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ABSTRACT
Recently, graph neural networks (GNNs) have gained increasing
popularity due to their convincing performance in various appli-
cations. Many previous studies also attempted to apply GNNs to
session-based recommendation and obtained promising results.
However, we spot that there are two information loss problems
in these GNN-based methods for session-based recommendation,
namely the lossy session encoding problem and the ineffective long-
range dependency capturing problem. The first problem is the lossy
session encoding problem. Some sequential information about item
transitions is ignored because of the lossy encoding from sessions to
graphs and the permutation-invariant aggregation during message
passing. The second problem is the ineffective long-range depen-
dency capturing problem. Some long-range dependencies within
sessions cannot be captured due to the limited number of layers. To
solve the first problem, we propose a lossless encoding scheme and
an edge-order preserving aggregation layer based on GRU that is
dedicatedly designed to process the losslessly encoded graphs. To
solve the second problem, we propose a shortcut graph attention
layer that effectively captures long-range dependencies by propa-
gating information along shortcut connections. By combining the
two kinds of layers, we are able to build a model that does not have
the information loss problems and outperforms the state-of-the-art
models on three public datasets.
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1 INTRODUCTION
In many online services, users’ actions are naturally ordered by
time. To predict users’ future actions, a next-item recommender
system learns users’ preferences by mining sequential patterns
from their historical actions. Session-based recommendation is a spe-
cial case of next-item recommendation. Unlike a general next-item
recommender system which predicts the next action using a fixed
number of previous actions, a session-based recommender system
groups user actions into disjoint sessions and only uses the previ-
ous actions in the active session to make recommendations. Here,
a session is a sequence of items in close temporal proximity. The
idea of session-based recommendation comes from the observation
that the intra-session dependencies have a larger impact on the
next item than the inter-session dependencies [3]. Specifically, user
actions in the same session usually share a common objective such
as buying some phone accessories, while user actions in different
sessions have a relatively weak correlation. A user may buy phone
accessories in one session but buy things that have little relation
with phone accessories such as clothes in another session.Therefore,
a general next-item recommender system may suffer from the prob-
lem of combining uncorrelated sessions and extracting incomplete
sessions. A session-based recommender system does not have such
a problem, and thus it can make more accurate recommendations
and are deployed in many online services.

Due to the highly practical value, session-based recommendation
attracted researchers’ great attention and many effective methods
were developed in the past few years. Most of the methods proposed
earlier are based on Markov chains or recurrent neural networks
(RNNs). Recently, GNNs have become increasingly popular and
achieved state-of-the-art performance in many tasks. There are also
some attempts to apply GNNs to session-based recommendation
[16, 23–25]. Although these GNN-based methods obtained exciting
results and offered a new and promising direction for session-based
recommendation, we observe that there are two information loss
problems in these methods.
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Figure 1: Two different sessions [E1, E2, E3, E3, E2, E2, E4] and
[E1, E2, E2, E3, E3, E2, E4] are converted to the same graph.

The first information loss problem in the existing GNN-based
methods [16, 23–25] is called the lossy session encoding problem.
It is due to their lossy encoding schemes that convert sessions to
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Figure 2:The overview of the proposed model LESSR. Given a session, an edge-order preserving (EOP) multigraph and a short-
cut graph is computed.The initial node representations x (0)

i are the item embeddings.The graphs and the node representations
are passed as input to multiple interleaved EOPA and SGAT layers. Each layer outputs the new node representations.The read-
out layer computes a graph-level representation, which is combined with the recent interests to form the session embedding
sℎ . Finally, the prediction layer computes the probability distribution of the next item ~̂.

graphs. To process sessions using a GNN, the sessions need to be
converted to graphs first. In these methods, each session is con-
verted to a directed graph whose nodes are the unique items in
the session and the edges are the transitions between items. The
edges can be either weighted or unweighted. For example, a session
[E1, E2, E3, E3, E2, E2, E4] is converted to a graph as shown in Figure 1.
However, such conversion is a lossy operation because it is not a
one-to-one mapping. A different session [E1, E2, E2, E3, E3, E2, E4]
is also converted to the same graph, and thus we cannot recon-
struct the original session given the graph. Although in a particular
dataset, the two sessions may produce the same next item, there
may also exist a dataset in which the two sessions produce different
next items. In the latter case, it is not possible for these GNN mod-
els to make correct recommendations for both sessions. Therefore,
these models have a limitation in their modeling capacity.

The second information loss problem is called the ineffective
long-range dependency capturing problem where these GNN-based
methods cannot effectively capture all long-range dependencies.
In each layer of a GNN model, information carried by nodes are
propagated along the edges for one step1, so each layer can capture
only 1-hop relation. By stacking multiple layers, the GNN model
can capture up to !-hop relation where ! is equal to the number
of layers. Since stacking more layers do not necessarily increase
performance due to the overfitting and over-smoothing problems
[12, 26], the optimal number of layers for these GNN models is
usually no larger than 3 [16, 23–25]. Therefore, the models can only
capture up to 3-hop relation. However, in real world applications,
the session length can easily be larger than 3. Thus, it is very likely
that there are some important sequential patterns that are longer
than 3. Nevertheless, due to the limitation of the network structure,
these GNN-based model cannot capture such information.

To solve the above problems, we propose a novel GNN model
called LESSR (Lossless Edge-order preserving aggregation and Short-
cut graph attention for Session-based Recommendation)2. Figure 2
1Some models such as [23] can propagate information for multiple steps in each layer,
but they could still just capture up to :-hop relation where : is proportional to the
total number of layers.
2The implementation is available at https://github.com/twchen/lessr

illustrates the workflow of LESSR. A given input session is first con-
verted to a losslessly encoded graph called edge-order preserving
(EOP) multigraph and a shortcut graph where the EOP multigraph
could address the lossy session encoding problem and the shortcut
graph could address the ineffective long-range dependency captur-
ing problem. Then, the graphs along with the item embeddings are
passed to multiple edge-order preserving aggregation (EOPA) and
shortcut graph attention (SGAT) layers to generate latent features
of all nodes. The EOPA layers capture local context information
using the EOP multigraph and the SGAT layers effectively capture
long-range dependencies using the shortcut graph. Then, a readout
function with attention is applied to generate a graph-level embed-
ding from all node embeddings. Finally, we combine the graph-level
embedding with users’ recent interests to make recommendations.
We summarize our contributions as follows:

• We are the first to identify two information loss problems
of the GNN-based methods for session-based recommenda-
tion, including the lossy session encoding problem and the
ineffective long-range dependency capturing problem.

• To solve the lossy session encoding problem, we propose
a lossless encoding scheme that transforms sessions into
directed multigraphs, and an EOPA layer that aggregates
propagated information using GRU.

• To solve the ineffective long-range dependency capturing
problem, we propose a SGAT layer which effectively prop-
agates information along shortcut connections using the
attention mechanism.

• By combining the two solutions, we build a GNN model that
does not have the information loss problems and outper-
forms the existing methods in three public datasets.

2 RELATEDWORK
In this section, we review the related work of session-based recom-
mendation.

Inspired by the prevalence of neighborhood models in tradi-
tional recommendation tasks where user identifiers are available,
the recommender systems proposed in the early research work
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on session-based recommendation were mostly based on nearest-
neighbors [4, 5, 15]. These methods need a similarity function to
measure the similarity between items or sessions. Davidson et al.
[4] proposed a method that computes item similarity from items’
co-occurrence patterns and recommends the items that are most
likely to co-occur with any item in the active session. Park et al.
[15] proposed a model that first converts each session to a vector
and then measures the cosine similarity between session vectors.
Based on this work, Dias and Fonseca [5] proposed to transform the
sparse session vectors to dense vectors using clustering methods
before computing the cosine similarity. Though simple and efficient,
the neighborhood-based methods suffer from the sparsity problem,
and do not consider the relative order of items within sessions.

To better capture sequential properties, Markov chain-based
methods can be adopted. The simplest Markov chain-based method
computes the transition matrix heuristically using the transition
frequencies in the training set [19]. However, this method cannot
handle unobserved transitions. One solution is the FPMC method
proposed in [18] which factorizes personalized transition matrices
using a tensor decomposition technique. Another solution is called
Latent Markov Embedding [1] which embeds items in a Euclidean
space and estimates the transition probabilities between items by
the Euclidean distance of their embeddings. Since the state size
quickly becomes unmanageable when more previous items are
considered, most Markov chain-based methods build the transition
matrix using only first-order transitions, which makes them unable
to capture more complex higher-order sequential patterns.

Recurrent neural networks (RNNs) are a natural solution to the
above limitation of Markov chain-based methods due to their pow-
erful sequence modeling capability. GRU4Rec [8] was the first RNN-
based method for session-based recommendation which simply
stacks multiple GRU layers. Inspired by the success of the attention
mechanism in computer vision and natural language processing, Li
et al. [11] employed a hybrid encoder with attention to model users’
sequential behavior and main purpose in the active session, which
was proved to be an effective approach for learning session represen-
tations. Following the work, almost all the subsequent RNN-based
methods incorporate the attention mechanism [2, 17, 20].

Convolutional neural networks (CNNs) are also powerful se-
quence modeling tools. Tang andWang [21] proposed a CNN-based
method that embeds a sequence of items into a 2-dimensional latent
matrix and performs both horizontal and vertical convolution on
the matrix to extract the sequence representation. Yuan et al. [27]
proposed to use dilated convolutional layers to efficiently increase
the receptive fields without relying on the lossy pooling operation,
resulting in a model that is more capable of capturing long-range
dependencies compared with [8, 21].

In the last few years, graph neural networks (GNNs) have been in-
creasingly popular and have achieved state-of-the-art performance
in many tasks. There is also some effort to apply GNNs to session-
based recommendation. SR-GNN [23] first encodes a session into an
unweighted directed graph whose edges represent item transitions
in the session and then propagates information between nodes
along both directions of the edges using gated GNNs (GGNNs) [13].
Based on this work, Xu et al. [25] proposed a method that uses
a GGNN to extract local context information and a self-attention
network (SAN) to capture global dependencies between distant

positions. FGNN [16] converts a session into a weighted directed
graph where the edge weights are the counts of item transitions. An
adapted multi-layered graph attention network (GAT) [22] is used
to extract item features and a modified Set2Set pooling operator
is applied to generate session representations. These GNN-based
methods have shown a new and promising direction for session-
based recommendation. However, as we will discuss in Section 4,
these methods operate on a lossy encoding of sessions as graphs
and cannot effectively capture long-range dependencies.

3 PRELIMINARIES
In this section, we introduce some preliminary knowledge about
graph neural networks (GNNs).

GNNs are neural networks that directly operate on graph data.
They are used for learning tasks such as graph classification, node
classification and link prediction problems. In this paper, we just
focus on the graph classification problem because session-based
recommendation can be formulated as such a problem.

Let � = (+ , �) be a given graph, where + and � are the sets of
nodes and edges, respectively. Each node 8 ∈ + is associated with a
node feature vector x8 , which is passed to the first layer of GNN
as the initial node representation. Most GNNs can be understood
from the perspective of message passing. In each layer of a GNN,
the node representations are updated by passing messages along
the edges. The process can be formulated as follows:

x (;+1)
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x (;)
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)
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where x (;)
8

is the representation of node 8 at layer ; and �8= (8) is
the set of incoming edges of node 8 . The message function 5

(;)
msg

computes the message to be propagated from a neighboring node
to the target node. The aggregation function 5 (;)agg aggregates the
information passed to the target node. The update function 5 (;)upd
computes the new node representation from the original node
representation and the aggregated information.

Let ! be the number of layers in the GNN. After ! steps of
message passing in ! layers, the final node representations capture
the information about the graph structure and the features of nodes
within a !-hop community. For the graph classification task, a
readout function 5out is used to generate a graph level representation
h� by aggregating the representations of all nodes in the final layer:

h� = 5out ({x (!)
8

: 8 ∈ + }) (3)

4 METHODOLOGY
In this section, we first give a formal definition of session-based rec-
ommendation (Section 4.1), and then describe the proposed method
which involves two major components. The first component is the
module that converts each input session to an edge-order preserv-
ing (EOP) multigraph and a shortcut graph, since our GNN model
requires two types of graphs as input (Section 4.2). The second
component is the proposed GNN model LESSR (Section 4.3).



4.1 Problem Definition
Session-based recommendation is an instance of next-item recom-
mendation. Its objective is to recommend the items that the user is
most likely to click next given a sequence of items that are already
clicked in the active session. Formally, let � = {E1, E2, . . . , E |� |} de-
note the universal set of items. A session B8 = [B8,1, B8,2, . . . , B8,;8 ]
is a sequence of items ordered by time, where B8,C ∈ � is the item
at time step C and ;8 is the length of B8 . The objective of the model
is to predict the next item B8,;8+1. A typical session-based recom-
mender system generates a probability distribution of the next item,
i.e., ? (B8,;8+1 |B8 ). The items with the top- probabilities are in the
candidate set for recommendations.

Following [11, 16, 17, 21, 23, 25], we do not consider additional
context information such as user IDs and item attributes in this pa-
per.The item IDs are embedded in a3-dimensional space and served
as the initial item features in the model. This is a common practice
in the literature of session-based recommendation. However, it is
easy to adapt our method to take additional context information
into consideration. For example, the user ID embedding can be
served as a graph level attribute and can be appended to item ID
embeddings in each layer [24]. The item features can be combined
with or replace the item ID embeddings [9].

4.2 Converting Sessions to Graphs
To process sessions using a GNN, sessions must be converted to
graphs first. In this subsection, we first introduce a method called
S2MG that converts sessions to EOP multigraphs, and then another
method called S2SG that converts sessions to shortcut graphs.

4.2.1 S2MG: Session to EOPMultigraph. In the literature of session-
based recommendation [16, 23], there are two common methods
to convert sessions into graphs. The first method proposed in [23]
converts a session to an unweighted directed graph � = (+ , �)
where the node set + consists of the unique items in the session,
and the edge set � contains an edge (D, E) ifD = B8,C and E = B8,C+1 for
some 1 ≤ C < ;8 . The second method was proposed in [16]. Unlike
the first method, the edges of the converted graph are weighted,
where the weight of an edge (D, E) is the number of times that the
transition D → E appears in the session. In the following, we will
refer the first and second methods as S2G and S2WG, respectively.
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Figure 3: The weighted graph (a), EOP multigraph (b) and
shortcut graph (c) of session [E1, E2, E3, E3, E2, E2, E4] converted
by S2WG, S2MG and S2SG, respectively. Note that the
weights in (a) are omitted because they are all 1.

We claim that both S2G and S2WG are lossy conversion meth-
ods because it is not always possible to reconstruct the original
session given the converted graph. To prove this, we just need to
prove S2WG is lossy because it captures more information than

S2G, i.e., the number of occurrences of item transitions. There-
fore, “S2WG is lossy” implies “S2G is lossy”. To see why S2WG is
lossy, we give a counter-example as follows. Two different sessions
B1 = [E1, E2, E3, E3, E2, E2, E4] and B2 = [E1, E2, E2, E3, E3, E2, E4] are
converted to the same graph as shown in Figure 3(a) by S2WG. Note
that we omit the edge weights because they are all 1. Therefore,
given the converted graph in Figure 3(a), it is not clear which of B1
and B2 is the original session.

Lossy conversion could be problematic because the information
ignored may be important to determine the next item. We should
let the model automatically learn to decide what information can
be ignored instead of “blindly” making the decision using a lossy
conversion method. Otherwise, the model is not flexible enough to
fit complex datasets since its modeling capacity is limited by the
lossy conversion method.

To handle this problem, we propose a method called S2MG (ses-
sion to EOPmultigraph) which converts a session to a directed multi-
graph that preserves the edge order. For each transitionD → E in the
original session, we create an edge (D, E). The graph is a multigraph
because if there are multiple transitions from D to E , we will create
multiple edges fromD to E . Then, for each node E , the edges in �in (E)
can be ordered by the time of their occurrences in the session. We
record the order by giving each edge in �8= (E) an integer attribute
which indicates its relative order among the edges in �8= (E). The
edge occurs first in �8= (E) is given 1, the next edge in �8= (E) is given
2 and so on. For example, session B1 = [E1, E2, E3, E3, E2, E2, E4] is
converted to the graph in Figure 3(b), denoted byMGB1 . In order for
the conversion to be truly lossless, we also label the last item, e.g.,
node E4 for session B1, which is indicated by a dotted circle. We call
this resulting graph as the edge-order preserving (EOP) multigraph
of the given session.

Now, we prove that S2MG is a lossless conversion method from
sessions to graphs by showing how to reconstruct the original
session given an EOP multigraph (i.e., a graph converted using
S2MG). The idea is to recover the items in the reverse order of
their occurrences in the session. Let’s use MGB1 as an example.
The last item is the labelled node E4. Since we know the last item,
and we know the order of incoming edges of E4, we can determine
the last edge is (E2, E4). Then, the second last item is simply the
source node of the last edge, i.e., E2. We can do this iteratively and
determine the third last item and so on. In this way, we can recover
session B1 from graph"�B1 . The same procedure can be applied to
reconstruct the original session given any graph. Therefore, S2MG
is a lossless conversion method from sessions to graphs.

4.2.2 S2SG: Session to Shortcut Graph. To handle the ineffective
long-range dependency problem in existing GNN-based models
for session-based recommendation, we propose the shortcut graph
attention (SGAT) layer to be described in Section 4.3.2. The SGAT
layer requires an input graph that is different from the above EOP
multigraph. The input graph is converted from the input session
using the following method called S2SG (session to shortcut graph).

Given a session B8 , we create a graph whose nodes are the unique
items in B8 . For each ordered pair of nodes (D, E), we create an
edge from D to E if and only if there exists a pair (B8,C1 , B8,C2 ), such



that B8,C1 = D, B8,C2 = E and C1 < C2. The graph is called a short-
cut graph because it connects items without going through inter-
mediate items. We also add self-loops to the graph so that later
when the SGAT layer performs message passing, the update func-
tion and aggregate function can be combined, which is a common
practice in GAT models [16, 22]. Therefore, the shortcut graph of
B1 = [E1, E2, E3, E3, E2, E2, E4] is the graph shown in Figure 3(c).

In Section 4.3.2, we will show how the SGAT layer could solve the
ineffective long-range dependency problem by performing message
passing on the shortcut graph.

4.3 Our GNN Model: LESSR
In this subsection, we describe the details of our GNNmodel, LESSR,
whose overview is shown in Figure 2. Firstly, we introduce the
EOPA layer in Section 4.3.1 and the SGAT layer in Section 4.3.2.
Next, we describe how to stack these two types of layers in Sec-
tion 4.3.3. Next, we show how to obtain the session embedding in
Section 4.3.4. Lastly, we give how we do the prediction and training
in Section 4.3.5.

4.3.1 Edge-Order Preserving Aggregation (EOPA) Layer. Given EOP
multigraphs that are converted losslessly from sessions, the GNN
still needs to properly process the graphs so that different sessions
can be mapped to different representations. This is not possible
in the existing GNN-based models for session-based recommenda-
tion, because they use permutation-invariant aggregation functions
which ignore the relative order of edges. Therefore, these models
are only suitable for datasets where the ordering information be-
tween edges is not important, which means that there is a limitation
in their modeling capability. To fill this gap, we propose the edge-
order preserving aggregation (EOPA) layer which aggregates the
information passed from neighboring nodes using a GRU. To be
specific, let OE8= (8) = [( 91, 8), ( 92, 8), · · · , ( 938 , 8)] be an ordered list
of the edges in �8= (8), where 38 is the in-degree of node 8 . OE8= (8)
can be obtained from �8= (8) using the integer attributes of the edges
in an EOP multigraph. The aggregated information from neighbors
is defined as follows:

agg(;)
8

= h(;)
38

(4)

h(;)
:

= GRU(;)
(
5
(;)
msg

(
x (;)
8
, x (;)

9:

)
,h(;)

:−1

)
(5)

where {h(;)
:

: 0 ≤ : ≤ 38 } are the hidden states of GRU and 5 (;)msg can
be any valid message function that computes the message passed
from node 9: to node 8 . The initial state h(;)0 is set to a zero vector.

The GRU aggregator is a type of RNN aggregators. We choose
GRU instead of LSTM because it was shown that GRU outperforms
LSTM for the session-based recommendation task [8, 11]. Although
RNN aggregators have been proposed in existing work, e.g., an
LSTM aggregator was proposed in [7], it should be noted that these
RNN aggregators work differently from ours. Specifically, existing
RNN aggregators are employed to deliberately ignore the relative
order of incoming edges by performing aggregation on a random
permutation of these edges, whereas our GRU aggregator performs
aggregation in a fixed order. This is because in the setting of session-
based recommendation, the edges are naturally ordered by time.
However, we need to emphasize that the GRU aggregator is not
our primary contribution. Our primary contribution is applying the

GRU aggregator to solve the information loss problem described in
Section 4.2.

The same message and update functions from the existing GNN
models can be used together with the GRU aggregator, but, con-
sidering the powerful expressive capacity of GRU, we simply use
linear transformation for both the message and update functions.
Thus, putting everything together, the EOPA layer of our model is
defined as follows:
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where] (;)
upd ∈ R3×23 ,] (;)

msg ∈ R3×3 are learnable parameters, and
‖ denotes concatenation.

As for the information about the last node, it will be used in the
readout function to be described in Section 4.3.4, so that different
sessions can be mapped to different representations.

4.3.2 Shortcut Graph Attention (SGAT) Layer. In general, each layer
propagates information for one step, and thus one layer can only
capture 1-hop relationship between nodes. To capture multi-hop
relationship, one could stack multiple GNN layers. Unfortunately,
this would introduce the over-smooth problem [12, 26], which states
that the node representations converge to the same value. Since the
over-smooth problem usually occurs when the number of layers is
larger than 3, stacking multiple layers is not a good way to capture
multi-hop relationship. Besides, even if one could stack multiple
layers, the GNN can only capture up to :-hop relationship where :
is equal to the number of layers. However, in real world applications
such as e-commerce websites, it is very common that a session has
a length larger than : . Thus, existing GNNmodels for session-based
recommendation cannot effectively capture dependencies at very
long ranges. To solve this problem, we propose the shortcut graph
attention (SGAT) layer, which essentially uses edges in the shortcut
graph obtained by S2SG for fast information propagation.

Specifically, the SGAT layer propagates information along edges
in the shortcut graph using the following attention mechanism.
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where �in (8) is the set of incoming edges of node 8 in the shortcut
graph, p (;) , b (;) ∈ R3 and] (;)

key,]
(;)
qry,]

(;)
val ∈ R3×3 are learnable

parameters.
The edges in the shortcut graph directly connect each item to all

of its subsequent items without going through intermediate items.
Therefore, the edges in the shortcut graph can be viewed as “short-
cut connections” between items. The SGAT layer can effectively
capture long-term dependencies of any length because it propa-
gates information along the shortcut connections between items
in one step without going through intermediate items. It can be
combined with the original layers in existing GNN-based methods
to increase their capability of capturing long-range dependencies.



4.3.3 StackingMultiple Layers. TheEOPA layer and the SGAT layer
are proposed to solve two information loss problems of previous
GNN-based methods for session-based recommendation. To build
a GNN model that does not have the information loss problems,
we stack multiple EOPA and SGAT layers. Instead of putting all
of the EOPA layers after all of the SGAT layers or vice versa, we
interleave EOPA layers with SGAT layers for the following reasons:

• The shortcut graph is a lossy conversion of the original ses-
sion, so continuously stacking multiple SGAT layers will
introduce the lossy session encoding problem. The problem
is more severe with more SGAT layers because the amount
of information loss accumulates. By interleaving the EOPA
and SGAT layers, the lost information can be retained in the
subsequent EOPA layers and the SGAT layers can just focus
on capturing long-range dependencies.

• Another advantage of interleaving two kinds of layers is
that each kind of layers can effectively utilize the features
captured by the other kind of layers. Since the EOPA layers
are more capable of capturing local context information and
the SGAT layers are more capable of capture global depen-
dencies, interleaving the two kinds of layers can effectively
combine the advantages of both and improve the model’s
capabilities in learning more complex dependencies.

To further facilitate feature reuse, we introduce the dense connec-
tions proposed in [10]. The input to each layer consists of the output
features of all previous layers. To be specific, originally, the input to
layer ; is {x (;−1)

8
: 8 ∈ + }. With the dense connections, the input to

layer ; is changed to {x (0)
8

‖x (1)
8

‖ · · · ‖x (;−1)
8

: 8 ∈ + }, which is the
concatenation of the output of all previous layers. It is shown that
a deep learning model with dense connections is more parameter-
efficient, i.e., achieving the same performance with much fewer
parameters, because each of the higher layers can use not only the
abstract features at its previous layer but also the low-level features
at lower layers [10].

4.3.4 Generating Session Embedding. After the message passing
of all layers is finished, we obtain the final representations of all
nodes. To represent the current session as an embedding vector, we
apply a readout function proposed in [23], which computes a graph-
level representation by aggregating node representations using the
attention mechanism. Let x (!)

last denote the final node representation
of the last item in the session. The graph-level representation h� is
defined as follows:

h� =
∑
8∈+

V8x
(!)
8

(11)

# = softmax(&) (12)

n8 = q)f (]1x
(!)
8

+]2x
(!)
last + r) (13)

where q, r ∈ R3 and]1,]2 ∈ R3×3 are learnable parameters.
The graph-level representation captures the global preferences of

the current session, denoted by s6 = h� . Since previous studies [11,
17, 23] showed that it is also important to explicitly consider users’
recent interests, we define a local preference vector by s; = x (!)

last .
Then, we compute the session embedding as a linear transformation

of both the global and local session preferences:

sℎ =]ℎ (sg ‖s; ) (14)

where]ℎ ∈ R3×23 is a learnable matrix parameter.

4.3.5 Prediction and Training. After obtaining the session embed-
ding, we can use it to make recommendations by computing a
probability distribution of the next item. For each item 8 ∈ � , we
first compute a score using its embedding v8 and the session em-
bedding as follows:

I8 = s)
ℎ
v8 (15)

Then, the predicted probability of the next item being item 8 , ~̂8 , can
be computed by:

~̂8 =
exp(I8 )∑
9 ∈� exp(I 9 )

(16)

For top- recommendation, we can just recommend the items with
top  probabilities.

Let ~ denote the ground-truth probability distribution of next
item, which is a one-hot vector. The loss function is defined to be
the cross-entropy of the prediction and the ground truth:

L(~, ~̂) = −~) log ~̂

Then, all parameters as well as the item embeddings are randomly
initialized and jointly learned in an end-to-end back-propagation
training paradigm.

5 EXPERIMENTS
In this section, we first describe the experimental settings, including
the datasets, compared methods and evaluation metrics. Then, we
make detailed analysis on the experimental results.

5.1 Datasets
We conducted our experiments on the following three public real-
world datasets which are commonly used in the literature of session-
based recommendation [11, 16, 17, 23, 27] :

• Diginetica3 is a dataset that comes from CIKM Cup 2016. Its
transaction data is suitable for session-based recommenda-
tion. Fowllowing [11, 14, 17, 23], we used the sessions in the
last week as the test set.

• Gowalla4 is a check-in dataset that is widely used for point-
of-interest recommendation. Following [6, 21], we kept the
top 30,000most popular locations, and grouped users’ check-
in records into disjoint sessions by splitting at intervals be-
tween adjacent records that are longer than 1 day. The last
20% of the sessions were used as the test set.

• Last.fm5 is a dataset that is widely used in many recommen-
dation tasks. We used this dataset for music artist recom-
mendation. Following [6, 17], we kept the top 40,000 most
popular artists and set the splitting interval to 8 hours. Simi-
lar to Gowalla, the most recent 20% of the sessions were used
as the test set.

3http://cikm2016.cs.iupui.edu/cikm-cup
4https://snap.stanford.edu/data/loc-gowalla.html
5http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html



Following [11, 14, 16, 17, 23], we first filtered short sessions and
infrequent items and then applied a data augmentation technique
described in [11, 14, 23]. Some statistics of the datasets after pre-
possessing are shown in Table 1.

Table 1: Statistics of datasets used in the experiments

Statistic Diginetica Gowalla Last.fm

No. of Clicks 981,620 1,122,788 3,835,706
No. of Sessions 777,029 830,893 3,510,163
No. of Items 42,596 29,510 38,615

Average length 4.80 3.85 11.78

5.2 Baselines and Evaluation Metrics
To evaluate the performance of the proposed model, we compared
it with the following representative methods.

• Item-KNN [4] is a neighborhood method that recommends
items that are similar to the previous items in the current
session, where the similarity between two items is defined
by their cosine similarity.

• FPMC [18] is a Markov-chain based method for next-basket
recommendation. To adapt it for session-based recommen-
dation, we consider the next item as the next basket.

• NARM [11] employs RNNs with attention to capture user’s
main purposes and sequential behaviors.

• NextItNet [27] is a CNN-based method for next-item rec-
ommendation. It uses dilated convolution to increase the
receptive fields without using the lossy pooling operations.

• SR-GNN [23] transforms sessions into directed unweighted
graphs and extracts item features by propagating informa-
tion along both directions of the edges using a GGNN [13].

• FGNN [16] converts sessions into directed weighted graphs
and uses an adapted GAT [22] to learn item representations.

• GC-SAN [25] first uses GGNN to extract local context infor-
mation and then employs a self-attention network (SAN) to
capture global dependencies.

Following [14, 21], for each method, grid search is applied to find
the optimal hyper-parameters using the last 20% of the training
set as the validation set. The ranges of the hyper-parameters are:
{16, 32, 64, 96, 128} for embedding dimension 3 , and {10−4,
10−3, · · · , 10−1} for learning rate [. For the GNN-based models,
we also search the total number of layers ! in {1, 2, 3, 4, 5}. We
use the Adam optimizer to train the models and the batch size is
set to 512. We report the result of each model under its optimal
hyper-parameter settings.

Following previous studies [11, 16, 17, 23], we adopt the com-
monly used HR@20 (Hit Rate)6 and MRR@20 (Mean Reciprocal
Rank) as our evaluation metrics.

5.3 Performance Comparisons
To demonstrate the overall performance of the proposed model,
we compared it with the state-of-the-art recommendation methods.
6Note that [11, 16, 17, 23] used different metric names for HR@20 (e.g., P@20 and
Recall@20). But, they used the same formula to obtain this measurement (i.e., the
proportion of cases when the desired item is among the top-20 items in all test cases).

The experimental results of all compared methods are shown in
Table 2, from which we could have the following observations.

Table 2: Experimental results (%) on three datasets

Method Diginetica Gowalla Last.fm

HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

Item-KNN 39.51 11.22 38.60 16.66 14.90 4.04
FPMC 28.50 7.67 29.91 11.45 12.86 3.78

NextItNet 45.41 15.19 45.15 21.26 20.12 7.08
NARM 49.80 16.57 50.07 23.92 21.83 7.59
FGNN 50.03 17.01 50.06 24.12 22.20 8.02
SR-GNN 50.81 17.31 50.32 24.25 22.33 8.23
GC-SAN 50.90 17.63 50.68 24.67 22.64 8.42
LESSR 51.71 18.15 51.34 25.49 23.37 9.01

Improv. 1.59% 2.95% 1.30% 3.32% 3.22% 7.01%

The performance of the conventional methods, including Item-
KNN and FPMC, are not competitive. These methods make rec-
ommendations merely based on item similarities or transitions,
without considering other important sequential information such
as the relative order among previous items in the active session.

All of the neural network-based models outperform the conven-
tional methods by a large margin, proving the effectiveness of deep
learning technology in session-based recommendation. The neural
network-based models are capable of capturing complex sequential
patterns for making recommendations. However, their sequential
modeling capabilities are not equally powerful. The CNN-based
method, NextItNet, is less performant than other RNN-based and
GNN-based methods. One possible reason could be that CNNs are
only good at capturing consecutive sequential patterns but not
long-term dependencies. NARM achieves competitive performance
because it uses RNN to capture sequential behaviors and the atten-
tion mechanism to capture global preferences.

GNN-based methods generally outperform other methods, sug-
gesting that GNNs offer a promising direction for session-based rec-
ommendation. Although FGNN uses a conversion method that cap-
tures more information than the method used by SR-GNN, FGNN
does not outperform SR-GNN, suggesting the importance of choos-
ing a powerful message passing scheme. GC-SAN outperforms SR-
GNN because it uses SAN to capture global dependencies between
distant items, showing the effectiveness of explicitly considering
long-range dependencies. The proposed method LESSR uses the
powerful EOPA to extract local contextual information and SGAT
to capture long-range dependencies of any length, and thus it can
significantly outperform all compared methods, proving the effi-
cacy and the validity of the proposed method. Among the three
datasets, LESSR obtains the largest performance improvement in
Last.fm because this dataset has the largest average length, and thus
LESSR benefits most from preserving the edge order and capturing
the long-term dependencies.

5.4 Ablation Studies
In this section, we performed some ablation studies to show the
effectiveness of the EOPA and SGAT layers.

5.4.1 Effectiveness of EOPA Layer. To evaluate the effectiveness
of the EOPA layer, we compared it with the message passing (MP)



layers from other GNN-based methods, including GGNN from SR-
GNN [23], WGAT from FGNN [16], and SAN from GC-SAN [25].
We used the same readout function described in Section 4.3.4. The
embedding size was set to 96 because most models achieved the
best performance with this embedding size. For GGNN and WGAT,
the number of layers was set to 1 and they were compared with a
model with 1 EOPA layer. To show the importance of EOPA, we
also compared the EOPA layer with its modified variant which
performs aggregation on a random permutation of the incoming
edges. In other words, the modified EOPA layer ignores the order
attributes of edges in the EOP multigraph. We denote the variant
“EOPA (rand)”. For SAN, since it is designed to work with GGNN,
we compared a model consisting of GGNN followed by SAN, with
a model consisting of GGNN followed by EOPA. The results are
shown in Table 3. Each model is denoted by the name(s) of the MP
layer(s) that it contains.

Table 3: The performance of different message passing lay-
ers

Layer(s) Diginetica Gowalla Last.fm

HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

WGAT 49.71 16.46 50.03 24.02 21.89 7.89
GGNN 49.85 16.59 50.24 24.23 22.08 8.02

EOPA (rand) 49.81 16.56 50.18 24.11 22.05 8.06
EOPA 50.30 16.93 50.86 24.89 22.31 8.36

GGNN+SAN 50.06 16.72 50.37 24.44 22.22 8.18
GGNN+EOPA 50.28 16.91 50.76 24.96 22.41 8.40

We can see that EOPA consistently outperforms all other types
of MP layers, proving the effectiveness of EOPA. The other types of
MP layers perform worse because they use lossy encoding schemes
to convert sessions to graphs, and their aggregation schemes do not
consider the relative order of edges. Note that although “EOPA” and
“EOPA (rand)” use the same encoding scheme, i.e., S2MG, “EOPA”
outperforms “EOPA (rand)” because “EOPA (rand)” randomly per-
mutes the incoming edges when performing aggregation.Therefore,
it is not enough to just use a conversion method that preserves the
edge order. The aggregation scheme also needs to preserve the edge
order.

5.4.2 Effectiveness of SGAT Layer. To show the effectiveness of
SGAT, we replaced the last MP layer with a SGAT layer for each
existing GNN-based method and checked if the replacement im-
proved the performance. Since SR-GNN and FGNN have only one
kind of MP layer, the number of layers was set to 2 so that the
modified model had one original MP layer followed by one SGAT
layer. For GC-SAN, the number of layers was set to 3 because it has
two kinds of MP layers. For LESSR, we compared a model with two
EOPA layers and a model with one EOPA layer followed by a SGAT
layer. The embedding size was set to 96. Due to the space limita-
tion, we only reported the performance in terms of HR@20 on the
Diginetica dataset since it is more commonly used in session-based
recommendation. The results are shown in Table 4.

We can see that the replacement helps improving the models
performance. This is because the original layers are only good at
capturing local contextual information but not complex long-range

Table 4: Performance differences in terms of HR@20

Model LESSR FGNN SR-GNN GC-SAN

Original 50.29 49.51 50.02 50.01
Modified 50.56 50.08 50.18 50.36

Improv. 0.54% 1.15% 0.32% 0.70%

dependencies. By replacing an original layer with a SGAT layer,
the model’s capability of capturing long-range dependencies is im-
proved. The SAN layers in GC-SAN also have the ability to capture
global dependencies between distant nodes. However, they propa-
gate information between every pair of nodes, which completely
discard the connectivity information in the original session. In con-
trast, our SGAT layer propagates information from D to E only if D
appears before E , which preserves some connectivity information.
Therefore, it is reasonable to see a performance gain when a SAN
layer is replaced by our SGAT layer.

Table 5: The performance of different orders of layers

Model Diginetica Gowalla Last.fm

HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

SSEE 50.17 16.75 50.77 24.70 21.98 8.19
EESS 50.34 16.83 50.71 24.83 22.11 8.25
SESE 50.36 16.81 50.74 24.75 22.07 8.20
ESES 50.63 17.08 50.82 25.04 22.48 8.41

5.4.3 Order of EOPA and SGAT Layers. . To show the advantages of
the proposed order of layers, we compared four models, including
EESS, SSEE, ESES and SESE. Each model contains two EOPA layers
and two SGAT layers, where EOPA and SGAT are abbreviated as E
and S, respectively.The order of characters (i.e., E and S) denotes the
order of layers. For example, EESS has two EOPA layers followed
by two SGAT layers. The embedding size was set to 96 and residual
connections were used. Table 5 shows the results. We can see that
SSEE performs the worst because it cannot use the advantages of
either kinds of layers. SESE and EESS have similar performance,
suggesting the benefits of interleaving two kinds of layers and
putting EOPA before SGAT. ESES outperforms all other models,
proving that the proposed order is the most effective way to utilize
the advantages of both kinds of layers.

5.5 Hyper-parameter Study
In this section, we study how the embedding size and the number
of layers affect the performance of the proposed method. Due to
the limited space, we only show the results in terms of HR@20. The
results are shown in Figure 4.

From the results, we can see that increasing the embedding size or
the number of layers does not always result in a better performance.
For the smaller dataset Diginetica, the optimal embedding size is
32. The performance decreases quickly when the embedding size
exceeds this optimal value because the model overfits. For the other
two larger datasets, increasing embedding size generally improves



Figure 4: The performance of LESSR

the performance because a larger embedding size increases the
model’s learning capacity.

If the embedding size is smaller than the optimal value, as the
number of layers increases, the performance first improves and
then drops when the number of layers is 3 or 4. This is because
the model’s learning capacity increases when the number of lay-
ers becomes larger, but too many layers do not help because the
over-smooth problem occurs, even if the model has not overfit-
ted. Therefore, stacking more layers is not an effective method to
capture long-range dependencies, and it is meaningful to apply
alternative ways such as using SGAT layers to improve the model’s
capability in capturing long-range dependencies.

6 CONCLUSION
In this paper, we identify two information loss problems in the ex-
isting GNN models for session-based recommendation, namely the
lossy session encoding and the ineffective long-range dependency
capturing problems. To solve the two problems, we propose the
EOPA and the SGAT layers, which rely on the two conversion meth-
ods that convert sessions to graphs, including S2MG and S2SG. By
combining the two kinds of layers, we build a model called LESSR
that does not have the two information loss problems and the ex-
perimental results show that LESSR outperforms state-of-the-art
methods on three public datasets. For future work, we are interested
in applying LESSR to personalized and streaming session-based
recommendation.
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