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Abstract—Topic modeling has been intensively studied and
widely applied in both academia and industry in the last
decade. In the literature, topic models usually need to be
trained from scratch for each individual corpus. Hence, the
wisdom of the crowd (i.e., topic models previously trained
based upon other corpora) is abandoned. Since a massive
amount of in-domain data, considerable computational cost,
and human labour are involved in obtaining a high-quality
topic model, training from scratch for each new corpus is a
huge waste of resources. In this paper, we propose the novel
TopicOcean framework, which aims to integrate well-trained
topic models and transfer the knowledge of accumulated topics
to new corpora in order to improve the quality of their
topic models. We first propose a method of constructing the
ever-increasing TopicOcean, and then propose a meta-learning
mechanism that transfers the meta-level knowledge (i.e., topics)
in TopicOcean to the scenario of topic modeling on new cor-
pora. Comprehensive experiments validate that the TopicOcean
framework can significantly outperform the state-of-the-art
(53.77% perplexity improvement on a temporal-shift corpus
and 29.24% improvement on a domain-shift corpus). The well-
trained high-quality topic models used to construct TopicOcean
have been opensourced to promote further research. 1
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I. INTRODUCTION

Topic modeling is a crucial machine learning technique,
which for the past decades has been widely utilized in
natural language processing [1], web search [2], recommen-
dation [3] and so on. Recently, advanced methods of training
topic models have been introduced, such as AliasLDA [4],
LightLDA [5], etc. Despite the achieved progress, to conduct
topic modeling for a new corpus, the state-of-the-art methods
typically train a new topic model from scratch. Empirically a
massive amount of in-domain data and considerable human
labour is usually involved in obtaining a high-quality topic
model [6]. Considering the great effort made in training
a high-quality topic model, it is desirable to develop a
framework that can take full advantages of previously well-
trained topic models and transfer the knowledge in these
models to the scenario of topic modeling on a new corpus,
in order to save cost and improve effectiveness.

In this paper, we propose the novel TopicOcean frame-
work, with the flowchart of the framework illustrated in

1The well-trained topic models can be accessed at Github (https://github.
com/baidu/Familia/blob/master/model/download model.sh)

Figure 1. TopicOcean is inspired by recent work on meta-
learning, which focuses on learning that comes from a
variety of related tasks and can be used to solve new learning
tasks faster and more accurately with limited examples
[7]. Conventionally, meta-learning is utilized for supervised
learning, and usually involves learning at two levels: higher-
level learning conducted across tasks to gain meta-level
knowledge and lower-level rapid learning performed for
a new task guided by the meta-knowledge learned before
[8]. In the unsupervised topic modeling scenario, we utilize
meta-learning to emphasize the fact that limited training
is involved for model training and topic inference on a
new corpus. Two main components are included in the
proposed framework: TopicOcean construction and meta-
learning based training. In TopicOcean construction, meta-
level knowledge (i.e., high-quality topics) is incrementally
integrated from models trained on a variety of corpora, and
the redundancy of topics is handled on the fly to keep
TopicOcean compact. The meta-learning based training com-
prises two steps: transfer and training. During the transfer
step, TopicOcean adopts a Greedy TopicSubset Selection
algorithm which transfers its knowledge of TopicOcean as
an initialization. In the training step, an efficient inference
method is further incorporated to conduct topic model in-
ference with O(1) per word complexity.

The advantages of our proposed framework are essentially
twofold. First, TopicOcean significantly reduces the cost of
topic modeling on new corpus, which is typically conducted
in the literature by training from scratch. Second, as TopicO-
cean provides readily available topics, practitioners are freed
from the laborious training process for each new corpus,
and by utilizing its knowledge, this framework avoids gen-
erating low-quality topics, which are quite common when
parameters are not deliberately calibrated or the volume
of the training data is not large enough. To sum up, the
contributions of this paper are as follows:

• We have publicly released the four high-quality topic
models used to construct TopicOcean. These models
are well-trained on industrial-scale datasets and signif-
icantly enlarge community’ arsenal of topic models.

• We propose the ever-increasing TopicOcean framework
to accumulate meta-level knowledge for topic mod-
els, and a meta-learning based training algorithm that
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Figure 1. TopicOcean Framework: TopicOcean construction ( 1© incremental TopicOcean construction (redundant topics highlighted with colors)) and
Meta-learning model training ( 2© transfer (highlighted with red border), and 3© training for a new corpus)

transfers the knowledge in TopicOcean to new corpora
and conducts topic model training and inference with
O(1) per word sampling complexity. To the best of our
knowledge, this work is the first that studies the prob-
lem of topic modeling with a meta-learning technique.

• Comprehensive experiments have been carried out to
validate the effectiveness of the TopicOcean frame-
work. Compared with the state-of-the-art, our pro-
posed framework significantly improves topic inference
quality up to 53.77% (measured with Perplexity) on
a temporal-shift corpus and achieves up to 29.24%
improvement on a domain-shift corpus.

The rest of this paper is organized as follows. We review
the related work in Section II. Then we introduce the two
components of the framework: TopicOcean construction in
Section III, and Meta-learning based training in Section IV.
The experimental results are presented in Section V, fol-
lowed by the conclusion in Section VI.

II. RELATED WORK

Meta-learning focuses on learning the experience from
a variety of related tasks systematically, and then uses the
experience to solve new learning tasks faster and more
accurately with limited examples [7]. Based on the types
of meta-data these methods leverage, existing approaches
can be classified, from the most general to the most task-
specific, into three categories according to [9]: learning
purely from model evaluations, learning from task proper-
ties, and learning from prior models. The learning purely
from model evaluations approach aims to learn configu-
rations and search spaces from empirically similar tasks
[10]–[12]. The learning from task properties approach learns
meta-features or characterizations for each task, and the
similarity measurement is defined on the distance between

these features during the knowledge transferring process
[13]. The learning from prior models approach is closely
related to transfer learning [14], and focuses on transferring
trained model parameters or structures between inherently
similar tasks. For example, Andrychowicz et al. [15] uses
LSTM to predict the gradient for gradient descent algorithms
during the model learning period. Reinforcement learning
is used in [12] to update the parameters of deep networks
and search the network architecture. Model-Agnostic Meta-
Learning is proposed in [16] to optimize for a parameter
that can quickly adapt to new tasks.

Topic modeling has been recognized as a basic tool for
searching and understanding large-scale documents. Among
all kinds of topic models, Latent Dirichlet Allocation (LDA)
[17] is the most important. Meanwhile, many extensions
to LDA have been designed for various applications and
in-domain data. For example, Sentence LDA [18] extends
LDA by constraining all the words in the same sentence
to share the same topic, which enables superior ability to
capture the latent structure of sentences, and the Location
Aware Topic Model (LATM) [19] models the underlying
relationship between locations and words. Although much
research has been devoted to designing new topic models
by changing their graphical models, the general training
paradigm remains the same per se: each topic model needs
to be trained from scratch for a new corpus.

III. TOPICOCEAN CONSTRUCTION

In this section, we describe how to construct the ever-
increasing TopicOcean. Without loss of generality, we utilize
LDA as an example to discuss the technical details.

As shown in Figure 1, a well-trained topic model is
stored in a file, with each line having the format of
{(w1, p

zj
w1), (w2, p

zj
w2), · · · }, where wi is the word index, zj



ALGORITHM 1: TopicOcean Construction
input : M, MN , δ.
output: M∗.

1 begin
2 Merge M and MN into MB ;
3 Redundant Topics R = {}
4 for each topic zi in MB do
5 for each topic zj (j > i) in MB do
6 Estimate ρ(zi, zj) with Equation (1);
7 if ρ(zi, zj) ≥ δ then
8 Add (zi, zj) into R

9 for each set s in Union-Find(R) do
10 for each topic zsi (i > 1) in s do
11 Add ~zsi to ~zs1, remove ~zsi from MB ;

12 M∗ =MB

13 return M∗;

is the topic index and pzjwi refers to the normalized weight of
word wi under topic zj . Each line in the model represents
the word distribution for one topic zj , denoted as ~zj .

In order to construct the TopicOcean M, we need a
mechanism that is able to incrementally introduce new topic
models MN to M. Since topic models are trained in an
unsupervised manner, similar topics exist across different
models, as highlighted in Figure 1. In order to keep the
compactness of TopicOcean, we need to estimate the simi-
larities and merge similar topics. The detailed algorithm of
TopicOcean construction is summarized in Algorithm 1.

For any two topics, we measure the similarity between
them and decide whether to merge them or not. Metrics
that can be employed includes Weighted Jaccard Similarity
[20], Jensen–Shannon Divergence [21] and so on. In this
paper, Weighted Jaccard Similarity is utilized because of its
relatively good performance in our scenario. The similarity
between two topics zi and zj is defined as:

ρ(zi, zj) =

∑m
1 min(pziwt

, p
zj
wt)∑m

1 max(pziwt , p
zj
wt) +

∑T
m+1 p

zi
wt +

∑T
m+1 p

zj
wt

=

∑m
1 min(pziwt

, p
zj
wt)∑L

1 p
zi
wt +

∑T
1 p

zj
wt −

∑m
1 min(pziwt , p

zj
wt)

, (1)

where Pzi = (pziw1
, pziw2

, · · · , pziwm
, pziwm+1

, · · · , pziwT
) and

Pzj = (p
zj
w1 , p

zj
w2 , · · · , p

zj
wm , p

zj
wm+1 , · · · , p

zj
wT ) are vectors

representing the top-L words distribution of topic zi and
topic zj . The number m (0 ≤ m ≤ L) refers to the number
of common words in their top-L words. If the similarity
ρ(zi, zj) is larger than a pre-defined threshold δ, these two
topics are regarded as redundant and need to be merged in
the following operations; i.e., the corresponding word of pziwt

is the same as that of pzjwt for 1 ≤ t ≤ m. The numerator
sums over the minimum probability for the overlapping
words in the two topics, and the denominator sums over
the maximum probability for the overlapping words and the
probability for the non-overlapping words.

Assuming that three pairs of similar topics are recorded in
R = {(z1, z2), (z2, z3), (z4, z5)}, z2 has overlaps with both

z1 and z3. If topic merging is carried out independently in
each pair, the new topic generated by combining z1 and
z2 can still be similar to that topic based on z2 and z3.
Therefore, instead of topic merging at the pairwise level,
we further explore the union sets of redundant topics and
carry out topic merging at the set level. We employ the
classical Union-Find [22] algorithm to find the disjoint topic
sets, and for the above example R, its disjoint sets are
{(z1, z2, z3), (z4, z5)}. For the redundant topics in each set,
merging is carried out in the following way: the remaining
topics are added to the first topic of this set and are
then removed from MB . Taking the set (z1, z2, z3) as an
example, the topic ~z1 becomes ~z1 + ~z2 + ~z3, with ~z2 and
~z3 removed from MB . Finally, we can obtain the compact
TopicOcean M∗.

IV. META-LEARNING BASED TRAINING

The meta-learning based training comprises two parts:
transfer and training.

A. Transfer

The objective of the Transfer is to find a topic subset
S from TopicOcean M as an initialization to boost the
following Training, such that the TopicSubset S can cover
most topics in the new corpus; meanwhile, the redundancy
among topics in S is limited. A set function Φ is designed to
measure the TopicSubset quality, and TopicSubset selection
can be formalized as the following combinatorial optimiza-
tion problem:

S∗ ∈ arg max︸ ︷︷ ︸
S:S⊆M

Φ(S) subject to |S| ≤ m, (2)

where S is the TopicSubset, M is the TopicOcean and m
is the number of topics to be selected.

As the objective of TopicSubset selection is two-folds,
namely the coverage of topics and the control of redundancy,
the quality function Φ is designed as:

Φ(S) = λ C(S) + (1− λ)V(S), (3)
where C(S) measures the coverage of S for the new cor-
pus, V(S) rewards diversity inside S, and λ is a trade-
off coefficient. Instead of deducting a redundancy term
in the quality function, a diversity term (as opposite to
redundancy) is added for the convenience of optimization.
Detailed definitions and explanations of coverage C(S) and
diversity V(S) will be given in the following.

The TopicSubset coverage C(S) is defined as:

C(S) =
∑
z∈S

c(z), c(z) = ρ(z, z̄), (4)

where c(z) is the coverage reward of one single selected
topic z. The measurement of c(z) is carried out with the
similarity function ρ(·) defined in Equation (1), where z̄
is the word distribution of the new corpus and is treated
as a virtual topic. The similarity between one topic z and z̄
indicates the coverage reward of single z on the new corpus.



By summing over z ∈ S, the total coverage reward of a
selected topics can be accumulated in C(S).

If the quality function Φ only relies on the coverage
term (i.e., λ = 1), it tends to choose those topics whose
distributions are similar to the word distribution of the new
corpus. In this case, these topics can be selected from some
closely-related categories. However, a good topic model is
supposed to consist topics from diverse categories; other-
wise, its discriminative power would be weakened. As such,
the diversity term V(S) is included in the quality function.
Inspired by [23], we define V(S) as

V(S) =

p∑
i=1

√ ∑
z∈Pi∩S

v(z), v(z) = ρ(z, z̄), (5)

where Pi (i = 1, · · · , p) is a partition of TopicOcean M
into separate topic clusters, and v(z) indicates the reward for
selecting one topic z from cluster Pi. Through the square
root operation, the reward for choosing a topic that is in
the same cluster as selected topics will be decreased, thus
leading to a more diverse topic selection.

As the combinatorial optimization problem in Equa-
tion (2) is known to be NP-complete, we present a Greedy
TopicSubset Selection (GTS) algorithm to solve it, as il-
lustrated in Algorithm 2. The algorithm first separates the
TopicOcean M into several partitions using conventional
clustering methods (Line 3). Then it searches over all the
topics in TopicOceanM and each time selects the one with
the maximal incremental Φ value (Lines 5–6) until it finds
m topics. According to the aforementioned definitions, it
is easy to conclude that C(S) and V(S) are both mono-
tone nondecreasing submodular functions. Therefore, Φ is
a monotone submodular function as well. Let SGTS be the
set returned by the GTS algorithm and S∗ be the optimal
set. If Φ is a monotone nondecreasing submodular function
[24], then we have the worst-case bound as follows:

Φ(SGTS) ≥ (1− 1

e
)Φ(S∗). (6)

B. Training

The meta-learning based training is formally presented in
Algorithm 3. The algorithm first selects a TopicSubset that
contains m topics from TopicOcean using the GTS described
in Algorithm 2 (Line 2), and the other K − m topics are
initialized according to Dirichlet distribution just like the
conventional LDA model (Line 3). Then the selected topics
and the newly initialized topics are composed together as
the topic model under training (Line 4).

According to [25], Gibbs sampling calculates the fol-
lowing conditional probability for all topics and performs
normalization:

p(zdi = k|rest) ∝ (n−dikd + αk)
(nkw + βw)

nk + β
, (7)

where zdi is the topic assignment of word i in document d;
n−dikd is the number of times that d is assigned to topic k

ALGORITHM 2: Greedy TopicSubset Selection
(GTS)

input : Topic Partition Number p, Topic Number of TopicSubset
m, TopicOcean M, New Corpus N , Parameter λ.

output: TopicSubset S.
1 begin
2 S = {};
3 Separate M into p topic partitions using clustering methods;
4 while |S| < m do
5 z

′
= arg max︸ ︷︷ ︸

~z∈M−S

(Φ({~z} ∪ S)− Φ(S));

6 S = S + {~z′};
7 if M− S = ∅ then
8 break;

9 return TopicSubset S.

through multinomial distribution, except current word i; αk,
βw and β are hyperparameters for Dirichlet distribution, and
(nkw+βw)
nk+β

represents the probability of word w appearing in
topic k based on the statistics of the selected TopicSubset.

Since the above time complexity to sample a topic for
a word is O(K) (K is the topic amount of the TopicSub-
set), we use an efficient alternative based upon Metropolis
Hastings (MH) [5] to speed up the topic inference, which
achieves O(1) per word time complexity. We first conduct
one approximation to Equation (7) in the following way:

q(zdi = k|rest) ∝ (nkd + αk)︸ ︷︷ ︸
document-based proposal

(nkw + βw)

nk + β︸ ︷︷ ︸
word-based proposal

. (8)

In order to achieve high sampling performance, we can
accelerate the sampling process by well-designed proposals,
namely, document-based proposal and word-based proposal
for MH, as follows:
• Document-based Proposal:

pd(k) ∝ ndk + αk∑K
k′=1(ndk′ + αk′)

. (9)

According to the MH algorithm, the acceptance ratio
from state i to j is:

min {1, p(j)pd(i)
p(i)pd(j)

}. (10)

• Word-based Proposal:

pw(k) ∝ nkw + βw∑U
u=1(nku + βu)

, (11)

where U is the word number of topic k. The acceptance
ratio from state i to j is:

min {1, p(j)pw(i)

p(i)pw(j)
}. (12)

In TopicOcean, we resort to the alias method [26] to
reduce the sampling complexity. The alias method mainly
relies on a data structure named an alias table. Each word
is represented as the probability distribution over distinct
topics, and the corresponding alias table for each word is
constructed for the acceleration of subsequent topic infer-



ALGORITHM 3: Meta-learning based Training
input : Topic Partition Number p, Total Topic Number K,

Transferred Topic Number m, TopicOcean M, New
Corpus N , λ.

output: Topic Distribution for each d in N .
1 begin
2 Ts = GTS(p,m,M,N , λ);
3 To = Initialize the rest K −m topic distribution ∼ Dir(β);
4 T = Ts + To;
5 Build alias tables using T ;
6 Initialize a topic z for each word w in N based on alias

table of w;
7 for each document d ∈ N do
8 propose a topic zd based on document-topic proposal

according to Equation (9);
9 update the topic to z

′
d according to acceptance ratio by

Equation (10);
10 for each word w in d do
11 propose a topic zw based on alias table of w

according to Equation (11);
12 update the topic to z

′
w according to acceptance ratio

by Equation (12);
13 if z

′
w ∈ To then

14 update z
′
w and zw’s topic-word distribution.

15 Calculate the topic distribution for each d in N ;

16 return The topic distribution for each d in N ;

ence (Line 5). When sampling a new topic for each word, the
algorithm iteratively utilizes a document-based proposal and
word-based proposal to update the topic candidates (Line
11). For each topic candidate, the algorithm chooses whether
to accept it according to the acceptance ratio (Line 12). Since
the topics selected from the TopicOcean are well-trained, no
topic-word distribution updating is required for them, and
the algorithm only updates the new topics (Line 13 and 14).
This sampling procedure is repeated for several iterations
until convergence.

V. EXPERIMENTS

In this section, we evaluate the performance of the Top-
icOcean framework in terms of two quantitative metrics.

A. Experimental Setup

We construct TopicOcean by integrating four industrial-
scale well-trained topic models, which are trained on distinct
corpora. Specifically, the four topic models, denoted as
M1,M2,M3 and M4, are trained with large-scale datasets
of Chinese news, webpages, novels and weibo posts2, re-
spectively. The statistics of the topic models are presented
in Table I. To evaluate the performance of the proposed
TopicOcean, extensive experiments have been carried out on
two new corpora – Weibo2014 and Ads. Weibo2014 includes
100k weibo posts crawled in 2014 and Ads consists of 200k
advertisements crawled from one commercial search engine.
All programs are written in Python, and all experiments are
performed on a server with 128GB memory, 16 Intel Core
Processor (Haswell), and CentOS.

2https://www.weibo.com, data format similar to Tweet.

Table I
DETAILS OF FOUR WELL-TRAINED TOPIC MODELS.

Topic 
Models

# of 
Topics

Data 
Type Data Scale Vocabulary

Size

!" 2000 News Tens of millions 294,657

!# 4267 Webpages Tens of millions 283,827

!$ 500 Novels Hundreds of thousands 243,617

!% 2000 Weibo Hundreds of millions 175,347

B. TopicOcean Statistics

The mission of TopicOcean construction is to obtain
a comprehensive and compact topic model, which is not
sensitive to the merge order. In the experiments, Topic-
Ocean M is set to M1 as initialization. The other topic
models M2, M3 and M4 are incrementally integrated into
TopicOcean according to Algorithm 1. In our experiments,
top-L is set to 30 for topic similarity estimation, and the
similarity threshold δ is set to 0.4 empirically. The process of
constructing TopicOcean is shown in Figure 2. M2,M3 and
M4 are added into TopicOcean in an incremental way for
the sake of computational efficiency, as represented by the
three sets of bars. Finally, we obtain a compact TopicOcean
containing 7549 topics in total.
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Figure 2. TopicOcean Statistics.

C. Comparison of Perplexity

The experiments are carried out with two corpora –
Weibo2014 and Ads, which have distinct temporal phases
and domains, respectively, with the data utilized to construct
TopicOcean. With these temporal-shift (Weibo2014) and
domain-shift (Ads) data, we dissect the transfer ability of
meta-learning based training in detail.
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(b) Ads (K = 200)

Figure 3. Effectiveness Comparison: (a) Temporal-shift Quality Evaluation
and (b) Domain-shift Quality Evaluation.



The perplexity on each corpus is displayed in Figure 3,
with a range of topic number settings K = 200 and number
of transfered topics M ∈ {0, 5%K, . . . , 90%K}. Note that
the lower the perplexity that a method obtains, the better
its performance is. As shown in Figure 3, MLTM methods
can obtain the better performance across distinct corpora and
with different topic number settings in most cases. Specially,
MLTM can transfer 90% of the topics from TopicOcean, and
achieve 53.77% improvement in perplexity compared with
the baseline. In the more challenging scenario — domain
shift evaluation, as shown in Figure 3b — MLTM can also
transfer up to 80% of the topics from TopicOcean, and
achieve 29.24% improvement in perplexity.

D. Comparison of Coherence

The topic coherence measurement reflects the degree of
semantic similarity between frequent words in the topic. We
use the averaged topic coherence [27] to evaluate the quality
of the topic models produced by LightLDA and MLTM,
as presented in Table II. The Wikipedia dataset is used
as the reference corpus for coherence calculation. Top-L
(L ∈ {5, 10}) defines the number of words we consider
to calculate coherence for each topic. It can be observed
that MLTM provides higher-quality models than LightLDA.
Specifically, in the Ads dataset, MLTM-G achieves 65.98%
improvement for top-5 and 45.56% for top-10 compared
with the baseline in terms of coherence.

Table II
AVERAGED TOPIC COHERENCE BY LIGHTLDA AND MLTM.

Method Ads(K=200 N=160) Weibo100k(K=200 N=180)
Top-5 Top-10 Top-5 Top-10

LightLDA 0.2737 0.2307 0.2576 0.2323
MLTM-G 0.4543 0.3358 0.4298 0.3228
MLTM-T 0.4523 0.3257 0.4065 0.3049

VI. CONCLUSION

In this paper, the ever-increasing TopicOcean with a meta-
learning based training algorithm is proposed to solve the
problems plaguing conventional topic modeling. Within this
framework, the ever-increasing TopicOcean is constructed
to incrementally integrate topics from previous well-trained
topic models. Based upon TopicOcean, a novel method is
proposed to adapt TopicOcean to new corpora and conduct
topic inference. Experimental results demonstrate that Topic-
Ocean can outperform its counterpart with better quality and
higher efficiency. In the future, we plan to apply TopicOcean
to more downstream NLP tasks.
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