
Architecture-Intact Oracle for Fastest Path and Time
Queries on Dynamic Spatial Networks

Victor Junqiu Wei
1
, Raymond Chi-Wing Wong

2
, Cheng Long

3

1
Noah’s Ark Lab, Huawei Technologies,

2
The Hong Kong University of Science and Technology,

3
Nanyang Technological University

1
weijunqiu@huawei.com,

2
raywong@cse.ust.hk,

3
c.long@ntu.edu.sg

ABSTRACT
Given two vertices of interest (POIs) s and t on a spatial

network, a distance (path) query returns the shortest network

distance (shortest path) from s to t . This query has a variety

of applications in practice and is a fundamental operation

for many database and data mining algorithms.

In this paper, we propose an efficient distance and path

oracle on dynamic road networks using the randomization

technique. Our oracle has a good performance in practice and

remarkably, and at the same time, it has a favorable theoreti-

cal bound. Specifically, it has O(n log2 n) (resp. O(n log2 n))
preprocessing time (resp. space) andO(log4 n log logn) (resp.
O(log4 n log logn + l)) distance query time (resp. shortest

path query time) as well as O(log3 n) update time with high

probability (w.h.p.), where n is the number of vertices in the

spatial network and l is the number of edges on the shortest

path. Our experiments show that the existing oracles suffer

from a huge updating time that renders them impractical and

our oracle enjoys a negligible updating time and meanwhile

has comparable query time and indexing cost with the best

existing oracle.

ACM Reference Format: Victor JunqiuWei, Raymond Chi-Wing

Wong, Cheng Long. 2020. Architecture-Intact Oracle for Fastest

Path and TimeQueries onDynamic Spatial Networks. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA.. ACM,

NY, NY, USA, 16 pages. https://doi.org/10.1145/3318464.3389718

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD'20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06…$15.00
https://doi.org/10.1145/3318464.3389718

1 INTRODUCTION
With the advance of GPS technology and the prevalence

of mobile devices, obtaining real-time spatial data becomes

increasingly popular, and many existing commercial compa-

nies such as “Google Maps” and “Bing Maps” are currently

using real-time spatial data for finding the fastest path from

a given source to a given destination. The fastest path is

computed based on a dynamic spatial network, where the
weight associated to each edge could denote the travel time

on this edge and usually changes over time (due to the traffic

on this edge). Figure 1 shows a snapshot of a dynamic spatial

network, which is a directed graph with 8 vertices, namely

v1,v2, ...,v8, each denoting a spatial location and 10 edges

each denoting a road segment. In this snapshot, 3 edges have

their weights = 2 and the other edges have their weights = 1.

Let n be the total number of vertices in the spatial network.

The fastest path and the shortest travel time from a given

source to a given destination on a dynamic spatial network

could be regarded as the shortest path and the shortest dis-

tance when the weight of each edge is regarded as “distance”

instead of “travel time”. In the following, we refer them as

“shortest path” and “shortest distance”.

Computing the shortest path and the shortest distance

from a source to a destination on a dynamic spatial network

is very important. The reason is that there are a lot of appli-

cations starting from traditional drivers’ navigation, which

“aids” drivers to find a path, to recent autonomous car nav-

igation, which “completely control” unmanned vehicles to

move on the road. Besides, computing them efficiently is

very important in some real-life applications. One example

is emergency applications like delivering ambulances and

fire engines to target areas. In Hong Kong, it is expected that

ambulances arrive to target areas within about 12 minutes

[5]. Another example is time-critical applications in which

business people and travel salesmen with their own tight

schedule would prefer their travel schedule as fast as possible

without any delay. Furthermore, “shortest path/distance” is a

fundamental operator of many spatial queries, such as near-

est neighbor queries, range queries and spatial join queries,

and is also used in many scientific simulations [12, 33, 47].

https://doi.org/10.1145/nnnnnnn.nnnnnnn

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

1

2 1

1
1

11

1

2

2

Figure 1: An Example of A Spatial Network
Returning the shortest path and the shortest distance effi-

ciently based on a dynamic spatial network is very challeng-

ing. Firstly, re-computing the shortest path and the shortest

distance from scratch is very costly whenever the weight of

an edge in the spatial network is updated. A straightforward

implementation is to execute the Dijkstra’s algorithm [27]

based on the current snapshot of the spatial network and

obtain the shortest path/distance whenever there is a weight

update. Although it is simple to implement, it is still slow

and does not return a result efficiently.

Secondly, existing algorithms [7, 8, 13, 29, 31, 38, 50–55, 63]

originally designed for finding the shortest path/distance

on a static spatial network, only one snapshot of a spatial

network, pre-compute some results in the form of index

(called oracle) and return the shortest path/distance effi-

ciently. But, they do not support the update operation on

the pre-computed results due to weight update. Thus, they

could not be used efficiently in the dynamic spatial network

setting. A straightforward adaptation of these algorithms

for the dynamic network setting is to re-construct the pre-

computed results from scratch whenever there is a weight

update. Then, each shortest path/distance query could be

answered based on the re-constructed pre-computed results.

Since the re-construction time complexities of these algo-

rithms are worse than O(n1.5), they are not efficient enough

for handling shortest path/distance queries [61, 63].

Thirdly, there are existing algorithms [26, 30, 56] proposed

for answering shortest path/distance queries on a dynamic

spatial network each of which also constructs an index/oracle

for answering shortest path/distance queries efficiently. But,

for the sake of maintaining the index/oracle due to theweight

update on the dynamic spatial network, the empirical update

time of each of these algorithms is still large. Even if some

of the algorithms have theoretical upper/lower bounds on

update time complexities, the lower bounds are also at least

linear to the number of vertices in the network. In practice,

the number of vertices is very large. Thus, those algorithms

are not scalable to the large spatial network.

Motivated by this, in this paper, we propose an oracle

called Update Efficient (UE) that has a short update time

and has a poly-logarithmic update time complexity, the first

best-known result. Besides, this oracle returns the shortest

path/distance efficiently. The key idea of the update effi-

ciency of UE is to keep the architecture (or structure) of UE
unchanged (or intact) for any weight update on the dynamic

spatial network. All existing oracles require to perform a

time-consuming operation of updating/adjusting the archi-

tectures of their oracles for any weight update. The reason is

that the architecture of UE is dependent on only the original

graph/network structure (without the weight information)

and the initial randomly assigned ordering on vertices on

the graph/network. These remain unchanged for any weight

update. In contrast, the architecture of existing oracles in the

literature is dependent on the changing weight of any edge

on the spatial network. We will elaborate more in Section 4.

We summarize our major contributions as follows. Firstly,

we propose a novel oracle called UE that answers shortest

path/distance queries efficiently. Secondly, the time com-

plexity of updating our oracle is O(log3 n). This is the first
best-known theoretical result since the existing best-known

worst-case update time complexity is at least O(n1.5) and the

existing best-known lower bound on the update time com-

plexity of the existing oracles is at least Ω(n). Thirdly, our
empirical study shows that the update time of all existing

oracles are too large, which could not be used in practice,

but the update time of our oracle is very small. In particular,

most existing oracles need to take more than one week for

weight update, and the update time of our oracle (which is

at most 50ms) is several orders of magnitude shorter than

that of the best-known oracle on all networks tested.

The remainder of the paper is organized as follows. Sec-

tion 2 defines the problem and Section 3 gives the related

work. Section 4 presents our distance oracle. Section 5 shows

our experimental results and Section 6 concludes our work.

2 PROBLEM DEFINITION
Consider a spatial network G(V ,E), where V is a set of all

vertices and E is a set of all edges on the network. Let n = |V |
and m = |E |. Each directed edge (u,v) ∈ E in G has its

origin u and its destination v . Besides, it is associated with

its weight, denoted by wG (u,v), which changes over time.

Given a networkG(V ,E) and a vertex u ∈ V , we define the
set of in-neighbors ofu, denoted by N in

G (u), to be the set of all
vertices that are involved in edges in E with destinations as

u. That is, N in
G (u) = {v ∈ V |(v,u) ∈ E}. Similarly, we define

the set of out-neighbors of u, denoted by N out
G (u) to be the

set of all vertices that are involved in edges in E with origins

as u. That is, N out
G (u) = {v ∈ V |(u,v) ∈ E}. In this paper, we

assume that there is no isolated vertex (i.e., for each u ∈ V ,
N in
G (u) ∪ N out

G (u) , ∅).
Given two vertices, namely s and t , in V , we define a

path from s to t in the form of a list of vertices, namely

(v1,v2, ...,vl), such that v1 = s , vl = t and for each

i ∈ [1, l − 1], (vi ,vi+1) ∈ E. Given a path π in the form

of (v1,v2, ...,vl), we define the weight or the length of π to

be

∑l−1
i=1wG (vi ,vi+1).

In the above, we represent the path in the form of a list of

vertices, says (v1,v2, ...,vl), where (vi ,vi+1) ∈ E. We could

also represent the path as a list of consecutive edges in the

form of (v1,v2)·(v2,v3)·...·(vl−1,vl).We call all vertices along

this path that are not a source vertex and are not a destination

vertex as passing vertices. In this example, v2,v3, ...,vl−1 are
passing vertices but v1 and vl are not.
Given a path π from a vertex s to another vertex t in V ,

π is said to be the shortest path from s to t in network G,
denoted by s ↣G t , if the length of π is the smallest among

all possible paths from s to t in G. Similarly, the shortest
distance from s to t in network G, denoted by dG (s, t), is
defined to be the length of s ↣G t . Note that the triangle
inequality holds under function dG (·, ·).

Problem 1 (Oracle). We would like to design an oracle
O that supports a short update time, and at the same time,
answers any shortest path/distance query efficiently.

In the case when there are multiple shortest paths from s
to t , the shortest path query studied in this paper only finds

an arbitrary shortest path among them. Thus, in the rest of

this paper, the term ‘shortest path from s to t ’ or ‘s-t shortest
path’ refers to an arbitrary shortest path from s to t .
In this paper, we just focus on studying the case when

the weights of edges change over time. We do not consider

the case when new vertices and new edges are added. The

reason is that re-constructing the whole oracle from scratch

is already enough. Specifically, this case means that new

junctions and new road segments have to be built, which

may take more than several weeks and even several years [6].

Since in our experimental results, each oracle could be built

within one day, it is sufficient to rebuild the oracle from

scratch in this case. Furthermore, we do not discuss the case

when vertices and edges are removed. The reason is that this

case refers to our case that the weights of the corresponding

edges are updated to a very large value [28, 35, 49].

3 RELATEDWORK
In this section, we first present the related work on static

spatial networks (Section 3.1) and dynamic spatial networks
(Section 3.2). Then, we describe some other studies that are

related to our study in Section 3.3.

3.1 Oracle on Static Spatial Networks
There are a lot of existing studies about pre-computing

oracles on static spatial networks. We categorize them

into the following 7 categories: (1) partition-based ap-
proaches [37, 38], (2) landmark-based approaches [31], (3)
spatial coherence-based approaches [50, 55], (4) transit vertex-
based approaches [8, 13, 14, 61], (5) 2-hop labeling ap-
proaches [7, 10, 21, 36], (6) hierarchy-based approaches [29, 51,

52, 63], and (7) a hybrid approach [46], namely Hierarchical
2-Hop Index (H2H in short).
The partition-based approaches and landmark-based ap-

proaches are heuristic-based approaches without theoretical

guarantee. For spatial coherence-based approaches, there are

two representative algorithms under this category with theo-

retical bounds, namely Spatially Induced Linkage Cognizance
(SILC) [50] and Path-Coherent Pair Decomposition (PCPD) [55].
For transit vertex-based approaches, one representative algo-

rithm with theoretical bounds is called Transit Vertex Variant
(TVV) [8]. For 2-hop labeling approaches, one representative

algorithm is called Pruned Landmark Labeling (PLL) [10]. For
hierarchy-based approaches, there are three representative

approaches, namely the Contraction Hierarchy (CH) [29], the
Highway Hierarchy (HH) [51, 52] and the Arterial Hierarchy
(AH) [63]. The experiments of [9] show that CH performs bet-

ter than PLL in terms of pre-computation time and space. For

the Hierarchical 2-Hop Index (H2H in short), this algorithm

combines the 2-hop labeling approach and the hierarchy-based
approach. This combination significantly reduces the time

of finding labels in the 2-hop approach (used for finding

the shortest distance) with the help of the hierarchy-based

approach for a shortest distance query.

Although all of the above approaches were originally de-

signed for shortest path/distance queries in the static spatial

network setting (not the dynamic setting), we would like to

adapt some of the approaches/oracles in the dynamic set-

ting. Following [63], we consider adapting only oracles with

theoretical analysis. The reason is that in the experimental

results of [11, 34, 46, 61, 63], oracles with theoretical analysis

out-perform all oracles without theoretical analysis (includ-

ing the partition-based approaches and the landmark-based

approaches). Notice that in this section, we compare adapted

existing oracles with our oracle in theory and thus, only

consider the oracles with theoretical bounds. But, in the ex-

perimental section, we compared many other algorithms

without theoretical bounds. In this paper, we adapt five ora-

cles, namely SILC, PCPD, TVV, AH and H2H, to handle the

dynamic setting, and call them as SILC-Adapt, PCPD-Adapt,

TVV-Adapt, AH-Adapt and H2H-Adapt. It is not difficult to

adapt these oracles, and details of these adaptions could be

found in [59]. Table 1 shows a summary of these adapted

oracles in terms of preprocessing time, space, shortest dis-

tance query time, shortest path query time and update time.

In this table, the first five rows correspond to these 5 adapted

oracles. Notice that the update time complexity of each of

these oracles is at least O(n1.5). Besides, [59] shows that the
lower bound of the update time complexity of each of these

oracles is Ω(n), which means that each of these oracles is

not scalable to a large network since n could be very large.

Note that although PLL and CH (designed for the static

version) described above have theoretical bounds, we did not

Table 1: Comparison of Distance and Path Oracles on Dynamic Spatial Networks
Oracle Preprocessing Time Space Distance Query Time Shortest Path Query Time Update Time

SILC-Adapt [50] O (n2
logn) O (n

√
n) O (l logn) O (l logn) O (n2

logn)
PCPD-Adapt [55] O (n2

logn) O (s3 · n) O (l logn) O (l logn) O (n2
logn)

TVV-Adapt [8] O (n2
logn logα) O (Λn logn logα) O (Λ2

log
2 n log

2 α) O (Λ2
log

2 n log
2 α + l) O (n2

logn logα)
AH-Adapt [63] O (hn2λ2) O (hnλ2) O (hλ2 logh + hλ4) O (hλ2 logh + hλ4 + l) O (hn2λ2)
H2H-Adapt [46] O (n1.5) O (n) O (

√
n) O (l ·

√
n) O (n1.5)

Dynamic-CH [26, 30] O (n2
logn) O (n2) O (

√
n logn) O (

√
n logn + l) O (n2

logn)
Dynamic-PLL [11] O (n2

log
2 n) O (n

√
n logn) O (

√
n logn) O (l

√
n logn) O (n2

log
3 n)

this paper O (n log
2 n) w.h.p. O (n log

2 n) w.h.p. O (log4 n log logn) w.h.p. O (log4 n log logn + l) w.h.p. O (log3 n) w.h.p.

Remark: l is the number of edges in the shortest path. h (resp. λ) is the height of the hierarchy that is equal to log

maxu,v∈V dG (u,v)
minu,v∈V dG (u,v)

(resp. the Arterial Dimension of the spatial

networks) and they are proposed in [63]. h (resp. λ) is at most 26 (resp. 100) in the datasets tested in [63]. α is defined to be

maxu,v∈V dG (u,v)
minu,v∈V dG (u,v)

. λ and Λ are all Ω(
√
n) in a grid

spatial network like that in Manhattan District. Note that the complexities of some of the above oracles rely on a feature, namely tree width, of the spatial network. It is shown in

[2] that the tree width of a spatial network is is as large as

√
n in a square grid spatial network that is common in Manhattan district. Thus, we simply treat tree width as O (

√
n)

in this paper. s is around 12 in practice.

adapt them because these two oracles were already adapted

by some existing papers and will be described in the next

section. Note that those of the 2-hop labeling approaches

other than PLL, though with theoretical bounds, are not

shown since they are significantly outperformed by PLL as

shown in the experiments of [10].

3.2 Oracles on Dynamic Spatial Networks
Recently, there are studies about pre-computing oracles on

dynamic spatial networks. There are four representative or-

acles. The first oracle is the dynamic version of oracle HH

called Dynamic-HH [56]. But, there is no theoretical bound

on Dynamic-HH. The second oracle is the dynamic version

of oracle CH called Dynamic-CH [26, 30]. The experimen-

tal results of [26, 30] show that Dynamic-CH outperforms

Dynamic-HH in terms of preprocessing time, space consump-

tion, query time and update time. The third oracle is the

dynamic version of oracle PLL called Dynamic-PLL [11]. The

fourth oracle is a bit parallel shortest path tree indexing struc-
ture (BPL) [34] that is an indexing structure of answering

shortest path/distance queries on a dynamic network. It dy-

namically maintains several shortest path trees rooted at a

number of high-degree nodes. The query algorithm is a bi-

Dijkstra’s algorithm enhanced with some pruning operations

based on the information of the shortest path trees. It has

good empirical performance but has no theoretical analysis.

Note that among four oracles described above, only

Dynamic-CH and Dynamic-PLL have theoretical bounds. Ta-

ble 1 shows a summary about the complexities of these two

oracles, Dynamic-CH and Dynamic-PLL, where the third-to-

last and second-to-last rows correspond to these two oracles.

3.3 Some Other Related Studies
There are some other studies related to our problem although

they are not exactly our problem. The first branch of related

studies is shortest path/distance queries on a time-dependent
spatial network [15, 24, 39, 45, 57, 58, 62]. In these studies,

edge weights follow a pre-defined function that takes time as

input and returns a value (e.g., traffic) as output. This is un-

realistic in real world with “unexpected” events. The second

branch of related studies is approximate oracles on a dynamic

spatial network [53–55]. An approximate oracle returns an

approximate distance/path for each shortest distance/path

query but our oracle returns an exact distance/path. The
third branch of related studies is Distance Sensitivity Ora-
cle [18, 19, 44, 48, 60] that answers the shortest path/distance
queries with vertex/edge failures on static networks (not

dynamic networks studied in this paper).

4 DISTANCE AND PATH ORACLE
In this section, we describe our distance and path oracle

called the update-efficient (UE) oracle. Specifically, in Sec-

tion 4.1, we first give an important property called the

architecture-intact property, which is the key to the efficient

update time of UE and could not be satisfied by most (if not

all) existing oracles. Then, we describe our UE oracle in Sec-

tion 4.2. Next, we present the algorithms for preprocessing,

shortest distance/path query processing and update process-

ing in Section 4.3, Section 4.4 and Section 4.5, respectively.

Section 4.6 presents the theoretical analysis of our oracle.

4.1 Concept: Architecture-Intact Property
Given a data structure, the architecture of this data structure
is defined to be a set of all components in this data structure

excluding all non-structural information (e.g., the weight

information). Different data structures have different defini-

tions of “architecture”. For example, consider a data structure

S that is a weighted graph containing 3 components, namely

V , E andW .V is a set of vertices, E is a set of directed edges

andW is a set of numbers each of which denotes the weight

of an edge in E. Here, each vertex in V could be regarded as

a sub-component of V and each edge in E could be regarded

as a sub-component of E. The architecture of this data struc-
ture S is equal to the un-weighted graph containing V and

E only. Consider another example. The data structure used

in Dynamic-CH [26, 30] is a spatial network/graph inserted

with additional edges called shortcuts, where each edge is as-

sociated with a weight. Note that in Dynamic-CH, a shortcut
from a vertex u to a vertex v is defined to be a new edge that

denotes/corresponds to the shortest path from u to v and its

weight is defined to the length of the corresponding path.

The architecture of this data structure is the un-weighted

version of the spatial network/graph inserted with additional

edges, where there is no weight associated to each edge. Con-

sider the third example. The data structure used in BPL [34]

is a set of (shortest path) trees, where each edge in the tree is

associated with a weight. The architecture of this data struc-

ture is the same set of trees but there is no weight associated

to each edge in the trees.

With the concept of “architecture”, we are ready to present

themajor results of our oracleUE.UE satisfies one interesting
property called the architecture-intact property, which is the

key of an efficient update of our oracle. Specifically, we say

that an oracle constructed from a spatial network satisfies

the architecture-intact property if the architecture of the data
structure used in this oracle remains unchanged even when

there is an update on the weight of an edge in the spatial

network. Whenever there is a weight update, we just need

to update the non-structural information (e.g., the weight

information) in our oracle UE without updating the architec-

ture of the data structure. Updating the weight information

could be done efficiently since UE stores a mapping table

that could help to efficiently find a set of sub-components to

be updated for each edge if its associated weight is updated.

In our technical report [59], we show that most (if not all)

adapted algorithms originally designed for static spatial net-

works (in Section 3.1) do not satisfy the architecture-intact

property. The same is true for all algorithms originally de-

signed for dynamic spatial networks (in Section 3.2), i.e.,

they do not satisfy the architecture-intact property. This

explains why our oracle UE has a shorter update time com-

pared with existing algorithms. For example, in Dynamic-CH,
when there is a weight update, some new shortcuts have to

be added to the architecture of the data structure used in

Dynamic-CH. Besides, in BPL, when there is a weight update,

some edges in the trees are removed and some other new

edges are inserted into the trees. Besides, this observation

is verified in our experimental results that most existing or-

acles need to take more than one week for weight update,

and the update time of our UE oracle (which is at most 50ms)

is several orders of magnitude shorter than that of the best-

known oracle on real-life datasets. More importantly, none

of the existing oracles can handle the update before the next

batch of update arrives in our experimental results.

The reason why a data structure that does not satisfy

the architecture-intact property has a larger update time is

that for any weight update, it has to perform a costly search
operation on which components in the data structure should

have some new sub-components to be added and should

have some existing sub-components to be removed.

Let us give some details of our oracle UE to give the major

key idea why UE satisfies the architecture-intact property.

The idea is based on the novel definition of “shortcut” used in

UE that is independent of any update on theweight of an edge
in the spatial network. That is, UE does not need to add or

remove any shortcuts in the network even though there is an

update on the weight of an edge in the network. To the best

of our knowledge, we are the first to give a “nice” definition

of “shortcut” such that there is no need to introduce any

insertion/deletion of “shortcut” for any edge-weight update.

Existing studies gave other definitions of “shortcut” that may

introduce potential insertion/deletion of “shortcut” for any

edge-weight update.

4.2 Our Oracle: UE
Specifically, UE involves three components, namely the UE
spatial graph, theweight mapping table and the occupant map-
ping table. The UE spatial graph is an un-weighted graph that

is exactly equal to the un-weighted version of the original

graphG but there are additional edges in the UE spatial graph

compared with the original graph G. The weight mapping

table contains all the weight information about the edges in

the UE spatial graph. Specifically, it is a set of entries each

in the form of ((u,v),w), where (u,v) is an edge in the UE

spatial graphG ′ andw is the weight of (u,v) in graphG ′ (i.e.,
wG′(u,v)). Here, although G

′
is un-weighted, for the ease of

description, when we write “the weight of an edge inG ′”, we
mean that there is a value called the weight associated to this
edge in the weight mapping table. The occupant mapping

table contains all the information about a new concept called

“occupant”, which will be described later. The occupant map-

ping table is a set of entries each in the form of ((u,v),o),
where (u,v) is an edge in the UE spatial graph G ′ and o is a
vertex in V called the occupant of (u,v). Intuitively, UE uses

additional edges called shortcuts with the help of the weight

mapping table and the occupant mapping table to answer

shortest distance/path queries efficiently.

Before we define “shortcuts”, we first define the con-

cept of “rank” and then the concept of “valley path”. Ini-

tially, we perform Knuth shuffle [41] to obtain a random

ordering/permutation I of vertices in V . With this order-

ing/permutation I , the rank value of each vertex v in V ,
denoted by RI (v), is defined to be its position of this order-

ing/permutation. Consider our running example containing

8 vertices as shown in Figure 1. Let the permutation I be
(v1,v2,v3,v4,v5,v6,v7,v8). The rank value ofv1 (i.e., RI (v1))
is equal to 1. The rank value of v2 (i.e., RI (v2)) is equal to 2.

A path (v1,v2, ...,vl) is said to be a valley path if the rank

value of each vertex along the path except the first vertex v1

and the last vertex vl is smaller than both the rank values

of v1 and vl (i.e., each vertex along this path except s and t
has its rank value smaller than min{RI (s),RI (t)}). The rea-
son why we call this path as a “valley path” is described as

follows. In our terminology, we “interpret” that each vertex

could be associated with a location on a mountain with a

height. If the vertex has a larger rank value, it has a greater

height. According to this interpretation, all vertices along

the path except the first vertex and the last vertex have their

smaller heights, which looks like a “valley”. Notice that as a

special case, when a path from s to t contains exactly two

vertices (i.e., the path is (s, t)), this path is also a valley path.

Consider our running example in Figure 1, where permuta-

tion I is (v1,v2,v3,v4,v5,v6,v7,v8). Path (v5,v4,v3,v7) is a
valley path since both the rank values ofv4 andv3 are smaller

than 5 (= min{RI (v5),RI (v7)}). Path (v5,v7) is also a valley

path since it contains exactly two vertices. Path (v5,v8,v7)
is not a valley path because the rank value of v8 is greater
than 5 (= min{RI (v5),RI (v7)}).

Besides, we denote the shortest valley path from s to t under
the permutation I by s ⇝I

G t . If the context of permutation is

clear, we simply denote it by u ⇝G v . Consider our running
example. Path (v5,v7) is the shortest valley path from v5 to
v7. Thus,v5 ⇝

I
G v7 = (v5,v7). But, path (v5,v4,v3,v7) is not

the shortest valley path from v5 to v7 since there exists a
path from v5 to v7 (i.e., (v5,v7)), which has a smaller length.

In the following, when we write “u ⇝G v \ {u,v}”, we mean

the corresponding path excluding vertices u and v .
Given two vertices, namely u and v , a shortcut from u

to v is defined to be an edge from u to v in G ′ denoting
the shortest valley path from u to v on the original spatial
network G. The weight of a shortcut is defined to be the

length of the corresponding path in G.
UE keeps a certain number of shortcuts in the UE spatial

network such that it maintains the following property called

the shortcut property from time to time (e.g., even after there

is an edge weight update). This property is the major key to

the efficient update time of UE.

Property 1 (Shortcut Property). For each pair of ver-
tices, namely u and v , such that there exists a valley path from
u to v , G ′ must have a shortcut from u to v (i.e., edge (u,v))
with weight equal to the length of the shortest valley path from
u to v on the original network G.

With the concept of “shortcut”, we are ready to elaborate

why there is no need to insert or remove any shortcuts in the

UE spatial network G ′ even though there is an edge weight

update, and thus,UE satisfies the architecture-intact property.
Roughly speaking, UE keeps a certain number of shortcuts in

G ′. Firstly, there is no need to remove any existing shortcut

with an edge weight update. Since each shortcut (u,v) in
G ′ corresponds to the shortest valley path in G, whenever

there is an edge weight update, although the exact shortest
valley path in G may change, the shortcut (u,v) is still kept
in G ′ (though conceptually, it denotes a different shortest

valley path in G after the weight update), and thus, there is

no need to remove the shortcut. Secondly, there is no need

to add any new shortcut with an edge weight update. The

reason is that UE keeps the same set of shortcuts in G ′ even
with an edge weight update. By using this set of shortcuts

together with the original edges in the network, UE could

still answer shortest distance/path queries efficiently since

the spatial network has a small expansion dimension (whose

definition will be given later). Intuitively, if the expansion

dimension is small, the number of edges to be traversed on

G ′ of UE is small, and thus, the query time is shorter.

It is good to know that maintaining the shortcut property

could help the performance of UE as described above. One

remaining issue is how our UE oracle could maintain the

shortcut property efficiently when there is a weight update.

In this property, we know that there is a component of “short-

est valley path fromu tov on the original networkG”, which
requires computation. One straightforward implementation

is to enumerate all valley paths and to find the shortest valley

path. Note that this implementation is very costly since it

is possible that the number of vertices involved along the

shortest valley path could be large. Fortunately, our UE con-

siders a special form of “shortest valley path” called “shortest

ternary valley paths” each of which involves only 3 vertices

only so that maintaining the shortcut property is efficient.

We say that a valley path from a vertex to another vertex

is ternary if this path involves 3 vertices only. In other words,

the ternary valley path from a vertex to another vertex is

in the form of (v1,v2,v3), where v2 has the smallest rank

values among all these 3 vertices. Note that there is only

one passing vertex in a ternary valley path. In this case, v2
is a passing vertex. Similarly, the shortest ternary valley

path from a vertex u to another vertex v is defined to be the

shortest path among all ternary valley paths from u to v .
Interestingly, we found that the lengthw of the shortest

valley path from a vertexu to another vertexv is equal to the

length of the shortest ternary valley path fromu tov (if there

is no edge (u,v) on G). If there is an edge (u,v) on G with

its weight w ′, it is equal to min{w,w ′}. We formalize this

property called the ternary valley path property as follows.

Property 2 (Ternary Valley Path Property). Let π be
the shortest ternary valley path from vertex u to vertex v on
the UE spatial networkG ′. Letw be the length of this path π .
Letw ′ be the weight of the edge (u,v) (if any) on the original
graph G (if there is no edge (u,v) on G, w ′ is set to ∞). The
shortest valley path from u to v on G has the length equal to
min{w,w ′}.

With this interesting property, maintaining the shortcut

property becomes much efficient. Specifically, since the set

of possible paths considered in UE (which are ternary valley

paths) involving at most 3 vertices is much smaller than the

set of possible paths (which are ternary/non-ternary valley

paths) involving any number of vertices, the computation of

UE is very efficient. The correctness of these 2 properties (i.e.,

the shortcut property and the ternary valley path property)

will be shown in the later section.

Next, we present 3 phases of UE, namely the preprocessing

phase (Section 4.3), the query phase (Section 4.4) and the

update phase (Section 4.5).

4.3 Preprocessing Phase
The preprocessing phase of UE involves the initialization

step and the construction step.

Consider the initialization step. UE has three components,

namely the UE spatial network, the weight mapping table

and the occupant mapping table. They have the following

initialization steps. Initially, the UE spatial networkG ′ is ini-
tialized toG . Besides, the weight mapping table is initialized

to contain a list of ((u,v),w) for each (u,v) in E, where w
is the weight of (u,v) in G. Furthermore, the occupant map-

ping table is initialized to be an empty list. In the following,

when we updatewG′(u,v) with valuew ′, we mean that we

update the entry (u,v) in the weight mapping table with the

valuew ′. Similar arguments could be made to the occupant

mapping table (instead of the weight mapping table). Notice

that due to the later operation that we could updatewG′(u,v)
with another value w ′, the weight of edge (u,v) in G ′ (ini-
tialized to the weight of edge (u,v) in G) could be different

from the weight of edge (u,v) in G.
The construction step involves the following two steps.

• Step 1 (Vertex Rank Generation): It assigns each
vertex in the spatial network with a random unique

rank value that is a positive integer in [1,n] based on

Knuth Shuffling [41].

• Step 2 (Iterative Vertex Contraction): It performs

an important operation of “vertex contraction” of each

vertex in the ascending order of their rank values on

G ′.
In the following, we first give a major idea of Step 2. With-

out loss of generality, let us assume that for each i ∈ [1,n],
vi has its rank value equal to i (for illustrating the major

idea of Step 2). Initially,G ′ is initialized toG . We perform an

operation “vertex contraction" of vi on G
′
in an order of its

rank value from 1 to n, where i ∈ [1,n]. Here, we say that

vertex vi is contracted or a contracted vertex (if the vertex

contraction operation of vi has been performed). G ′ is be-
ing updated after each vertex contraction operation. LetG ′

(0)

beG ′ before we perform any vertex contraction operation

in Step 2. Let G ′
(i) be G

′
just after we perform the vertex

contraction operation of vertex vi for i ∈ [1,n]. In other

words, G ′
(i) is a graph obtained after the vertex contraction

operation of vi on G ′
(i−1) for i ∈ [1,n]. For each i ∈ [1,n],

the vertex contraction operation of vertex vi follows the
following principle called the Shortest Ternary Valley Path
Maintenance Principle. Note that the finalG ′ obtained in Step

2 is equal to G ′
(n).

Principle 1 (Shortest Ternary Valley Path Mainte-

nance Principle). For each i ∈ [1,n], for any two distinct
vertices u and v inV , if there exists a ternary valley path from
u to v onG ′

(i−1), where the (only one) passing vertex along this
path is vi , we perform the following operations.
(1) Operation 1 (G ′ Update): If edge (u,v) could not be

found in G ′
(i−1), we create an additional edge (u,v)

(called shortcut (u,v)) in G ′
(i). Otherwise, we do nothing

(since we have edge (u,v)).
(2) Operation 2 (Weight Update): The weight of (u,v) on

G ′
(i) (i.e.,wG′

(i)
(u,v)) is set tomin{w,w ′}, wherew is the

length of the shortest ternary valley path from u to v
on G ′

(i−1) and w ′ is the weight of (u,v) on G ′
(i−1) (i.e.,

wG′
(i−1)
(u,v)). (Note:wG′

(i−1)
(u,v) = ∞ if there is no edge

(u,v) on G ′
(i−1)).

(3) Operation 3 (Occupant Update): The occupant of
(u,v) on G ′

(i) is set to x , where x is the passing vertex
along the shortest ternary valley path from u to v on
G ′
(i−1).

With this above principle, the concept of “occupant” has

its physical meaning as follows. Given an edge (u,v) in G ′
(i),

the occupant of an edge (u,v) in graph G ′
(i) is defined to be

the (only one) passing vertex of the shortest ternary valley

path from u to v on G ′
(i−1). Note that it is possible that an

edge (u,v) in G ′
(i) has an un-assigned occupant (since there

is no ternary valley path from u to v).
Note that UE (containing the UE spatial graph and the

mapping tables) is updated after these operations are per-

formed.

With Principle 1, it is easy to show the correctness of

the ternary valley path property (i.e., Property 2) and the

shortcut property (i.e., Property 1) by induction.

Theorem 1. UE satisfies both the ternary valley path prop-
erty and the shortcut property.

proof sketch. We first prove by induction a proposition

that for each i ∈ [1,n] and any two distinct vertices u and

v in G, the length of the shortest valley path from u to v on

the original graph G, which involves only vertices from the

set {v1,v2, ...,vi } as passing vertices in the original graphG ,
is equal to min{w,w ′}, wherew is the length of the shortest

ternary valley path from u to v on G ′
(i) andw

′
is the weight

of (u,v) onG ′
(i). The correctness for the base case when i = 1

clearly holds (due to the shortcut creation and the weight

update in Principle 1). Next, we prove by induction from

cases 1, 2, ..., i to case i + 1.
Consider a pair of vertices u and v and the shortest valley

path P from u to v on G. We discuss two cases. Case 1: P
involves at least one vertex in {v1,v2, ...,vi+1} as passing
vertices. Assume that the proposition is true in cases 1, 2, ..., i .
Let vk denote the passing vertex on P with the greatest rank

value. Note that k is in the range of [1, 2, ..., i + 1]. Thus, in
G ′
(i), the shortest valley path from u to vk and the shortest

valley path fromvk tov have the length equal tomin{w1,w
′
1
}

and min{w2,w
′
2
}, respectively, where w1 is the length of

the shortest ternary valley path from u to vk on G ′
(k),w

′
1
is

the weight of (u,vk) on G ′
(k), and w2 and w ′

2
have similar

definitions. Consider the ternary valley path (u,vk ,v) on
G ′
(i+1). Its length ismin{w1+w2,w

′
1
+w2,w1+w

′
2
,w ′

1
+w ′

2
} =

min{w1,w
′
1
} +min{w2,w

′
2
} because vk must be contracted

via the vertex contraction operation. Since vk is on P , by
proposition, the length of P is equal to the length of (u,vk ,v).
Case 2: P doesn’t involve any vertex in {v1,v2, ...,vi+1} as
passing vertices. This implies that P is (u,v). Thus, the length
of P is equal to the weight of (u,v) on G ′

(i).

With the proposition and Principle 1, we could easily de-

rive these 2 points: (1) UE satisfies the ternary valley path

property and (2) UE satisfies the shortcut property. □

It is not difficult to implement the vertex contraction op-

eration of a vertex according to Principle 1. The following

gives an example of this preprocessing phase.

Example 1 (Preprocessing Phase). Consider a permu-

tation I = (v1,v2,,v8) of the 8 vertices in Figure 1. Fig-

ure 2(a) - (e) shows UE after the vertex contractions of the

first five vertices and the contractions of v6,v7 and v8 are
trivial, and thus, they are not shown in the figure. Initially,

G ′ is set to G. The first step is to contract v1. Since in G ′,
N in
G′ (v1) = N out

G′ (v1) = {v6}, in this step, we update nothing

(since we only process a pair of distinct vertices, where one

is from N in
G′ (v1) and the other is from N out

G′ (v1) according to

Principle 1). Figure 2(a) shows UE after v1 is contracted.
The second step is to contract v2. Since N

in
G′ (v2) = {v6}

and N out
G′ (v2) = {v8}. Since (v6,v8) is an edge in G ′ and the

weight of (v6,v8) (i.e.,wG′(v6,v8)) (which is 2) is smaller than

wG′(v6,v2)+wG′(v2,v8) (which is 1+ 2 = 3), we do not need

to update the weight of (v6,v8). Since the shortest ternary
valley path from v6 to v8 on G ′ is equal to (v6,v2,v8), and
o(v6,v8) does not exist, we set o(v6,v8) to be v2. Figure 2(b)
shows UE after v2 is contracted.
The third step is to contract v3. Since N in

G′ (v3) =
N out
G′ (v3) = {v4,v7}, we consider two pairs, namely (v4,v7)

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

2

2 2

1

1

1

1

1

1

1

(a) After v1 is contracted

v1

v2

v3

v4
v5

v6

v7

v8

o)(v = v6 8 2, v

2

2 2

1

1

1

1

1

1

1

(b) After v2 is contracted

v1

v2

v3

v4
v5

v6

v7

v8

o) o(()v = v v6 8 2 7 4 3

4 7 3

, v , v = v

o()v , v = v

2

2 2 2

1

1

1

1

1

1

1

(c) After v3 is contracted

v1

v2

v3

v4
v5

v6

v7

v8

o) o(()v = v v6 8 2 7 4 3

4 7 3 5 7 4

, v , v = v

o() o()v , v = v v , v = v

2

2 2 2

1

1

1

1

1

1

1

(d) After v4 is contracted

v1

v2

v3

v4
v5

v6

v7

v8

o) o(()v = v v6 8 2 7 4 3

4 7 3 5 7 4

8 7 5

, v , v = v

o() o()v , v = v v , v = v

o()v , v = v

2

2 2 2

1

1

1

1

1

1

1

(e) After v5 is contracted

v1

v2

v3

v4
v5

v6

v7

v8

o) o(()v = v v6 8 2 7 4 3

4 7 3 5 7 4

8 7 5

, v , v = v

o() o()v , v = v v , v = v

o()v , v = v

2

2 2 2

1

1

1

1

1

1

1

(f) UE Just After Preprocess-
ing Phase

Figure 2: Illustration of Preprocessing

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

w v is increased from 1 to 3.5.
G
()

5 7
, v

1

1

1

11

1
2

2

2

3.5

(a) Spatial Network G with An
Edge Weight Update

v1

v2
v3

v4

v5

v6

v7

v8

o) o(()v = v v6 8 2 7 4 3

4 7 3 5 7 4

8 7 5

, v , v = v

o() o()v , v = v v , v = v

o()v , v = v

1

1

1

11

1
22

2

2

3

(b) UE After Update(G ′, (v5,v7),
3.5)

Figure 3: Illustration of Updating
and (v7,v4). Since these two pairs (or edges) could not be

found in G ′, we create two edges (v4,v7) and (v7,v4), and
set their weights towG′(v4,v3)+wG′(v3,v7) = 1+ 1 = 2 and

wG′(v7,v3) +wG′(v3,v4)} = 1 + 1 = 2, respectively. Accord-

ingly, both o(v7,v4) and o(v4,v7) are set to v3. Figure 2(c)

shows UE after v3 is contracted.
Similarly, we obtain UE after v4 and v5 are contracted, as

shown in Figure 2(d) and Figure 2(e), respectively. The final

UE is shown in Figure 2(f).

4.4 Query Phase
In the query phase, given a source vertex s and a destination
vertex t , we want to find the shortest distance/path from s to
t efficiently based on UE. In the following, we describe the

shortest distance query and the shortest path query.

Consider the shortest distance query. One straightforward

implementation is to adopt a bi-directional Dijkstra’s algo-

rithm from both s and t specified in the query. However, it

needs to process a lot of edges in the UE spatial network.

In the following, we propose a strategy of this implemen-

tation so that this implementation could be sped up by just

choosing some of the edges only for expansion in the UE

spatial network, and the shortest distance could be returned.

Specifically, these chosen edges are called “upward edges”

and “downward edges”. We call an edge (u,v) an upward edge
(resp. downward edge) if RI (v) > RI (u) (resp. RI (v) < RI (u)).
In our query phase, we call the bi-directional Dijkstra’s al-

gorithm in which the forward (resp. backward) Dijkstra’s

algorithm only expands upward (resp. downward) edges. We

call this algorithm, our implementation, as the bi-directional

Dijkstra’s algorithm with the direction constraint.
The remaining question is to show the correctness of this

algorithm in this query phase. Before we show the correct-

ness, we present the ascending-descending property that is

based on the concept of “ascending/descending path”. A path

is called an ascending path (resp. a descending path) if each
vertex excluding the first vertex has a greater (resp. smaller)

rank value than its predecessor along the path. The property

is shown as follows.

Observation 1 (Ascending-Descending property).

Consider any two vertices s and t and the vertex v on s ↣G t
with the greatest rank value and the UE spatial network G ′, if
s (resp. t) is not v , there exists one s-v (resp. v-t) shortest path
on G ′ that is an ‘ascending path’ (resp. a ‘descending path’).

proof sketch. In a word, due to Property 1, each sub-

path, which is a valley path, on the s-v and v-t shortest
path on G corresponds to a shortcut on G ′ and the shortcut

‘bridges’ the two ends of the valley that make one s-v (resp.

v-t) shortest path an ascending path (resp. descending path).

□

By Theorem 1 and Observation 1, it is easy to show that

the bi-directional Dijkstra’s algorithm with the direction

constraint returns the shortest distance.

Consider the shortest path query from a vertex s to another
vertex t onG . Note that the original method described above

(i.e., the bi-directional Dijkstra’s algorithmwith the direction

constraint) for the shortest distance query on the UE spatial

network G ′ could be applied to find the shortest path πG′

from s to t on G ′ (not the original graph G). Since we are
interested in the shortest path πG on G (not G ′), we should
map back the path πG′ on G ′ to the shortest path πG on G
with the help of the concept of “real path”. Given the shortest

path πG′ from s to t on G ′, a path πG is said to be the real
path of πG′ on G if (1) πG is the shortest path from s to t on
G , (2) all vertices along πG′ appears in the same order as the

ones along path πG , and (3) the length of πG′ (onG
′
) is equal

to the length of πG . In this query phase, we need to consider

how to compute the real path on G.
Our algorithm involves the following two steps. The first

step is to perform the bi-directional Dijkstra’s algorithm

from s to t with the direction constraint and obtains the

shortest path πG′ on G ′. The second step is to find the real

path of πG′ on the original graph G by (recursively) finding

the occupant of each edge (u,v) along πG′ and inserting it

between vertex u and vertex v along the path.

We proceed to present the correctness of our path query

algorithm in the following theorem.

Theorem 2. Our shortest path query algorithm returns an
s-t shortest path on the original network G.

proof sketch. In a word, due to Observation 1, our bidi-

rectional algorithm (which expands upward edges (resp.

downward edges) only in the forward (resp. backward)

search) finds the shortest path πG′ in G ′ and provides the

correct distance. Besides, due to our definition of occupant,

our query algorithm finds the correct shortest s-t shortest
path on G by using πG′ . □

Notice that our distance (path) query algorithm finds the

shortest s-t distance (path) no matter what the permutation

of vertices is.

Example 2 (Query Processing). Consider the shortest

distance query from v4 to v5 in Figure 1. It first finds the

shortest path from v4 to v5 on G
′
(as shown in Figure 2(f)),

which is (v4,v7,v8,v5), and returns its length. Consider our

distance query processing algorithm and it contains a for-

ward (resp. backward) search from v4 (resp. v5) that visits
upward (resp. downward) edges only and both are performed

on G ′ as shown in Figure 2(f). Consider the forward search

from v4. It first visits the edge (v4,v7) since it is an upward

edge. Note that (v4,v3) will not be visited since it is not an

upward edge. Then, it visits the edge (v7,v8). The backward
search from v5 is symmetric, which visits one downward

edge (v8,v5) only. Thus, the two searches finally meet at v8
and the algorithm finds the path (v4,v7,v8,v5) and returns

its distance 5 as a result of distance query.

Consider the shortest path query from v4 to v5. It first
obtain the shortest path (v4,v7,v8,v5) from v4 to v5 on G ′.
Then, it finds its real path by replacing the shortcut (v4,v7)
with path (v4,v3,v7) (because o(v4,v7) = v3) and keeping

other edges intact. Thus, the final result of the shortest path

query is (v4,v3,v7,v8,v5).

4.5 Update Phase
When there is an update on a weight of an edge on the graph

G, we have to update UE accordingly so that the shortest

x

u

v
shortcut/edge

weight is updated from to 'w w

corresponds to the shortest
ternary valley path from tox v

x∈N (u)
in

G'
whose rank value is
larger than that of u

A larger rank value

A smaller rank value

Figure 4: Illustration of the Update Algorithm
distance/path query on the updated UE could return the

answer correctly.

As we mentioned before, UE satisfies the architecture-

intact property. In other words, even with a weight update,

the architecture of UE (i.e., the UE spatial graph) remains

unchanged. We are ready to elaborate this point here. To

elaborate, let us consider back our oracle constructed based

on Principle 1. We know that given a set of weights on all

edges in the original graph G, we could construct the UE

spatial networkG ′ by introducing shortcuts to the original

graph G with the help of Operation 1 of Principle 1. Given

another different set of weights on all edges inG, we could
still construct the same UE spatial networkG ′ with the same

Operation 1. The reason is that whenever each vertex has its

assigned rank value (given in the preprocessing phase), the

creation of each shortcut (u,v) in G ′ depends on whether

there exists a ternary valley path from u to v on a graph

(which relies on the rank values of vertices only) but does

not depend on any information about the weights of edges in

the graph. Thus, UE satisfies the architecture-intact property.

In the update phase, we still follow Principle 1 to maintain

our oracle UE. Although Principle 1 was originally designed

in the preprocessing phase for our oracle construction, it

could also be used in maintaining our oracle. As described

above, even with a weight update (equivalently, a differ-

ent weight), Operation 1 of Principle 1 generates the same

UE spatial network G ′. In the update phase, UE also keeps

the weight information consistently with the one specified

in Operation 2 and the occupant information consistently

with the one specified in Operation 3. Thus, only the weight

mapping table and the occupant mapping table need to be

updated. By following the same principle (Principle 1), UE
still satisfies the shortcut property and the ternary valley

path property, and thus, returns the shortest distance/path

correct (as described in the query phase).

Consider that the weight of an edge (u,v) in the original

graph G is changed fromw tow ′. We call algorithm Update
(shown in Algorithm 1) that takes the UE spatial networkG ′,
the edge (u,v) and the new weightw ′ as input parameters.

We describe Algorithm 1 (i.e., Update(·, ·, ·)) as follows. In
Line 1, we store the previous value of wG′(u,v) in variable

wbef ore . In Lines 2-6, we update wG′(u,v) according to 2

different cases. In Line 2, we check whether there exists an

occupant o(u,v) for (u,v). If o(u,v) exists, then we compute

variablewo bywG′(u, o(u,v))+wG′(o(u,v),v) (Line 3) (which

corresponds to the length of the shortest ternary valley path).

In this case, we updatewG′(u,v) with min{w ′,wo} (Line 4)

(since we want to have a smaller weight value among the

newly updated weightw ′ and the above computed weight

wo). If o(u,v) does not exist, then we updatewG′(u,v) with
the newly updated weight w ′ (Line 6). In Line 7, we check

whether the previous value of wG′(u,v) is not equal to the

updated value of wG′(u,v). If they are not equal, we call

SubUpdate(G ′, (u,v)) with Algorithm 2 (Line 8).

Next, we describe Algorithm 2 (i.e., SubUpdate(·, ·)) as fol-
lows. The major idea is to update the weights of the shortcuts

in G ′ that were originally computed based on the previous

value of the weight of (u,v) on G ′ (i.e.,wG′(u,v)). There are
2 cases to be considered. The first case is when RI (v) > RI (u)
(Lines 1-16) and the second case is when RI (u) > RI (v) (Line
18). Since these 2 cases are symmetric, we just focus the

description on the first case. For illustration, we include Fig-

ure 4. In this figure, we place vertices such that a vertex

with a larger rank value is placed at an upper level. Thus,

this figure shows vertex v is placed higher than vertex u for

the first case. In this first case (Lines 1-16), we just need to

consider finding back all shortcuts/edges (x ,v) in G ′, where
x is a vertex in N in

G′ (u) whose rank value is larger than that

of u, and each of these shortcuts corresponds to the shortest

ternary valley paths from a vertex x to the vertex v , (be-
cause when each shortcut in G ′ just described (i.e., (x ,v))
was generated (in the pre-processing phase), UE considered

both edge (x ,u) and edge (u,v) together to check whether

(x ,u,v) is the shortest ternary valley path). In other words,

all shortcuts in G ′ just described (i.e., (x ,v)) are those short-
cuts whose weight in G ′ may be updated due to the weight

update of (u,v) on G ′. Since shortcut (x ,v) is an affected

shortcut, we have to compute the updated weight of (x ,v)
and the updated occupant of (x ,v) by considering all possi-

ble ternary valley paths from x to v in the form of (x ,y,v),
where y ∈ N out

G′ (x) ∩N
in
G′ (v). In Line 3, we store the previous

value ofwG′(x ,v) in variablewbef ore . Lines 4-10 perform the

above task of computing the updated weight and the updated

occupant. Since we just consider the shortest ternary valley

path, we do not consider the shortest valley path involving 2

vertices only. Next, we check whether there is an edge (x ,v)
in the original graphG (which corresponds to the valley path

involving 2 vertices) (Line 12). If (x ,v) exists, then we update

wG′(x ,v) withmin{wG′(x ,v),wG (x ,v)} (Line 13). Finally, in
Line 15, we check whether the previous value ofwG′(x ,v) is
not equal to the updated value of wG′(x ,v). If they are not

equal, we call SubUpdate(G ′, (x ,v)) with Algorithm 2 (Line

16).

Example 3 (Update Phase). Consider the example of our

UE in Figure 2(f) just after the pre-processing phase.

Algorithm 1: Update(G ′,(u,v),w ′)
Data: The original UE, an edge (u, v) in the original network G whose weight

is changed fromw tow ′
Result: The updated UE

1 wbef ore ← wG′ (u, v);
2 if o(u, v) exists then
3 wo ← wG′ (u, o(u, v)) +wG′ (o(u, v), v);
4 wG′ (u, v) ← min{w ′, wo };

5 else
6 wG′ (u, v) ← w ′;
7 if wbef ore , wG′ (u, v) then
8 SubUpdate(G′, (u, v));

Next, in the original network G, there is a weight update
of edge (v5,v7) from 1 to 3.5 as shown in Figure 3(a). We call

Update(G ′, (v5,v7), 3.5) (i.e., Algorithm 1). Variablewbef ore is

initialized towG′(v5,v7) (which is 1) (Line 1 of Algorithm 1).

Since o(v5,v7) exists and is equal to v4 (Line 2), we compute

variable wo that is equal to wG′(v5,v4) + wG′(v4,v7) = 3

(Line 3). Since the updated weightw ′ of (v5,v7) inG is equal

to 3.5, we obtain wG′(v5,v7) to be min{w ′,wo} = 3 (Line

4). Since in G ′, the original weight value ofwG′(v5,v7) (i.e.,
1) is different from the updated value of wG′(v5,v7) (i.e., 3)
(Line 7), we call SubUpdate(G ′, (v5,v7)) (Line 8). Consider

Algorithm 2. Since RI (v7) > RI (v5) (Line 1 of Algorithm 2),

we perform the following steps (Lines 2-16). Since N in
G′ (v5) =

{v8} and v8 has a larger rank value than that of v5 (Line 2),
we compute the variable wbef ore as wG′(v8,v7) = 2 (Line

3). Then, we compute the shortest valley path from v8 to
v7 via v5 (i.e., the shortest ternary valley path from v8 to
v7) (Lines 4-10) and obtain the length of this path (which is

wG′(v8,v5) +wG′(v5,v7)) as 2. Since there is an edge (v8,v7)
in the original G (Line 12), we also compute the shortest

valley path fromv8 tov7 involving 2 vertices only and obtain
the length of this path (which is wG (v8,v7)) as 2 (Line 13).
After Line 13,wG′(v8,v7) is still equal to 2 (which is equal to

wbef ore). Thus, there is no need to execute the steps in Lines

15-16. The final UE after this weight update of (v5,v7) in G
is shown in Figure 3(b).

Theorem 3. Consider the processing of our update algo-
rithm on the weight change of an edge (u,v) on the original
network G. (1) UE updated by using our update algorithm
satisfies both the ternary valley path property and the shortcut
property, and (2) the UE updated by using our update algo-
rithm is the same as the UE built from scratch on the most
up-to-date road network.

proof sketch. In a word, the update algorithm is a partial

preprocessing algorithm to make UE the same as the one

built from scrach. □

4.6 Theoretical Analysis
In this part, we analyze the time complexity of the update

algorithm as shown in Algorithm 1, which we denote byTup .

Algorithm 2: SubUpdate(G ′,(u,v))
Data: The original UE, an edge (u, v) in G′ with a weight update

Result: The updated UE

1 if RI (v) > RI (u) then
2 for each x in N in

G′ (u) whose rank value is larger than that of u : do
3 wbef ore ← wG′ (x, v);
4 // Re-compute the shortest ternary valley path from x to v ;
5 wG′ (x, v) ← wG′ (x, o(x, v)) +wG′ (o(x, v), v);
6 for each y in N out

G′ (x) ∩ N
in
G′ (v) whose rank value is smaller than

x and v do
7 wy ← wG′ (x, y) +wG′ (y, v);
8 if wy < wG′ (x, v) then
9 wG′ (x, v) ← wy ;

10 o(x, v) ← y ;
11 // Consider the shortest valley path from x to v involving 2 vertices

only (i.e., path (x, v) with length = wG (x, v)) (if any);
12 if there is an edge (x, v) in the original graph G then
13 wG′ (x, v) ← min{wG′ (x, v), wG (x, v)}
14 // Update UE again when the weight of (x, v) in G′ is updated;
15 if wbef ore , wG′ (x, v) then
16 SubUpdate(G′, (x, v));
17 else
18 (Case: RI (u) > RI (v). Details omitted, as it is symmetric to the case of

RI (v) > RI (u).)

Table 2: Characteristics of Datasets
Name Region |V| |E| γ

WL Wales 517,480 1,333,902 3.12

SC Scotland 906,031 2,308,460 3.02

EN England 6,339,385 11,505,757 3.09

GB Great Britain 7,998,285 14,510,323 3.19

ME Maine 187,315 422,998 ≤3

CA California and Nevada 1,890,815 4,657,742 ≤3

C-US Central US 14,081,816 34,292,496 3.17

US United States 23,947,347 58,333,344 3.322

Specifically, we show that Tup = O(log
3(n)) w.h.p. with five

steps, which we sketch as follows.

(1) Tup is dominated by the procedure of SubUpdate (line

8 in Algorithm 1), which is shown in Algorithm 2. We de-

note by D the maximum in-degree/out-degree of a node

inG ′, i.e.,D = maxv ∈V {max{|N in
G′ (v)|, |N

out
G′ (v)|}}. Besides,

given an edge (u,v) in G, we denote by F (u,v) the num-

ber of edges in G ′ whose real paths involve (u,v). Let F
denote the maximum F (u,v) for any edge (u,v) in G, i.e.,
F = max(u,v)∈E F (u,v). It could be easily verified that Tup
is bounded by c · D2 · F , where c is a constant.

(2) We introduce a concept called expansion dimension that
captures the growth rate of the number of vertices within a

certain number of hops from a vertex in a spatial network. In

the existing literature, some similar concepts such as “fractal

dimension” [16, 17, 22, 23, 32, 42, 43], “expansion rate” [40]

and “KR-dimension” [20, 40] were defined, and were used

to measure the growth rate of the number of vertices with a

certain distance from a vertex in a graph/spatial network. Our

expansion dimension is slightly different from these existing

concepts since it is based on a certain number of hops but not

distance. We empirically compute the expansion dimensions

Dynamic-CH BPL UE

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0 20 40 60 80 100 120 140 160 180 200 220

U
pd

at
e

Ti
m

e
(s

)

(a) Day Number

10
-4

10
-2

10
0

10
2

10
4

10
6

7:00 9:00 12:00 15:00 18:00

U
pd

at
e

Ti
m

e
(s

)

(b) Timeline

Figure 5: Update Time on GB Dataset
of all datasets we used in our experiments, and the results

are presented in Table 2. As could be noticed, the expansion

dimensions γ of real spatial networks are usually very small,

which are smaller than 3.33 in all cases.

(3) We show thatD isO(logn)with high probability. Con-

sider a pair of vertices u and v and the path P with the

smallest number of hops from u to v . By our preprocessing

algorithm, there is an edge (u,v) in G ′ iff there is a valley

path P ′ in the original network G. By the definition of a val-

ley path, we obtain that the longer the path P ′, the smaller

the probability that (u,v) exists given that the rank values

of all vertices are randomly generated. Since the number of

vertices on P must be no more than that of P ′, we derive the
upper bound of the probability that (u,v) exists by using the

number of vertices on P as a parameter. Together with the

conclusion of (2) (i.e., the spatial network has a very small

expansion dimension), we could obtain the statistical upper

bound of the degree of u.
(4) We show that F isO(logn) with high probability. Con-

sider an edge (u,v) on G and a shortcut (x ,y) on G ′. By our

preprocessing algorithm, the real path of (x ,y) (on G) con-
tains (u,v) only if the real path is a valley path. Let P ′ (P ′′

resp.) denote its sub-path from v to y (from x to u resp.) on

G. Consider the path P from v to y on G with the smallest

number of hops. Since the number of vertices on P must be

at most that of P ′, we derive the upper bound of the proba-

bility that P ′ is a valley path by using the number of vertices

on P as a parameter. Similarly, we could derive the upper

bound of the probability that P ′′ is a valley path. By consid-

ering the probabilities of all possible shortcuts containing

a given edge (u,v), together with the conclusion of (2) (i.e.,

the spatial network has a very small expansion dimension),

we could obtain the statistical upper bound of F .

(5) With the results in (1), (3), and (4), we conclude that

Tup is O(log3 n) with high probability.

5 EXPERIMENTS
5.1 Experimental Setup
In our experiments, we use a machine with 2.66GHz and

48GB RAM installed with CentOS 5 (x86_64 Edition) linux

distribution, where the compiler used is g++4 (GCC) 4.9.2.

Datasets. We use four road networks with real update data

(on the edges) in Great Britain, namely WL, SC, GB and EN,

where the network data has been provided by geofabrik [1]

and the update data has been published by the British gov-

ernment [4]. Specifically, WL, SC and GB datasets contain

the update data in 869, 854 and 229 days in 2000-2008, re-

spectively, and EN dataset contains the update data in 31

days of March 2015. In each day, the update data captures

how the weights of edges (i.e., amount of time to traverse the

corresponding road segments) change every minute from

07:00am to 18:00pm.

Besides, we use four road networks in US, namely, ME, CA,

C-US, and US, for scalability tests, where the update data is

synthetically generated by using some existing method [25]

(which takes a static road network and some traffic of a few

road segments such as those in NYC [3] as inputs and gener-

ates dynamic traffic on the network). These road networks

are well-known benchmarks for the research on static road

networks [61, 63]. The characteristics of the datasets are

shown in Table 2.

Algorithms. We test our oracle UE and seven existing or-

acles, namely (1) SILC-Adapt [50], (2) PCPD-Adapt [55], (3)
AH-Adapt [63], (4) H2H-Adapt [46], (5) Dynamic-CH [26, 30],

(6) Dynamic-PLL [11] as shown in Table 1 and (7) BPL [34].

Note that we do not test TVV-Adapt [8] for the same reason

as [63] (i.e., building TVV-Adapt needs to materialize all pair-

wise shortest paths, which is not memory-affordable) and

we have tested BPL that is not included in Table 1 since it

has been shown to perform well empirically though it has

no theoretical analysis. We have also tested BiDijkstra’s Al-
gorithm [27] for the shortest distance and path query. Note

that we do not test Dynamic-HH since it is dominated by

Dynamic-CH as verified in [26, 30]. We obtain the C++ im-

plementations of SILC [50], PCPD [55], AH [63], H2H [46],

Dynamic-CH [26, 30] and Dynamic-PLL [11], BPL [34], from

the authors. We implement UE, the BiDijkstra’s algorithm
and the updating algorithms of SILC, PCPD, AH and H2H
(i.e., SILC-Adapt, PCPD-Adapt, AH-Adapt and H2H-Adapt)
using C++.

Query Generation. Following [61, 63], we generate ten sets
of queries Q1,Q2,,Q10 on each dataset as follows. We

first estimate the maximum network distance dmax between

two vertices in the road network. After that, we insert 10, 000

Dynamic-CH BPL UE

10
-2

10
-1

10
0

10
1

10
2

10
3

1 10 20 30

U
p
d
a
te

 T
im

e
 (

s
)

(a) Day Number

10
-2

10
-1

10
0

10
1

10
2

10
3

0:00 4:00 8:00 12:00 16:00 20:0024:00

U
p
d
a
te

 T
im

e
 (

s
)

(b) Timeline

Figure 6: Update Time on EN Dataset

Dynamic-CH
Dynamic-PLL

BPL
UE

10
-4

10
-2

10
0

10
2

10
4

10
6

10
6

10
7

U
p

d
a

ti
n

g
 T

im
e

 (
m

s
)

n

Figure 7: Scalabil-
ity Test on Updat-
ing Time (ms)

SILC-Adapt
PCPD-Adapt

AH-Adapt
H2H-Adapt

Dynamic-CH
Dynamic-PLL

BPL
UE

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
6

10
7

(a) Preprocessing Time (sec)

P
re

p
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
)

n

10
1

10
2

10
3

10
4

10
6

10
7

(b) Space Overhead (MB)

S
p
a
c
e
 o

v
e
rh

e
a
d
 (

M
B

)

n

Figure 8: Preprocessing Time and Space

SILC-Adapt PCPD-Adapt AH-Adapt H2H-Adapt Dynamic-CH Dynamic-PLL BPL UE BiDijkstra

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q
ue

ry
 T

im
e

(m
s)

(a) EN

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Q
ue

ry
 T

im
e

(m
s)

(b) GB

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10
Q

ue
ry

 T
im

e
(m

s)

(c) C-US

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Q
ue

ry
 T

im
e

(m
s)

(d) US

Figure 9: Shortest Distance Query Time (ms)

SILC-Adapt PCPD-Adapt AH-Adapt H2H-Adapt Dynamic-CH Dynamic-PLL BPL UE BiDijkstra

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q
ue

ry
 T

im
e

(m
s)

(a) EN

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Q
ue

ry
 T

im
e

(m
s)

(b) GB

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

Q
ue

ry
 T

im
e

(m
s)

(c) C-US

10
-2

10
-1

10
0

10
1

10
2

10
3

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10
Q

ue
ry

 T
im

e
(m

s)
(d) US

Figure 10: Shortest Path Query Time (ms)

pairs of vertices (s, t) into Qi , ∀i ∈ [1, 10] as queries, such
that the distance between s and t is in [2i−11dmax , 2

i−10dmax).

In other words, the network distance between any pair of

vertices in Qi is larger than that in Qi−1.

5.2 Experimental Results
Wemeasure the update time, query time, preprocessing time,

and space of all oracles tested. Note that in some cases when

an algorithm runs out of the memory budget (48GB), the

results are not shown.

(1) Update Time. Since the traffic information of each dy-

namic network is updated every minute, we regard all the

updates in every minute as an updating set and each updat-

ing set corresponds to a 1 minute timeslot. For each oracle,

we test its update time for all updates in each timeslot of the

sampled days from 2000 to 2008 (resp. the 31 days in Mar

2015) on WL, SC and GB (resp. EN). We group all timeslots

by day (i.e., all timeslots on the same day (e.g., 1st Mar 2008)

are put into the same group) and calculate aggregate infor-

mation (i.e., average, minimum and maximum update time)

of all timeslots in each group. Similarly, we also group all

timeslots across different days by the time period (i.e., all

timeslots corresponding to the same time period (e.g., 7:00

- 7:01am) are put in the same group) and calculate the ag-

gregate information (i.e., average, minimum and maximum

update time) of all timeslots in each group. We conduct ex-

periments on WL, SC, GB and EN. For the sake of space, we

only show the results on GB and EN. The reason is that the

results on WL and SC are similar to those on GB. The results

on GB and EN are shown in Figures 5-6, respectively, where

Figures 5-6(a) show the results based on grouping of days

and Figures 5-6(b) show the results based on grouping of

time periods. In each figure, we adopt a vertical bar to show

the aggregate information (i.e., average, minimum and max-

imum update time) of each timeslot in a group. The lower

and upper bounds of the bar corresponds to the minimum

and maximum values, respectively. The symbol (e.g., circle,

pentagon and triangle) in each bar shows the average value

in the group. The results of SILC-Adapt, PCPD-Adapt, AH-
Adapt and H2H-Adapt are not shown since they would take

more than 1 week to finish updating for a single timeslot.

The results of Dynamic-PLL are not shown since it would

run out of our memory budget.

According to these results, UE could be updated in a ne-

glectable amount of time. The update time of Dynamic-CH,
Dynamic-PLL and BPL is several orders of magnitude larger

than ours on WL and SC. Besides, on GB and EN, the update

time of BPLand CH both exceeds 1 minute for most updating

sets, which means they could not meet the hard require-

ment of the updating in practice. On GB, the update time

of each oracle fluctuates from day to day (Figure 5(a)) but

keeps almost steady in different time periods (Figure 5(b)).

The reason is that the number of edges to be updated in each

updating set (corresponding to 1min timeslot) varies a lot

in different days but keeps almost intact in different time

periods. On EN, the update time of each oracle keeps almost

steady (Figure 6(a) and (b)) since on EN, the number of edges

to be updated in each updating set (corresponding to 1min

timeslot) does not vary too much in all timeslots.

We also do a scalability test on the update time based on

all the eight datasets including those with synthetic update

data so that datasets with different sizes (denoted by n) are
used. The results are presented in Figure 7. According to

this figure, our UE oracle is scalable and outperforms the

baselines by several orders of magnitude.

Although only our UE oracle could handle the update

operation efficiently (i.e., the data update time is within the

processing time for update), in the following, for the sake

of interest, we also compare UE with other existing oracles

described before in other measurements (i.e., query time,

preprocessing time and space).

(2) Query Time. Figure 9 (resp. Figure 10) presents the

shortest distance (resp. path) query time of the tested oracles.

For the sake of the limited space, we only show the results

on the 4 largest datasets as shown in Table 2. As these results

generally show, (1) for queries with relatively smaller short-

est distances (e.g., Q1-5), all algorithms except for BiDijkstra
and BPL perform quite well and have comparable query time;

(2) for other queries (e.g., Q6-10), H2H-Adapt works the best
in most cases (note that H2H-Adapt takes more than one

week to finish updating a single time slot in our previous

experiment); and (3) our UE oracle works fairly well for all

queries on all datasets (e.g., the query time is at most 10ms).

(3) Preprocessing Time and Space. Figures 8(a) and (b)

show the preprocessing time and the space of the tested ora-

cles on the networks (with varying sizes). As shown in Fig-

ure 8(a), (1) PCPD-Adapt and SILC-Adapt have their prepro-
cessing time multiple orders of magnitude larger than that of

other oracles and thus cannot scale up to large or even mod-

erate size datasets; (2) Dynamic-PLL and H2H-Adapt have a
smaller preprocessing time compared with PCPD-Adapt and

SILC-Adapt but still cannot scale up to large datasets; and (3)

our UE oracle has its preprocessing time the third smallest

and can scale up to the largest dataset in our experiments. As

shown in Figure 8(b), PCPD-Adapt, SILC-Adapt, andDynamic-
PLL have their space 1-3 orders of magnitude larger than

that of other algorithms and cannot scale up to large datasets

and all other oracles have their space comparable but our UE
oracle has clearly the smallest space.

(4) Experimental Summary. Firstly, our UE oracle is su-

perior over all existing ones for applications, where it is

required that update needs to be handled in time (simply

because our UE can handle the updates very quickly while

none of the existing oracles can handle the update before the

next batch of update arrives). Secondly, our UE oracle allows

for very efficient query processing (e.g., less than 10ms for

all queries on all datasets tested in this paper), needs quite

affordable processing time (e.g., a few hours for the largest

dataset), and costs the smallest space. Thirdly, PCPD-Adapt,
SILC-Adapt, Dynamic-PLL and H2H-Adapt have serious prob-
lem on their space that are 2-3 orders of magnitude larger

than others and could not scale up to sizable datasets. Be-

sides, each baseline has an update time more than 2 orders

of magnitude larger than that of UE.

6 CONCLUSION
The paper studies the shortest distance and path queries

on the dynamic road network and develops a very efficient

oracle for this problem. This oracle has decent theoretical

bounds on the preprocessing time, space, query time and

update time. Remarkably, it enjoys anO(n log2 n) preprocess-
ing time and an O(log3 n) update time w.h.p.. However, the

existing oracles all have a worse-than O(n1.5) preprocessing
time and a worse-thanO(n1.5) update time, which shows that

they are not scalable. Our extensive empirical study verifies

that the existing oracles sustain the short updating time in

practice. Besides, our oracle significantly outperforms the

existing works in terms of the update time. The query time,

preprocessing time and space of our oracle is comparable

with the best existing work.

Acknowledgements: We are grateful to the anonymous

reviewers for their constructive comments on this paper.

The research of Victor Junqiu Wei and Raymond Chi-Wing

Wong is supported by HKRGC GRF 16214017. The research

of Cheng Long is supported by the Nanyang Technological

University Start-UP Grant from the College of Engineering

under Grant M4082302 and by the Ministry of Education, Sin-

gapore, under its Academic Research Fund Tier 1 (RG20/19

(S)).

REFERENCES
[1] http://download.geofabrik.de.

[2] http://mathworld.wolfram.com/treewidth.html.

[3] https://data.cityofnewyork.us/transportation/real-time-traffic-speed-

data/xsat-x5sa.

[4] https://data.gov.uk/dataset/dft-eng-srn-routes-journey-

times/resource/34b91717-ccfa-46bd-b6f1-a51c4aeacea9.

[5] Fire services department, hong kong: Performance pledge. In

http://www.hkfsd.gov.hk/eng/performance.html, 2020.
[6] Virginia department of transportation. In

https://www.virginiadot.org/projects/faq-road-built.asp, 2020.
[7] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical

hub labelings for shortest paths. In Algorithms–ESA 2012. 2012.
[8] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway

dimension, shortest paths, and provably efficient algorithms. In SODA,
2010.

[9] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata. Fast shortest-

path distance queries on road networks by pruned highway labeling.

In ALENEX, 2014.
[10] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance

queries on large networks by pruned landmark labeling. In SIGMOD,
2013.

[11] T. Akiba, Y. Iwata, and Y. Yoshida. Dynamic and historical shortest-

path distance queries on large evolving networks by pruned landmark

labeling. In WWW, 2014.

[12] M. Barthélemy. Spatial networks. Physics Reports, 2011.
[13] H. Bast, S. Funke, and D. Matijević. Transit: ultrafast shortest-path

queries with linear-time preprocessing. In 9th DIMACS Implementation
Challenge—Shortest Path, 2006.

[14] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road

networks with transit nodes. Science, 2007.
[15] G. V. Batz, D. Delling, P. Sanders, and C. Vetter. Time-dependent

contraction hierarchies. In Proceedings of the Meeting on Algorithm
Engineering & Expermiments, 2009.

[16] L. Benguigui. A fractal analysis of the public transportation system of

paris. Environment and Planning A, 1995.
[17] L. Benguigui and M. Daoud. Is the suburban railway system a fractal?

Geographical Analysis, 1991.
[18] A. Bernstein and D. Karger. Improved distance sensitivity oracles via

random sampling. In SODA, 2008.
[19] A. Bernstein and D. Karger. A nearly optimal oracle for avoiding failed

vertices and edges. In STOC, 2009.
[20] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest

neighbor. In ICML, 2006.
[21] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and

distance queries via 2-hop labels. SIAM Journal on Computing, 2003.
[22] G. Csányi and B. Szendrői. Fractal–small-world dichotomy in real-

world networks. Physical Review E, 2004.
[23] L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin. Dimension of spatially

embedded networks. Nature Physics, 2011.
[24] U. Demiryurek, F. Banaei-Kashani, C. Shahabi, and A. Ranganathan.

Online computation of fastest path in time-dependent spatial networks.

In SSTD, 2011.
[25] U. Demiryurek, B. Pan, F. Banaei-Kashani, and C. Shahabi. Towards

modeling the traffic data on road networks. In Proceedings of the Second
International Workshop on Computational Transportation Science, 2009.

[26] J. Dibbelt, B. Strasser, and D. Wagner. Customizable contraction hier-

archies. Journal of Experimental Algorithmics (JEA), 2016.
[27] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1959.

[28] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-Noy.

Dynamic shortest path algorithms for hypergraphs. IEEE/ACM Trans-
actions on networking, 2014.

[29] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction

hierarchies: Faster and simpler hierarchical routing in road networks.

In Experimental Algorithms. 2008.
[30] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing

in large road networks using contraction hierarchies. Transportation
Science, 2012.

[31] A. V. Goldberg and C. Harrelson. Computing the shortest path: A

search meets graph theory. In SODA, 2005.
[32] L. Guo, Y. Zhu, Z. Luo, andW. Li. The scaling of several public transport

networks in china. Fractals, 2013.
[33] R. H. Güting. An introduction to spatial database systems. VLDBJ,

1994.

[34] T. Hayashi, T. Akiba, and K.-i. Kawarabayashi. Fully dynamic shortest-

path distance query acceleration on massive networks. In CIKM, 2016.

[35] G. B. Hermsdorff and L. Gunderson. A unifying framework for

spectrum-preserving graph sparsification and coarsening. In Advances
in Neural Information Processing Systems, 2019.

[36] R. Jin, N. Ruan, Y. Xiang, and V. Lee. A highway-centric labeling

approach for answering distance queries on large sparse graphs. In

SIGMOD, 2012.
[37] S. Jung and S. Pramanik. Hiti graph model of topographical road maps

in navigation systems. In ICDE, 1996.
[38] S. Jung and S. Pramanik. An efficient path computation model for

hierarchically structured topographical road maps. TKDE, 2002.
[39] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a

road network with speed patterns. In ICDE, 2006.
[40] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-

restricted metrics. In STOC, 2002.
[41] D. Knuth. Seminumerical algorithms, the art of computer program-

ming, vol. 2 addison-wesley. Reading, MA, 1997.
[42] R. Lambiotte, V. D. Blondel, C. De Kerchove, E. Huens, C. Prieur,

Z. Smoreda, and P. Van Dooren. Geographical dispersal of mobile

communication networks. Physica A: Statistical Mechanics and its
Applications, 2008.

[43] S. Lämmer, B. Gehlsen, and D. Helbing. Scaling laws in the spatial

structure of urban road networks. Physica A: Statistical Mechanics and
its Applications, 2006.

[44] J.-R. Lee and C.-W. Chung. Efficient distance sensitivity oracles for

real-world graph data. TKDE, 2019.
[45] L. Li, S. Wang, and X. Zhou. Time-dependent hop labeling on road

network. In ICDE, 2019.
[46] D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu. When

hierarchy meets 2-hop-labeling: Efficient shortest distance queries on

road networks. In SIGMOD, 2018.
[47] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in

spatial network databases. In VLDB, 2003.
[48] Y. Qin, Q. Z. Sheng, and W. E. Zhang. Sief: Efficiently answering

distance queries for failure prone graphs. In EDBT, 2015.
[49] A. K. Rai and S. Agarwal. Maintaining shortest path tree in dynamic

digraphs having negative edge-weights. In International Conference
on Parallel Distributed Computing Technologies and Applications, 2011.

[50] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network

distance browsing in spatial databases. In SIGMOD, 2008.
[51] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest

path queries. In European Symposium on Algorithms (ESA). 2005.
[52] P. Sanders and D. Schultes. Engineering highway hierarchies. In

European Symposium on Algorithms (ESA). 2006.
[53] J. Sankaranarayanan and H. Samet. Distance oracles for spatial net-

works. In ICDE, 2009.

[54] J. Sankaranarayanan and H. Samet. Query processing using distance

oracles for spatial networks. TKDE, 2010.
[55] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial

networks. VLDB, 2009.
[56] D. Schultes and P. Sanders. Dynamic highway-node routing. In

Experimental Algorithms. 2007.
[57] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou. Efficient route planning

on public transportation networks: A labelling approach. In SIGMOD,
2015.

[58] Y. Wang, G. Li, and N. Tang. Querying shortest paths on time depen-

dent road networks. VLDB, 2019.
[59] V. J. Wei, R. C.-W. Wong, and C. Long. Fastest path and time queries on

dynamic spatial networkswith poly-logarithmic update time (technical

report). In http://home.cse.ust.hk/~raywong/paper/sigmod20-dynamic-
technical.pdf.

[60] O. Weimann and R. Yuster. Replacement paths and distance sensitivity

oracles via fast matrix multiplication. ACM Transactions on Algorithms
(TALG), 2013.

[61] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path

and distance queries on road networks: An experimental evaluation.

VLDB, 2012.
[62] Y. Yuan, X. Lian, G. Wang, Y. Ma, and Y. Wang. Constrained shortest

path query in a large time-dependent graph. VLDB, 2019.
[63] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path

and distance queries on road networks: towards bridging theory and

practice. In SIGMOD, 2013.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Related Work
	3.1 Oracle on Static Spatial Networks
	3.2 Oracles on Dynamic Spatial Networks
	3.3 Some Other Related Studies

	4 Distance and Path Oracle
	4.1 Concept: Architecture-Intact Property
	4.2 Our Oracle: UE
	4.3 Preprocessing Phase
	4.4 Query Phase
	4.5 Update Phase
	4.6 Theoretical Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

