reasoning when answering these questions. Although research on question-answering and machine reading comprehension is progressing quickly, limited attention has previously been paid to FeVisQA. This new system and the task can serve as a helpful pioneering study for DV comprehension. The video can be accessed via https://1drv.ms/f/s!Ah2vhbolPBFMhk6jTYOtaIRnLC2K?e=0kJqOq

Index Terms—Question Answering, Data Visualization, FeVisQA, Declarative Visualization Language

I. INTRODUCTION

Designing Question Answering (QA) systems is an important research direction in database community [1]–[5], since these systems play vital roles in knowledge acquisition. CodeQA is an essential task that focuses on answering questions related to programming code for source code comprehension and educational purpose [6]. It significantly promotes the development of programming learning for educational purposes. However, limited efforts have been spent on question answering (QA) over Declarative Visualization Languages (DVLs) (e.g., Vega-Lite [7] and ECharts [8]) for Data Visualizations (DVs), which enjoy different grammars that are used to control the visual representations given a massive dataset.

In this demonstration, we design a novel QA system named FeVisQASystem that focuses on automatically answering questions related to DV domain. FeVisQASystem is based on a new task proposed by us named FeVisQA [9], referring to Free-form Question Answering over data Visualization. As shown in Fig. 1, given a DV specification (which is quite complicated) of a dataset and a question, the objective of the FeVisQA task is to predict the corresponding textual answer. FeVisQA could be considered as a particular case of the general CodeQA task [6]. Serving the same goal of facilitating programming learning in education, FeVisQA enables people to better comprehend DVs by conducting logical reasoning when answering questions. The underlying techniques behind the FeVisQASystem system is a multi-modal neural network named FeVisQANet, which is composed of novel encoder and decoder structures that dedicated to specifications.

II. RELATED WORK

In this section, we mainly introduce the closely related studies from two areas, DV and CodeQA.

Data Visualization (DV). Numerous institutions adopt DV to facilitate their strategic operations due to its excellent visual representation capacity. At the same time, a substantial amount of declarative visualization languages (DVLs) are released in the market, including Vega-Lite [7], ZQL [10], and ECharts [8]. Due to the difficulty of using these DVLs, various DV-related studies have also been carried out in the database community to provide user-friendly interfaces and
What is the meaning of this data visualization?

Question Answering (QA). Different kinds of QA systems have been designed and proposed in the database community recently, like [1]–[5]. CodeQA is a particular QA task that answers questions related to source code (e.g., Java, Python), with the purpose of source code comprehension. Representative studies in this field includes [6], [15]. For example, Liu et al. [6] released a CodeQA dataset that contains QA pairs on general-purpose programming languages (GPLs) like Java and Python. Then, they further designed several baseline methods to tackle this CodeQA task. Lee et al. [15] released another CS1QA dataset that aims to predict the question type and the relevant code snippet, given the question and the code and retrieving an answer from the annotated corpus. However, different from GPLs, composing DV requires defining specifications using the grammar of some DVLs. Moreover, the execution result of a specification is a chart, which differs from GPLs. These properties make FeVisQA instinct different from existing studies for the well-formed CodeQA task.

III. System Architecture

We are ready to briefly illustrate the overview of the proposed FeVisQASystem, mainly from the following aspects - the task, the system overview, the FeVisQA model, and the performance analysis.

A. The FeVisQA Task

FeVisQA refers to Free-form Question Answering over data Visualization. Specifically, given a dataset \(D \), a data visualization \(v \) (a JSON object in the form of a specification in any DVL), and a question \(q \), the FeVisQA task aims to automatically predict the textual answer \(a \). FeVisQA enables users to get a better comprehension of DVs by conducting logic reasoning when answers these questions. Then, the complete training set can be represented as \(\mathcal{T} = \{D^{(o)}, v^{(o)}, q^{(o)}, a^{(o)}\}_{o=1}^{N} \), where \(N \) is the dataset size. The desired model could be represented as \(f(D, v, q) \rightarrow a \).

B. Overview of the proposed FeVisQASystem

As shown in Fig. 2, the designed FeVisQASystem could be categorized into three layers - Interface, Model, and Data. The interface layer focuses on the interaction between the users and the system, i.e., input the question, select the dataset and specification to be analyzed, and examine the answers. The model layer offers the fundamental neural models for FeVisQA in FeVisQASystem. Specifically, we designed a multi-modal neural network which predicts the answers to the given questions. The data layer saves the datasets (i) The QA dataset for building the FeVisQA models and (ii) the Datasets and Specifications to be analyzed.

C. The Multi-modal Neural Network

As shown in Fig. 3, the objective of a FeVisQANet model is to understand the DV specification and the question, and then predict the corresponding answers. As such, our proposed FeVisQANet model can roughly be divided into four components, namely a dataset encoder, a question encoder, a DV specification encoder, and an answer decoder. The dataset encoder incorporates the dataset header (i.e., schema of the database) and also samples some rows in the dataset and converts them into embeddings. To promote the performance, we also incorporate the pre-trained language models (PLMs, i.e., TaPas [16]) dedicated to tabular data as a part of the dataset encode. The question-encoder uses a Transformer-based architecture to convert the question into some hidden representations. At the same time, the most important part, the DV specification encoder, converts the specification into various format to preserve the structural information contained. The answer decoder aims to generate textual response to answer the question. A comprehensive introduction of this FeVisQANet model can be found in [9].

Fig. 2. The Overview of the Neural-based QA Architecture of FeVisQASystem.

![Fig. 2. The Overview of the Neural-based QA Architecture of FeVisQASystem.](image-url)
What is the meaning of this DV?

What does this DV mean?

Table I: Performance Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU</th>
<th>ROUGE</th>
<th>METEOR</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq2Seq</td>
<td>0.0100</td>
<td>0.3623</td>
<td>0.4187</td>
<td>53.71%</td>
</tr>
<tr>
<td>Transformer</td>
<td>0.0124</td>
<td>0.6203</td>
<td>0.3502</td>
<td>55.83%</td>
</tr>
<tr>
<td>DualEncoder</td>
<td>0.0129</td>
<td>0.5869</td>
<td>0.3297</td>
<td>52.68%</td>
</tr>
<tr>
<td>FeVisQANet</td>
<td>0.1233</td>
<td>0.7686</td>
<td>0.6091</td>
<td>70.59%</td>
</tr>
</tbody>
</table>

D. Performance Analysis

We also conduct performance comparisons among several popular baselines in the CodeQA area, namely Seq2Seq, Transformer [17], DualEncoder [6], and CodeBERT [6]. The goal of the proposed FeVisQANet model is to predict answers to questions related to DV, we use the common metrics like BLEU and Accuracy as our primary indicators. The same training set is used to construct these models, and then we use the same testing set to test the performance, with the results shown in Table I.

TABLE I

PERFORMANCE COMPARISON

The performance of the vanilla Seq2Seq or Transformer approaches is not competitive compared with the advanced ones (i.e., CodeBERT and FeVisQANet), validating the necessity of exploring multi-modal information and techniques in this task. In a nutshell, among all the multi-modal methods, FeVisQANet could achieve the best performance since it remarkably preserves the rich context information in the dataset, question and DV specification and generate the accurate answers with advanced network structure.

IV. DEMONSTRATION OVERVIEW

In this demonstration, users could interact with FeVisQASystem to ask DV related questions. The system’s user interface (UI) is shown in Fig. 4, with the main functionalities listed as follows.

Dataset Selection: The system preloads various datasets to be analyzed. The system enables the user to select the corresponding dataset that the user wants to query.

Data Visualization Selection: The system also includes various pre-defined DV specification to be visualized. The system enables the user to select some of them.

Natural Language Question Input: FeVisQASystem enables users to interact with the system using natural language questions.

Predicted Answer: After the dataset, the DV specification and the question are fixed, the FeVisQASystem will generate the predicted answer.

Case Study: A real case is also given in Table II for better illustration. This case contains the datasets (Fig. (a)), the DV specification (Fig. (b)) and the questions (Fig. (c)) and the predicted answer (Fig. (d)). We can see that our system
The Dataset

<table>
<thead>
<tr>
<th>transaction_id</th>
<th>investor_type</th>
<th>transaction_date</th>
<th>amount_of_transaction</th>
<th>share_count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SALE</td>
<td>1989/9/16 19:02</td>
<td>302,997.7</td>
<td>871,872</td>
</tr>
<tr>
<td>2</td>
<td>PUR</td>
<td>1982/6/7 17:19</td>
<td>27,327</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SALE</td>
<td>1989/9/16 27:06</td>
<td>487,777.7</td>
<td>8580</td>
</tr>
<tr>
<td>10001</td>
<td>14</td>
<td>PUR</td>
<td>2011/11/28 15:06</td>
<td>4,5263</td>
</tr>
</tbody>
</table>

The Specification

Table II: Examples of Questions on a Given DV Specification & the Predicted Answers by FeVisQASystem.

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Question</th>
<th>Answer</th>
<th>Ground-Truth</th>
<th>Seq2Seq</th>
<th>Transformer</th>
<th>DualEncoder</th>
<th>FeVisQANet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>type1</td>
<td>What is the meaning of this dv?</td>
<td>create a bar chart showing mean amount of transaction amount of transaction type code displaying by the transaction_type_code in asc.</td>
<td>give me a bar chart to show the average experience working length of journalist working on different role type, show by the y-axis from low to high.</td>
<td>what is the average amount of transaction of transaction, and what is the average amount of amount for each ? could you show by the name in ascending ?</td>
<td>show the average of amount for different statement data in a bar chart, and could you show by the name in high by the bar ?</td>
<td>show the transaction type code and the average amount of transaction with a bar chart, sort by the x-axis from low to high.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>type2</td>
<td>Is this dv a suitable one for the given dataset ?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>type3</td>
<td>What is the difference between the maximum value and minimum value of y-axis ?</td>
<td>14747713.13</td>
<td>2449.54</td>
<td>7.388888889</td>
<td>4696.69</td>
<td>14747713.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>type4</td>
<td>What is the total number of amount of transaction ?</td>
<td>3714407.61</td>
<td>5613.160667</td>
<td>64.7222222</td>
<td>815111.69</td>
<td>3714407.61</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>type5</td>
<td>What is the total number of amount of transaction when avg(amount of transaction) ?</td>
<td>PUR</td>
<td>open</td>
<td>refund</td>
<td>result</td>
<td>PUR</td>
<td></td>
</tr>
</tbody>
</table>

Correctly predicts the desired responses for various questions.

V. CONCLUSION

In this paper, we demonstrate a novel QA system named FeVisQASystem to answer DV-related questions. We summarize our contributions as (i) a new QA task named FeVisQA with a constructed dataset is proposed to boost the development this field; (ii) a novel multi-modal neural network named FeVisQANet is proposed to validate the rationality of the proposed task and shows its superiority; (iii) a QA system named FeVisQASystem is developed to demonstrate the practicability of the proposed FeVisQA task. We believe FeVisQA task would advance the field of intelligent DV and also inspire more Natural Language Processing for Database (NLP4DB) studies.

Acknowledgement. The research of Haodi Zhang is supported by the Guangdong Basic and Applied Basic Research Foundation (2022A1515010675). Haodi Zhang is the corresponding author.

REFERENCES