
E�icient k-Regret �ery Algorithm with Restriction-free Bound
for any Dimensionality

Min Xie
The Hong Kong University of

Science and Technology
mxieaa@cse.ust.hk

Raymond Chi-Wing Wong
The Hong Kong University of

Science and Technology
raywong@cse.ust.hk

Jian Li
Tsinghua University

lijian83@mail.tsinghua.edu.cn

Cheng Long
Queen’s University Belfast
cheng.long@qub.ac.uk

Ashwin Lall
Denison University
lalla@denison.edu

ABSTRACT

Extracting interesting tuples from a large database is an impor-

tant problem inmulti-criteria decisionmaking. Two representative

queries were proposed in the literature: top-k queries and skyline

queries. A top-k query requires users to specify their utility func-

tions beforehand and then returns k tuples to the users. A skyline

query does not require any utility function from users but it puts

no control on the number of tuples returned to users. Recently, a

k-regret query was proposed and received attention from the com-

munity because it does not require any utility function from users

and the output size is controllable, and thus it avoids those de�cien-

cies of top-k queries and skyline queries. Speci�cally, it returns k

tuples that minimize a criterion called the maximum regret ratio.

In this paper, we present the lower bound of the maximum re-

gret ratio for the k-regret query. Besides, we propose a novel algo-

rithm, called Sphere, whose upper bound on the maximum regret

ratio is asymptotically optimal and restriction-free for any dimen-

sionality, the best-known result in the literature. We conducted ex-

tensive experiments to show that Sphere performs better than the

state-of-the-art methods for the k-regret query.

CCS CONCEPTS

• Information systems→ Data analytics;

KEYWORDS

k-regret; multi-criteria decision making; data analytics

ACM Reference Format:

Min Xie, Raymond Chi-Wing Wong, Jian Li, Cheng Long, and Ashwin Lall.

2018. E�cient k-Regret Query Algorithm with Restriction-free Bound for

any Dimensionality. In SIGMOD’18: 2018 International Conference on Man-

agement of Data, June 10–15, 2018, Houston, TX, USA. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3183713.3196903

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196903

1 INTRODUCTION

A database system usually contains millions of tuples nowadays

and an end user may be interested in only some of them. It is con-

venient if the database system can provide some operators for an

end user to obtain the tuples s/he is interested in. Consider the

following example. Assume that a car is characterized by two at-

tributes, namely horse power (HP) and miles per gallon (MPG). Al-

ice visits a large car database and wants to buy a car with high

HP and high MPG. However, it might be impossible for Alice to go

through every car tuple in the database. A possible solution is that

some representative cars are selected based on some criteria (e.g.,

cars favored by Alice) and are shown to Alice. In order to decide

which car to be shown, we implicitly assume that Alice has a pref-

erence function, called a utility function, in her mind. Based on the

utility function determined by Alice, each car tuple in the database

has a utility. A high utility means that this car is favored by Alice.

We have two goals in multi-criteria decision making. First, we

do not require a user to specify a utility function, whichmay not be

known in advance. Second, we want a set of tuples with a control-

lable size since it is meaningless if millions of tuples are returned.

Many queries were proposed in the literature for multi-criteria de-

cision making: top-k queries, skyline queries and k-regret queries.

In the setting of a top-k query [14, 16, 17, 23, 29], we assume that

the utility function is given. For each tuple in the database, a utility

is computed, and thek tuples with the highest utilities are returned.

For example, Alice’s utility function can have weight 60% for HP

and weight 40% for MPG. Here, a higher weight indicates that the

corresponding attribute is more important to Alice. With this util-

ity function, we compute the k cars with the highest utilities and

they are shown to Alice. However, the top-k query requires users

to specify utility functions, which is hard to most users.

A skyline [8, 9, 18, 19, 22] query does not ask a user for any utility

function. Instead, a concept, called domination, is applied. A tuple

p is said to dominate another tupleq ifp is not worse thanq on each

attribute and p is better than q on at least one attribute. For exam-

ple, car p with HP 300 and MPG 30 dominates car q with HP 250

and MPG 25 since the utility of p is higher than that of q no matter

what utility function Alice has. Tupleswhich are not dominated by

any other tuples are returned in a skyline query. However, the out-

put size of a skyline query cannot be controlled. It could happen

that all tuples in the database are returned in a skyline query.

Recently, a k-regret query [2, 5, 7, 11, 21, 24], was proposed

which integrates the merits of top-k queries and skyline queries.

https://doi.org/10.1145/3183713.3196903
https://doi.org/10.1145/3183713.3196903

In the setting of a k-regret query, we do not require any utility

function from a user and the output size is controllable since only

k tuples are returned. When the output size for a particular user

is restricted, it is very likely that there is a di�erence between the

highest utility over all tuples in the database and the highest util-

ity over the selected k tuples. We call the ratio of this di�erence

to the highest utility in the database as the regret ratio, which is

a real number from 0 to 1. The greatest possible ratio (among all

users) is quanti�ed by a criterion, called the maximum regret ra-

tio. It quanti�es how regretful a user is if s/he gets the best tuple

among the selected k tuples but not the best tuple among all tuples

in the database. A k-regret query is to select a set of k tuples such

that the maximum regret ratio of the set is minimized.

According to our discussion above, thek-regret querymeets our

two goals. The applications originally applied to top-k queries and

skyline queries could naturally be applied to k-regret queries. Con-

sider our car database application. Di�erent users might have dif-

ferent preferences in their minds. One might think that high HP is

more important. The other might think high MPG is more impor-

tant. A k-regret query on the car database returns a set of k cars,

minimizing the “regret” level for all users. That is, no matter what

preference the user has, there is a car in the selected set which is

favored by the user in a great extent (i.e., a car with a high util-

ity based on the user’s preference). Other applications of k-regret

queries include Information Retrieval (IR) [27] and Recommenda-

tion Systems (RS) [15]. For example, a job recommendation system

recommends job positions to the job seekers according to some cri-

teria (e.g., a short travel distance and high salary). Di�erent from

the car database where the same type of cars can be recommended

and purchased by many customers, each job position will �nally

hire one or a few people from a large number of candidates. In this

case, a job seeker is willing to be recommended with a su�cient

number of positions to increase his chance to get some jobs �nally.

We consider the following four requirements for evaluating an

algorithm A for the k-regret query:

• Restriction-free Bound Requirement: There is no restriction

on the bound of the maximum regret ratio of the set re-

turned by algorithmA. Speci�cally, if the bound of the max-

imum regret ratio of the set returned by A is in the range

between 0 and 1 for any setting, we say that A satis�es the

restriction-free bound requirement. Otherwise, the bound

is in the range between 0 and 1 in some restricted cases and

thus this algorithm does not satisfy the requirement.

• Dimensionality Requirement: AlgorithmA could be executed

on datasets of any dimensionality.

• E�ciency Requirement: Algorithm A is e�cient in practice.

• Quality Requirement: The maximum regret ratio of the set

returned by algorithm A should be very small in practice.

All requirements above are essential to the k-regret query since

(1) an algorithm which does not satisfy the restriction-free bound

requirement cannot give a theoretical bound on the maximum re-

gret ratio in some cases and may give an invalid bound (e.g., a

bound greater than 1) in other cases, which further implies that

this algorithm does not have a useful theoretical bound since the

maximum regret ratio itself is a real number from 0 to 1; (2) an

algorithm which does not satisfy the dimensionality requirement

Algorithm
Requirement

Restriction-

free Bound
Dimensionality E�ciency Quality

Cube [21] X X Fast Low

Greedy [21] X Medium Medium

GeoGreedy [24] X Slow Medium

StoredList [24] X Fast Medium

2d kRMS [11] X Fast High

RMS_HS [2] X Slow High

A-IntCov-1 [7] Fast High

E-Greedy-1 [7] X Fast High

ε-kernel [7] X Medium Medium

2D-RRMS [5] X Fast High

DMM [5] X X Medium Medium

Sphere

(Our Algorithm)
X X Fast High

Table 1: Comparison among Di�erent Algorithms

may not be executed on datasets of some dimensionalities, which

reduces the generality of the algorithm in practice; (3) an algorithm

which has poor e�ciency is undesirable since returning a solution

set e�ciently is one of the goals for each query; (4) an algorithm

whose solution is of low quality (i.e., has a large maximum regret

ratio) is also unacceptable since wewant a solution set with a small

maximum regret ratio for reducing the “regret” level of a user. We

say that an algorithm is elegant if it satis�es all four requirements.

Unfortunately, the existing methods cannot address thek-regret

query well since they are not elegant, i.e., they do not satisfy all

four requirements simultaneously (see Table 1). Note that the em-

pirical execution time and the maximum regret ratio of an algo-

rithm are a�ected by many factors, such as the datasets and the

running environments. In order to avoid ambiguity, we use relative

terms in Table 1 to describe the e�ciency requirement (i.e., fast,

medium and slow) and the quality requirement (i.e., high, medium

and low) for each algorithm. An algorithm is said to satisfy the ef-

�ciency requirement if it is fast and an algorithm is said to satisfy

the quality requirement if it returns a set with high quality (i.e.,

has a small maximum regret ratio). Consider the comparison in

Table 1. Some methods [21, 24] do not have provable bounds, and

the bounds of some other methods [2, 7] are not restriction-free.

The methods [5, 7, 11] work only on 2-dimensional datasets. Some

methods [2, 5, 21, 24] have large execution times and themaximum

regret ratios of some other methods [5, 7, 21] are of low quality.

Motivated by this, we study the k-regret query and propose a

new algorithm called Sphere which meets all four requirements,

i.e., Sphere is elegant. Our major contributions are as follows.

• Firstly, we propose an elegant algorithm called Sphere, which

(1) has a restriction-free bound on the maximum regret ra-

tio, (2) is executable in datasets of any dimensionality, (3) is

asymptotically optimal in terms of the maximum regret ra-

tio, and (4) enjoys a novel greedy strategy which is 20 times

faster than the existing greedy strategy. It is the best-known

result in the literature when at most k tuples are returned.

• Secondly, we conducted experiments on both real and syn-

thetic datasets, showing that Sphere returns a tuple set with

the smallest maximum regret ratio empirically and achieves

a signi�cant speedup over most of the existing methods.

The rest of the paper is organized as follows. Section 2 discusses

the related work and Section 3 introduces the preliminaries. Sec-

tion 4 presents the background techniques which are used in algo-

rithm Sphere. Section 5 presents the algorithm Sphere. Section 6

presents the experimental results. Section 7 concludes the paper.

2 RELATED WORK

Motivated by the de�ciencies of top-k queries and skyline queries,

a number of new queries were proposed. Firstly, various approaches

were proposed to control the output size of skyline queries [18, 30].

A representative query is the k-representative skyline query, which

outputs a set of k skyline tuples which “best” represents all the

skyline tuples. Secondly, e�ort was also spent to improve top-k

queries [23, 34], where the utility function is determined implic-

itly. Besides, [16] requires a partial utility function from a user and

[19] proposed an alternative framework to discover the utility func-

tion. Lastly, some other approaches were also proposed based on

both top-k queries and skyline queries. [14] developed a top-k sky-

line select query and a top-k skyline join query. [33] studied an

ϵ-skyline query whose output size is controlled by ϵ .

Recently, there are some queries [3, 12, 26] which do not heav-

ily depend on top-k queries and skyline queries and one of them is

the k-regret query. The k-regret query, also known as themin-error

regret query, was �rst introduced in [21], where we want a set of

at most k tuples whose maximum regret ratio is as small as possi-

ble. Finding an optimal solution for k-regret queries was proven

to be an NP-hard problem [2, 7, 11]. A number of algorithms were

proposed to obtain a solution with a small maximum regret ratio.

The �rst approach called Cube [21] divides the space into mul-

tiple hypercubes and constructs the solution by selecting a tuple

from each hypercube.Cube has a known upper bound (i.e.,O(k−
1

d−1))
on the maximum regret ratio of the set returned, but its empirical

performance is quite poor, which indicates that Cube dissatis�es

the quality requirement. The second approach (Greedy [21], Ge-

oGreedy [24] and StoredList [24]) is based on the idea of “greedy”.

Greedy andGeoGreedy iteratively construct the solution by choos-

ing the tuple that contributes to the greatest value of the maximum

regret ratio of the current set. StoredList is a materialized version

of GeoGreedy. No upper bound on the maximum regret ratio of

the set returned by a greedy-based algorithm is known yet and

hence they violate the restriction-free bound requirement.

The k-regret query [21] was generalized to the kRMS problem

in [11]. Note that the meanings of k are di�erent in the above def-

initions. In the k-regret query, k represents the maximum size of

the solution set while in thekRMS problem, we want a set of tuples

whose highest utility is greater than the k-th highest utility in the

whole dataset. In this paper, we follow the de�nition in [21] and

study the k-regret query. A geometry-based algorithm (called 2d

kRMS) was proposed in [11]. It solves a k-regret query optimally

but it is only applicable when the dataset contains two attributes.

Recently, [2] studied a variation of k-regret queries, calledmin-

size regret queries, which minimize the output size while keeping

the maximum regret ratio at most ε . To answer a min-size regret

query, they proposed an ε-kernel algorithm and a hitting-set al-

gorithm. The former will be described in Section 4. The later can

be modi�ed into a 2-approximate algorithm called RMS_HS for

k-regret queries (the constant 2 in the approximate factor is not

important since it can be arbitrarily close to 1 by increasing the

running time). However, instead of returning at most k tuples (the

maximum allowable output size), RMS_HS returns Θ(k logk) tu-
ples which is not desired. Speci�cally, it sets the maximum output

size to be ck logk for a large constant c . Then, it iteratively con-

structs a larger (smaller) solution set whenever the output size is

at most (at least) ck logk . The running time of RMS_HS depends

on the maximum regret ratio of the returned set. If the maximum

regret ratio is small, it might take a long time to return the solution.

Moreover, Asudeh et. al [5] transformed the k-regret query in

a 2-dimensional dataset into a path search problem in a weighted

complete graph, and an optimal algorithm called 2D-RRMS was

proposed to solve the problem. Besides, they interpreted the k-

regret query in ad-dimensional dataset as a discretized matrixmin-

max problem (the DMM problem) and the maximum regret ratio

of the set returned was loosely upper bounded by 1 − c(1 −mrr∗)
(≤ mrr∗ + 1 − c , i.e., within a distance from the optimal maximum

regret ratio, denoted by mrr∗) where c is a real number in (0,1).

Thework [7] is closely related to ours. In 2-dimensional datasets,

they presented two algorithms, namely E-Greedy-1 andA-IntCov-

1, for the k-regret query. In d-dimensional datasets, they presented

the ε-kernel algorithm for themin-size regret query independently,

and translated it to an approximate algorithm for thek-regret query

with an asymptotically optimal bound on the maximum regret ra-

tio (i.e.,O(k−
2

d−1)). However, the bound is not restriction-free. Specif-
ically, its bound is greater than 1 even under typical settings, mak-

ing it di�cult to be applied on real applications. A more detailed

discussion on the ε-kernel algorithm [7] is postponed to Section 4.

Comparison with the existing algorithms. Compared with the

existing algorithms, Sphere has the following advantages. Firstly,

Sphere is elegant. That is, it satis�es all four requirements for the

k-regret query while none of the existing algorithm could do. Sec-

ondly, Sphere returns at most k tuples while some exiting algo-

rithms (e.g., RMS_HS[2]) might return more tuples than expected.

Finally, Sphere is asymptotically optimal in term of the theoretical

upper bound on the maximum regret ratio, a stronger result com-

paredwith some existing algorithms (e.g., Cube[21] andDMM[5]).

3 PROBLEM DEFINITION

The input to our problem is a tuple set Pwith n tuples (i.e., |P| = n)
in ad-dimensional space. A positive integer k is used to specify the

maximum size of the solution set to be found.

3.1 Terminologies

We use the word “tuple” and “point” interchangeably in the rest of

this paper. We denote the i-th dimensional value of a point p ∈ P
byp[i]where i ∈ [1,d]. Without loss of generality, each dimension

is normalized to (0,1] and for each i ∈ [1,d], there exists at least

one point p ∈ P such that p[i] = 1. We name one of them as the

i-th dimensional boundary point, denoted by bi . We assume that a

large value in each dimension is preferable by the users. Recall that

in a car database, each car is associated with 2 attributes, namely

HP and MPG. Consider the car database P = {p1,p2,p3,p4,p5,p6},
containing 6 points (with normalized attribute values) in Table 2.

Since p4[1] = 1 and p1[2] = 1, we have b1 = p4 and b2 = p1.

Assume that the user’s happiness is measured by an unknown

utility function. A utility function f is a mapping f : Rd
+
→ R+.

Denote the utility of a point p w.r.t. the function f by f (p). A user

wants a point in P which maximizes his/her utility w.r.t. his/her

utility function. Given a utility function f , a point q in P is said to

have the maximum utility of P w.r.t. f if f (q) = maxp ∈P f (p), and
we call q the maximum utility point of P w.r.t. f .

De�nition 3.1 ([21]). Given a set S ⊆ P and a utility function f ,

the regret ratio of S over P w.r.t. f , denoted by rrP(S, f), is de�ned
to be

maxp∈P f (p)−maxp∈S f (p)
maxp∈P f (p) = 1 − maxp∈S f (p)

maxp∈P f (p) .

Given a utility function f and a set S ⊆ P , we have maxp ∈S f (p)
≤ maxp ∈P f (p) since S is a subset of P and thus, the regret ratio

ranges from 0 to 1. The user with utility function f will be happy

if the regret ratio is close to 0 since the maximum utility of S is

close to the maximum utility of P w.r.t. f . Unfortunately, in real

cases, it is di�cult to obtain the utility function of a user. Thus,

in this paper, we assume that the utility function of a user is in a

function class, denoted by FC. The maximum regret ratio of a set

S is de�ned over a function class FC which can be regarded as the

worst-case regret ratio w.r.t. a utility function in FC.
De�nition 3.2 ([21]). Given a set S ⊆ P and a function class FC,

the maximum regret ratio of S over P w.r.t. F C is de�ned to be

maxf ∈FC rrP(S, f).
To illustrate, we assume that F C consists of three utility func-

tions, namely f0.4,0.6, f0.2,0.8 and f0.7,0.3 wherefa,b (p) = a×p[1]+
b×p[2]. Considerp1 in Table 2. Its utilityw.r.t. f0.4,0.6 is f0.4,0.6(p1) =
0.4 × 0.2 + 0.6 × 1 = 0.68. The utilities of the remaining points in

P w.r.t. f0.4,0.6 are computed in a similar way and they are shown

in Table 2. Consider a set S = {p1,p4}. The maximum utility point

of S w.r.t. f0.4,0.6 is p1 and its utility is equal to 0.68 while the max-

imum utility point of P w.r.t. f0.4,0.6 is p2 and its utility is equal to

0.78. Then, rrP(S, f0.4,0.6) = 1−maxp∈S f0.4,0.6(p)
maxp∈P f0.4,0.6(p) = 1− 0.68

0.78
= 0.1282.

Similarly, we have rrP(S, f0.2,0.8) = 0 and rrP(S, f0.7,0.3) = 0.0617.

Then, the maximum regret ratio of S w.r.t. FC is computed to be

maxf ∈FC rrP(S, f) = max{0.1282, 0, 0.0617} = 0.1282.

In this paper, we focus our analysis on the class of linear utility

functionswhich contains in�nite number of utility functions and it

is very popular in modeling user preferences [10, 11, 17, 20, 21, 24].

We say that a utility function f is linear if f (p) = u ·p where u is a

utility vector. The utility vector u is a d-dimensional non-negative

vector where u[i]measures the importance of the i-th dimensional

value in the user preference. For the sake of standardization, we

assume that the utility vector u has its norm (the L2-norm) equal

to 1 (i.e., ‖u ‖ = 1). In the rest of this paper, we denote themaximum

regret ratio of S over P w.r.t. the class of in�nite number of linear

utility functions by mrrP(S). Other classes of utility functions are

considered in [25, 32]. The computation ofmaximum regret ratio is

presented in [21, 24] and we omit their details here. The frequently

used notations are summarized in the appendix (see Table 4).

3.2 Problem De�nition

The k-regret query [21]. Given a positive integer k , the k-regret

query is to �nd a subset S ⊆ P containing at most k points such

that the maximum regret ratio mrrP(S) is minimized.

Car HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p)
p1 0.2 1 0.68 0.84 0.44

p2 0.6 0.9 0.78 0.84 0.69

p3 0.9 0.6 0.72 0.66 0.81

p4 1 0.2 0.52 0.36 0.76

p5 0.35 0.2 0.26 0.23 0.305

p6 0.3 0.6 0.48 0.54 0.39

Table 2: Car Database and Car Utilities

We assume that k ≥ d . Otherwise, the maximum regret ratio

of a set can be unbounded [21]. It is shown [2, 7, 11] that solving

the k-regret query optimally is NP-hard. Instead, we propose an

algorithmwhich returns an asymptotically optimal solution with a

restriction-free bound for datasets of any dimensionality e�ciently.

3.3 Lower Bound of Maximum Regret Ratio

In this section, we present a lower bound of the maximum regret

ratio in the following theorem, which is Ω(k−2/(d−1)).
Theorem 3.3. There is a d-dimensional database such that the

maximum regret ratio of any set of k points is at least 1

8
(2k)−

2

d−1 .

Proof. The theorem follows from Theorem 8 in [20], which proved

that, given a real number ε ∈ (0, 1], we should return at least
1

2
(1
8ε)

d−1
2 points to guarantee a regret ratio ε . In other words, by

returning at most k points, the regret ratio is at least 1

8
(2k)−

2

d−1 .

In later sections, we present our algorithm Sphere, which re-

turns a set with a maximum regret ratio ofO(k−2/(d−1)). Based on
the lower bound in Theorem 3.3, Sphere is asymptotically optimal.

4 BACKGROUND TECHNIQUES: ε-KERNEL

As described in Section 2, we �rst describe the details of the ε-

kernel algorithm in this section. Then, we elaborate why it does

not satisfy the restriction-free bound requirement and why it is

di�cult to be applied in real cases. The reason why we need to de-

scribe this algorithm in detail is that a variation of this algorithm

will be used in our Sphere algorithm (to be described in Section 5).

The concept, ε-kernel, was �rst introduced by Agarwal et al. [1].

Speci�cally, S ⊆ P is an ε-kernel of P if
maxp∈S v ·p−minp∈S v ·p
maxp∈P v ·p−minp∈P v ·p ≥

1 − ε for each non-zero vector v . Intuitively, an ε-kernel preserves

the “width” of P for each direction. It was shown in [2, 7] that the

concept “ε-kernel” is closely related to the k-regret query. Specif-

ically, if S ⊆ P is an ε-kernel of P, mrrP(S) ≤ ε . Besides, it is

well-known that an ε-kernel of size O(ε− d−12) can be computed in

O(n+ 1

εd
) time [2, 7]. Then, the following theorem follows directly.

Theorem 4.1 ([2, 7]). Given a real value ε > 0, one can compute

a set S ⊆ P of size O(ε− d−12) in O(n + 1

εd
) time with mrrP(S) ≤ ε .

Wei et. al [7] translated Theorem 4.1 to an approximate algo-

rithm for the k-regret query by setting a proper value of ε to ob-

tain an ε-kernel of at most k points. Informally, given ε > 0, one

can obtain a set S with at most cε−
d−1
2 points and mrrP(S) ≤ ε

where c is a (su�ciently large) constant depending on d according

to Theorem 4.1. It su�ces to let cε−
d−1
2 = k . Then, mrrP(S) ≤ ε =

(c
k
)

2

d−1 = O(k−
2

d−1). However, the bound above is not restriction-

free. In a typical setting of d , c can be much larger than k . In case

that k < c , the bound (c
k
)

2

d−1 > 1 becomes useless. Even worse,

some algorithms for computing ε-kernel have more restricted con-

ditions for the bound to be valid (e.g., ε must be at most 1

4
[35] and

thus, k must be at least c
1

2

d−1). We show how large c can be next.

We de�ne a few terminologies �rst. The convex hull of a set P of

points in ad-dimensional space, denoted by CH(P), is the smallest

convex set containing P. A facet of the convex hull, denoted by F ,

is a bounded �at surface that forms a part of the boundary of the

convex hull. The diameter of a facet F is de�ned to be themaximum

distance between any two points on F . Let C be the d-dimensional

hypercube [−1,+1]d (which is a convex hull and has 2d facets). Let

SR be the surface of the sphere of radius R centered at the originO .

Example 4.2. Consider the example in Table 2. For the ease of pre-

sentation, we visualize the points P = {p1,p2,p3,p4,p5,p6} in Fig-

ure 1 where the X1 coordinate and the X2 coordinate represent HP

and MPG, respectively. The convex hull of P, denoted by CH(P), is
shown in Figure 2. In this 2-dimensional example, the line segment

between p1 and p2 is one of the facets of CH(P).

It is well-known that one can compute a set IR of points in SR
such that for each s in SR , there is a point s

′ in IR and dist(s, s ′) is
bounded where dist(s, s ′) denotes the Euclidean distance between

s and s ′. Formally, we have the following lemma when R = 1 [1].

Lemma 4.3 ([1]). Givenδ > 0, one can compute a setI1 ofO(1

δd−1
)

points in S1 such that for each s in S1, there is a point s ′ in I1 and
dist(s, s ′) ≤ δ . Speci�cally, |I1 | = 2dmd−1 wherem = ⌈ 2

√
d−1
δ
⌉.

This is done by partitioning each of the 2d facets ofC intomd−1

(d − 1)-dimensional “hypercubes” of diameter δ where m is com-

puted to be ⌈ 2
√
d−1
δ
⌉, resulting in 2dmd−1 (d − 1)-dimensional hy-

percubes in total. For each (d − 1)-dimensional hypercube, one

point is computed and included into I1 (i.e., |I1 | = 2dmd−1). We

refer the readers who do no familiar with the above process to [1].

Corollary 4.4. Givenδ > 0, one can compute a setIR ofO(1

δd−1
)

points in SR such that for each s in SR , there is a point s
′ in IR and

dist(s, s ′) ≤ δ . Speci�cally, |IR | = 2dmd−1 wherem = ⌈ 2
√
d−1R
δ
⌉.

The algorithm for computing an ε-kernel [35]. We compute

the set IR according to Corollary 4.4 by setting R = 1 +
√
d and

δ =
√
εα where α is a constant in (0,1] depending only ond [1]. For

each point s ′ in IR , we compute its ε-approximate nearest-neighbor

[4], denoted by φ(s ′), in P. S = {φ(s ′)| s ′ ∈ IR } is an ε-kernel of P.

According to the procedure above, |S | = |IR | = 2dmd−1 ≈
2d(2
√
d − 1R/δ)d−1 = cε− d−12 where c = 2d(2

√
d − 1(1+

√
d)/
√
α)d−1.

Consider a typical settingwithd = 6.c ≥ 2d(2
√
d − 1(1+

√
d))d−1 ≈

107. In other words, the ε-kernel algorithm provides a valid bound

on themaximum regret ratio onlywhenk ≥ 107 on a 6-dimensional

dataset. This requirement is very restricted and makes the algo-

rithm di�cult to be applied in real cases.

In later sections, we introduce our algorithm, Sphere, for solv-

ing the k-regret query. Unlike the ε-kernel algorithm which has

restricted applicability, the bound of Sphere, which is also asymp-

totically optimal, is restriction-free, i.e., it is valid for any setting.

O X1

p6

p2

p3

p1

p4p5

X2

1

22

R
+

Figure 1: Car database

O X1

p6

p2

p3

p1

p4p5

X2

1

sdist()!,s

22

p ,s()!

CH()!

R
+

Figure 2: Convex hull

5 ALGORITHM

We are ready to present the algorithm, Sphere, which is both el-

egant and asymptotically optimal. We present some preliminaries

in Section 5.1, introduce Sphere in Section 5.2, and then analyze

the time complexity and the theoretical guarantee in Section 5.3.

5.1 Preliminaries

We de�ne S+
R
⊆ SR to be the set of points in SR (de�ned in Sec-

tion 4) which are in the positive quadrant. (i.e., S+
R
= {s ∈ Rd | s[i] ≥

0, ∀i ∈ [1,d] and ‖s ‖ = R). In this section, we set R = 2
√
d . We

will discuss why we set this value later.

Given a set P ⊆ P and a point s ∈ S+
R
, we de�ne the distance

between P and s , denoted by dist(P , s), to be the minimum distance

between a point in CH(P) and s . Formally, we write dist(P , s) =
minp ∈CH(P) dist(p, s). We denote the point that realizes the dis-

tance dist(P , s) byp(P , s). That is,p(P , s) = arg minp ∈CH(P) dist(p, s).
Given a point s ∈ S+

R
, a basis B of s is a set of at most d points

such that for each proper subset B ′ of B, we have dist(B, s) <
dist(B ′, s). Given a set P ⊂ P and a point s ∈ S+

R
, we say that

a set B ⊆ P is a P-basis of s if (1) B is a basis (i.e., dist(B, s) <
dist(B ′, s),∀B ′ ⊂ B), and (2) we have dist(B, s) = dist(P , s). Intu-
itively, a P-basis of s is a minimal subset of P whose distance to s

is equal to the distance between P and s . Note that a basis B ⊆ P

of s is not necessary a P-basis of s if dist(B, s) , dist(P , s).

Example 5.1. Consider the set P and a point s in S+
R
in Figure 2.

The distance between P and s , namely dist(P, s), is drawn in a dashed
line. The point realizing the distance dist(P, s) is indicated by p(P, s).
Consider B ⊆ P where B = {p2,p3}. Firstly, B is a basis of s since for

each B ′ ⊂ B, dist(B, s) < dist(B ′, s) (e.g., dist(B, s) < dist({p2}, s)
and dist(B, s) < dist({p3}, s)) where dist(B, s) is the minimum dis-

tance between a point in CH(B) (i.e., the line segment connected by

p2 and p3) and s . Secondly, dist(B, s) = dist(P, s) (and indeed, the

points realizing both dist(B, s) and dist(P, s), labeled as p(P, s) in the
�gure, are the same). In other words, B = {p2,p3} is a P-basis of s .

5.2 Algorithm Sphere

We want to bound mrrP(S). Intuitively, given a utility function f ,

even if themaximum utility pointp of Pw.r.t. f is not in S , we want

to guarantee that there is a point q in S such that the di�erence

between the utility of q and the utility of p w.r.t. f (i.e., f (p)− f (q))
is bounded and thus the regret ratio of S w.r.t. f is bounded.

Based on this idea, we develop Algorithm Sphere. Intuitively,

Sphere constructs a set I+
R
⊆ S+

R
which can be regarded as a

set of points “uniformly” distributed on the sphere that S+
R
lies on.

Then, for each point s in S+
R
, there exists a point s ′ ∈ I+

R
such that

dist(s, s ′) is bounded (analogous to the relation betweenIR and SR
in Section 4). Given a point s ∈ S+

R
, we denote the utility function

whose utility vector is in the same direction of s by fs . Ideally, for

each point s ′ ∈ I+
R
, we �nd the point q in P with a “high” utility

w.r.t. fs ′ and include q to S . Since the distance dist(s, s ′) is bounded,
the utility of q (which achieves high utility w.r.t. fs ′) in S w.r.t. fs
is also bounded. This is true for all s in S+

R
.

Note that the radius R of the sphere that S+
R
lies on is set inten-

tionally to be 2
√
d . Let s be a point in S+

R
and s ′ be the point in

I+
R

such that dist(s, s ′) is bounded. Intuitively, if R is too large, the

bound of the distance dist(s, s ′) is large (since s and s ′ have large
norms), which will a�ect tightness of the �nal bound on the max-

imum regret ratio; if R is too small, the norm of s ′ is close to the

norms of points in P and thus, the “discriminant ability” of s ′ is
bad. In particular, the point q, determined by s ′ to be inserted into
S , which is supposed to have a “high” utility w.r.t. fs ′ , might in fact

have a poor utility, and thus, gives a loose bound on its utility w.r.t.

fs and hence a loose bound on the maximum regret ratio. We will

formally present the discussion on the trade-o� of R in Section 5.3.

Formally, our algorithm Sphere involves four steps. Note that

we integrate a greedy step at the end of the algorithm. The intu-

ition is that there is no harm to include more points into S as long

as S does not violate the size constraint in the k-regret query. The

pseudocode of the Sphere algorithm is presented in Algorithm 1.

• Step 1 (Initialization): S is initialized to {b1,b2, . . . ,bd }
where bi is the i-th dimensional boundary point.

• Step 2 (Constructing set I+
R
):We construct a set I+

R
of k ′

points (where k ′ is an integer computed based on k and d)

in S+
R
such that for each s in S+

R
, there is a point s ′ ∈ I+

R
and

dist(s, s ′) ≤ δ where δ is a non-negative number computed

based on the way we construct I+
R

(see Section 5.2.1).

• Step 3 (Finding P-basis): For each s ′ ∈ I+
R
, we search its

P-basis, denoted by B(s ′). The basis search can be done ef-

�ciently [13, 28]. Intuitively, a basis B ⊆ P (not necessarily
a P-basis) is maintained during the basis search. We itera-

tively examine each point p in P and check if we can incor-

porate p to B to reduce the distance dist(B, s). Eventually,
no point in P can be used to reduce the distance and the re-

sulting basis B is indeed the desired P-basis. The interested

readers can �nd the detailed algorithm in [13, 28]. For each

basis found, we include all points in the basis into S . Note

that the number of points in S after this step is at most k .

We will discuss this issue in more detail in Section 5.2.2.

• Step 4 (Inserting additional points): If |S | < k after the

third step, we greedily include points into S until S contains

k points. The greedy strategy (including the computation of

mrrP(S)) is described in Section 5.2.3.

Example 5.2. Consider the example in Figure 2. Assume that k is

set to 4. Firstly, S is initialized to be {p1,p4} which are the boundary

points in P. Secondly, based on a formula (to be shown later), we

compute k ′ to be 1. We construct the set I+
R
= {s ′} where s ′ = s

which is shown in Figure 2. Thirdly, we �nd its P-basis which is B =

{p2,p3}. Then, S = S ∪B = {p1,p2,p3,p4}. Since |S | = 4(= k) in this
case, we do not need to perform Step 4. Thus, S is {p1,p2,p3,p4}.

Algorithm 1 Algorithm Sphere

Require: A tuple set P ⊆ Rd (|P| = n) and an integer k

Ensure: A subset S ⊆ P with |S | ≤ k

/* Step 1: initialization */

1: S ← {b1,b2, . . . ,bd }
/* Step 2: constructing I+

R
*/

2: Construct a set I+
R

with the desired property.

/* Step 3: �nding the P-basis of each s ′ ∈ I+
R

*/

3: for each s ′ ∈ I+
R

do

4: B(s ′) ← the P-basis of s ′

5: S ← S ∪ B(s ′)
/* Step 4: inserting points greedily into S until |S | = k . */

6: while |S | < k do

7: q ← the point that realizes the current mrrP(S).
8: S ← S ∪ {q}
9: return S

Comparison with the existing algorithms: Compared with the

existing algorithms [2, 5, 7, 11, 21, 24] for the k-regret query, our

algorithm is both elegant and asymptotically optimal in term of

maximum regret ratio which none of the existing algorithms is.

5.2.1 The procedure of constructing I+
R
. We de�ne a few termi-

nologies �rst. Let C+ ⊆ C to be the set of points in C (de�ned in

Section 4) which are in the positive quadrant (i.e., C+ = [0, 1]d). A
front facet of C+ is de�ned to be a facet of C+ that does not pass

through the origin. There are d front facets of C+. In the following,

when we say a facet of C+, we mean the front facet of C+.

We describe our procedure of constructing I+
R

in Algorithm 1

as follows. We want the set I+
R

with the following two properties:

• Size property. The set I+
R

must be designed in a way that

the size of S does not exceed k (i.e., the maximum allowable

output size) after we include all P-basis of points in I+
R
.

• Distance property. For each s in S+
R
, there is a point s ′ ∈

I+
R

and dist(s, s ′) ≤ δ (which we call the distance bound).

This property is crucial to bound the maximum regret ratio.

Depending on the value of k , which constrains the number of

points that we can include to S without violating the size property

after the initialization (S is initialized to be {b1, . . . ,bd }), we con-
structI+

R
in di�erent ways. According to the procedure in Sphere,

for each point in I+
R
, we include its P-basis, which is a set of at

most d points, into the solution set S . If k is so small that we can-

not include one basis into S , I+
R

is de�ned to be empty (Case 1).

If we are allowed to include at least one basis into S , we want

the set I+
R

of points to be “uniformly” distributed on S+
R
so that

the distance property is met and δ is as small as possible. We con-

struct such I+
R

with the help of the front facets of C+ by adapt-

ing Lemma 4.3[1], which allows an e�cient implementation and

gives the desired distance bound. Intuitively, each front facet ofC+

(which is itself a hypercube) can be divided into several smaller hy-

percubes so that the distance between two points on the same hy-

percube is bounded by the diameter of that hypercube. By creating

a point s ′ for each hypercube and insert it to I+
R
, we can relate the

value of δ with the diameter of the hypercube and guarantee the

desired distance property. However, since there are d front facets

of C+ in total, we have to evenly create points for the hypercubes

on each of the d front facets. Otherwise, the distance bound might

not be guaranteed on some facets of C+. If we can only include

strictly less than d points in I+
R

due to the size property (but there

are d front facets) (Case 2), we construct I+
R

with the help of the

“corner” point on the front facets of C+, the only point in C+ that

lies on all front facets of C+. To be shown later, I+
R

is then de�ned

to contain the point on the “center” of S+
R
whose distance to other

points is minimized. If we can include at least d points in I+
R

(Case

3), we naturally adapt Lemma 4.3[1] to create points inI+
R
for each

of the d front facets of C+. Formally, we have the following cases:

Case 1 (d ≤ k < 2d , i.e., the number of points that we can include

into S is in [0,d) after the initialization): We de�ne I+
R

to be the

empty set and thus,k ′ = 0. Step 2 and Step 3 of Sphere are skipped.

Intuitively, since S is initialized to the set ofd boundary points, we

are allowed to include strictly less than d points to S , which might

be less than the size of one basis, after the initialization of Sphere.

Otherwise, we may violate the size constraint in the k-regret query.

For example, consider the example in Figure 2 where we set k to

be 3 and k < 2d = 4 (Case 1). S is initialized to be {p1,p4} as before.
Suppose that we construct I+

R
= {s} as shown in Figure 2. If we

include its P-basis, i.e., B = {p2,p3} into S , |S | = 4 > k violates the

size constraint in the k-regret query.

Case 2 (2d ≤ k < d2 + d , i.e., the number of points that we can

include into S is in [d,d2) after the initialization): We set k ′ = 1

and I+
R
= {s ′} where s ′[i] = 2 for each i ∈ [1,d].

When 2d ≤ k < d2 + d , we are allowed to include less than d2

points into S in Step 2 and Step 3 of Sphere. That is, I+
R

is allowed

to contain strictly less than d points (since each point in I+
R

can

lead to the insertion of d points into S). In other words, we cannot

evenly create points into I+
R

(|I+
R
| < d) for each of the d front

facets of C+. Alternatively, the desired I+
R

is obtained as follows.

Letu ′+ = 1

2
s ′where s ′ is de�ned above. Note thatu ′+ is the “cor-

ner” point on the facets of C+ (which is the only point in C+ that

lies in all front facets ofC+). For each s in S+
R
, letu+ be the intersec-

tion between the facets of C+ and the ray shooting from the origin

to s . Let β =
√
d − 1 which is the diameter of a facet ofC+. Sinceu+

and u ′+ are on the same facet, we have dist(u+,u ′+) ≤ β . Note that

s ′ and s are the “scaled” points of u ′+ and u+. Since dist(u+,u ′+)
is bounded, the distance dist(s, s ′) is also bounded. Intuitively, s ′

is the point on the “center” of S+
R
so that the maximum distance

between it and a point in S+
R
is as small as possible (i.e., δ is small).

Note that we can insert some additional points into I+
R

if the size

property allows. However, it might not guarantee a smaller dis-

tance bound according to our discussion before. We left it as a fu-

ture direction to obtain an asymptotically smaller distance bound

by creating more points into |I+
R
|. We formally prove the value of

δ next and the result is summarized in the following lemma.

Lemma 5.3. Given I+
R
= {s ′} where s ′[i] = 2 for each i ∈ [1,d],

for each s in S+
R
, we have dist(s, s ′) ≤ δ where δ = R

√
d − 1.

Proof. Letu andu ′ be the normalized vector of s and s ′ respectively.
That is, s = Ru and s ′ = Ru ′ where ‖u ‖ = ‖u ′‖ = 1. According

to the discussion in [1], dist(u,u ′) ≤ dist(u+,u ′+) ≤ β . Then, we

have dist(s, s ′) = Rdist(u,u ′) ≤ Rβ = R
√
d − 1 = δ .

For example, consider Figure 2 again. We construct I+
R
= {s ′}

where s ′[1] = 2 and s ′[2] = 2 (the squared point shown in Figure 2).

It can be veri�ed easily that s ′ is the point on the “center” of S+
R

which is the position minimizing its distance to other points in S+
R
.

Case 3 (k ≥ d2 + d , i.e., the number of points that we can include

into S is at least d2 after the initialization): We set k ′ to be dmd−1

where m = ⌊(k−d
d 2)

1

d−1 ⌋ ≥ 1. Note that the value of m is deter-

mined intentionally. Ifm is large, the size of the �nal set might be

larger than k (the maximum allowable output size). If m is small,

the maximum regret ratio obtained might be loosely bounded.

The major idea of the construction of I+
R

is similar to the pro-

cess introduced in Lemma 4.3[1]. That is, we partition the front

facets of C+ into a number of (d − 1)-dimensional hypercubes and

constructI+
R

from each of the (d −1)-dimensional hypercubes. We

summarize the result in the following lemma.

Lemma 5.4. Given an integer k ′ which can be written as k ′ =
dmd−1 wherem is a positive integer, one can compute a set I+

R
of k ′

points in S+
R
such that for each s in S+

R
, there is a point s ′ in I+

R
and

dist(s, s ′) ≤ δ where δ =
√
d−1R
2m .

Proof Sketch.Wemodify Lemma 4.3 to constructI+
R
. The di�erence

is that we focus on the sphere S+
R
in the �rst quadrant instead of SR .

The complete proof and a detailed example illustrating Lemma 5.4

is presented in the appendix due to the lack of space.

The value of δ in Case 3 is smaller than that in Case 2 which is

intuitive since we are allowed to include more points in Case 3.

5.2.2 The number of points in S . We verify in the following

lemma that after Step 3, S has at most k points.

Lemma 5.5. |S | ≤ k after Step 3 of Sphere.

Proof. We prove the lemma case by case.

Case 1 (d < k < 2d): Since |I+
R
| = 0, we skip Step 2 and Step 3 in

Sphere. S contains d points after the initialization and |S | = d < k .

Case 2 (2d ≤ k < d2 +d): Let I+
R
= {s ′}. According to Sphere, we

search the P-basis of s ′, namely B(s ′), and include all points in B(s ′)
into S , initialized to be the set of d boundary points. That is, after

the �rst three steps, we have |S | = d + |B(s ′)| ≤ d + d = 2d ≤ k .

Case 3 (k ≥ d2 + d): According to Step 2, |I+
R
| = dmd−1 where

md−1
= ⌊(k−d

d 2)
1

d−1 ⌋d−1 ≤ k−d
d 2 . Consider Step 3 (S =

⋃
s ′∈I+

R
B(s ′)∪

S). |S | ≤ d +
∑
s ′∈I+

R
|B(s ′)| ≤ d + d |I+

R
| ≤ d + d × d k−d

d 2 = k .

5.2.3 The greedy strategy. Denote the set returned after the �rst

three steps of Sphere by S . The greedy strategy performs in itera-

tions. In each iteration, the point in P that realizes the current max-

imum regret ratio mrrP(S) is included into the current set S until

S contains k points or mrrP(S) is 0. We say that a point q realizes

the maximum regret ratio mrrP(S) if mrrP(S) = mrrS∪{q }(S) [21].
Such a point q is determined by computing mrrS∪{p }(S) for each
p ∈ P and q = argmaxmrrS∪{p }(S). We compute mrrS∪{p }(S) by
formulating it as a linear programming (LP) problem [21]:

max x

s .t . (p − q) · u ≥ x ∀q ∈ S
p · u = 1 (1)

u[j] ≥ 0 ∀1 ≤ j ≤ d

where the optimal solution x∗ is the desiredmrrS∪{p }(S) and u∗ is
the utility vector of f ∗ such that rrSi−1∪{p }(Si−1, f ∗) = x∗ .

In order to determine the point realizing the current maximum

regret ratio, we need to solve the LP (1) for each point in P in each

iteration, which is very expensive. In the following, we introduce

a number of punning strategies for reducing the number of expen-

sive LP computations. We make the following observations:

(1) Upper bounding:We want the point with the largest max-

imum regret ratiomrrS∪{p }(S). Before computing the exact

mrrS∪{p }(S) for each p in P, we can �rst compute an upper

bound of mrrS∪{p }(S). If the bound is at most the largest

maximum regret ratio observed so far, it cannot be the point

realizing the current maximum regret ratio.

(2) Invariant checking: The results of the LP problems com-

puted in previous iterations can be re-used directly for com-

puting the mrrS∪{p }(S) in the current iteration provided

that certain conditions are satis�ed (to be shown shortly).

In the following, we denote the set after the i-th iteration by Si .

Consider a function f with utility vector u and a point p in P. We

denote the maximum regret ratio mrrSi−1∪{p }(Si−1) by mrri−1(p).
We say that u is the worst utility vector for mrri−1(p), denoted by

ui−1(p), if rrSi−1∪{p }(Si−1, f) = mrri−1(p). A point qi ∈ P is said to
be the worst point for the i-th iteration ifqi = arg maxp ∈Pmrri−1(p)
and qi is the point to be added in the i-th iteration, i.e., Si = Si−1∪
{qi }. The LP (1) for computing mrri−1(p) is denoted by LPi−1(p).

Upper bounding: We present an upper bound of mrri−1(p). If
the upper bound of mrri−1(p) is at most the largest maximum re-

gret ratio observed so far, we skip the LP computation ofmrri−1(p).
Lemma 5.6. Given p in P, we have mrri−1(p) ≤ mrri−2(p).

Proof. It is easy to be veri�ed by the LP (1). LPi−2(p) is same as

LPi−1(p) except that in LPi−1(p), we have one more constraint

(p − qi−1) · u ≥ x since Si−1 = Si−2 ∪ {qi−1}. Since we have

more constraints in LPi−1(p) than in LPi−2(p), its objective value
(= mrri−1(p)) is at most that of LPi−2(p) (= mrri−2(p)).

Corollary 5.7. Given p in P and two integers i and j (0 ≤ j <

i − 1), we have mrri−1(p) ≤ mrrj (p).
Invariant checking: We show how to re-use the solutions of

the LP problem computed in previous iterations for computing the

mrri−1(p) in the i-th iteration. The lemma is shown as follows.

Lemma 5.8. Given a pointp in P, if (p−qi−1)·ui−2(p) ≥ mrri−2(p)
where qi−1 is the worst point for the (i − 1)-th iteration, we have

mrri−1(p) = mrri−2(p) and ui−1(p) = ui−2(p).
Proof. Obviously, x = mrri−2(p) and u = ui−2(p) satisfy all con-

straints except (p − qi−1) · u ≥ x of LPi−1(p) since they are fea-

sible solutions of LPi−2(p). In addition, they satisfy the above ad-

ditional constraint since (p − qi−1) · ui−2 ≥ mrri−2(p). Thus, x =
mrri−2(p) and u = ui−2(p) are feasible solutions of LPi−1(p). On
the other hand, according to Corollary 5.7, we have the optimal

solution x∗ of LPi−1(p) is at most mrri−2(p), Thus, x = mrri−2(p)
and u = ui−2(p) are indeed the optimal solutions of LPi−1(p). That
is, mrri−1(p) = mrri−2(p) and ui−1(p) = ui−2(p).

Corollary 5.9. Given p in P, two integers i and j (0 ≤ j < i − 1),
if (p−ql) ·uj (p) ≥ mrrj (p), ∀l ∈ (j, i −1] where ql is the worst point
for the l-th iteration, mrri−1(p) = mrrj (p) and ui−1(p) = uj (p).

Now, we are ready to describe our complete greedy strategy in

Sphere. It works in iterations. In the i-th iteration where the cur-

rent solution set is Si−1, we aim at identifying the point p with the

largest mrri−1(p) and insert it to Si−1. With a slight abuse of nota-

tions, we assume that the largest maximum regret ratio observed

so far and the point achieving such a maximum regret ratio are

stored in mrr and qi , respectively. For each point p in P, we pro-

cess it as follows. Let j ∈ [0, i − 1) be the largest integer such that

mrrj (p) is computed in previous iterations by either the LP (1) or

Corollary 5.9. There are three cases:

Case 1 (mrrj (p) ≤ mrr): According to Corollary 5.7, mrrj (p) is an
upper bound of mrri−1(p). Given the fact that mrrj (p) ≤ mrr, we

have mrri−1(p) ≤ mrr and thus, p cannot be the worst point qi for

the i-th iteration. Then, we skip the remaining computation of p.

Case 2 ((p − ql) · uj (p) ≥ mrrj (p), ∀j < l ≤ i − 1): According

to Corollary 5.9 and the fact that (p − ql) · uj (p) ≥ mrrj (p), ∀j <
l ≤ i − 1, we know that mrri−1(p) = mrrj (p) and ui−1(p) = uj (p)
(without computing it using the LP (1))

Case 3 (otherwise):We have no choice but to computemrri−1(pj)
and ui−1(p) by the LP (1).

After mrri−1(p) is computed, it is compared with the largest

maximum regret ratiomrr observed so far. Ifmrr < mrri−1(p),mrr

and qi are updated accordingly. At the end of the i-th iteration, the

point qi is the worst point for the i-th iteration. qi is inserted into

the current solution set and Si = Si−1 ∪ {qi }.
Comparisonwith the existing the greedy strategies:The best-

known greedy-based strategies which return a set with a small

maximum regret ratio empirically are Greedy and GeoGreedy.

GeoGreedy is only restricted in a low dimensional space since its

operation is not a�ordable in a high dimensional space. Greedy is

the only applicable algorithm in this case. However, Greedy does

not distinguish the cases discussed above and always solves the

time-consuming LP (1) for each point in P in each iteration, result-

ing in a poor performance in term of the running time. In compar-

ison, our strategy identi�es those unnecessary LP computations

and thus speeds up the overall process.

5.3 Theoretical Analysis

In this section, we analyze the time complexity of algorithm Sphere

(Section 5.3.1), and prove an upper bound onmrrP(S) (Section 5.3.2)
where S is the solution set returned by Sphere.

5.3.1 Time Complexity. Weanalyze the time complexity of Sphere

step-by-step. Note that |I+
R
| = k ′ = O(k

d
) in all cases.

• The initialization of the solution set S takes O(nd) time.

• Consider the construction of I+
R
. Due to the regularity of

the constructing procedure, each coordinate value of the

point in I+
R

can be computed with the help of the Carte-

sian product, and all coordinate values of the point could

be computed in O(d) time. Since there are k ′ points in I+
R
,

constructing I+
R

takes O(k ′d) = O(k) time.

• Consider the basis search. For each s ′ in I+
R
, we �nd its P-

basis in O(neO (
√
d lnn)) time [13] or in O(nd32d) time [28].

Then, we insert all points in the basis into S , which takes

O(d) time. Since there are |I+
R
| = k ′ points, the third step

takes O(nkeO (
√
d lnn)) time [13] or O(nkd22d) time [28].

• Let the number of points to be included greedily in the last

step bekG . It takesO(nk3Gd) time in practice andO(nk2
G
d4.5)

time in the worst case [21] to include kG points greedily.

In summary, the time complexity of Sphere is O(neO (
√
d lnn)

+

nk3d) (if we use the basis search techniques in [13]) orO(nkd22d +
nk3d) (if we use the basis search techniques in [28]).

Sphere has the following advantages in term of running time.

Firstly, compared with some existing algorithms (e.g., GeoGreedy

[24] and DMM [5]) which exponentially depend on the dimension-

ality d , Sphere can be implemented subexponentially in term of

d [13]. Secondly, compared with the algorithm (e.g., RMS_HS [2])

whose performance degrades rapidlywhen themaximum regret ra-

tio is small, Sphere is not sensitive to the maximum regret ratio of

the set returned. Thirdly, compared with some algorithms (e.g., Ge-

oGreedy [24] and RMS_HS [2]) which might take O(nO (d)) to ex-
ecute, Sphere signi�cantly reduces the time needed (e.g., linear in

n [28]). Finally, the pruning strategies presented in Section 5.2.3 re-

duce a large number of unnecessary LP computations empirically

compared with Greedy [21] and thus speedup the whole process.

For the other algorithmswhich have comparable time complexi-

ties as Sphere, our Sphere algorithm does not only enjoy a restriction-

free and asymptotically optimal bound for any dimensionality, but

also returns a set with a much smaller maximum regret ratio em-

pirically as will be shown shortly in the experimental evaluation.

5.3.2 Upper Bound. Weare ready to discuss the theoretical guar-

antee on the maximum regret ratio of the solution set returned by

Sphere. We summarize the result in the following theorem.

Theorem 5.10. Sphere returns a set S ⊆ P such that

mrrP(S) ≤ min

1 − 1

d
,

(d − 1)d

max

{
1/4,

⌊(
k−d
d 2

) 1

d−1
⌋2}
+ (d − 1)d

Speci�cally, for a �xed dimensionality d ,mrrP(S) = O(k−
2

d−1).

Proof Sketch.We provide the detailed proof of Theorem 5.10 in the

appendix. The intuitions behind our restriction-free bound on the

maximum regret ratio mrrP(S) are brie�y illustrated as follows.

In order to bound the maximum regret ratio, we want to make

the utilities of the selected points as large as possible and as close

to the maximum utility of the whole dataset as possible.

Firstly, the solution set S contains the set of all boundary points,

which guarantees that the maximum utility of S (i.e., maxq∈S f (q))
is not too small even under some extreme utility functions. Sec-

ondly, the maximum utility of S is indeed close to the maximum

utility of the whole dataset P, i.e., maxp ∈P f (p) − maxq∈S f (q) is
not too large. This is because that we include all points in the basis

B(s ′) for each s ′ inI+
R

into S and, as will be shown in the proof, the

points in the basisB(s ′) enjoy high utilities. Finally, we improve the

tightness of the upper bound onmrrP(S) by carefully determining

a proper value of R (i.e., the radius of the sphere that S+
R
lies on),

whose intuition has been discussed in Section 5.2.

Remark: Combining the upper bound in Theorem 5.10 with the

lower bound in Theorem 3.3, we conclude that the boundO(k−2/(d−1))
is asymptotically optimal for a �xed d . Besides, it can be veri�ed

that each bound in Theorem 5.10 ranges from 0 to 1 for all settings,

i.e., Sphere satis�es the restriction-free bound requirement.

6 EXPERIMENTAL RESULTS

We conducted experiments on a machine with 2.26GHz CPU and

32GBRAM. All programswere implemented in C/C++. Most of the

experimental settings follow those in [5, 11, 21, 31]. Experiments

were conducted on both synthetic datasets and real datasets.

For synthetic datasets, we adopt the dataset generator [6] to

generate anti-correlated datasets (additional experiments on cor-

related and independent datasets are shown in the appendix). Un-

less speci�ed explicitly, the number of tuples in each synthetic

dataset is set to 100,000 (i.e., |P| = n = 100, 000), d is set to 6 and

k is set to 30. In addition, we adopt 4 real datasets in our experi-

ments, namely NBA (http://www.basketballreference.com), House-

hold (http://www.ipums.org), Movie (https://movielens.umn.edu)

and Airline (http://kt.ijs.si). NBA contains 21,961 tuples for each

player/season combination from 1946 to 2009. Six attributes are se-

lected to represent the performance of each player, such as total

scores and blocks etc. Household consists of 1,048,576 family tu-

ples in US in 2012. Each tuple is associated with seven attributes,

showing the economic characteristic of each family, such as an-

nual property insurance cost and annual home heating fuel cost etc.

Movie is a 19-dimensional dataset with 100,000 ratings (1-5) from

943 users on 1682 movies. Each user rated at least 20 movies and

eachmovie was rated by at least 20 users. The users are grouped ac-

cording to their occupations, resulting in 19 groups of users. Each

group of users gives an overall rating on each movie. Airline con-

tains 5,810,463 records with 3 characterizing attributes, namely the

actual elapsed time, the distance and the arrival delay. The informa-

tion about the real datasets is summarized in Table 3.

For all the datasets, each attribute is normalized to (0, 1]. Miss-

ing values are replaced with the smallest value found in the cor-

responding attributes. We preprocessed each dataset such that the

preprocessed dataset contains skyline points only. Unless speci�ed

explicitly, we vary the value of k in our experiments and the range

of the k values covers all three subcases of the algorithm which

are discussed in Section 5.2. The performance of each algorithm is

measured in terms of the query time and themaximum regret ratio

(mrr). The query time of an algorithm is the execution time of the

algorithm. The maximum regret ratio of an algorithm is the max-

imum regret ratio of the set returned by the algorithm. For each

experiment on synthetic datasets, �ve dataset instances are gener-

ated independently. We ran the experiment 5 times and the aver-

aged performance was reported. Similarly, each experiment on real

datasets was run 5 times and we report the averaged performance.

We compared the performance of the following algorithms: Sphere,

Cube [21], Greedy [21], GeoGreedy [24], RMS_HS [2], DMM [5]

and ε-kernel [7] where Sphere is our complete algorithm. We ex-

clude the algorithms which fail to satisfy the dimensionality re-

quirement and work only on 2-dimensional datasets in the exper-

iments. Note that the ε-kernel algorithm [7] does not work un-

der typical settings (see Section 4) since it does not satisfy the

Dataset Dimensionality |P|
NBA 6 21,961

Household 7 1,048,576

Movie 19 1693

Airline 3 5,810,463

Table 3: Statistics about Real Datasets

Sphere
Greedy

GeoGreedy
Cube

RMS_HS
DMM-RRMS

DMM-Greedy
Eps-Kernel

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 5 10 15 20 25 30 35 40 45 50

o
u

tp
u

t
s
iz

e

k

 0.01

 0.1

 5 10 15 20 25 30 35 40 45 50

m
rr

k

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

s
)

k

Figure 3: Experiments on 3d Anti-correlated Datasets
Sphere
Greedy

GeoGreedy

Cube
SphereNoGreedy

ImpGreedy

DMM-RRMS
DMM-Greedy

Eps-Kernel

 0.04

 0.2

 10 20 30 40 50 60

m
rr

k

 0.04

 0.2

 1

 5

 25

 125

 10 20 30 40 50 60

ti
m

e
(s

)

k

Figure 4: Experiments on 6d Anti-correlated Datasets

restriction-free bound requirement. Nevertheless, we implemented

the ε-kernel algorithm, denoted by Eps-Kernel in the �gure, for

the purpose of comparison, but its bound on the maximum regret

ratio does not hold anymore. In practice, the size of an ε-kernel

can be much larger than k . If this is the case, we randomly return

k points in the ε-kernel as the solution. RMS_HS is the min-error

2-approximate algorithm presented in [2]. We note that RMS_HS

is di�erent from the HS algorithm presented in the experimental

evaluation in [2] where algorithm HS [2] is used to solve the min-

size regret query (we have discussed the di�erence between the

min-error query and the min-size query in Section 2). RMS_HS in-

vokes HS multiple times to obtain a set that satis�es the size con-

straint. As it was pointed out in [2], RMS_HSmight take exponen-

tial time to return the solution if the maximum regret ratio is small.

The DMM algorithm proposed in [5] has two practical implemen-

tations: the set-cover based implementationDMM-RRMSwith the-

oretical upper bounds (which is denoted as HD-RRMS in [5]), and

the greedy-based heuristic implementation DMM-Greedy (which

is denoted as HD-Greedy in [5]). We compared both of their per-

formances in the experiments where the number of partitions of

the discretized matrix (i.e., γ) is set to 4 (the default setting in [5]).

6.1 Results on Synthetic Datasets

We conducted experiments on synthetic datasets in this section. In

particular, we study the e�ects of k , d and n on synthetic datasets.

The results by varying k on a 3-dimensional dataset are shown

in Figure 3 where the maximum regret ratio and running time are

plotted in the log-scale for better visualization. Consider the left

sub-�gure of Figure 3. We show the solution set size of each algo-

rithm. Clearly, Sphere outperforms RMS_HS in term of the output

size. RMS_HS returns more points (i.e., Θ(k logk)) than other algo-
rithms, which return at most k points to the users. The middle sub-

�gure of Figure 3 depicts the maximum regret ratio of each algo-

rithm. Cube has the largest maximum regret ratio. The maximum

regret ratios of the DMM-based algorithms are larger than Sphere

Sphere
Greedy

GeoGreedy
Cube

DMM-Greedy
Eps-Kernel

 0.1

 0.2

 0.3

 0.4

 0.5

 3 4 5 6 7 8 9 10

m
rr

d

 0

 30

 60

 90

 120

 150

 180

 3 4 5 6 7 8 9 10

ti
m

e
(s

)

d

(a)Vary d

Sphere
Greedy

GeoGreedy
Cube

DMM-Greedy
Eps-Kernel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

10
2

10
3

10
4

10
5

10
6

m
rr

n

 0

 20

 40

 60

 80

 100

10
2

10
3

10
4

10
5

10
6

ti
m

e
(s

)

n

(b)Vary n

Sphere
Greedy

GeoGreedy
Cube

DMM-Greedy
Eps-Kernel

 0

 0.1

 0.2

 0.3

 0.4

 40 80 120 160 200

m
rr

k

 0

 200

 400

 600

 800

 1000

 1200

 40 80 120 160 200

ti
m

e
(s

)

k

(c)Vary k

Figure 5: Scalability Test

and the greedy-based algorithms in most cases. Note that the max-

imum regret ratio of DMM-RRMS is loosely bounded and it can

only guarantee maximum regret ratios within constant distances

to the optimal regret ratio (i.e., the bound is not asymptotically op-

timal). The maximum regret ratio of ε-kernel is also large while

the maximum regret ratio of RMS_HS is comparable to Sphere.

Clearly, Sphere performs better thanDMM-RRMS,DMM-Greedy,

ε-kernel and Cube, which do not satisfy the quality requirement,

in term of the maximum regret ratio. We proceed with the query

time evaluation in the right sub-�gure of Figure 3. RMS_HS, which

might need to solve a large number of hitting set problems, takes

more time to execute compared with other algorithms. For exam-

ple, RMS_HS takes several minutes to return the solution when

k = 50 while the other algorithms �nish in seconds. For the ease

of presentation, its query time is not shown in the �gure. The poor

performance of RMS_HS for a min-error k-regret query was also

observed in [2] and the situation is even worse when d is large.

For example, on a 6-dimensional dataset (which will be shown

shortly), RMS_HS takes a couple of hours to return the solution

while other algorithms �nish in minutes. Due to the poor perfor-

mance of RMS_HS, we omit its experimental results in the rest of

this section. Besides,Greedy and ε-kernel consume larger amounts

of time compared with other algorithms. Greedy, ε-kernel and

RMS_HS fail to satisfy the e�ciency requirement and Sphere clearly

beats them in termof the query time. The remaining algorithms are

relatively fast in this 3-dimensional dataset (i.e., return the solu-

tions within 0.1 seconds). Note that GeoGreedy and DMM-RRMS

achieve reasonable performances in this particular dataset, but their

performances degrade rapidly when the dimensionality is large (to

be shown later). In short, Sphere, which is elegant and satis�es all

four requirements, is the one which achieves a good performance

in term of all measurements, namely the output size, the running

time and themaximum regret ratio, while most existing algorithms

might be good in one aspect but be quite poor in the other aspect.

To better understand the superiority of Sphere, we conducted

the experiments by varying the value ofk on a 6-dimensional dataset

in Figure 4 where we compared two additional algorithms, namely

SphereNoGreedy and ImpGreedy. SphereNoGreedy is the com-

plete Sphere algorithmwithout the greedy step at the end, to demon-

strate the e�ectiveness of the �rst three steps of Sphere. ImpGreedy

is the algorithm with only the greedy step, to demonstrate the ef-

fectiveness of the last step of Sphere. The results in Figure 4 are

also plotted in log-scale for better visualization.

Consider the results on the maximum regret ratio in Figure 4.

The maximum regret ratio of Sphere is the smallest among all

the algorithms on most settings. Cube has the worst empirical

maximum regret ratio which veri�es our claim that although it

has a theoretical bound on the maximum regret ratio, the empiri-

cal performance is not satis�able enough and thus, fail to satisfy

the quality requirement. Note that the maximum regret ratio of

SphereNoGreedy is also comparable to the complete algorithm

Sphere. In particular, when k = 12, the maximum regret ratio of

SphereNoGreedy is 0.14 and the maximum regret ratio of Sphere

is 0.11. Both of the maximum regret ratios of SphereNoGreedy

and Sphere are smaller than themaximum regret ratios of all other

algorithms. In other words, the simplest set of tuples constructed

by Sphere that enjoys the theoretical guarantee also achieves a

small maximum regret ratio in practice. Nevertheless, there is no

harm to include more points into the solution set as long as it does

not contain more than k points. The maximum regret ratios of

other algorithms follow a similar trend as in Figure 3. Consider

the results on the query time in Figure 4 next. When k increases,

the query times of all algorithms increase. Sphere returns the so-

lutions within 1 seconds in all cases. The query times of Sphere

and ImpGreedy are much smaller than those of Greedy and Ge-

oGreedy. In particular, when k = 50, Sphere and ImpGreedy is

30 times faster than Greedy and 20 times faster than GeoGreedy.

Note that GeoGreedy and the DMM-based algorithms consume

more time comparedwith those in Figure 3 and they become slower

than Sphere and the greedy-based algorithms due to the fact that

their query times exponentially depend on d . In particular, DMM-

RRMS, which has to solve the set-cover problems multiple times,

takes more than 300 seconds to execute while some other algo-

rithms �nishes all the computations in 1 second. For better visual-

ization, DMM-RRMS is also omitted in the rest of experiments.

The complete algorithm, Sphere, achieves the best empirical

performance compared with the existing algorithms and at the

same time, it enjoys a restriction-free and asymptotically optimal

bound on the maximum regret ratio. Compared with the partial

algorithm SphereNoGreedy which enjoys the theoretical guaran-

tee, Sphere returns a set with smaller maximum regret ratio em-

pirically. Compared with the partial algorithm ImpGreedy, Sphere

not only returns a set with an even smaller maximum regret ratio,

but also guarantees a theoretical bound while ImpGreedy does not.

Due to the superior performance of Sphere, we focus only on the

complete algorithm Sphere in the rest of experiments.

We also test the scalability of Sphere by varying the values of

d , n and k . For other parameters, we use the default setting on the

synthetic datasets, and the results are shown in Figure 5.

In Figure 5(a), we vary the value ofd on syntectic datasets.When

the dimensionality increases, the query times and themaximum re-

gret ratios of all the algorithms increase. Sphere consistently con-

sumes fewer time compared than other algorithms except Cube

and it returns a set with a comparably small maximum regret ratio

in all cases among all the algorithms. Note that GeoGreedy and

DMM-Greedy has large query times compared with other algo-

rithms when d is large since their operations (which exponentially

depend on d) are not a�ordable in a high dimensional space (i.e.,

does not satisfy the e�ciency requirement when the dimensional-

ity is large). Speci�cally, computing a convex hull in GeoGreedy

in high dimensional spaces is expensive and the discretized matrix

in DMM-Greedy can be large in high dimensional spaces. For ex-

ample, when d = 8, GeoGreedy and DMM-Greedy take a couple

of hours to return the solution, but other algorithms �nish all com-

putations in minutes. Due to the large query times of GeoGreedy

and DMM-Greedy, their results for d > 7 are omitted. We vary

n on synthetic datasets in Figure 5(b). The maximum regret ratio

of Sphere is comparable to the state-of-the-art algorithms, but its

running time is signi�cantly smaller than the other algorithms ex-

cept Cube, which has the worst maximum regret ratio. In partic-

ular, when n = 1, 000, 000, Sphere is around 18 times faster than

Greedy and DMM-Greedy and 4 times faster than GeoGreedy

and ε-kernel. Finally, the results by varying the large value of k

are shown in 5(c). By including a su�ciently number of points in

the solution, the maximum regret ratios of all algorithms except

Cube and ε-kernel are small. However, the speedup of Sphere over

Greedy and GeoGreedy is signi�cant, which is the consequence

of the e�cient basis search technique (in Step 3 of Sphere) and the

powerful pruning techniques (in Step 4 of Sphere).

6.2 Results on Real Datasets

We conducted experiments on real datasets. In particular, we study

the e�ect of k (parameter k in a k-regret query) on real datasets.

Note that the dimensionalities ofmost real datasets are large where

GeoGreedy and DMM-Greedy have poor running times. For ex-

ample, GeoGreedy takes several days to return the solution in the

Sphere
Greedy

Cube
Eps-Kernel

 0

 0.05

 0.1

 0.15

 0.2

 10 15 20 25 30 35 40 45 50

m
rr

k

 0

 0.5

 1

 1.5

 2

 2.5

 10 15 20 25 30 35 40 45 50
ti
m

e
(s

)
k

Sphere
Greedy

Cube
Eps-Kernel

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 10 20 30 40 50 60

m
rr

k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60

ti
m

e
(s

)

k

(a) NBA (b) Household

Sphere
Greedy

Cube
Eps-Kernel

 0

 0.05

 0.1

 0.15

 0.2

 20 30 40 50 60 70 80 90 100

m
rr

k

 0

 1

 2

 3

 4

 5

 6

 20 30 40 50 60 70 80 90 100

ti
m

e
(s

)

k

Sphere
Greedy

Cube
Eps-Kernel

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 4 6 8 10 12 14 16

m
rr

k

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 4 6 8 10 12 14 16

ti
m

e
(s

)

k(c) Movie (d) Airline

Figure 6: Experiments on Real Datasets

Movie dataset while other algorithms return the solutions in min-

utes. For the ease of presentation, we omit them in the �gures.

Consider the experiment which measures the maximum regret

ratio of each algorithm on real datasets in Figure 6. When k in-

creases, the maximum regret ratios of most algorithms decrease,

because when more points are selected into the �nal solution set,

the maximum regret ratio is smaller. Compared with ε-kernel and

Greedy, Sphere achieves a smaller maximum regret ratio in most

of the cases. Speci�cally, in theHousehold dataset, Sphere achieves

15% of improvements in term of maximum regret ratio on aver-

age. In particular, when k = 14, the maximum regret ratio of the

set returned by Sphere is 0.14 where the maximum regret ratio

of the set returned by Greedy is 0.22. That is, Sphere achieves

more than 30% of improvements in term of maximum regret ratio

when k = 14. The improvements of Sphere are similar in other

datasets. Consider the experiment which measures the query time

of each algorithm in Figure 6. When k increases, the query times of

all algorithm increase. Similar to the results on synthetic datasets,

Sphere runs signi�cantly faster than Greedy and ε-kernel in all

cases and it achieves an order of improvement in term of the run-

ning time. Note thatCube is often slightly faster than Sphere since

it constructs the solution set by simply scanning the database once,

which can be e�ciently implemented. However, its maximum re-

gret ratio is the worst in all cases. For example, in the Household

dataset, all other algorithms achieve maximum regret ratios less

than 0.1 for k ≥ 20 while the maximum regret ratio of Cube is

around 0.43. In particular, the maximum regret ratios of other al-

gorithms are close to 0 when k ≥ 40, but the maximum regret ratio

of Cube does not reduce signi�cantly (i.e., it is still at least 0.4).

We also conducted a subjective evaluation on the k-regret sets

on real datasets to provide an intuitive visualization about the use-

fulness of our Sphere algorithm. Due to the lack of space, the sub-

jective evaluation is provided in the appendix (see Figure 8).

6.3 Summary

In summary, we conducted various experiments in this section

on both real and synthetic datasets, showing the superiority of

Sphere over the existing algorithms. Speci�cally, Sphere has the

smallestmaximum regret ratio inmost of the cases and the running

time among the best under many settings (signi�cantly faster than

the existing greedy-based algorithms, but slightly slower than the

Cube algorithm whose returned set is of poor quality). Moreover,

the scalability of Sphere is demonstrated and a subjective evalua-

tion on the k-regret sets is also elaborated in the experiments.

7 CONCLUSION AND FUTUREWORK

We study thek-regret query (i.e., themin-error regret query) in this

paper. Speci�cally, we design an elegant algorithm called Sphere

whose upper bound on the maximum regret ratio is asymptoti-

cally optimal and restriction-free for datasets of any dimension-

ality. Comprehensive experiments were conducted on both real

datasets and synthetic datasets, which showed that our Sphere al-

gorithm returns a solution set with the best maximum regret ratio

e�ciently. There are many interesting future directions. We con-

sider preprocessing the dataset such that the basis search can be

answeredmore quickly and constructing the setI+
R
with an asymp-

totically smaller distance bound. Another interesting direction is

to combine the k-regret query results over changing views.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their constructive

comments on this paper. The research of Min Xie and Raymond

Chi-Wing Wong is supported by HKRGC GRF 16214017. Jian Li is

supported in part by the National Basic Research Program of China

Grant 2015CB358700, the National Natural Science Foundation of

China Grant 61772297, 61632016, 61761146003, and a grant from

Microsoft Research Asia.

REFERENCES
[1] P.K. Agarwal, S.H. Peled, and K.R. Varadarajan. 2004. Approximating Extent

Measures of Points. In Journal of the ACM (JACM).
[2] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri. 2017. E�cient Algorithms for k-

Regret Minimizing Sets. International Symposium on Experimental Algorithms.
[3] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. 2009. Diversifying search

results. In Proceedings International Conference on Web Search & Data Mining.
[4] A. Arya, D.M. Mount, N.S. Netanyahu, and R. Silvermannd A.Y. Wu. 1998. An

optimal algorithm for approximate nearest neighbor searching �xed dimensions.
Journal of the ACM (JACM) (1998).

[5] A. Asudeh, A. Nazi, N. Zhang, and G. Das. 2017. E�cient Computation of Regret-
ratio Minimizing Set: A Compact Maxima Representative. In Proceedings of the
2017 ACM International Conference on Management of Data. ACM, 821–834.

[6] S. Borzsony, D. Kossmann, and K. Stocker. 2001. The skyline operator. In Data
Engineering, 2001. Proceedings. 17th International Conference on.

[7] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R.C.W. Wong, and W. Zhan. 2017. k-
Regret Minimizing Set: E�cient Algorithms and Hardness. In 20th International
Conference on Database Theory.

[8] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. 2006. Finding k-dominant
skylines in high dimensional space. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data.

[9] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. 2006. On high dimensional
skylines. In Advances in Database Technology-EDBT 2006.

[10] Y. Chang, L. Bergman, V. Castelli, C. Li, M. Lo, and J. Smith. 2000. The Onion
Technique: Indexing for Linear Optimization Queries. In ACM Sigmod Record.

[11] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. 2014. Computing k-
Regret Minimizing Sets. Proceedings of the VLDB Endowment.

[12] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. 2012. Top-k bounded diver-
si�cation. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data.

[13] B. Gartner. 1995. A subexponential algorithm for abstract optimization problems.
In SIAM Journal on Computing.

[14] M. Goncalves and M. Yidal. 2005. Top-k skyline: a uni�ed approach. In On the
Move to Meaningful Internet Systems 2005: OTM Workshops. Springer, 790–799.

[15] K. Kenthapadi, B. Le, and G. Venkataraman. 2017. Personalized job recommenda-
tion system at linkedin: Practical challenges and lessons learned. In Proceedings
of the Eleventh ACM Conference on Recommender Systems. ACM, 346–347.

[16] J. Lee, G. won You, and S.W. Hwang. 2009. Personalized top-k skyline queries in
high-dimensional space. Information Systems (2009).

[17] X. Lian and L. Chen. 2009. Top-k dominating queries in uncertain databases. In
Proceedings of the 12th International Conference on Extending Database Technol-
ogy: Advances in Database Technology.

[18] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. 2007. Selecting stars: The k most repre-
sentative skyline operator. In Proceedings IEEE Conference on Data Engineering.

[19] D. Mindolin and J. Chomicki. 2009. Discovering relative importance of skyline
attributes. Proceedings of the VLDB Endowment 2, 1 (2009), 610–621.

[20] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino. 2012. Interactive Regret
Minimization. In Proc. of the 2012 ACMSIGMOD International Conference onMan-
agement of Data, https://dl.acm.org/citation.cfm?id=2213850.

[21] D. Nanongkai, A.D. Sarma, A. Lall, R.J. Lipton, and J. Xu. 2010. Regret-
minimizing representative databases. Proceedings of VLDB Endowment (2010).

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. 2005. Progressive skyline computation
in database systems. In ACM Transactions on Database Systems, Vol. 30. 41–82.

[23] A. N. Papadopoulos, A. Lyritsis, A. Nanopoulos, and Y. Manolopoulos. 2007.
Dominationmining and querying. In International Conference onDataWarehous-
ing and Knowledge Discovery.

[24] P. Peng and R.C.W Wong. 2014. Geometry approach for k regret query. In Pro-
ceedings IEEE Conference on Data Engineering.

[25] J. Qi, F. Zuo, and J. Yao. 2016. K-Regret Queries: From Additive to Multiplicative
Utilities. In CoRR. http://arxiv.org/abs/1609.07964

[26] L. Qin, J. Yu, and L. Chang. 2012. Diversifying top-k results. Proceedings of the
VLDB Endowment 5, 11, 1124–1135.

[27] A. Roshdi and A. Roohparvar. 2015. Information Retrieval Techniques and Appli-
cations. International Journal of Computer Networks &Communications Security.

[28] M. Sharir and E. Welzl. 1992. A combinatorial bound for linear programming
and related problems,. In Proceedings of 9th Annual Symposium on Theoretical
Aspects of Computer Science (STACS). Springer, 569–579.

[29] M. Soliman, I. Ilyas, and K. Chen-Chuan Chang. 2007. Top-k query processing
in uncertain databases. In Proceedings IEEE Conference on Data Engineering.

[30] Y. Tao, L. Ding, and J. Pei. 2009. Distance-based representative skyline. In Pro-
ceedings IEEE Conference on Data Engineering.

[31] Y. Tao, X. Xiao, and J. Pei. 2007. E�cient skyline and top-k retrieval in subspaces.
IEEE Transactions on Knowledge and Data Engineering (2007).

[32] K. F. Taylor, W. Brackenbury, and A. Lall. 2015. k-regret queries with nonlinear
utilities. Proceedings of the VLDB Endowment (2015).

[33] T. Xia, D. Zhang, and Y. Tao. 2008. On skylining with �exible dominance relation.
In Proceedings IEEE Conference on Data Engineering. IEEE, 1397–1399.

[34] M. L. Yiu and N. Mamoulis. 2009. Multi-dimensional top-k dominating queries.
The VLDB Journal. (2009).

[35] H. Yu, P.K. Agarwal, and R. Poreddyand K.R. Varadarajan. 2008. Practical meth-
ods for shape �tting and kinetic data structures using coresets. Algorithmica.

A SUMMARY OF NOTATIONS

We summarize the notations that are frequently used in Table 4.

Notation Meaning

n The size of the dataset P

rrP(S, f)
The regret ratio of S w.r.t. f

where f (p) = u · p, ‖u ‖ = 1

mrrP(S) The maximum regret ratio of S

bi i-th dimensional boundary point (bi [i] = 1)

Si
The solution set after the i-th

iteration in the greedy strategy

mrri−1(p) mrrSi−1∪{p }(Si−1)
ui−1(p) The worst utility vector for mrri−1(p)
LPi−1(p) The LP for computing mrri−1(p)
CH(P) The convex hull of a set P

C A d-dimensional hypercube [−1, 1]d
SR SR = {s ∈ Rd | ‖s ‖ = R}

fs
The utility function whose utility

vector is in the same direction of s

C
+ (S+

R
) The set of points in C(SR) in R

d
+

IR (I+
R
) A subset of points in SR (S+

R
)

dist(p,q) The Euclidean distance between p and q

dist(P , s) The minimum distance between a point

on the surface of the convex hull of P and s

B(s)
A P-basis of s with B(s) ⊆ P,

|B(s)| ≤ d , dist(B(s),s) = dist(P, s) and
dist(B(s),s) < dist(B ′, s)∀B ′ ⊂ B(s)

p(P , s) p(P , s) = arg minp ∈CH(P) dist(p, s)
Table 4: Summary of Frequently Used Notations

B ADDITIONAL EXPERIMENTAL RESULTS

We conducted experiments on 6-dimensional correlated and inde-

pendent datasets in Figure 7 (plotted in log-scale). Consider the

results on the maximum regret ratio in Figure 7. The maximum

regret ratios of all algorithms on independent datasets are similar

to those on anti-correlated datasets, while on correlated datasets,

most maximum regret ratios are small since there are points with

high values in all dimensions (i.e., the values in all dimensions

are correlated). Most maximum regret ratios on correlated datasets

drop to 0 when k > 30 and the results for k > 30 is omitted. The

maximum regret ratio of Sphere is the smallest in most cases. Con-

sider the results on the query time in Figure 7. When k increases,

the query times of all the algorithms increase. For each algorithm,

its query time on correlated datasets is smaller than its query time

on independent datasets, which is then smaller than its query time

on anti-correlated datasets. This is because that on anti-correlated

datasets, points with high values in some dimensions might have

low values in other dimensions, making it more time-consuming

to determine the points to be included into the �nal solution set.

http://arxiv.org/abs/1609.07964

Sphere
Greedy

GeoGreedy

Cube
SphereNoGreedy

ImpGreedy

DMM-RRMS
DMM-Greedy

Eps-Kernel

 0.01

 0.1

 10 15 20 25 30

m
rr

k

 0.01

 0.1

 1

 10 15 20 25 30
ti
m

e
(s

)
k

(a) 6d Correlated Datasets

Sphere
Greedy

GeoGreedy

Cube
SphereNoGreedy

ImpGreedy

DMM-RRMS
DMM-Greedy

Eps-Kernel

 0.04

 0.2

 10 20 30 40 50 60

m
rr

k

 0.04

 0.2

 1

 5

 10 20 30 40 50 60

ti
m

e
(s

)

k

(b) 6d Independent Datasets

Figure 7: Additional Experiments on 6d Synthetic Datasets

Finally, we conducted a subjective evaluation on the k-regret

sets. Speci�cally, we selected two attributes, namely the minutes

played (minutes) and the scores obtained (scores), for each player

in the NBA dataset to visualize the e�ect of our regret minimizing

set. Note that these two attributes are correlated in real scenarios.

A coach is less interested in the players who play for a long time

and obtain high scores (because it is more likely that players who

play for a longer time obtain higher scores). Instead, he may want

to �nd out the players who did not achieve the expected scores

given that they are assigned a su�cient time to play so that their

team’s performance can be improved in the future games. Based

on this idea, we inverse the “scores” attribute and thus we are in-

terested in a larger value on each of the two attributes (i.e., “Min-

utes Played” and “Scores (Inverse)”). The dataset could be visual-

ized in Figure 8 where both attributes are normalized to (0,1]. Note

that the players on the top left corner are the players of less in-

terest (long time and high scores). We are interested in the play-

ers who obtained low scores in a long play time. We set k to be

10 and plot the set of players returned by both Sphere and Cube

in Figure 8. Sphere identi�es a lot of “interesting” players which

“spreads” over the 2-dimensional space which is reasonable to cap-

ture the importance of “di�erent” dimensions/axes. It is worthmen-

tioning thatmost of these players returned are not boundary points,

which are quite reasonable. Besides, Sphere reports the player (in-

dicatedwith an arrow in the �gure) who played 80% of time, but ob-

tained only 20% of scores during the game. In this example, Sphere

returns the set with the optimal maximum regret ratio (=0.0028).

In contrast, Cube returns fewer “interesting” players which locate

uniformly at the boundary of the dataset (so that the maximum re-

gret ratio can be theoretically bounded), and it returns a number of

players at the top left corner, which are of less “interest”. Besides,

its maximum regret ratio is three times larger than that of Sphere.

Figure 8: Visualize NBA

s4

s1

O
X1

X2

22

q1

q2

q5

q4

q3

u1 u2 u3

u4

s2

s3

1

1

’’
’

’

’

2
2

+ +
+

+

Figure 9: Construct I+
R

C REMAINING PROOFS

C.1 Proof of Theorem 5.10

Proof. The proof is divided into two parts.

I. We prove the �rst bound mrrP(S) ≤ 1 − 1

d
by considering the

boundary points in S . We have the following simple lemma which

shows a lower bound on the utilities achieved by the points in S .

Lemma C.1. maxq∈S f (q) ≥ 1√
d
.

Proof. For each utility vector u , ‖u ‖ = 1. We �rst prove by contra-

diction that there exists an integer i ∈ [1,d] such thatu[i] ≥ 1√
d
. If

u[i] < 1√
d
for each i ∈ [1,d], ‖u ‖2 = ∑d

i=1 u[i]2 < d × 1

d
= 1, con-

tradicting to ‖u ‖ = 1. Let i be the integer such thatu[i] ≥ 1√
d
. Since

bi is in S , maxq∈S f (q) ≥ f (bi) =
∑d
j=1 u[j]bi [j] ≥ u[i]bi [i] ≥ 1√

d
.

Consider the di�erence between the maximum utility of P and

the maximum utility of S w.r.t. a particular utility function f (p)(=
u ·p)�rst. According to Lemma C.1 and the fact that the coordinate

value of each point in P is normalized to (0,1], we have

max
p ∈P

f (p)−max
q∈S

f (q) ≤ max
p ∈P

u ·p− 1
√
d
≤ max

p ∈P
‖u ‖‖p‖− 1

√
d
≤
√
d− 1
√
d
.

Utilizing Lemma C.1 again, we have
max
p∈P

f (p)−max
q∈S

f (q)

max
q∈S

f (q) ≤ d − 1.

By rewriting the above inequality, we have
max
q∈S

f (q)

max
p∈P

f (p) ≥
1

d
. Then we

have mrrP(S) = maxf ∈FC
(
1 − maxq∈S f (q)

maxp∈P f (p)

)
≤ 1 − 1

d
.

II. We then prove the second bound. Recall that in Section 5.2.1

(Case 2 and Case 3), we construct the solution set S with the help

of a special setI+
R
. Speci�cally, for each point s in S+

R
, there exists a

point s ′ ∈ I+
R

such that dist(s, s ′) ≤ δ . To provide more insights to

the radius of the sphere that S+
R
lies on, we �rst denote the radius

byR instead of assigning it a concrete value (i.e.,2
√
d). Nevertheless,

R must be greater than
√
d . Otherwise, a point s in S+

R
might lie

inside CH(P), invalidating all the following discussion.

Given a utility function f , we consider the di�erence between

themaximum utility of P and themaximum utility of S w.r.t. f �rst.

The result is summarized in the following lemma.

Lemma C.2. Sphere returns a set S ⊆ P such that, for each utility
function f with a utility vector u ,

max
p ∈P

f (p) −max
q∈S

f (q) ≤ δ2

‖s − p(P, s)‖

where s is the intersection between S+
R
and the ray shooting from the

maximum utility point of P w.r.t. f in the direction of u .

Proof Sketch.The idea ismainly borrowed from [1, 35], but di�erent

from [1, 35], we take the radius of S+
R
into the consideration. The

complete proof is presented in Appendix C.3.

Note that the i-th dimensional value of p(P, s) is in (0,1] for each

i ∈ [1,d]. That is, ‖p(P,s)‖ =
√∑d

i=1 p(P, s)[i]2 ≤
√
d . Then, ‖s −

p(P, s)‖ ≥ ‖s ‖ − ‖p(P, s)‖ ≥ R −
√
d . According to Lemma C.2,

maxp ∈P f (p) −maxq∈S f (q) ≤ δ 2

‖s−p(P,s) ‖ ≤
δ 2

R−
√
d
.

Combining the results above with Lemma C.1, we have

max
p ∈P

f (p) −max
q∈S

f (q)

max
q∈S

f (q) ≤
√
dδ2

R −
√
d
. (2)

According to the discussion in Section 5.2.1, the value of δ de-

pends on the value of k . There are the following two cases which

corresponds to Case 2 and Case 3 in Section 5.2.1, respectively.

Case 2 in Section 5.2.1 where 2d ≤ k < d2+d : If 2d ≤ k < d2+d ,

δ =
√
d − 1R according to the discussion in Section 5.2.1 and

max
p ∈P

f (p) −max
q∈S

f (q)

max
q∈S

f (q) ≤
√
dδ2

R −
√
d
=

R2(d − 1)
√
d

R −
√
d
.

Note that the above inequality is valid for any value of R as long

as R >
√
d . However, to obtain an upper bound which is as tight as

possible, we want a value of R that minimizes the right hand side

of the above inequality.

Lemma C.3. R2

R−
√
d
is minimized when R = 2

√
d .

Proof. Note that R2

R−
√
d
= (R+

√
d)+ d

R−
√
d
= 2
√
d+ (R−

√
d)+ d

R−
√
d

whose minimum value is 4
√
d when R = 2

√
d .

According to Lemma C.3, we de�ne R = 2
√
d and Equation (2)

becomes
max
p∈P

f (p)−max
q∈S

f (q)

max
q∈S

f (q) ≤ 4(d−1)d .That is,
max
q∈S

f (q)

max
p∈P

f (p) ≥
1

4(d−1)d+1 .

Then,mrrP(S) = max
f ∈FC

(
1 −

max
q∈S

f (q)

max
p∈P

f (p)

)
≤ 1− 1

4(d−1)d+1 =
(d−1)d

1/4+(d−1)d .

Case 3 in Section 5.2.1 wherek ≥ d2+d :According to the discus-

sion in Section 5.2.1, we substitute the value of δ =
√
d−1R

2

⌊(
k−d
d2

) 1

d−1
⌋

into Equation (2) and set R to be 2
√
d similarly to the �rst case.

max
p∈P

f (p)−max
q∈S

f (q)

max
q∈S

f (q) ≤
√
dδ 2

R−
√
d
≤ R2

R−
√
d

(d−1)
√
d

4

⌊ (
k−d
d2

) 1

d−1
⌋2 ≤ (d−1)d⌊(

k−d
d2

) 1

d−1
⌋2 .

That is,
max
q∈S

f (q)

max
p∈P

f (p) ≥
©
«

(d−1)d⌊(
k−d
d2

) 1

d−1
⌋2 + 1

ª®®®®
¬

−1

.Then, we havemrrP(S) =

max
f ∈FC

(
1 −

max
q∈S

f (q)

max
p∈P

f (p)

)
≤ 1 − 1

(d−1)d⌊ (
k−d
d2

) 1

d−1
⌋2 +1

=
(d−1)d⌊(

k−d
d2

) 1

d−1
⌋2
+(d−1)d

.

By combining the results above, the theorem follows.

C.2 Proof of Lemma 5.4

Proof.Wemodify Lemma 4.3 to constructI+
R
. The di�erence is that

we focus on the sphere S+
R
in the �rst quadrant instead of SR .

We construct I+
R

by the following two-step procedure. Firstly,

we partition all front facets of C+ into a set F of k ′(= dmd−1)
smaller facets (the (d−1)-dimensional hypercubes). The procedure

for partitioning the front facets will be presented shortly. Secondly,

from each small facet in F , we pick the point at the center of the

facet, namely u+, create the point s ′ which is in the same direction

as u+ and has its norm equal to R and insert it into I+
R
, initialized

to be an empty set. Since we pick one point on each facet in F , the
total number of points in I+

R
is k ′(= dmd−1).

In geometry, a hyperplane in ad-dimensional space is a subspace

of dimensionalityd−1. Formally, given a unitd-dimensional vector

u and a non-negative constant c , a hyperplane, denoted by h(u,c),
is de�ned to h(u,c) = {p ∈ Rd | u · p = c} where u is the normal of

h(u,c) and c is the o�set of h(u,c). Two hyperplanes are said to be

parallel if their normals are the same. A facet F is said to lie on a

hyperplaneh(u,c) if for each pointp on F , we haveu ·p = c . We say

that a facet F is parallel to a hyperplane h(u,c) if the hyperplane
that facet F lies on is parallel to h(u,c).

We focus on the procedure of partitioning a particular front

facet F of C+ �rst. Consider a particular front facet F . We denote

the set of remaining d − 1 front facets by {F1, F2, . . . , Fd−1}. We

perform the following two-step procedure. Firstly, we construct a

setH of hyperplanes with the following sub-steps. Let hi (ui , ci) be
the hyperplane that the front facet Fi lies on for each i ∈ [1,d − 1].
For each front facet Fi , we create m parallel hyperplanes each of

which has a common normal ui . For each j ∈ [1,m], the j-th hy-

perplane created, denoted by hi j (ui , ci j), has its o�set ci j equal to
j
m . Since we construct a set of hyperplanes for each front facet, we

create d − 1 sets of hyperplanes. We perform a union operation on

all these d − 1 sets of hyperplanes and obtain the setH . Secondly,

for each hyperplane inH , its intersection with F partitions F into

two smaller facets each of which is further partitioned by other

hyperplanes inH . Thus, we obtain a set ofmd−1 small facets.

A similar procedure is performed for each of the d front facets

of C+. Thus, there are dmd−1 small facets in total. The union of

all the small facets forms the desired set F . Then, we relate δ , the
distance bound on dist(s, s ′), with the diameter, denoted by β , of

each small facet in F . Note that β =
√
d−1
m . Since we pick the point

u+ at the center of each small facet in F , for each point on the same

small facet asu+, its distance tou+ is at most β/2 (We can also pick

an arbitrary point in each small facet in F . If this is the case, the
distance is bounded by the diameter β instead of β/2). Following

O X1

p6

p2

p3=σ

p1

p4

p5

X2

1

22

p1p1p1 s

u

The ray shooting from inp3

the direction of u.

s’

R
+

Figure 10: Point σ is the

maximum utility point

of P w.r.t. f

O X1

p6

p2

p3=σ

p1

p4p5

X2

1

22

p1p1 s
spprt{ }σ

()s

=p ,s()!

s’

R
+

Figure 11: spprt{σ }(s)
separates s from the

rest of points in P

a similar discussion as in Lemma 5.3, for each point s in S+
R
, there

exists a point s ′ ∈ I+
R

such that dist(s, s ′) ≤ Rβ/2 =
√
d−1R
2m = δ .

Consider the example in Figure 9 where k ′ is set to 4, d is 2

and R is 2
√
d . Obviously, k ′ = dmd−1 where m = 2. The hyper-

cube C+ = [0, 1]2 is the convex hull formed by q1, q2, q5 and

the origin O . We denote the facet formed by the line segment be-

tween two points p and q simply by facet {p,q}. There are 2 front
facets of C+. {q1,q5} is a front facet since it does not pass through
the origin. Similarly, {q2,q5} is another front facet. We construct

a set I+
R

of 4 points as follows. The front facets (with diameter

1) of C+, namely {q1,q5} and {q2,q5}, are partitioned into a set

F = {{q1,q3}, {q3,q5}, {q4,q5}, {q2,q4}} of 4 smaller facets (with

diameter 0.5). For facet {q1,q3}, we pick point u+
1
. Similarly, we

pick u+
2
,u+

3
and u+

4
from the other three facets in F . The points

which are in the same direction as u+
1
, u+

2
,u+

3
and u+

4
and have

their norms equal to 2
√
d are s ′

1
, s ′
2
, s ′
3
and s ′

4
, respectively. That is,

I+
R
= {s ′

1
, s ′
2
, s ′
3
, s ′
4
}. For each point s in S+

R
, there exists a point

s ′ ∈ I+
R

such that dist(s, s ′) ≤ δ =
√
d−1R
2m =

√
2

2
.

C.3 Proof of Lemma C.2

Proof. Let s ′ be the point in I+
R

such that dist(s, s ′) ≤ δ . Consider

Figure 10. Let the utility vector u of f be (0.914, 0.406) and u is

drawn in a dashed vector in Figure 10. Given the utility vector u ,

we can compute the utilities for all points in P. It is not di�cult to

verify that p3 is indeed the maximum utility point of P w.r.t. f and

we name it as σ . The ray shooting from p3 in the direction of u ,

which is also labeled in Figure 10, intersects S+
R
at s . The point s ′

in I+
R

with dist(s, s ′) ≤ δ is also drawn in Figure 10 and the value

of δ is determined in Section 5.2.1. Given a point s ∈ S+
R
and a set

P ⊆ P, a supporting hyperplane of s given P , denoted by spprtP (s),
is the hyperplane that passes through p(P , s) and is perpendicular

to the vector p(P , s) − s . For example, in Figure 11 where P = {p3}.
The hyperplane spprtP (s) is labeled in a dashed line.

In the following, we introduce a few lemmas (ideas are mainly

borrowed from [1]), which derive the connection between dist(s, s ′)
and the utility di�erence between points in S and points in P.

Lemma C.4. u =
s−p(P,s)
‖s−p(P,s) ‖ .

Proof. Note that the hyperplane spprt{σ }(s) separates s from the

rest of points in P. Otherwise, σ cannot be the maximum utility

p ,s(’)!

O X1

X2

1

22

s

s’

spprt (’)s

p ,s()!

R
+

O X1

X2

1

22

s

s’

p ,s()!

p ,s(’)!

v1

v2
R
+

(a) (b)

Figure 12: (a) spprtP(s ′) separates s ′ and p(P, s) (b) v1 · v2 ≥ 0

where v1 = s ′ − p(P, s ′), v2 = p(P, s ′) − p(P, s)

point of P w.r.t. f [13]. Thus, σ = p(P, s) (because s is the intersec-
tion between S+

R
and the ray shooting from σ in the direction of u).

By the de�nitions of σ and s , the vector s − p(P, s) is in the same

direction as u . Since u is a unit vector, the lemma follows.

In Figure 11, we draw the hyperplane spprt{σ }(s) in a dashed

line. spprt{σ }(s) separates s from the rest of points in P and thus,

p3 = σ = p(P, s) as claimed. Moreover, we have u =
s−p(P,s)
‖s−p(P,s) ‖ .

Lemma C.5. 0 ≤ (s ′ − p(P, s ′)) · (p(P, s ′) − p(P, s)).
Proof. Note that the hyperplane spprtP(s ′) (which passes through

p(P, s ′)) separates s ′ and p(P, s). If this is not the case, we have

dist(p(P, s), s ′) < dist(p(P, s ′), s ′), which contradicts to the de�ni-

tion ofp(P, s ′) [13]. Since spprtP(s ′) separates s ′ and p(P, s), the an-
gle between the vector (s ′−p(P, s ′)) and the vector (p(P, s ′)−p(P, s))
is at most 90 degrees and thus their dot product is at least 0. That

is, we have 0 ≤ (s ′ − p(P, s ′)) · (p(P, s ′) − p(P, s)).
Consider Figure 12(a) where spprtP(s ′) is labeled in a dashed

line and p(P, s ′) (in this particular example, p(P, s ′) = p2) is indi-

cated. Note that spprtP(s ′) separates s ′ and p(P, s). In Figure 12(b),

we label the vector (s ′−p(P, s ′)) and the vector (p(P, s ′)−p(P, s)) as
two dashed vectors v1 and v2, respectively. v1 · v2 ≥ 0 as claimed.

Lemma C.6. a · b − ‖b ‖2 ≤ ‖a‖2 where a,b ∈ Rd .
Proof. It follows from the fact 2a · b ≤ ‖a‖2 + ‖b ‖2, ∀a,b ∈ Rd .

With the help of the above lemmas, we are ready to develop the

proof. Let f (p) = u ·p. By the de�nition ofσ , we havemaxp ∈P f (p) =
u · σ = u · p(P, s). Besides, according to the way of constructing

S , we have maxq∈S f (q) ≥ f (p(P, s ′)) = u · p(P, s ′). The inequal-
ity is true because we include all points in the basis B(s ′) into the

solution set S , and p(P, s ′) is in the convex hull of B(s ′) [1].
Then, ‖s − p(P, s)‖(maxp ∈P f (p) −maxq∈S f (q)) ≤

‖s − p(P, s)‖(u · σ − u · p(P, s ′))
= ‖s − p(P, s)‖u · (p(P, s) − p(P, s ′))
= (s − p(P, s)) · (p(P, s) − p(P, s ′)) (by Lemma C.4)
≤ (s − p(P, s)) · (p(P, s) − p(P, s ′))
+(s ′ − p(P, s ′)) · (p(P, s ′) − p(P, s)) (by Lemma C.5)

≤ (s − p(P, s) − (s ′ − p(P, s ′))) · (p(P, s) − p(P, s ′))
≤ (s − s ′) · (p(P, s) − p(P, s ′)) − ‖p(P, s) − p(P, s ′)‖2

≤ ‖s − s ′‖2 = δ2 (by Lemma C.6).

By rewriting the inequality above, the lemma follows.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Terminologies
	3.2 Problem Definition
	3.3 Lower Bound of Maximum Regret Ratio

	4 Background Techniques: -kernel
	5 Algorithm
	5.1 Preliminaries
	5.2 Algorithm Sphere
	5.3 Theoretical Analysis

	6 Experimental Results
	6.1 Results on Synthetic Datasets
	6.2 Results on Real Datasets
	6.3 Summary

	7 Conclusion and Future work
	Acknowledgments
	References
	A Summary of Notations
	B Additional Experimental Results
	C Remaining Proofs
	C.1 Proof of Theorem 5.10
	C.2 Proof of Lemma 5.4
	C.3 Proof of Lemma C.2

