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ABSTRACT
Bichromatic reverse nearest neighbor (BRNN) queries have been
studied extensively in the literature of spatial databases. Given a
set P of service-providers and a set O of customers, a BRNN query
is to find which customers in O are “interested” in a given service-
provider in P . Recently, it has been found that this kind of queries
lacks the consideration of the capacities of service-providers and
the demands of customers. In order to address this issue, some
spatial matching problems have been proposed, which, however,
cannot be used for some real-life applications like emergency fa-
cility allocation where the maximum matching cost (or distance)
should be minimized. In this paper, we propose a new problem
called SPatial Matching for Minimizing Maximum matching dis-
tance (SPM-MM). Then, we design two algorithms for SPM-MM,
Threshold-Adapt and Swap-Chain. Threshold-Adapt is simple and
easy to understand but not scalable to large datasets due to its rel-
atively high time/space complexity. Swap-Chain, which follows
a fundamentally different idea from Threshold-Adapt, runs faster
than Threshold-Adapt by orders of magnitude and uses significantly
less memory. We conducted extensive empirical studies which ver-
ified the efficiency and scalability of Swap-Chain.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithms, Experimentation, Performance

Keywords
Optimal worst-case spatial matching, Bottleneck matching

1. INTRODUCTION
Bichromatic reverse nearest neighbor (BRNN) queries have

been studied extensively [17, 18, 24]. Let P be a set of service-
providers and O be a set of customers. A BRNN query is to find
which customers in O are “interested” in a given service-provider
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in P . However, BRNN queries lack the consideration of the capac-
ities of service-providers and the demands of customers. In order
to address this issue, some spatial matching problems [25, 22, 21]
have been proposed which assign service-providers to customers
with the above consideration.

In some real-life applications like hospital allocation, a common
goal is to minimize the maximum distance (or cost) between a hos-
pital and a residential estate served by this hospital. For example, in
the Hong Kong ambulance service, the minimized maximum cost
is about 12 minutes (driving distance) [1].

To illustrate, we go through a toy example as shown in Figure 1.
In Figure 1(a), P contains three hospitals p1, p2 and p3 and O con-
tains three residential estates o1, o2 and o3. Figure 1(b) shows all
pairwise distances between P and O. For the sake of illustration,
suppose that the capacity of each hospital p in P is 1, which means
that the greatest amount of the service given by p is 1, and the de-
mand of each residential estate o in O is also 1, which means that
the amount of the service requested by o is 1. In this case, each hos-
pital can serve at most one residential estate. In order to minimize
the maximum distance between a hospital and the residential estate
served by this hospital, we form an assignment between P and O as
shown in Figure 2(a). In this assignment, p1, p2 and p3 serve o1, o3

and o2, respectively. If p serves o, we draw a line between p and
o in the figure. The number next to the line is called the matching
distance between p and o which corresponds to the Euclidean dis-
tance between p and o. In this assignment, the maximum matching
distance (mmd) is equal to 6. Besides, we cannot find any other as-
signment which satisfies the service demand of each customer and
has its mmd smaller than 6. Thus, 6 is the optimal mmd.

In this paper, we propose a new problem called SPatial Matching
for Minimizing Maximum matching distance (SPM-MM). Given a
set P of service-providers each of which has a capacity and a set O
of customers each of which has a demand, the SPM-MM problem is
to assign the service-providers in P to the customers in O with the
consideration of the capacities of the service-providers such that
the demand of each customer in O is satisfied and the maximum
matching distance (i.e. mmd) is minimized.

SPM-MM has extensive applications in matching between two
sets of objects where the worst-case cost should be minimized.
The notions of “service-provider” and “customer” in SPM-MM are
general and can have alternative semantics in different (even non-
geographic) applications. One such application is the allocation
problem between emergency facilities and users. Hospitals, fire sta-
tions and police stations are some examples of emergency facilities
and residential estates and commercial areas are some examples of
users. Logistics, data warehouse allocation and mail delivery are
some applications with non-emergency facilities. Profile match-
ing [25] is another application where we want to match “items” (re-
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Figure 1: A running example
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Figure 2: Spatial matching problems
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Figure 3: The process of Swap-Chain

garded as service-providers) with “customers” such that the worst-
case dissatisfactory rate among all customers is minimized.

It turns out that SPM-MM reduces to be a classical problem in
computer science, Bottleneck Matching Problem (BMP) [14], when
each service-provider has its capacity equal to 1 and each customer
has its demand equal to 1 as well. Given two sets of n objects,
A and B, and the cost of matching each object in A with each
object in B, the BMP problem is to find the perfect matching with
the smallest cost among all perfect matchings between A and B
where the cost of a perfect matching M is defined to be the greatest
cost of matching an object from A and an object from B in M . It
can be verified that SPM-MM becomes BMP when |P | = |O|,
each service-provider p ∈ P (customer o ∈ O) has its capacity
(demand) equal to 1, and the distance between p and o is used as
the cost of matching p with o for each p ∈ P and each o ∈ O.
[4] provides a comprehensive study on existing solutions of BMP,
among which, the Threshold algorithm is the fastest.

No existing algorithms can be used to solve the SPM-MM prob-
lem. Firstly, the algorithms for BMP cannot be used directly for
SPM-MM since in SPM-MM, the capacities/demands could be ar-
bitrary positive integers. Besides, we will show that an adapted
version of the Threshold algorithm, which is originally designed for
BMP, is not scalable for SPM-MM. Secondly, the solutions for all
existing spatial matching problems cannot be used for SPM-MM.
To illustrate this, we first give a brief background of these prob-
lems. Two major types of spatial matching problems have been
studied. The first one [25] aims to find the fair assignment between
P and O which is to assign to each customer the nearest service-
provider that has not been exhausted of serving other closer cus-
tomers. Figure 2(b) shows the fair assignment between P and O
whose mmd is equal to 10 (> 6). The second one is to find the glob-
ally optimized assignment between P and O which guarantees that
each customer’s service demand is satisfied and the overall match-
ing cost is minimized. Figure 2(c) shows the globally optimized
assignment between P and O whose mmd is equal to 7 (> 6).

In this paper, we design two algorithms for the SPM-MM prob-
lem. The first one is called Threshold-Adapt and the second one is
called Swap-Chain. Threshold-Adapt is an algorithm which shares
a similar idea as Threshold which is originally designed for BMP.
Unfortunately, Threshold-Adapt is not scalable to large datasets due
to its high time/space complexity. Swap-Chain is an algorithm
which is scalable and runs faster than Threshold-Adapt by orders
of magnitude by using the concept of finding a series of elements
where every two adjacent elements are “close” to each other for re-
matching. The operation of finding a “close” element from another
element can be implemented efficiently by spatial queries.

It is worth mentioning that our proposed algorithms are not lim-
ited to the Euclidean space. In fact, they can also be adapted to
non-metric space (with a certain sacrifice of efficiency). For exam-
ple, our algorithms can be adapted to settle the SPM-MM problem
in Figure 1, even if the distance between a hospital and a residen-
tial estate is their road-network distance. The discussion on how to
adapt our techniques to non-metric space is given in Section 6.

We summarize our main contributions as follows. Firstly, to the
best of our knowledge, we are the first to propose the SPM-MM
problem, which has extensive real-life applications. Secondly, to
solve SPM-MM, we design our first algorithm, Threshold-Adapt,
based on an idea of one popular solution of BMP, Threshold.
Threshold-Adapt is not scalable for large datasets due to its high
time/space complexity. Therefore, we develop another novel al-
gorithm, Swap-Chain, which runs faster than Threshold-Adapt by
orders of magnitude and is scalable to very large datasets (in mil-
lions). Finally, we conducted extensive empirical studies on these
two solutions.

In the following, Section 2 defines the SPM-MM problem, and
Section 3 provides the related work of SPM-MM. Section 4 and
Section 5 introduce two algorithms, Threshold-Adapt and Swap-
Chain, respectively. Section 6 gives some discussions. Section 7
includes the empirical studies and Section 8 concludes the paper.

2. THE SPM-MM PROBLEM
Let P be a set of service-providers and O be a set of customers.

Each service-provider p (customer o) has a service capacity (de-
mand), denoted by p.w (o.w). We represent the Euclidean distance
between o and p with d(o, p).

Let WO =
P

o∈O o.w and WP =
P

p∈P p.w. We assume that
the service demands of all customers in O can be satisfied by the
service-providers in P , i.e. WP ≥ WO. Under this assumption, it
is possible that some service-providers are not matched with cus-
tomers. In case that WP < WO, we swap the roles of P and O and
thus this assumption still holds.

PROBLEM 1 (SPM-MM). SPM-MM generates the assign-
ment A denoting a set containing the elements in the form of triplets
(o, p, w), where (o, p, w) is called a match between o and p and
denotes that p provides the service with the amount of w to o. Fur-
thermore, the following three conditions hold.

• Capacity Constraint: No service-provider provides its ser-
vice of the amount greater than its capacity, i.e., ∀p ∈ P ,P

(o,p,w)∈A w ≤ p.w.

• Demand Constraint: Each customer’s service demand is
satisfied, i.e., ∀o ∈ O,

P
(o,p,w) w = o.w.

• Optimality Constraint: The mmd of A is minimized, i.e.,
max{d(o, p)|(o, p, w) ∈ A} is minimized.

Note that in the following, for clarity, the match (o, p, w) is sim-
ply denoted as (o, p) when w = 1.

In order to ease our discussion, we say that an assignment is full
if it satisfies the Capacity Constraint and the Demand Constraint
defined above. Note that there are an exponential number of full
assignments. To illustrate, consider the case where |P | = |O| = n
and the capacity (demand) of each service-provider (customer) is
equal to 1. In this case, there exist n! possible full assignments.



3. RELATED WORK
We classify the related work into three branches.

The BMP Problem: The first branch is the Bottleneck Matching
problem [14, 4, 9, 11] (BMP). BMP was first proposed by Gross
in [14]. Given two sets of n objects, A = {a1, a2, ..., an} and
B = {b1, b2, ..., bn}, and the cost matrix Cn×n (cij represents
the cost of matching ai with bj for 1 ≤ i, j ≤ n), BMP is to
find the perfect matching between A and B, which minimizes the
maximum matching cost.

One may come up with the following straightforward solution
to solve our SPM-MM problem by using the existing solutions for
BMP. Specifically, we duplicate each o in O o.w times and each p
in P p.w times. Then, we can use the existing algorithm originally
designed for BMP to find the solution for our SPM-MM problem.
However, this duplication is cumbersome and undesirable (espe-
cially when the capacities/demands are very large), because the re-
sulting datasets would be prohibitively large.

Next, we describe the most popular solution for BMP. [4] pro-
vides a comprehensive study of the solutions of BMP, among
which, the Threshold method has the lowest time complexity. The
best-known algorithm for BMP is due to Gabow and Tarjan in [11],
which is based on Threshold. Threshold is based on the property
that the minimized maximum matching cost (i.e., the optimal mmd)
must reside in the cost matrix Cn×n. Therefore, it maintains a set
X containing the candidates of the optimal mmd, which is initial-
ized to be ∅. For each cost entry c in Cn×n, it first constructs a bi-
partite graph between A and B containing the edges each of which
is a pair (ai, bj) whose matching cost is at most c. Then, it checks
whether there exists a perfect matching in this bipartite graph. If
yes, it includes c in X. Finally, it returns the smallest cost in X,
which is shown to be the optimal mmd. The above checking opera-
tion could be accomplished with a maximum cardinality matching
procedure [16] on the corresponding bipartite graph which finds the
greatest number of matches in the graph. However, Threshold in-
curs an expensive space cost of O(n2) since it has to maintain the
cost matrix Cn×n. Thus, it is not scalable to large datasets.

There is an existing study [9] for BMP in the context of spa-
tial databases where the matching distance between two objects is
their Euclidean distance. The method in [9] is exactly the Thresh-
old algorithm except that the maximum cardinality matching pro-
cedure [16] is improved. However, this method cannot be used di-
rectly for SPM-MM where the capacities/demands are any positive
integers. Besides, the techniques in [9] originally designed for im-
proving the maximum cardinality matching procedure in Thresh-
old cannot be adopted for our Threshold-Adapt algorithm (which
will be introduced in Section 4) since Threshold-Adapt involves no
maximum cardinality matching procedure.

A monochromatic version of BMP (i.e., only one set of data)
is considered in [5, 10]. But, these studies are different from ours
which uses a bichromatic setting where two sets of data (i.e., P and
O) are considered for matching.

Some recent papers [8, 26] in the field of operations research also
studied the bottleneck problem and its variations, but they do not
focus on the efficiency issue. Specifically, a common technique in
this field [8, 26] is constrained optimization/programming, which
is known to be slow for large datasets. Besides, [8, 26] only studied
the problems in the context of graphs instead of spatial databases.

Spatial Matching Problems: The second branch is the existing
spatial matching problems [25, 22, 21]. [25] proposed the SPatial
Matching problem (SPM), which generates a fair assignment be-
tween P and O. [22] proposed the Capacity Constrained Assign-
ment problem (CCA), which returns the globally optimized assign-

ment. Recently, a continuous version of CCA [21] was proposed
where customers move dynamically.

Since SPM and CCA have different optimization criteria from
SPM-MM, the existing solutions developed for SPM and CCA can-
not be applied here. In fact, as will be verified in our empirical
study, the mmd’s of the assignments of SPM and CCA are much
larger than the mmd of the SPM-MM assignment.

Problems with Minimum Maximum Distance: The third branch
is related to some other problems [15, 3] using the minimum maxi-
mum distance as a measurement. Given n cities, the k-center prob-
lem [15], one of the traditional computer science problems, is to
build k warehouses at different cities (k ≤ n) such that the max-
imum distance from a city to its nearest warehouse is minimized.
The goal of k-center which is to select k cities out of n cities is dif-
ferent from that of SPM-MM which is to match service-providers
and customers. [3] studied an assignment problem between servers
and clients. The matching distance between a server and a client
depends on both the physical distance and the load of the server
where the load of a server corresponds to the number of clients
served by this server. In other words, the matching distance be-
tween a server and a client defined in [3] in an assignment can be
different from the one in another assignment.

4. ALGORITHM THRESHOLD-ADAPT

4.1 Theoretical Properties
Given a set P of service-providers and a set O of customers,

let do be the optimal mmd for the SPM-MM problem. Intrinsi-
cally, do is a pairwise distance between a service-provider p in
P and a customer o in O. It follows that do ∈ S, where S is
the set of all possible pairwise distances between P and O, i.e.,
S = {d(p, o)|p ∈ P, o ∈ O}. Note that |S| = |P | · |O|. We
present this property in the following Lemma 1.

LEMMA 1 (SEARCH SPACE). Let do be the optimal mmd for
the SPM-MM problem. do is in S.

According to Lemma 1, one straightforward method of finding
do is to determine whether each value in S is feasible for the SPM-
MM problem, insert all feasible values into a set X, and find the
minimum value in X as do. The definition of “feasibility” is de-
fined next.

DEFINITION 1 (FEASIBILITY). Given a positive real number
d, d is feasible if and only if there exists a full assignment A be-
tween P and O such that its mmd is at most d.

LEMMA 2 (FEASIBILITY). Let do be the optimal mmd for the
SPM-MM problem. do is feasible.

4.2 Algorithm
We develop our Threshold-Adapt algorithm by using the search

space S and the feasibility property described in Lemma 2. Specif-
ically, Threshold-Adapt checks the feasibility of each distance in S
and returns the smallest feasible distance.

THEOREM 1. The Threshold-Adapt algorithm returns the opti-
mal assignment for the SPM-MM problem.

Let α be the cost of checking the feasibility of a given value
d. One straightforward implementation of Threshold-Adapt has the
time complexity equal to O(|S| · α) = O(|P | · |O| · α). In the
following, we consider two issues of Threshold-Adapt.

The first issue is to further reduce the size of the search space
from |P | · |O| to O(log(max{|P |, |O|})) based on the following
monotonicity property.



LEMMA 3 (MONOTONICITY). Let d and d′ be two positive
real numbers where d < d′. If d is feasible, then d′ is feasible.

According to the above lemma, if we know that a value d′ in S
is not feasible, then any value d in S smaller than d′ must not be
feasible. This gives hints for a further reduction of the search space.

Specifically, we sort all values in S in ascending order and store
the sorted values in a list L. Then, we adopt binary search to find
the smallest feasible value in L (which corresponds to the opti-
mal mmd). This method checks O(log |L|) pairwise distances in
S. Note that |L| = |P | · |O|. Thus, the size of the search space
becomes O(log(|P | · |O|)) = O(log(max{|P |, |O|})) which is
significantly smaller than the original size of |P | · |O|.

The second issue is to propose an efficient method to perform
the judging task to determine whether a given value d is feasible or
not. We propose the following three-step algorithm.

Step 1: Construction of a Flow Network wrt d. We construct
a flow network Gd(Vd, Ed) wrt d as follows. We create a source
vertex s and a sink vertex t, and Vd is constructed to be P ∪ O ∪
{s, t}. For each pair (o, p) ∈ O × P with d(o, p) ≤ d, we create
an edge (p, o) in Ed and set its capacity to be min{p.w, o.w}. For
each p in P (o in O), we create an edge (s, p) ((o, t)) in Ed and set
its capacity to be p.w (o.w).

Step 2: Construction of a Maximum-Flowed Network. We per-
form a maximum-flow algorithm [2], denoted by Amax−flow, on
the flow network Gd and obtain the maximum flow from s to t in
Gd. We denote the amount of this maximum flow by mf . The
maximum-flowed network is the flow network Gd, where each edge
is associated with its flow in the resulting maximum flow. We de-
note by e.f the flow associated with the edge e.
Step 3: Feasibility Checking on d. We compare mf with WO. If
mf = WO, we conclude that d is feasible; otherwise, we conclude
that d is not feasible. In the former case, we construct an assign-
ment, denoted by Ad, based on the maximum-flowed network at
Step 2. We initialize Ad to ∅. Then, for each edge e in the form of
(p, o) in the maximum-flowed network with e.f > 0, we create a
match (o, p, e.f) in Ad.

The correctness of the above three-step algorithm is verified by
the following lemma.

LEMMA 4. The three-step algorithm returns a full assignment
Ad with its mmd at most d if and only if d is feasible.

Time Complexity. After we address the first issue and the sec-
ond issue, we know that the Threshold-Adapt algorithm trig-
gers O(log(max{|P |, |O|})) times of running the maximum-flow
algorithm. Thus, the time complexity of Threshold-Adapt is
O(log(max{|P |, |O|}) · α) where α is the cost of a maximum-
flow algorithm (e.g., α = O(n2m) on a flow network with n ver-
tices and m edges if the recently proposed IBFS algorithm [13] is
adopted). We will test different maximum-flow algorithms in our
experiments for optimizing the performance of Threshold-Adapt.

We note here that Threshold-Adapt suffers from two intrinsic
space problems which limit the application scope of Threshold-
Adapt to small/medium-sized datasets only. First, it relies on a
search space S whose size is |P | · |O|. This is prohibitively large
when the datasets are large (e.g., S simply occupies about 7.45GB
space when |O| = 100k and |P | = 10k). Second, it has to main-
tain a flow network Gd(Vd, Ed) which has its worst-case space
complexity of O(|P | · |O|). Motivated by the above space issues of
Threshold-Adapt, we design another algorithm called Swap-Chain
in the next section, which not only avoids these issues by adopt-
ing a fundamentally different idea, but also runs faster by orders of
magnitude.

5. ALGORITHM SWAP-CHAIN
In Section 5.1, we give an overview of the Swap-Chain algo-

rithm. We then present it in Section 5.2, and discuss some issues of
Swap-Chain and its theoretical results in Section 5.3.

5.1 Overview
Swap-Chain has the following three steps.
• Step 1 (Assignment Initialization): It first initializes a full

assignment A using a given strategy. We will discuss dif-
ferent strategies for this step in Section 5.3. One strategy is
finding a fair assignment (which is full) by an existing algo-
rithm [25].

• Step 2 (Assignment Adjustment): It re-assigns some
matches in A to form another full assignment A′ such that
the mmd of A′ is smaller than that of A.

• Step 3 (Iterative Step): It repeats Step 2 until it is not pos-
sible to perform the assignment adjustment step.

In Step 2, the algorithm reduces the mmd of an assignment A
by re-assigning some matches in the assignment. Note that the
mmd of an assignment denotes the maximum matching distance
of a match in the assignment and this match is called an extreme
match. Specifically, the main idea of Step 2 is to find an extreme
match in the assignment, break this match and some other matches,
and re-assign these matches such that the mmd of the resulting as-
signment is smaller.

5.2 Algorithm

5.2.1 Concepts and Algorithm
Before introducing the Swap-Chain algorithm, we introduce

some concepts and lemmas related to the algorithm.
Let A be an assignment. Given a customer o ∈ O, the deficient

demand of o in A is defined to be o.w−P
(o,p,w)∈A w. o is said to

have his/her deficient demand in A if the deficient demand of o in
A is non-zero. Otherwise, o is said to have no deficient demand in
A. Given a service-provider p ∈ P , the free capacity of p in A is
defined to be p.w − P

(o,p,w)∈A w. Similarly, p is said to have its
free capacity or have no free capacity in A according to different
cases. A service-provider p is said to be available in A if it has its
free capacity in A. Otherwise, it is said to be occupied in A.

DEFINITION 2 (d-AVAILABLE/OCCUPIED SERVICE-PROVIDER).
Given a non-negative real number d and a customer o, a service-
provider p ∈ P is said to be a d-available service-provider
(d-occupied service-provider) for o in A if and only if p is
available (occupied) in A and d(o, p) < d.

EXAMPLE 1. [d-Available/Occupied service-provider] Con-
sider Figure 3(b). For the ease of illustration, we assume that the
capacity (demand) of each service-provider (customer) is 1 in the
figure. Suppose that we have a (non-full) assignment A equal to
{(o1, p2), (o3, p3)}. p1 is an available service-provider in A but
both p2 and p3 are occupied service-providers in A. Let d = 10.
Since d(o1, p1) = 5 < d, p1 is a d-available service-provider for
o1 in A. Besides, since d(o2, p2) = 7 < d and d(o2, p3) = 4 < d,
both p2 and p3 are two d-occupied service-providers for o2 in A.
However, since d(o2, p1) = 10 which is exactly equal to d, p1 is
not a d-available service-provider for o2 in A. Note that there does
not exist any d-available service-provider for o2 in A.

DEFINITION 3 (d-SATISFIABILITY). Given a non-negative
real number d and a customer o, o is said to be d-satisfiable in
A if and only if one of the following conditions is satisfied.



Algorithm 1 Algorithm Swap-Chain(P, O)
1: initialize a full assignment A between P and O
2: while there exists an extreme match m in A which involves a customer

o such that o is d-satisfiable in A − {m} where d is the matching
distance of this extreme match do

3: A← Swap(A, m)
4: return A

• Availability Condition: There exists a d-available service-
provider for o in A, or

• Non-Availability Condition: There does not exist any d-
available service-provider for o in A and there exists a
d-occupied service-provider p′ for o in A such that p′ is
matched with another customer o′ in A and o′ is d-satisfiable
in A. In this case, (p′, o′) is said to be a d-substitute pair for
o in A.

Note that “d-satisfiability” is a recursive definition. The avail-
ability condition corresponds to the base condition in the recursive
definition while the non-availability condition corresponds to the
recursive condition.

EXAMPLE 2. [d-satisfiability] Consider Example 1. Suppose
that the assignment A is still {(o1, p2), (o3, p3)}. Let d = 10. o1

is d-satisfiable since there exists a d-available service-provider for
o1 in A (i.e., p1). o2 is also d-satisfiable because there does not
exist any d-available service-provider for o2 in A and there exists
a d-occupied service-provider for o2 in A, namely p2, such that p2

is matched with another customer o1 and o1 is d-satisfiable in A.
Thus, (p2, o1) is a d-substitute pair for o2 in A.

The following lemma shows the relationship between “d-
satisfiability” and the optimal assignment for SPM-MM.

LEMMA 5 (OPTIMAL ASSIGNMENT). Let A be an assign-
ment. If there does not exist any extreme match m in A such that
the customer originally matched in m is d-satisfiable in A − {m}
where d is the matching distance of m in A, then A is the optimal
assignment for the SPM-MM problem.

The above lemma motivates us to design Swap-Chain as shown
in Algorithm 1. In this algorithm, Swap is the re-matching opera-
tion related to an extreme match m in A. We will describe how we
perform this operation next.

5.2.2 The Swap Operation
We first need to introduce a concept called “d-swapping chain”

which is used for the Swap operation. Roughly speaking, it is a
list of objects describing which customers and service-providers in
the current assignment are involved in the re-matching (or Swap)
operation such that the new matching distance for each of these
customers is smaller than d where d is a non-negative real number.

A list is represented in the form of (x1, x2, ..., xl) where xi is
an object (either a customer or a service-provider) for i ∈ [1, l] and
l is the number of objects in the list. Given a list L in the form of
(x1, x2, ..., xl), a pair in the form of (xi, xi+1) is said to be an even
pair in L if i is divisible by 2. Otherwise, it is said to be an odd pair
in L. Given two lists L1 and L2 where L1 is (x1, x2, ..., xl) and
L2 is (y1, y2, ..., yl′), the list concatenation of L1 and L2, denoted
by L1 � L2, is defined to be (x1, x2, ..., xl, y1, y2, ..., yl′).

DEFINITION 4 (d-SWAPPING CHAIN). Let A be an assign-
ment. Suppose that o is d-satisfiable in A. We define a d-swapping
chain from o in A, denoted by Cd(o), as follows according to the
availability condition and the non-availability condition.

• Cd(o) is the list (o, p′) if the availability condition is satisfied
where p′ is a d-available service-provider for o in A, or

• Cd(o) is the list (o, p′) � Cd(o
′) if the non-availability con-

dition is satisfied where (p′, o′) is a d-substitute pair for o in
A.

EXAMPLE 3. [d-Swapping Chain] Consider Example 1. The
assignment A is still {(o1, p2), (o3, p3)}. Let d = 10. A d-
swapping chain from o1 in A, denoted by Cd(o1), can be (o1, p1).
Besides, a d-swapping chain from o2 in A, denoted by Cd(o2),
can be (o2, p2) � Cd(o1) (which is equal to (o2, p2, o1, p1)) since
(p2, o1) is a d-substitute pair for o2 in A.

Let A be an assignment and d be a non-negative real number at
least the mmd of A. Given a customer o, a d-swapping chain from
o in A, denoted by C, has the following properties.

• The total number of objects in C is even.
• C is a list containing interleaved customers and service-

providers. The first object in C is a customer. We call it
as the first customer wrt C. The last object in C is a service-
provider p′ and the second-to-last object in C is a customer
o′. We call p′ as the last service-provider wrt C. Note that
p′ is a d-available service-provider for o′ in A.

• Each odd pair in L is in the form of (o′, p′) and d(o′, p′) < d.
• Each even pair in L is in the form of (p′, o′) and d(p′, o′) ≤

d (note that d(p′, o′) is at most the mmd while d is at least the
mmd as has been specified). For each even pair (p′, o′) in L,
there exists a positive integer w′ such that (o′, p′, w′) ∈ A
and w′ is said to be the weight of the even pair (p′, o′).

Note that given a customer o and a non-negative real number d
at least the mmd of an assignment A, o is d-satisfiable in A if and
only if there exists a d-swapping chain from o in A.

After we describe the d-swapping chain, we are ready to describe
how to perform the re-matching operation, Swap, based on this
chain. For the ease of illustration, we first assume that the capacity
(demand) of each service-provider (customer) is 1. We call this as-
sumption the unit assumption. After we explain the intuition under
the unit assumption, we will relax it. Under the unit assumption,
the amount of the service given by a service-provider to a customer
in a match is exactly equal to 1. Thus, the weight of each possible
even pair in a swapping chain C is equal to 1.

Suppose that we are given a full assignment A. We describe our
Swap algorithm as follows.

Step (a) (Extreme Match Breaking): We find an extreme match
m. Let d be the matching distance of m in A and o be the customer
matched in m. We then break this extreme match m in A. That is,
we remove m from A and form a new assignment A′ (i.e., A′ =
A − {m}).
Step (b) (Swapping Chain Finding): We then find a d-swapping
chain from o in A′, denoted by C.

Step (c) (Chain Breaking): Note that each even pair (p′, o′) in C
corresponds to a match in A′. For each even pair (p′, o′) in C, we
break the match (p′, o′) (or formally (o′, p′)) in A′. Note that the
customer o′ in each even pair (p′, o′) in C has no deficient demand
before this step but has his/her deficient demand after this step.

Step (d) (Chain Matching): For each odd pair (o′, p′) in C, we
form a match (o′, p′) in A′. At this moment, the customer o′ in
each odd pair (o′, p′) in C has no deficient demand.

Let X be the set of customers involved in the swapping chain
C. Note that with the above Swap algorithm, the mmd, say d′,



of the resulting assignment involving only the customers in X is
smaller than the mmd, say d, of the original assignment involving
only the customers in X. This is because we make sure that for
each odd pair (o′, p′) in C (which forms a match in the resulting
assignment), the distance between o′ and p′ is smaller than d.

If the original assignment contains exactly one extreme match,
it is easy to see that the mmd of the resulting assignment involving
all customers is smaller than the mmd of the original assignment in-
volving all customers. However, it is possible that multiple extreme
matches exist in an assignment A which have the same matching
distance d. The mmd of the resulting assignment involving all cus-
tomers decreases only after we break all of these extreme matches.

EXAMPLE 4. [Swap] Suppose that the capacity (demand) of
each service-provider (customer) is 1. Consider Figure 3(a) which
shows a full assignment {(o1, p2), (o2, p1), (o3, p3)}. We de-
note this assignment by A. (o2, p1) is an extreme match in A.
Let d = d(o2, p1) = 10. The Swap operation based on A
and match (o2, p1) works as follows. First, we break the ex-
treme match (o2, p1) and the resulting assignment is shown in Fig-
ure 3(b). Second, we find a d-swapping chain C from o2 which is
(o2, p2, o1, p1) (Refer Example 3 for illustration). Third, we break
the even pairs in C which include (p2, o1) only. Forth, for each
odd pair in C, we form its corresponding match and thus matches
(o2, p2) and (o1, p1) are formed. Figure 3(c) shows the resulting
assignment. Clearly, the new assignment is still full, but with a
smaller mmd (i.e., 7).

Next, we relax the unit assumption such that the capacity (de-
mand) of each service-provider (customer) could be any positive
integer instead of 1. In this case, the weight of an even pair in a
swapping chain C can be different from that of another even pair.

The Swap algorithm can also be used with this relaxation except
the following changes related to the weight of a match.

Step (a) (Extreme Match Breaking): We perform the same oper-
ation as before. But, after the breaking of an extreme match in the
form of (o, p, w), resulting an assignment A′, we obtain that o has
its deficient demand equal to w (instead of 1) while p has its free
capacity at least w (instead of 1).

Step (b) (Swapping Chain Finding): Similarly, we perform the
same operation.

Step (c) (Chain Breaking): In this step, due to the weights of
matches, we have to calculate the weights of matches which are
used in this chain breaking operation. Specifically, let W be
We(C) ∪ {wo} ∪ {wp} where We(C) is the set of the weights of
all possible even pairs in C, wo is the deficient demand of the first
customer wrt C in A′ and wp is the free capacity of the last service-
provider wrt C in A′. We define the swapping amount of the chain
C, denoted by Amount(C), to be minw∈W {w}. Roughly speak-
ing, Amount(C) corresponds to the greatest possible amount of
service in a match along the chain such that Steps (c) and (d) can
be executed successfully. Let ws = Amount(C). Note that ws is
smaller than or equal to the weight of each even pair in C.

We execute Step (c) as follows. For each even pair (p′, o′) in C,
we break the match (o′, p′, w′) in A′ where w′ is a positive integer
and form a match (o′, p′, w′−ws) in A′. Note that the customer o′

in each even pair (p′, o′) in C has no deficient demand before this
step but has his/her deficient demand equal to ws after this step.

Step (d) (Chain Matching): In Step (d), we perform the matching
with the weight ws. That is, for each odd pair (o′, p′) in C, we form
a match (o′, p′, ws) in A′. Note that at this moment, the customer
o′ in each odd pair (o′, p′) in C except the first odd pair has no
deficient demand in A′.

Algorithm 2 Algorithm Swap(A, m)
Input: a full assignment A and an extreme match m in A
1: // Step (a) (Extreme Match Breaking)
2: Let m be the match involving customer o and service-provider p with

its matching distance equal to d
3: A′ ← A− {m}
4: while there exists a d-swapping chain from o in A′ do
5: // Step (b) (Swapping Chain Finding)
6: C ← a d-swapping chain from o in A′
7: // Step (c) (Chain Breaking)
8: ws ← Amount(C)
9: for each even pair (p′, o′) in C do
10: find a match (o′, p′, w′) in A′
11: A′ ← A′ − {(o′, p′, w′)}
12: if w′ �= ws then A′ ← A′ ∪ {(o′, p′, w′ − ws)}
13: // Step (d) (Chain Matching)
14: for each odd pair (o′, p′) in C do
15: A′ ← A′ ∪ {(o′, p′, ws)}
16: // Step (e) (Deficient Demand Checking)
17: if o has no deficient demand in A′ then break;
18: // Step (f) (Post-Matching)
19: if o has his/her deficient demand in A′ equal to w′′ then
20: A′ ← A′ ∪ {(o, p, w′′)}
21: return A′

Step (e) (Deficient Demand Checking): This step is new. If the
customer o in the first odd pair has no deficient demand in A′ (this
case happens when ws = wo), we can return the resulting assign-
ment A′ generated from Step (d). If o has his/her deficient demand
in A′ (this case occurs when ws < wo), then we continue to exe-
cute Step (b) to Step (d) until o has no deficient demand in A′ or o
becomes not d-satisfiable in A′. When we stop the above iterative
process, if o has no deficient demand in A′, similarly, we can re-
turn A′ as the output. If o is not d-satisfiable in A′, we will run an
additional step called Post-Matching in Step (f).

Step (f) (Post-Matching): This step is also new. It will be exe-
cuted if o has his/her deficient demand in A′, say w′′, and is not
d-satisfiable in A′. In this case, it is not possible to reduce the
matching distance of the extreme match m involving o. Thus, we
create the match (o, p,w′′) in A′ where p is the service-provider
involved in m. Finally, we return A′.

The pseudo-code of Swap is shown in Algorithm 2.
With Algorithm 2, it is easy to show the correctness of the Swap-

Chain algorithm (Algorithm 1) as follows.

THEOREM 2. The Swap-Chain algorithm returns the optimal
assignment for the SPM-MM problem.

5.3 Remaining Issues & Theoretical Analysis
Remaining Issues. There are two remaining issues in Swap-Chain,
namely the initialization of a full assignment (line 1 in Algorithm 1)
and the Swapping Chain Finding step in the Swap algorithm (line
6 in Algorithm 2).

Issue 1: There are many possible ways of initializing a full as-
signment. In our implementation, we consider the following two
methods, namely Sort and Fair. Sort returns an assignment by a
two-step approach. First, for each o ∈ O, it maintains a list of all
service-providers in ascending order of their distances to o. Sec-
ond, it processes all o ∈ O one by one. When processing a spe-
cific o, it traverses the service-providers in o’s corresponding list
sequentially and for the currently traversed p, it assigns the service
with the amount equal to min{o.d, p.f} from p to o, where o.d is
o’s deficient demand and p.f is p’s free capacity. The traversing
process stops when o’s demand has been satisfied. Fair denotes
the method of generating the fair assignment. Note that we do not



adopt the globally optimized assignment in the initialization since
the time complexity of the algorithm for finding the globally opti-
mized assignment is much higher than that for finding other assign-
ments like the fair assignment.

Issue 2: For Swapping Chain Finding (i.e., finding a d-swapping
chain from a customer o in an assignment A), we design a Breadth
First Search (BFS) method as follows. It maintains a queue Q and
initially inserts o into Q. Then, it processes the elements in Q one
by one as follows. It starts processing the first element in Q. If
the current element in Q (being processed) is a customer, say oc,
it inserts into Q all service-providers (in any order) that have their
distances from oc smaller than d and have not been inserted into Q.
These service-providers can be found by issuing a range query on P
from oc. We say that oc is the parent of all these service-providers.
If the current element in Q (being processed) is a service-provider,
say pc, consider two cases. Case 1: pc has no free capacity. In this
case, it inserts all the customers matched with pc in A into Q (in any
order) and pc is said to be the parent of all these customers. Case
2: pc has its free capacity. In this case, it traces all ancestors of
pc until the (starting) customer o is reached, and returns the traced
list (in this list, the first element is o and the last element is pc) as
a d-swapping chain from o. The above process continues with the
next element in Q until either a d-swapping chain is found or all
elements in Q have been processed. In the latter case, it means that
there does not exist any d-swapping chain from o.

Here, we need to perform range queries on P . Let β(|P |)
be the cost of a range query on a dataset of size |P |. In [6],
with the data structure with its size of O(|P |(log |P | log log |P |)2)
and its construction time complexity of O(|P | log |P |), β(|P |) =
O(log |P | + k) where k is the size of the answer of this query. In
practice, k << |P | usually holds. Note that in our implementa-
tion, instead of the data structure proposed in [6], we adopt an R-
tree index built on P for supporting range queries since it is avail-
able in commercial databases and is found to be efficient in practice
(though it does not have good worst-case asymptotic performance).

Theoretical Properties. We first describe some theoretical prop-
erties which will be used to analyze the time complexity of our
Swap-Chain algorithm.

Given a match (o, p, w) in an assignment, we say that (o, p) is
its match signature. Given an assignment A, a list of interleaved
objects from P and O in the form of (o1, p1, o2, p2 . . . , on, pn) is
said to be a match cycle if each two adjacent objects in the list form
a match in A, i.e. oi is matched with pi for 1 ≤ i ≤ n, oi+1 is
matched with pi for 1 ≤ i ≤ n − 1, and o1 is matched with pn in
the assignment. The length of a cycle is defined to be the number
of elements in the cycle. An assignment A is said to be cyclic if A
contains a match cycle.

Interestingly, a non-cyclic assignment has a theoretical bound on
the number of matches in the assignment.

LEMMA 6. Given P and O, the number of matches in a non-
cyclic assignment is bounded by |P | + |O| − 1.

Furthermore, given an assignment A with a match cycle C, the
following lemma suggests that C could be destroyed in A easily
such that some conditions in A are still satisfied.

LEMMA 7. Let A be a cyclic assignment with a match cycle
C. We can transform A to another assignment A′ such that (1)
the mmd of A′ is at most that of A; (2) the deficient demand (free
capacity) of each o ∈ O (p ∈ P ) remains unchanged and (3) A′

does not contain C nor any matches with new match signatures
compared with A. Besides, the cost of this transformation is O(n)
where n is the length of C.

Time Complexity. We let |V | = |P | + |O| and |E| = |P | · |O|.
Suppose that we build an index as introduced in [6] on P to facil-
itate range queries described before. Let λ be the time complexity
of building this index. Let γ be the time complexity of the full as-
signment initialization (line 1 of Algorithm 1). Let R be the total
number of possible extreme matches fetched in Swap-Chain (i.e.,
the number of iterations in lines 2-3 of Algorithm 1). Let I denote
the time complexity of the Swap algorithm. The time complexity
of Swap-Chain is O(λ + γ + R · I).

Consider λ. From [6], we know that λ = O(|P | log |P |).
Consider γ. If Sort is adopted, it could be verified that γ is equal

to O(|O| · |P | log |P |). If Fair is used, γ is equal to O((|P | +
|O|) · (log |P | + log |O|)) [25]. Besides, we introduce a lemma
which will be used later.

LEMMA 8. The assignment initialized by Sort and the assign-
ment initialized by Fair are both non-cyclic.

Consider R. Before we give the bound on R, we give a lemma.

LEMMA 9. A match with a given match signature can be
fetched as an extreme match at most once in Swap-Chain.

Note that there are at most |E| (= |P | · |O|) possible match
signatures. By Lemma 9, we deduce that R is bounded by |E|.
In practice, R << |E|. In our experiments, R is about 500 on
average, which is very small compared with |E| which is as large
as 250,000,000 in our default setting.

Consider I . According to Algorithm 2, I depends on the cost
of the while-loop (lines 6-17) and the total number of while-loops,
denoted by t. Consider a while-loop which involves the operation
of finding a d-swapping chain (line 6), whose cost is denoted by
C1, the operation of re-matching the elements along the chain (line
7-17), whose cost is denoted by C2, and an additional operation
introduced here which is used to transform the assignment obtained
to a non-cyclic assignment and whose cost is denoted by C3. Thus,
I is t · (C1 + C2 + C3).

Consider C1 which corresponds to the time cost of the BFS
implementation. Note that at the beginning of each while-loop,
the assignment is non-cyclic. This is because the initialized as-
signment is non-cyclic (Lemma 8) and at the end of each while-
loop, the additional operation introduced here transforms the as-
signment to a non-cyclic one. Thus, it could be verified that
C1 = O(|O| · β(|P |) + |P |) (the BFS method (1) involves at most
|O| range queries on P (which incurs the cost of O(|O| · β(|P |))),
and (2) retrieves at most |P | + |O| − 1 matches (from service-
providers) according to Lemma 6 and the fact that the assignment
is non-cyclic (which incurs the cost of O(|P | + |O|))).

Consider C2. It is simply O(|P | + |O|) (=O(|V |)).
Consider C3. After the Chain Matching step, the assignment

contains O(|V |) matches (since it contains at most |P | + |O| − 1
matches at the beginning of the while-loop and the Chain Match-
ing step forms at most min{|P |, |O|} new matches). Clearly, each
match cycle in an assignment A corresponds to a cycle in the un-
directed graph GA(V ′, E′), which involves P and O as vertices
in V ′ and all matches as edges in E′. Note that |E′| = O(|V |)
(by Lemma 6). Thus, to find a match cycle in A, we can find a
cycle in GA and this can be easily achieved by a common DFS
technique [7], which runs in O(|V ′| + |E′|) (=O(|V |)) time. Ac-
cording to Lemma 7, destroying a match cycle incurs O(|V |) (a
match cycle has its length at most |P | + |O|) and it does not intro-
duce any match with a new match signature. So, we can transform
the assignment to a non-cyclic one by iteratively destroying the
match cycles until no match cycles exist in the assignment. Thus,



C3 = O(c · |V |), where c is the number of match cycles formed due
to the Chain Matching step. It could be verified that c is bounded
by min{|P |, |O|} since the Chain Matching step introduces at most
min{|P |, |O|} matches and each such match can form at most one
new match cycle. In practice, c << min{|P |, |O|} (e.g., c is about
17 on average in our experiments under the default setting).

Consider t. Recall that t is the number of while-loops in Swap
needed to re-satisfy the deficient demand of customer o due to the
break operation on the extreme match involving o. Clearly, t is
bounded by w = min{maxp∈P p.w, maxo∈O o.w}. Usually, t
is much smaller than this upper bound w. For example, in our
experiments on real datasets, on average, t is 2 (with a maximum
of 40) but w is in thousands.

In view of the above discussion, we know that I = O(t · (|V | ·
β(|P |)+ c · |V |)). As a result, the time complexity of Swap-Chain
is O(λ+γ+R ·t ·(|V | ·β(|P |)+c · |V |)), where R << |E|, t <<
min{maxp∈P p.w, maxo∈O o.w}, and c << min{|P |, |O|}.

6. DISCUSSION
Any assignment with its mmd equal to the optimal mmd is a solu-

tion of SPM-MM. Thus, there may exist multiple possible solutions
for SPM-MM. In this case, our Swap-Chain returns one of them at
random. However, SPM-MM can be enriched by considering a
secondary objective (e.g., minimizing the sum of the matching dis-
tances) for the final solution among these multiple solutions. Fur-
thermore, the bottleneck nature of the SPM-MM objective makes it
quite easy to be incorporated with a secondary objective since the
optimized mmd, say do, can always be used as a hard constraint for
optimizing the secondary objective. Specifically, matching any pair
of two objects which has its distance bounded by do does not de-
stroy the optimality while matching any pair of two objects which
has its distance larger than do definitely ruins the optimality. Thus,
we can adopt a two-step mechanism for the SPM-MM problem
with a secondary objective. First, we compute the optimal mmd,
say do, using Swap-Chain. Second, we ignore all pairs (o, p) with
d(o, p) > do for matching when optimizing the secondary objec-
tive. For instance, if the secondary objective is to minimize the
sum of the matching distances, we can solve this enriched version
of SPM-MM easily by first computing the optimal mmd do and then
adopting any popular algorithm for Minimum Weight Matching [2]
with the constraint that all pairs (o, p) with d(o, p) > do cannot be
matched (this could be achieved by excluding from the graph used
by the algorithm all those edges with the corresponding distances
larger than do).

Next, we discuss SPM-MM in a more general setting where the
pairwise distances between P and O could be non-metric or non-
spatial. Interestingly, our proposed methods can also be adapted
to this general setting. Threshold-Adapt still works in the gen-
eral setting (recall that Threshold-Adapt is adapted from Thresh-
old which is designed for general bipartite graphs). We can also
adapt Swap-Chain to the general setting with some sacrifice of its
time complexity as follows. Two parts involved in Swap-Chain
rely on the spatial setting, namely the Fair method for initializ-
ing a full assignment (a fair one) and the BFS method for finding
a d-swapping chain in an assignment A. To initialize a fair as-
signment in the general setting, one can adopt the Stable Marriage
algorithm which incurs the cost of O(|P | · |O|) [12] (instead of
O((|P |+ |O|) · (log |P |+ log |O|)) in the spatial setting [25]). To
find a d-swapping chain from a customer o in the general setting,
one can first materialize a directed graph G′(V ′, E′) such that (1)
V ′ = P ∪ O; (2) for each o ∈ O, (o, p) is a directed edge in
E′ for all p ∈ P with d(o, p) < d; (3) for each p ∈ P , (p, o)
is a directed edge in E′ for all o ∈ O that is matched with p in

Cardinality
Populated
Areas (PA)

Fire Sta-
tions (FS)

AB 4,999 447
BC 6,609 595
ON 12,474 1,215
QC 12,936 1,259

Table 1: Real datasets

Factor Configuration
Cardinality (|O|) 10k, 30k, 50k, 70k, 100k

Dim. 2, 3, 4, 5
Size ratio (r) 5, 10, 15, 20, 25

Weight ratio (k) 1, 1.5, 2, 2.5, 3
O’s weights [1, 10)

Scalability (|O|) 250k, 500k, 750k, 1000k

Table 2: Synthetic datasets
A, and then find a path from o to a service-provider p with its free
capacity non-zero using a BFS on G′. The resulting path corre-
sponds to a d-swapping chain from o in A. Clearly, |V ′| = |V | and
|E′| ≤ |E|. Thus, the cost of the BFS method is O(|V |+ |E|) (in-
stead of O(|O| · β(|P |) + |P |) in the spatial setting, where β(|P |)
is the range query cost on P ).

Finally, we would like to note some differences between our d-
swapping chain technique and the well-known augmenting path
techniques. A typical augmenting path technique is used for com-
puting the maximum flow whose main idea is to iteratively finding
an augmenting path and augmenting the flow along this path until
no augmenting paths are possible. As could be noticed, the goal
of an augmenting path technique is to increase the flow iteratively
while the goal of our d-swapping chain technique is to keep the flow
while decreasing the mmd of the corresponding matching. Specifi-
cally, in our d-swapping chain technique, we find an extreme match
(o, p) and break it so that we will find a d-swapping chain from o,
while in an augmenting path technique, there is no such breaking
operation on a chosen match before the augmenting path is to be
found.

7. EMPIRICAL STUDIES
We used four real datasets, namely AB, BC, ON and QC, in

our experiments. Each real dataset contains two sets of spatial
objects, a set of populated areas (PA) and a set of fire stations
(FS). Specifically, dataset AB contains the set of PAs and the set
of FSs in Alberta, Canada. Datasets BC, ON and QC contain the
same information in the three other provinces in Canada, namely,
British Columbia, Ontario and Quebec, respectively. We collected
the PAs from Census Canada (http://www12.statcan.gc.ca), each
of which corresponds to a dissemination area, and estimated the
coordinates of PAs with the help of the Postal Code Conversion
File of Canada [20]. The population of each PA ranges from 400
to 700 in most cases [20]. We collected the FSs from FireCanada
(http://www.firecanada.ca) and estimated the coordinates of FSs via
Google Maps. The capacities of FSs range from 5,500 to 10,000.
The coordinates are all normalized to range [0,10000]. For each
dataset, we adopt the set of PAs as O and the set of FSs as P . The
summaries of the real datasets are shown in Table 1.

We also used synthetic datasets in our experiments, which are
generated as follows. The coordinates of spatial objects follow the
Uniform distribution on range [0, 10000] by default. The demand
of each customer in O is set to be [1, 10) randomly. To generate the
capacities of the service-providers in P , we define a parameter k,
called weight ratio, to be the expected ratio between the sum of the
service capacities of all service-providers and the sum of the ser-
vice demands of all customers, i.e., k =

P
p∈P p.w/

P
o∈O o.w.

Based on the configuration of k, we set the capacities of the service-
providers. By default, the capacities are set to be [80, 120) ran-
domly. The parameter configuration of synthetic datasets is shown
in Table 2 where the default values are shown in bold font.

7.1 SPM-MM vs. Existing Spatial Matching
We conducted experiments to compare the optimal mmd,

mmdo, with the mmd’s of the fair assignment and the globally
optimized assignment, namely mmdfair and mmdglobal, respec-



tively. In this experiment, we randomly select 10% (5%) in P and
10% (5%) in O for each real (synthetic) dataset. This is because
the algorithm (we use the SSPA algorithm in [2]) for computing
mmdglobal is not scalable to large datasets.

Figure 4 shows that mmdfair and mmdglobal are larger than
mmdo. For example, in the real dataset ON (Figure 4(a)), the ratio
between mmdfair (mmdglobal) and mmdo is about 3.5 (2.3). We
have similar results on synthetic datasets as shown in Figure 4(b).
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Figure 4: Results for the mmd’s of different assignments

7.2 Performance Study
Next, we give the performance study on our proposed algo-

rithms, namely Threshold-Adapt and Swap-Chain, which include
eight instances in total. The details are described as follows.

Recall that Threshold-Adapt involves a maximum-flow proce-
dure. In the literature, many maximum-flow algorithms have been
developed which could be categorized into three branches, namely,
Augmenting-Path (which mainly includes Dinic, BK and IBFS
[13]), Push-Relabel (which mainly includes HIPR and PRF), and
Pseudoflow (which mainly includes HPR). More details about these
maximum-flow algorithms could be found in [23] (and the refer-
ences therein). Besides, according to [23], these maximum-flow
algorithms usually favor different applications and it is not always
the case that a maximum-flow algorithm with a smaller time com-
plexity runs faster than another with a larger one. Motivated by this,
we consider all the above six maximum-flow algorithms, namely,
Dinic, BK, IBFS, HIPR, PRF and HPF, for optimizing Threshold-
Adapt, and the corresponding instances of Threshold-Adapt are de-
noted by TA-Dinic, TA-BK, TA-IBFS, TA-HIPR, TA-PRF and TA-
HPF, respectively. Besides, we consider two instances of the Swap-
Chain algorithm, namely, Swap-Fair and Swap-Sort, with the ini-
tialization methods of Fair and Sort, respectively.

We evaluated the algorithms mainly in terms of running time
and memory, and study the effects of cardinality, dimensionality,
size ratio and weight ratio on the performance of the algorithms.
The memory of Threshold-Adapt is mainly due to the search space
S and the flow network graph, and the memory of Swap-Chain is
mainly due to the R-tree built on P and the maintained assignment.

We implemented our algorithms in C/C++ and conducted the ex-
periments on a Linux platform with a 2.26GHz CPU and 36GB
physical memory.

We present our experimental results as follows.

(1) Effect of Cardinality. We vary |O| and the results are shown
in Figure 5. We have the following observations. First, there is
a clear efficiency gap between the Swap-Chain algorithms and the
Threshold-Adapt algorithms and the gap becomes larger when the
data size increases. For example, when |O| = 100k, Swap-Chain is
faster than TA-IBFS by more than one order of magnitude. Second,
the two Swap-Chain algorithms favor different cases. Specifically,
Swap-Sort runs faster than Swap-Fair on relatively small datasets
(e.g., ≤ 40k) while the opposite case becomes true on relatively
large datasets. This could be explained by the fact that (1) Swap-
Sort has no cost of building an R-tree on O while Swap-Fair does
and (2) Swap-Sort has a more expensive initialization procedure
(i.e., Sort) than Swap-Fair. Third, the memory usages of the Swap-
Chain algorithms are quite low while those of the Threshold-Adapt
algorithms are dramatically higher (by 2-3 orders of magnitude).

For example, when |O| = 100k, the Swap-Chain algorithms use
less than 50MB while each of Threshold-Adapt algorithms occu-
pies more than 15GB memory. Forth, among all Threshold-Adapt
algorithms, TA-IBFS runs the fastest and occupies the least mem-
ory. For ease of presentation, in the following, we focus on TA-
IBFS only as the representative of the Threshold-Adapt algorithms
since it beats all other instances of Threshold-Adapt in terms of
both time efficiency and space efficiency.
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Figure 5: Effect of cardinality (synthetic datasets)
(2) Effect of Dimensionality. Figure 6 shows the results of the
effect of dimensionality. We observe that the dimensionality only
affects the Swap-Fair algorithm slightly. Specifically, when the di-
mensionality increases, the running time of Swap-Fair increases
slightly. This is because Swap-Fair needs to build the R-trees on
both P (for searching d-swapping chains) and O (for computing
a fair assignment), which cost increases when the dimensionality
increases. The dimensionality has negligible effects on Swap-Sort
and TA-IBFS.
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Figure 6: Effect of dimensionality (synthetic datasets)
(3) Effect of Size ratio. We observe some opposite trends on run-
ning time and memory when we increase the size ratio r compared
with those when we increase the data size. This is reasonable since
when the size ratio r increases, |P | decreases (note that |O| is
fixed). Due to limited space, the figures are put in [19].

(4) Effect of Weight ratio. Figure 7 shows the effect of the weight
ratio k. We observe that the weight ratio has slight effect on TA-
IBFS only. Specifically, when k increases, the running time of TA-
IBFS decreases slightly. The reason might be that when k increases
(i.e., the total capacities of the service-providers becomes relatively
larger), it is more likely that an augmenting path (note that IBFS
is an augmenting path algorithm) carries more flow and thus the
process of computing the maximum-flow could be finished more
quickly.

100

200

300

400

1 1.5 2 2.5 3

Ru
nn

ing
 tim

e 
(s

ec
on

ds
)

Weight ratio

Swap-Fair
Swap-Sort

TA-IBFS

 1

 10

 100

 1000

 10000

 100000

1 1.5 2 2.5 3

M
em

or
y (

M
B)

Weight ratio

Swap-Fair
Swap-Sort

TA-IBFS

(a) (b)

Figure 7: Effect of weight ratio k (synthetic datasets)
(5) Scalability test. Figure 8 shows the results of the scalability test
for Swap-Sort and Swap-Fair. Since Threshold-Adapt is not scal-
able, we did not conduct this test for Threshold-Adapt. As shown
in the figure, the two algorithms are still efficient on large datasets
(in millions). Furthermore, Swap-Fair is more scalable than Swap-
Sort. This is because on a large dataset, the initialization process
of Swap-Fair (i.e., Fair) is much faster than that of Swap-Sort (i.e.,
Sort).

(6) Experiments on real datasets. Figure 9 shows the results for
real datasets which are similar to the results for synthetic datasets.
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Figure 8: Scalability test (synthetic datasets)
Compared with the Threshold-Adapt algorithm, our Swap-Chain
algorithms run faster and use significantly less memory.
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Figure 9: Results for real dataset

(7) Comparison with the Threashold algorithm in Euclidean
space. We are interested in studying the performance of our pro-
posed algorithms when they are used for the un-weighted version
of SPM-MM (i.e., all the capacities/demands are 1’s). We com-
pare our algorithm with the state-of-the-art called Match [9] which
has a theoretical time complexity of O(n1.5 log n). We note here
that though Match has a smaller time complexity, it has quite a nar-
row application scope (i.e., for the un-weighted version only) and
the time complexity is restricted to the 2D space only [9]. The re-
sults are shown in Figure 10. We observe that our Swap-Chain
algorithms have comparable running time with the Match algo-
rithm and run even faster than Match on relatively large datasets.
This might be due to the fact that a constant factor which could be
large is omitted from the time complexity analysis in [9]. Besides,
we found that our Swap-Chain algorithms enjoy the superiority of
space efficiency over the Match algorithm. We also used our real
datasets for this experiment by setting the capacities/demands to 1s
and observed similar results.
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Figure 10: Threshold vs. Swap-Chain

(8) Experiments with a Secondary Objective. Besides, we con-
ducted some experiments on the SPM-MM problem with a sec-
ondary objective of minimizing the sum of matching distances
called sum-md. Let Ammd(Asum−md) be the assignment obtained
by optimizing mmd (sum-md) only. Let Ammd,sum−md be the
assignment obtained by optimizing mmd first and sum-md sec-
ond. We adopted the SSPA algorithm [2] for optimizing sum-md.
We conducted our experiments on both synthetic and real datasets
where each synthetic/real dataset was sampled first with the sam-
pling rate set to 5% due to the relatively expensive cost of SSPA.
The results on the real datasets are shown in Figure 11. We ob-
serve that on average, compared to Asum−md, Ammd,sum−md can
be obtained with a similar time (the cost of optimizing mmd is an
additional part but the constraint of the optimized mmd helps re-
duce the running time of the process of optimizing sum-md) and
has the sum-md value usually not far away from the sum-md value
of Asum−md (e.g., within 1.1 factor).

(9) Experiments with non-Euclidean Distances. In addition,
we conducted some experiments on our proposed algorithms
(Threshold-Adapt and Swap-Chain) when they are applied to the
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Figure 11: Experiments with a Secondary Objective

cases where non-Euclidean distances are used. We used the same
real datasets except that the underlying distances between pairs of
two objects are measured by the driving time between the two
objects. The results are shown in Figure 12. We observe that
compared with the case of using the Euclidean distances, the ef-
ficiency of Threshold-Adapt is similar while the efficiency of the
Swap-Chain algorithms, especially Swap-Fair, degrades to some
extent. But, the Swap-Chain algorithms still retain the superiority
over Threshold-Adapt in terms of both time efficiency and space
efficiency. For example, on dataset QC, the running time of Swap-
Fair (Swap-Sort) is about 15s (9s) while that of Threshold-Adapt
is nearly 17s. Thus, compared with the spatial setting, the degrad-
ing ratio of Swap-Fair (Swap-Sort) is about 9/15 (8/9) and that of
Threshold-Adapt is about 16/17.
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Figure 12: Experiments with Non-Euclidean Distances
(10) Comparison with the Augmenting Path Technique. We
also conducted experiments on the Swap-Chain algorithms with
the adaptions of Augmenting Path (AP) techniques [2]. We in-
terpret our d-swapping chains as augmenting paths and denote the
resulting Swap-Chain algorithms corresponding to Swap-Fair and
Swap-Sort by AP-Fair and AP-Sort, respectively. In our implemen-
tations of AP-Fair and AP-Sort, when finding an augmenting path
which corresponds to finding a d-swapping chain in Swap-Fair and
Swap-Sort, respectively, we do a BFS in a graph structure G which
contains the edges (o, p) for all pairs of (o, p) with d(o, p) < d and
also the edges (p, o) for all matches (o, p, w) in the current assign-
ment. Figure 13 shows the results. We observe that there is a clear
efficiency gap between Swap-Fair (Swap-Sort) and AP-Fair (AP-
Sort), and this gap becomes larger when the data size increases.
Besides, AP-Fair (AP-Sort) occupies significantly more memory
than Swap-Fair (Swap-Sort). The reason for the efficiency gap is
that each range query on P in Swap-Fair (Swap-Sort) is performed
in O(log |P | + k) time [6] where k is the size of the answer of the
query while its counterpart in AP-Fair (AP-Sort) is performed by
scanning an adjacent list which takes O(|P |) time. The reason for
the results of memory usage is that Swap-Fair (Swap-Sort) main-
tains no graph structures while AP-Fair (AP-Sort) does.
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Figure 13: d-swapping chain vs. Augmenting path
Conclusion: The Swap-Chain algorithms, which are efficient and
scalable, beat the Threshold-Adapt algorithms in terms of both time
efficiency and space efficiency. Besides, Swap-Sort runs faster than
Swap-Fair when the datset is relatively small (e.g., |O| ≤ 40k)
while Swap-Fair enjoys its superiority over Swap-Sort on large
datasets.



8. CONCLUSION
In this paper, we propose a new problem called SPatial Matching

for Minimizing Maximum matching distance (SPM-MM). We de-
sign two algorithms for SPM-MM, namely Threshold-Adapt and
Swap-Chain. Threshold-Adapt is simple and easy to understand
but not scalable to large datasets. Swap-Chain avoids the scalabil-
ity issues of Threshold-Adapt by adopting a novel idea of swapping
the matches iteratively and runs faster than Threshold-Adapt by or-
ders of magnitudes. We conducted extensive experiments which
verified the efficiency and scalability of Swap-Chain. One inter-
esting future direction is to study where to place a new service-
provider [24] when we need to minimize the maximum matching
distance.
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APPENDIX
Proof of Lemma 1: do is a pairwise distance (do ∈ S).
Proof of Lemma 2: In the SPM-MM assignment which is full, all
matching distances are at most do.
Proof of Theorem 1: It follows from Lemma 1 and 2.
Proof of Lemma 3: Since d is feasible, there exists a full assign-
ment A such that A’s mmd is at most d and thus A’s mmd is smaller
than d′. Therefore, d′ is feasible.
Proof of Lemma 4: We consider two cases. Case 1: mf = WO.
In this case, the three-step algorithm returns Ad. We prove that Ad

is a full assignment with its mmd at most d. First, we know that Ad

satisfies the Capacity Constraint since for each p ∈ P ,
X

(o,p,w)∈Ad

w =
X

e=(p,o)∈E

e.f = (s, p).f ≤ p.w

Second, we show that Ad satisfies the Demand Constraint by con-
tradiction. Assume there exists a customer o′ ∈ O whose demand
is not satisfied in Ad, i.e.,

P
e=(p,o′)∈E e.f < o′.w. We have

mf =
X

e=(p,o)∈E

e.f =
X

o′′∈O

X

e=(p,o′′)∈E

e.f

<
X

o′′∈O

o′′.w = WO

which contradicts mf = WO. Third, it is easy to verify that Ad’s
mmd is at most d since for each edge in the form of (p, o) in E,
we have d(p, o) ≤ d (this is guaranteed by Step 1 of the three-step
algorithm). In conclusion, we know that Ad is a full assignment
with its mmd at most d which further implies that d is feasible. Case
2: mf < WO. In this case, it could be verified that there exists no
full assignment which has its mmd at most d by contradiction (note
that a full assignment implies a flow with its amount equal to WO

which contradicts mf < WO). That is, d is not feasible.
Proof Sketch of Lemma 5: We consider two cases. The first case
is that for each p and each o, p.w = 1 and o.w = 1. Thus, each
match (o′, p′, w′) can be expressed as (o′, p′) (since w′ = 1). The
second case is a general case that for each p and each o, p.w and
o.w can be equal to any positive integer.

Consider the first case. We prove by contradiction. Let A be the
assignment such that there does not exist any extreme match m in
A such that the customer o originally matched in m is d-satisfiable
in A−{m} and d is the matching distance of m in A. Suppose that
A is not the optimal assignment for the SPM-MM problem. That
is, there exists another assignment Ao such that the mmd of Ao,
denoted by do, is smaller than the mmd of A, denoted by d. Let
A′ = A − {m}.



Consider Ao. We know that for each match (o′, p′) ∈ Ao,
d(o′, p′) ≤ do. Since do < d, we have the following. For each
match (o′, p′) ∈ Ao,

d(o′, p′) < d (1)

There exists a service-provider p1 such that (o, p1) ∈ Ao. We
conclude that

d(o, p1) < d (2)

Consider A′. We know that o (from match m) is not d-satisfiable
in A′. Thus, we deduce that there does not exist any d-available
service provider for o in A′. We further consider two sub-cases.

Case (a): There does not exist any d-occupied service-provider
for o in A′. We deduce that there does not exist any service-
provider p such that d(o, p) < d. This contradicts to that
d(o, p1) < d (in Inequality (2)).

Case (b): There exists a d-occupied service-provider for o in
A′. According to Inequality (2), we deduce that p1 is a d-occupied
service-provider for o in A′. Thus, there exists a customer o1 which
is matched with p1 in A′.

In the following, we will show that o1 is d-satisfiable in A′. After
we obtain this result, we can conclude that o is d-satisfiable in A′,
which leads to a contradiction.

We first construct an undirected graph G (which will be used
later in the proof) as follows. Firstly, we construct an assignment
Ac = (Ao ∪ A′)− (Ao ∩ A′). As a result, all customers in O − o
are involved in either zero matches in Ac or exactly two distinct
matches in Ac. We construct a set V of vertices to be P ∪ O. For
each (o′, p′) ∈ Ac, we create an edge (o′, p′). All edges created
form a set E. The graph G is defined based on V and E.

It is easy to verify that in this graph G, any path starting from o
is a list containing interleaved customers and service-providers in
the form of (o, p1, o1, p2, o2, ...) such that the following three rules
hold: (R1) o is matched with p1 in Ao, (R2) oi is matched with
pi+1 in Ao for i = 1, 2, ..., and (R3) pi is matched with oi in A′

for i = 1, 2, ....
According to the three rules, we deduce the following two state-

ments: (1) any path from o to a service-provider in G is non-cyclic,
and (2) there exists a path from o to a service-provider point/vertice
pn such that pn is the first service-provider with its free capacity in
A′ along the path. The correctness of Statement (1) can be shown
since there is only one edge involving o in E and each vertice in
V − {o} is involved at most two edges in E. Statement (2) can be
proved as follows. Since the total number of vertices is bounded by
|V | and any path P from o to a service-provider is non-cyclic (by
Statement (1)), the length of P is bounded. Consider a customer o′

(not o) along the path P from o. Since o′ is involved in exactly two
edges in E (it is not possible that o′ is involved in zero edges in E
since o′ is along P from o), we know that o′ is matched in both Ao

and A′, and thus the path from o can be prolonged at o′. Consider
a service-provider p′ along the path P from o. If p′ is involved in
exactly two edges in E, similarly, it is matched in both Ao and A′,
and thus the path from o can be prolonged at p′. If it is involved in
exactly one edge in E, it means that it is matched in Ao only (but
not A′) (by R2) and thus the path from o cannot be prolonged at p′.
In this case, p′ has its free capacity in A′. This completes the proof
when we set pn = p′ in this case.

Based on the above two statements, we conclude that the path
is of the non-cyclic form of (o, p1, o1, p2, o2, ..., pn−1, on−1, pn)
where pn is the first service-provider with its free capacity in A′

along the path.
Next, we prove that oi is d-satisfiable in A′ for i = 1, 2, .., n−1.

We prove by induction starting from proving the d-satisfiability of
on−1 as a base case. This proof can be done easily by the three

rules described above and Inequality (1). For the sake of space, the
detailed proof can be found in [19].
Proof of Theorem 2: It follows from Lemma 5.
Proof Sketch of Lemma 6: First, we show that in a non-cyclic
assignment A involving no match cycle, there exists an element e
(either a service-provider or a customer) such that e is involved in
exactly one match in A (We can prove by contradiction since if each
element is involved in at least two matches, there exists a match cy-
cle in the assignment). We say this match is critical. Second, given
an assignment A, we iteratively remove each critical match from A
until no matches exist in A. Since each removal operation makes at
least one element unmatched and the last removal operation makes
exactly two elements unmatched, we know the number of matches
in A is at most |P | + |O| − 1.
Proof Sketch of Lemma 7: Let the cycle C be
(o1, p1, o2, p2, ..., on, pn). Without loss of generality, let (o1, p1)
be the match along C which has the smallest matching weight,
says wm. We break each match (oi, pi, wi) with the amount of
wm for each i ∈ [1, n]. Thus, oi has its deficient demand at least
wm and pi has its free capacity at least wm for each i ∈ [1, n].
Next, we create a new match (oi+1, pi, wm) for each i ∈ [1, n−1]
and a new match (o1, pn, wm). (Note that for the new match
formed (o, p, wm), if there exists an original match (o, p, w) in the
assignment, we just combine these two matches as a single match
(o, p, wm + w)). Let A′ be the resulting assignment. It can be
verified that o1 and p1 originally matched in A are not matched
in A′ and thus A′ does not contain cycle C. Besides, it is easy to
verify that for each o ∈ O,

P
(o,p,w)∈A w =

P
(o,p,w)∈A′ w and

for each p ∈ P ,
P

(o,p,w)∈A w =
P

(o,p,w)∈A′ w. Furthermore,
the mmd of A′ is at most that of A and no matches with new match
signatures are formed in A′. Clearly, the cost of the above process
is simply O(n).
Proof Sketch of Lemma 8: Let As be the assignment initialized
by Sort and Af be the one initialized by Fair.

We first prove that As is non-cyclic. Suppose Sort processes O
in order of o1, o2, ..., om, where m is the size of O. We denote by
Aoi the assignment that is formed immediately after processing oi

(thus, Aom = As). We claim that for a specific customer oi, among
all products that are matched with oi in Aoi , at most one product
has its free capacity non-zero. This can be verified by the principle
adopted in Sort that oi always exhausts the current product chosen
to be matched with oi before the next product is considered. Now,
we show As is non-cyclic by contradiction. Assume that there ex-
ists in As a match cycle C = (oc1 , pc1 , ..., ocn , pcn). Without loss
of generality, among all customers involved in C, we assume oc1

is the first customer processed by Sort. Consider Aoc1
(the assign-

ment formed immediately after oc1 is processed). Both pc1 and
pcn are matched with oc1 in Aoc1

(since pc1 and pcn are matched
with oc1 in As) and both of them have their free capacities non-zero
(since pc1 (pcn ) is matched with oc2 (ocn ) later on where process-
ing oc2 (occn)). Thus, this leads a contradiction that at most one
product matched with oc1 in Aoc1

has its free capacity non-zero.
Next, we prove that Af is non-cyclic by contradiction. This

proof can be done by using the fact that no dangling pair [25] exists
in a fair assignment. The detailed proof can be found in [19].
Proof of Lemma 9: This lemma is trivially true if all pairwise
distances are distinct. This lemma also holds even if they are not
distinct. This is because during the execution of Swap (in line 3 of
Swap-Chain), once the extreme match with a particular match sig-
nature is broken, no matches with the same match signature will be
formed again except the last Step (f) (i.e., post-processing) which
denotes that there is no need to fetch additional extreme matches
and the algorithm terminates.


